CN113380916B - Dual-mode uncooled infrared detector thermosensitive layer structure and preparation method thereof - Google Patents
Dual-mode uncooled infrared detector thermosensitive layer structure and preparation method thereof Download PDFInfo
- Publication number
- CN113380916B CN113380916B CN202110443599.6A CN202110443599A CN113380916B CN 113380916 B CN113380916 B CN 113380916B CN 202110443599 A CN202110443599 A CN 202110443599A CN 113380916 B CN113380916 B CN 113380916B
- Authority
- CN
- China
- Prior art keywords
- thin film
- vox
- mode
- dual
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000002360 preparation method Methods 0.000 title claims abstract description 14
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 claims abstract description 30
- 239000010410 layer Substances 0.000 claims description 65
- 239000010409 thin film Substances 0.000 claims description 49
- 239000010408 film Substances 0.000 claims description 32
- 239000011241 protective layer Substances 0.000 claims description 24
- 238000000034 method Methods 0.000 claims description 13
- 229910021417 amorphous silicon Inorganic materials 0.000 claims description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 6
- GNTDGMZSJNCJKK-UHFFFAOYSA-N divanadium pentaoxide Chemical compound O=[V](=O)O[V](=O)=O GNTDGMZSJNCJKK-UHFFFAOYSA-N 0.000 claims description 6
- 238000005530 etching Methods 0.000 claims description 6
- 239000007789 gas Substances 0.000 claims description 6
- 229910021389 graphene Inorganic materials 0.000 claims description 6
- 238000005229 chemical vapour deposition Methods 0.000 claims description 5
- 150000002500 ions Chemical class 0.000 claims description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 3
- 238000005234 chemical deposition Methods 0.000 claims description 3
- 239000002131 composite material Substances 0.000 claims description 3
- 229910052751 metal Inorganic materials 0.000 claims description 3
- 239000002184 metal Substances 0.000 claims description 3
- 239000001301 oxygen Substances 0.000 claims description 3
- 229910052760 oxygen Inorganic materials 0.000 claims description 3
- 229910052720 vanadium Inorganic materials 0.000 claims description 3
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 claims description 3
- 239000012808 vapor phase Substances 0.000 claims description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 2
- 229910052710 silicon Inorganic materials 0.000 claims description 2
- 239000010703 silicon Substances 0.000 claims description 2
- 229910052732 germanium Inorganic materials 0.000 claims 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims 1
- 238000001514 detection method Methods 0.000 abstract description 9
- 230000003068 static effect Effects 0.000 abstract description 3
- 238000005240 physical vapour deposition Methods 0.000 description 6
- 238000003384 imaging method Methods 0.000 description 4
- 230000008542 thermal sensitivity Effects 0.000 description 4
- 239000004020 conductor Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F30/00—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors
- H10F30/10—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices being sensitive to infrared radiation, visible or ultraviolet radiation, and having no potential barriers, e.g. photoresistors
- H10F30/15—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices being sensitive to infrared radiation, visible or ultraviolet radiation, and having no potential barriers, e.g. photoresistors comprising amorphous semiconductors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/10—Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
- G01J5/20—Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using resistors, thermistors or semiconductors sensitive to radiation, e.g. photoconductive devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F71/00—Manufacture or treatment of devices covered by this subclass
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
Abstract
Description
技术领域technical field
本发明属于非制冷红外探测器领域,具体涉及一种双模式非制冷红外探测器热敏层结构及其制备方法。The invention belongs to the field of uncooled infrared detectors, and in particular relates to a dual-mode uncooled infrared detector thermosensitive layer structure and a preparation method thereof.
背景技术Background technique
非制冷红外探测器的热敏材料部分主要使用非晶锗硅、VOX等,非晶锗硅基红外探测器响应率高、探测率高,归功于非晶锗硅层热敏性能好(即电阻温度系数大)、热导率低,但其1/f噪声较大,所以器件NETD大。VOx基红外探测器1/f噪声较小,因此NETD较小,同时VOx的电阻温度系数(TCR)合适,热敏性能优异,但响应率明显低于非晶锗硅基红外探测器。为了满足不同场景的红外探测需求(例如需要探测器NETD小的场景,需要探测器响应率大的场景),且红外探测器在不同场景均有优异表现,基于此,我们提出了双重模式工作的红外探测器,并给出了其热敏层结构的设计。The heat-sensitive material part of the uncooled infrared detector mainly uses amorphous germanium silicon, VO X , etc. The amorphous germanium silicon-based infrared detector has a high responsivity and a high detection rate, which is attributed to the good thermal performance of the amorphous germanium silicon layer (ie The temperature coefficient of resistance is large) and the thermal conductivity is low, but its 1/f noise is relatively large, so the NETD of the device is large. The 1/f noise of VOx-based infrared detectors is small, so the NETD is small. At the same time, VOx has a suitable temperature coefficient of resistance (TCR) and excellent thermal performance, but the responsivity is significantly lower than that of amorphous germanium-silicon-based infrared detectors. In order to meet the needs of infrared detection in different scenarios (such as scenarios requiring a small detector NETD and a scenario requiring a large detector response rate), and infrared detectors have excellent performance in different scenarios, based on this, we propose a dual-mode working Infrared detector, and the design of its heat-sensitive layer structure is given.
发明内容Contents of the invention
本发明的目的在于提供一种双模式非制冷红外探测器热敏层结构及其制备方法,旨在用于解决现有的红外探测器的热敏层结构无法满足红外探测器不同场景需求的问题。The purpose of the present invention is to provide a dual-mode uncooled infrared detector heat-sensitive layer structure and its preparation method, aiming to solve the problem that the heat-sensitive layer structure of the existing infrared detector cannot meet the needs of different scenarios of the infrared detector .
本发明是这样实现的:The present invention is achieved like this:
一方面,本发明提供一种双模式非制冷红外探测器热敏层结构,包括保护层以及位于保护层上方的热敏薄膜层,所述热敏薄膜层包括分两侧设置的非晶锗硅薄膜和VOx薄膜。On the one hand, the present invention provides a dual-mode uncooled infrared detector heat-sensitive layer structure, including a protective layer and a heat-sensitive thin film layer located above the protective layer, and the heat-sensitive thin film layer includes amorphous silicon germanium arranged on two sides thin film and VOx thin film.
进一步地,所述非晶锗硅薄膜和所述VOx薄膜之间具有间隙。Further, there is a gap between the amorphous silicon germanium thin film and the VOx thin film.
进一步地,所述VOx薄膜为V2O5薄膜。Further, the VOx film is a V 2 O 5 film.
进一步地,所述VOx薄膜为三明治结构的五氧化二钒热敏薄膜,包括至少两层V2O5层以及位于每相邻两层V2O5层之间的载流子浓度提高层。Further, the VOx thin film is a vanadium pentoxide thermosensitive thin film with a sandwich structure, including at least two V 2 O 5 layers and a carrier concentration increasing layer located between every two adjacent V 2 O 5 layers.
进一步地,所述载流子浓度提高层的材质为石墨烯复合F离子。Further, the carrier concentration increasing layer is made of graphene composite F ions.
进一步地,所述载流子浓度提高层的材质为掺杂W6+的V2O3氧化物。Further, the carrier concentration increasing layer is made of V 2 O 3 oxide doped with W 6+ .
进一步地,所述载流子浓度提高层的材质为掺杂Ru4+的V2O3氧化物。Further, the carrier concentration increasing layer is made of V 2 O 3 oxide doped with Ru 4+ .
另一方面,本发明还提供一种如上任一所述的双模式非制冷红外探测器热敏层结构的制备方法,包括以下步骤:On the other hand, the present invention also provides a method for preparing a heat-sensitive layer structure of a dual-mode uncooled infrared detector as described above, comprising the following steps:
(1)生长第一层保护层;(1) Growth of the first protective layer;
(2)采用PVD法在第一层保护层上生长一层VOx薄膜;(2) A VOx thin film is grown on the first protective layer by PVD method;
(3)采用CVD法在VOx薄膜上沉积第二层保护层;(3) Deposit the second protective layer on the VOx thin film by CVD method;
(4)使用刻蚀机刻蚀部分区域的VOx薄膜以及第二层保护层;(4) Use an etching machine to etch the VOx film and the second protective layer in some areas;
(5)用低压气相化学沉积法在刻蚀的部分区域沉积一层非晶锗硅薄膜;(5) Deposit a layer of amorphous germanium silicon film on the etched part area by low pressure vapor phase chemical deposition method;
(6)使用刻蚀机在VOx薄膜以及非晶锗硅薄膜上刻蚀出设计的图形。(6) Use an etching machine to etch the designed pattern on the VOx thin film and the amorphous germanium silicon thin film.
进一步地,所述步骤(2)具体包括:Further, the step (2) specifically includes:
首先采用PVD法沉积一层金属钒薄膜,厚度为30-100nm,制备完成后置于氧气氛围中500-600摄氏度退火1-2h。Firstly, PVD method is used to deposit a metal vanadium thin film with a thickness of 30-100nm. After the preparation is completed, it is annealed at 500-600°C for 1-2h in an oxygen atmosphere.
进一步地,所述步骤(5)具体包括:Further, the step (5) specifically includes:
使用GeH4和Si2H6混合气体,两种气体流速的比例控制在0-1.4sccm之间,总流速为5-15sccm,压强保持在20-60 Pa,温度保持在300-500℃,制备完成后500-600摄氏度退火1-4h。Using GeH 4 and Si 2 H 6 mixed gas, the ratio of the flow rate of the two gases is controlled between 0-1.4 sccm, the total flow rate is 5-15 sccm, the pressure is kept at 20-60 Pa, and the temperature is kept at 300-500°C. After completion, anneal at 500-600 degrees Celsius for 1-4 hours.
与现有技术相比,本发明具有以下有益效果:Compared with the prior art, the present invention has the following beneficial effects:
本发明提供的这种双模式非制冷红外探测器热敏层结构及其制备方法,热敏薄膜层包括分两侧设置的非晶锗硅薄膜和VOx薄膜,可以用于双模式非制冷红外探测器,在需要NETD低的场景,例如对生物活体成像,VOx薄膜投入工作,探测器进入VOx基红外探测模式;在需要响应率高的场景,例如跟踪飞机、导弹尾焰,非晶锗硅薄膜投入工作,探测器进入非晶锗硅基红外探测模式;需要高质量静态红外场景拍摄时,例如对城市夜景夜间成像,VOx薄膜和非晶锗硅薄膜同时投入工作,两种模式共同工作,即对两种探测器捕捉到的画面再做数字处理,通过算法将图像合成更为清晰的图像,因此本发明适用于不同的工作场景,应用范围广,成本低。The heat-sensitive layer structure and preparation method of the dual-mode uncooled infrared detector provided by the present invention, the heat-sensitive film layer includes an amorphous germanium-silicon film and a VOx film arranged on two sides, which can be used for dual-mode uncooled infrared detection In scenarios that require low NETD, such as imaging living organisms, the VOx film is put into operation, and the detector enters the VOx-based infrared detection mode; in scenarios that require high responsivity, such as tracking aircraft, missile exhaust, amorphous germanium silicon film When it is put into operation, the detector enters the amorphous germanium silicon-based infrared detection mode; when high-quality static infrared scene shooting is required, such as nighttime imaging of urban night scenes, the VOx thin film and the amorphous germanium silicon thin film are put into work at the same time, and the two modes work together, that is The images captured by the two detectors are digitally processed, and the images are synthesized into a clearer image through an algorithm. Therefore, the present invention is applicable to different working scenes, has a wide range of applications, and is low in cost.
附图说明Description of drawings
图1为本发明实施例提供的一种双模式非制冷红外探测器热敏层结构的示意图;Fig. 1 is a schematic diagram of a thermal layer structure of a dual-mode uncooled infrared detector provided by an embodiment of the present invention;
图2为本发明实施例提供的一种双模式非制冷红外探测器的部分结构图;Fig. 2 is a partial structural diagram of a dual-mode uncooled infrared detector provided by an embodiment of the present invention;
图3为本发明实施例提供的一种双模式非制冷红外探测器热敏层结构的制备方法中步骤(2)得到的产物结构;Fig. 3 is the structure of the product obtained in step (2) in the preparation method of the heat-sensitive layer structure of a dual-mode uncooled infrared detector provided by the embodiment of the present invention;
图4为本发明实施例提供的一种双模式非制冷红外探测器热敏层结构的制备方法中步骤(3)得到的产物结构;Fig. 4 is the structure of the product obtained in step (3) in the preparation method of the heat-sensitive layer structure of a dual-mode uncooled infrared detector provided by the embodiment of the present invention;
图5为本发明实施例提供的一种双模式非制冷红外探测器热敏层结构的制备方法中步骤(4)得到的产物结构;Fig. 5 is the product structure obtained in step (4) in the preparation method of a dual-mode uncooled infrared detector heat-sensitive layer structure provided by the embodiment of the present invention;
图6为本发明实施例提供的一种双模式非制冷红外探测器热敏层结构的制备方法中步骤(5)得到的产物结构。Fig. 6 is a structure of a product obtained in step (5) of a method for preparing a heat-sensitive layer structure of a dual-mode uncooled infrared detector provided by an embodiment of the present invention.
附图标记说明:1-保护层/第一保护层、2-热敏薄膜层、21-非晶锗硅薄膜、22-热敏薄膜、3-支撑腿、4-第二层保护层。Description of reference numerals: 1—protective layer/first protective layer, 2—thermosensitive thin film layer, 21—amorphous silicon germanium thin film, 22—thermosensitive thin film, 3—support leg, 4—second protective layer.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。The following will clearly and completely describe the technical solutions in the embodiments of the present invention with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only some, not all, embodiments of the present invention. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the protection scope of the present invention.
如图1和图2所示,本发明实施例提供一种双模式非制冷红外探测器热敏层结构,包括保护层1以及位于保护层上方的热敏薄膜层2,所述保护层1可以采用Si3N4,所述热敏薄膜层2包括分两侧设置的非晶锗硅薄膜21和VOx薄膜22,本实施例中,所述非晶锗硅薄膜21和所述VOx薄膜22各占一半,优选的,所述非晶锗硅薄膜21和所述VOx薄膜22之间具有间隙,防止二者之间产生影响。如图2所示为应用本实施例热敏层结构的双模式非制冷红外探测器的部分结构图,除了热敏层结构外,还包括支撑腿3等其他一些结构,其为本领域常规技术,在此不再赘述。本实施例的热敏层结构应用于双模式非制冷红外探测器中时,可以通过不同的电路将VOx薄膜22和非晶锗硅薄膜21接入探测器使用,并通过开关控制电路的导通状态控制VOx薄膜22和非晶锗硅薄膜21是否进入工作模式,在需要NETD低的场景,例如对生物活体成像,VOx薄膜22投入工作,探测器进入VOx基红外探测模式;在需要响应率高的场景,例如跟踪飞机、导弹尾焰,非晶锗硅薄膜21投入工作,探测器进入非晶锗硅基红外探测模式;需要高质量静态红外场景拍摄时,例如对城市夜景夜间成像,VOx薄膜22和非晶锗硅薄膜21同时投入工作,两种模式共同工作,即对两种探测器捕捉到的画面再做数字处理,通过算法将图像合成更为清晰的图像;因此本发明适用于不同的工作场景,应用范围广,成本低。As shown in Figure 1 and Figure 2, the embodiment of the present invention provides a dual-mode uncooled infrared detector heat-sensitive layer structure, including a
作为优选的,所述VOx薄膜22为V2O5薄膜,热敏性能好,热稳定性高。进一步优选地,所述VOx薄膜22为三明治结构的五氧化二钒热敏薄膜,包括至少两层V2O5层以及位于每相邻两层V2O5层之间的载流子浓度提高层。V2O5层可以设置为两层或者两层以上,每相邻两层V2O5层之间设置一层载流子浓度提高层,使得载流子浓度更均匀。通过载流子浓度提高层提高V2O5热敏薄膜的载流子浓度,显著地降低V2O5热敏薄膜室温下的电阻值,有效解决V2O5热敏薄膜在室温下电阻极大、热敏性不高的问题,提高V2O5热敏薄膜的热敏性,使其用作器件时响应率增大;且可以通过调节V2O5层以及载流子浓度提高层的厚度比例来调节电阻大小,载流子浓度提高层的厚度越大,V2O5层的厚度越小,V2O5热敏薄膜的整体载流子浓度越大,则电阻越小,相反地,载流子浓度提高层的厚度越小,V2O5层的厚度越大,V2O5热敏薄膜的整体载流子浓度越小,则电阻越大,可以根据不同的实际需求进行调节,调节方便,且不需要增加额外的成本。Preferably, the VOx
进一步对载流子浓度提高层进行细化,作为第一种实施方式,所述载流子浓度提高层的材质为石墨烯复合F离子(Graphene&F-),厚度优选为10~50nm。F-离子半径小,可以取代V2O5中的O2-,并且在V2O5晶格间隙中大量存在,采用Graphene吸附F-增大了热敏薄膜体系自由载流子浓度,使得阻值达到电路工作值,同时Graphene层利于热的水平传导,因此VOx薄膜22的TCR得到提高,薄膜的热敏性也得到提高,用作器件其响应率会增大。作为第二种实施方式,所述载流子浓度提高层的材质为掺杂W6+的V2O3氧化物,厚度为3~23nm。V2O3常温下为导体,0带隙,自由载流子浓度高,W6+离子能进一步提高薄膜中载流子浓度,达到降低V2O5电阻的作用。作为第三种实施方式,所述载流子浓度提高层的材质为掺杂Ru4+的V2O3氧化物,厚度为3~23nm。V2O3常温下为导体,0带隙,自由载流子浓度高,RuO2特殊的导体性质,使得掺入Ru4+能进一步提高薄膜中载流子浓度,达到降低V2O5电阻的作用。Further refining the carrier concentration increasing layer, as a first embodiment, the carrier concentration increasing layer is made of graphene composite F ions (Graphene&F - ), and the thickness is preferably 10-50 nm. F - has a small ion radius, can replace O 2- in V 2 O 5 , and exists in large quantities in the V 2 O 5 lattice gap, and the use of Graphene to adsorb F - increases the free carrier concentration of the thermally sensitive thin film system, making The resistance value reaches the working value of the circuit, and the Graphene layer is conducive to the horizontal conduction of heat, so the TCR of the
本发明实施例还提供一种上述实施例的双模式非制冷红外探测器热敏层结构的制备方法,包括以下步骤:The embodiment of the present invention also provides a method for preparing the heat-sensitive layer structure of the dual-mode uncooled infrared detector of the above-mentioned embodiment, including the following steps:
(1)生长第一层保护层1,第一层保护层1采用Si3N4;(1) growing the first
(2)采用PVD(物理气相沉积)法在第一层保护层1上生长一层VOx薄膜22;厚度与电阻满足电路设计需求,参见图3所示;(2) A VOx
(3)采用CVD(化学气相沉积)法在VOx薄膜22上沉积第二层保护层4,第二层保护层也采用Si3N4,厚度为100-400 nm,,参见图4所示;(3) Deposit a second
(4)使用刻蚀机刻蚀部分区域的VOx薄膜22以及第二层保护层4,作为非晶锗硅薄膜21沉积区域,参见图5所示;(4) Use an etching machine to etch the VOx
(5)用低压气相化学沉积法在刻蚀的部分区域沉积一层非晶锗硅薄膜21,厚度为30-100nm,参见图6所示;(5) Deposit a layer of amorphous
(6)使用刻蚀机在VOx薄膜22以及非晶锗硅薄膜21上刻蚀出设计的图形。(6) Using an etching machine to etch a designed pattern on the
作为优选地,所述步骤(2)具体包括:Preferably, the step (2) specifically includes:
首先采用PVD法沉积一层金属钒薄膜,厚度为30-100nm,制备完成后置于氧气氛围中500-600摄氏度退火1-2h。Firstly, PVD method is used to deposit a metal vanadium thin film with a thickness of 30-100nm. After the preparation is completed, it is annealed at 500-600°C for 1-2h in an oxygen atmosphere.
作为优选地,所述步骤(5)具体包括:Preferably, the step (5) specifically includes:
使用GeH4和Si2H6混合气体,两种气体流速的比例控制在0-1.4sccm之间,总流速为5-15sccm,压强保持在20-60 Pa,温度保持在300-500℃,制备完成后500-600摄氏度退火1-4h。Using GeH 4 and Si 2 H 6 mixed gas, the ratio of the flow rate of the two gases is controlled between 0-1.4 sccm, the total flow rate is 5-15 sccm, the pressure is kept at 20-60 Pa, and the temperature is kept at 300-500°C. After completion, anneal at 500-600 degrees Celsius for 1-4 hours.
上述方法采用CVD与PVD实现双模式非制冷红外探测器热敏层结构的制备,与硅基半导体工艺兼容,制备方式可控。The above method adopts CVD and PVD to realize the preparation of the heat-sensitive layer structure of the dual-mode uncooled infrared detector, which is compatible with the silicon-based semiconductor process, and the preparation method is controllable.
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included in the scope of the present invention. within the scope of protection.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110443599.6A CN113380916B (en) | 2021-04-23 | 2021-04-23 | Dual-mode uncooled infrared detector thermosensitive layer structure and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110443599.6A CN113380916B (en) | 2021-04-23 | 2021-04-23 | Dual-mode uncooled infrared detector thermosensitive layer structure and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113380916A CN113380916A (en) | 2021-09-10 |
CN113380916B true CN113380916B (en) | 2023-04-28 |
Family
ID=77569998
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110443599.6A Active CN113380916B (en) | 2021-04-23 | 2021-04-23 | Dual-mode uncooled infrared detector thermosensitive layer structure and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113380916B (en) |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10227689A (en) * | 1997-02-17 | 1998-08-25 | Mitsubishi Electric Corp | Infrared detector and infrared focal plane array |
JP3080093B2 (en) * | 1998-09-01 | 2000-08-21 | 日本電気株式会社 | Oxide thin film for bolometer and infrared sensor using the oxide thin film |
JP3597069B2 (en) * | 1999-01-12 | 2004-12-02 | 日本電気株式会社 | Thermal infrared array sensor for detecting multiple infrared wavelength bands |
KR100596196B1 (en) * | 2004-01-29 | 2006-07-03 | 한국과학기술연구원 | Oxide Thin Film for Bolometa and Infrared Sensing Device Using the Same |
JP5832007B2 (en) * | 2009-12-25 | 2015-12-16 | 三菱マテリアル株式会社 | Infrared sensor and manufacturing method thereof |
KR101910573B1 (en) * | 2012-12-20 | 2018-10-22 | 삼성전자주식회사 | Infrared detector including broadband light absorber |
CN105486412A (en) * | 2015-12-31 | 2016-04-13 | 武汉高芯科技有限公司 | Uncooled infrared focal plane array detector with overlap vertical bridge legs |
CN205940776U (en) * | 2016-07-19 | 2017-02-08 | 中国科学院重庆绿色智能技术研究院 | Micro -bolometer |
CN107188426A (en) * | 2017-05-02 | 2017-09-22 | 武汉理工大学 | A kind of tungsten-doped vanadium dioxide thermochromic thin film and preparation method thereof |
CN107101728B (en) * | 2017-05-11 | 2019-06-21 | 烟台睿创微纳技术股份有限公司 | A kind of double-colored polarized ir detector of non-brake method and its manufacturing method |
CN108807346B (en) * | 2018-06-28 | 2020-04-28 | 中国科学院微电子研究所 | Detector, thermistor, vanadium oxide film and manufacturing method thereof |
-
2021
- 2021-04-23 CN CN202110443599.6A patent/CN113380916B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN113380916A (en) | 2021-09-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104878358B (en) | A kind of high temperature coefficient of resistance vanadium oxide thermosensitive material film and preparation method thereof | |
CN106206830B (en) | A kind of infrared detector based on graphene interlayers formula infrared absorption layer | |
Liddiard | Thin-film resistance bolometer IR detectors—II | |
WO2019216134A1 (en) | Composite tungsten oxide film and method for producing same, and film-formed substrate and article each provided with said film | |
CN111640854A (en) | Method for preparing multilayer superconducting film of superconducting transition edge detector and detector | |
CN113380916B (en) | Dual-mode uncooled infrared detector thermosensitive layer structure and preparation method thereof | |
Agnihotri et al. | Electrical and optical properties of chemically deposited conducting glass for SIS solar cells | |
CN109666909B (en) | A method for preparing flexible vanadium oxide composite film by low temperature buffer layer technology | |
CN113838943A (en) | Polarized light detector based on anisotropic two-dimensional material and preparation method thereof | |
CN108346713B (en) | Visible-short-wave infrared detector and preparation method thereof | |
CN105734504B (en) | One kind mixes silver vanadium oxide thermosensitive material film and preparation method thereof | |
CN103630247B (en) | Uncooled infrared detection array autodoping SiGe/Si Multiple Quantum Well thermo-sensitive material | |
Liu et al. | Doping of β-FeSi2 films with boron and arsenic by sputtering and its application for optoelectronic devices | |
CN109103268A (en) | A kind of GaN base p-i-n UV detector structure and preparation method | |
CN106449853A (en) | Self-support thermosensitive thin film type infrared detector with bright compensation element | |
WO2011135975A1 (en) | Si-Ge LAMINATED THIN FILM AND INFRARED SENSOR USING SAME | |
CN206282868U (en) | Self-supporting thermosensitive film type Infrared Detectors with " bright " compensation unit | |
CN114068797A (en) | A kind of N-type Bi-Te-Se based thermoelectric thin film and preparation method thereof | |
CN113174596B (en) | Vanadium pentoxide thermosensitive film with sandwich structure and preparation method thereof | |
Hao et al. | Etching mask optimization of InAs/GaSb superlattice mid-wavelength infared 640× 512 focal plane array | |
CN118099257B (en) | Dual-color infrared detector and preparation method thereof | |
CN108447976B (en) | Method for regulating performance of n-type bismuth telluride film by crystal boundary | |
CN108103459A (en) | A kind of high temperature coefficient of resistance aoxidizes nickel chromium triangle thermosensitive film preparation method | |
JP3727208B2 (en) | Temperature-sensitive resistance change film, manufacturing method thereof, and far-infrared sensor using the same | |
Yang et al. | Manufacture and characterization of sol–gel V1− x− yWxSiyO2 films for uncooled thermal detectors |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |