CN113373209B - Methylation of blood skeleton protein gene as potential marker for early diagnosis of stroke - Google Patents
Methylation of blood skeleton protein gene as potential marker for early diagnosis of stroke Download PDFInfo
- Publication number
- CN113373209B CN113373209B CN202010156358.9A CN202010156358A CN113373209B CN 113373209 B CN113373209 B CN 113373209B CN 202010156358 A CN202010156358 A CN 202010156358A CN 113373209 B CN113373209 B CN 113373209B
- Authority
- CN
- China
- Prior art keywords
- seq
- dna fragment
- cpg
- distinguishable
- positions
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000011987 methylation Effects 0.000 title claims abstract description 164
- 238000007069 methylation reaction Methods 0.000 title claims abstract description 164
- 208000006011 Stroke Diseases 0.000 title claims abstract description 157
- 239000003550 marker Substances 0.000 title claims abstract description 10
- 210000004369 blood Anatomy 0.000 title abstract description 19
- 239000008280 blood Substances 0.000 title abstract description 19
- 238000013399 early diagnosis Methods 0.000 title abstract description 12
- 108090000623 proteins and genes Proteins 0.000 title abstract description 5
- 101150087690 ACTB gene Proteins 0.000 claims abstract description 89
- 238000003745 diagnosis Methods 0.000 claims abstract description 16
- 208000024891 symptom Diseases 0.000 claims abstract description 11
- 230000006870 function Effects 0.000 claims abstract description 9
- 238000002360 preparation method Methods 0.000 claims abstract description 5
- 108091029430 CpG site Proteins 0.000 claims description 845
- 239000012634 fragment Substances 0.000 claims description 734
- 108020004414 DNA Proteins 0.000 claims description 708
- 238000013178 mathematical model Methods 0.000 claims description 56
- 102000053602 DNA Human genes 0.000 claims description 40
- 108020004682 Single-Stranded DNA Proteins 0.000 claims description 40
- 239000002773 nucleotide Substances 0.000 claims description 40
- 125000003729 nucleotide group Chemical group 0.000 claims description 40
- 238000001514 detection method Methods 0.000 claims description 39
- 238000000034 method Methods 0.000 claims description 35
- 238000007477 logistic regression Methods 0.000 claims description 18
- 239000003153 chemical reaction reagent Substances 0.000 claims description 6
- 238000007405 data analysis Methods 0.000 claims description 6
- 238000012545 processing Methods 0.000 claims description 6
- 239000000126 substance Substances 0.000 claims description 6
- 238000004364 calculation method Methods 0.000 claims description 5
- 239000000463 material Substances 0.000 claims description 3
- 238000013480 data collection Methods 0.000 claims description 2
- 101000756632 Homo sapiens Actin, cytoplasmic 1 Proteins 0.000 abstract description 19
- 230000002490 cerebral effect Effects 0.000 abstract description 6
- 210000005259 peripheral blood Anatomy 0.000 abstract description 5
- 239000011886 peripheral blood Substances 0.000 abstract description 5
- 230000000694 effects Effects 0.000 abstract description 2
- 206010008190 Cerebrovascular accident Diseases 0.000 abstract 1
- 101100328096 Caenorhabditis elegans clec-88 gene Proteins 0.000 description 56
- 230000035622 drinking Effects 0.000 description 49
- 101150008740 cpg-1 gene Proteins 0.000 description 30
- 230000000391 smoking effect Effects 0.000 description 30
- 101150093710 clec-87 gene Proteins 0.000 description 29
- 206010020772 Hypertension Diseases 0.000 description 28
- 101150014604 cpg-3 gene Proteins 0.000 description 28
- 206010012601 diabetes mellitus Diseases 0.000 description 25
- 108010023302 HDL Cholesterol Proteins 0.000 description 24
- 150000003626 triacylglycerols Chemical class 0.000 description 24
- 108010028554 LDL Cholesterol Proteins 0.000 description 22
- 210000000265 leukocyte Anatomy 0.000 description 21
- 101150071119 cpg-2 gene Proteins 0.000 description 15
- 101150087279 cpg-8 gene Proteins 0.000 description 14
- 101150030550 cpg-9 gene Proteins 0.000 description 14
- 239000000047 product Substances 0.000 description 12
- 230000007067 DNA methylation Effects 0.000 description 11
- 108700039691 Genetic Promoter Regions Proteins 0.000 description 11
- 235000019441 ethanol Nutrition 0.000 description 10
- 238000012360 testing method Methods 0.000 description 9
- 238000004820 blood count Methods 0.000 description 8
- 230000000875 corresponding effect Effects 0.000 description 8
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 7
- 108700024394 Exon Proteins 0.000 description 7
- 238000004458 analytical method Methods 0.000 description 7
- 238000012549 training Methods 0.000 description 7
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 6
- 208000024172 Cardiovascular disease Diseases 0.000 description 6
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 6
- 108091092195 Intron Proteins 0.000 description 6
- 102000007469 Actins Human genes 0.000 description 5
- 108010085238 Actins Proteins 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 5
- 239000008103 glucose Substances 0.000 description 5
- 238000011835 investigation Methods 0.000 description 5
- 238000001269 time-of-flight mass spectrometry Methods 0.000 description 5
- 238000003646 Spearman's rank correlation coefficient Methods 0.000 description 4
- 210000004027 cell Anatomy 0.000 description 4
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 4
- 230000002596 correlated effect Effects 0.000 description 4
- 238000010219 correlation analysis Methods 0.000 description 4
- OPTASPLRGRRNAP-UHFFFAOYSA-N cytosine Chemical group NC=1C=CNC(=O)N=1 OPTASPLRGRRNAP-UHFFFAOYSA-N 0.000 description 4
- 208000032594 Vascular Remodeling Diseases 0.000 description 3
- 230000036772 blood pressure Effects 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 3
- 201000010099 disease Diseases 0.000 description 3
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 230000014509 gene expression Effects 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- 208000017667 Chronic Disease Diseases 0.000 description 2
- 241000699670 Mus sp. Species 0.000 description 2
- ISAKRJDGNUQOIC-UHFFFAOYSA-N Uracil Chemical compound O=C1C=CNC(=O)N1 ISAKRJDGNUQOIC-UHFFFAOYSA-N 0.000 description 2
- 238000012098 association analyses Methods 0.000 description 2
- 238000009530 blood pressure measurement Methods 0.000 description 2
- 230000036770 blood supply Effects 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 235000012000 cholesterol Nutrition 0.000 description 2
- 230000004087 circulation Effects 0.000 description 2
- 238000003776 cleavage reaction Methods 0.000 description 2
- 230000002301 combined effect Effects 0.000 description 2
- 230000035487 diastolic blood pressure Effects 0.000 description 2
- 230000000092 effect on stroke Effects 0.000 description 2
- 230000000004 hemodynamic effect Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 238000012821 model calculation Methods 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 238000003908 quality control method Methods 0.000 description 2
- 238000007619 statistical method Methods 0.000 description 2
- 230000035488 systolic blood pressure Effects 0.000 description 2
- 102100022900 Actin, cytoplasmic 1 Human genes 0.000 description 1
- 201000001320 Atherosclerosis Diseases 0.000 description 1
- 101710167800 Capsid assembly scaffolding protein Proteins 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 108010077544 Chromatin Proteins 0.000 description 1
- -1 CpG_11.12 Proteins 0.000 description 1
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 1
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 1
- 241000238557 Decapoda Species 0.000 description 1
- 208000032928 Dyslipidaemia Diseases 0.000 description 1
- 208000016988 Hemorrhagic Stroke Diseases 0.000 description 1
- 208000032382 Ischaemic stroke Diseases 0.000 description 1
- 208000017170 Lipid metabolism disease Diseases 0.000 description 1
- 238000000585 Mann–Whitney U test Methods 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 102000016397 Methyltransferase Human genes 0.000 description 1
- 108060004795 Methyltransferase Proteins 0.000 description 1
- 108091028043 Nucleic acid sequence Proteins 0.000 description 1
- 238000012408 PCR amplification Methods 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 101710130420 Probable capsid assembly scaffolding protein Proteins 0.000 description 1
- 108010029485 Protein Isoforms Proteins 0.000 description 1
- 102000001708 Protein Isoforms Human genes 0.000 description 1
- 241000700159 Rattus Species 0.000 description 1
- 101710204410 Scaffold protein Proteins 0.000 description 1
- 238000000692 Student's t-test Methods 0.000 description 1
- 206010072810 Vascular wall hypertrophy Diseases 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 230000000692 anti-sense effect Effects 0.000 description 1
- 239000003146 anticoagulant agent Substances 0.000 description 1
- 229940127219 anticoagulant drug Drugs 0.000 description 1
- 210000003651 basophil Anatomy 0.000 description 1
- 230000002146 bilateral effect Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000017531 blood circulation Effects 0.000 description 1
- 230000037396 body weight Effects 0.000 description 1
- 210000002302 brachial artery Anatomy 0.000 description 1
- 210000001715 carotid artery Anatomy 0.000 description 1
- 230000032823 cell division Effects 0.000 description 1
- 230000010261 cell growth Effects 0.000 description 1
- 230000012292 cell migration Effects 0.000 description 1
- 210000001627 cerebral artery Anatomy 0.000 description 1
- 208000026106 cerebrovascular disease Diseases 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000000546 chi-square test Methods 0.000 description 1
- 210000003483 chromatin Anatomy 0.000 description 1
- 235000019504 cigarettes Nutrition 0.000 description 1
- 201000010276 collecting duct carcinoma Diseases 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229940104302 cytosine Drugs 0.000 description 1
- 230000003436 cytoskeletal effect Effects 0.000 description 1
- 210000004292 cytoskeleton Anatomy 0.000 description 1
- 238000002242 deionisation method Methods 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000002526 effect on cardiovascular system Effects 0.000 description 1
- 210000003038 endothelium Anatomy 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 210000003979 eosinophil Anatomy 0.000 description 1
- 230000006718 epigenetic regulation Effects 0.000 description 1
- 210000003527 eukaryotic cell Anatomy 0.000 description 1
- 238000010230 functional analysis Methods 0.000 description 1
- 230000008303 genetic mechanism Effects 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 208000019622 heart disease Diseases 0.000 description 1
- 230000001631 hypertensive effect Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 208000020658 intracerebral hemorrhage Diseases 0.000 description 1
- 230000009916 joint effect Effects 0.000 description 1
- 208000017169 kidney disease Diseases 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 239000003147 molecular marker Substances 0.000 description 1
- 210000001616 monocyte Anatomy 0.000 description 1
- 230000001114 myogenic effect Effects 0.000 description 1
- 210000000440 neutrophil Anatomy 0.000 description 1
- 210000004940 nucleus Anatomy 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 239000003805 procoagulant Substances 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 238000007634 remodeling Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 230000019491 signal transduction Effects 0.000 description 1
- 238000011699 spontaneously hypertensive rat Methods 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 238000013517 stratification Methods 0.000 description 1
- 210000003518 stress fiber Anatomy 0.000 description 1
- 210000001913 submandibular gland Anatomy 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 238000012353 t test Methods 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 229940035893 uracil Drugs 0.000 description 1
- 230000002792 vascular Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6876—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
- C12Q1/6883—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16B—BIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
- G16B5/00—ICT specially adapted for modelling or simulations in systems biology, e.g. gene-regulatory networks, protein interaction networks or metabolic networks
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/20—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/154—Methylation markers
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Physics & Mathematics (AREA)
- Organic Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Medical Informatics (AREA)
- Zoology (AREA)
- Molecular Biology (AREA)
- Biotechnology (AREA)
- Public Health (AREA)
- Biomedical Technology (AREA)
- Genetics & Genomics (AREA)
- Pathology (AREA)
- Biophysics (AREA)
- Analytical Chemistry (AREA)
- Wood Science & Technology (AREA)
- Microbiology (AREA)
- Theoretical Computer Science (AREA)
- Immunology (AREA)
- Physiology (AREA)
- Bioinformatics & Computational Biology (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- Evolutionary Biology (AREA)
- Data Mining & Analysis (AREA)
- Databases & Information Systems (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Epidemiology (AREA)
- Primary Health Care (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
本发明公开了血液骨架蛋白基因甲基化作为脑卒中早期诊断的潜在标志物。本发明提供了甲基化ACTB基因作为标志物在制备产品中的应用;所述产品具有如下任一功能:(1)辅助诊断脑卒中;(2)在临床症状之前预警脑卒中。本发明证明外周血ACTB甲基化可作为脑卒中早期诊断的潜在标志物。本发明对于提高脑卒中早期诊疗效果和降低死亡率均有重要的科学意义和临床应用价值。The invention discloses blood skeleton protein gene methylation as a potential marker for early diagnosis of stroke. The invention provides the application of the methylated ACTB gene as a marker in the preparation of products; the product has any of the following functions: (1) auxiliary diagnosis of stroke; (2) early warning of stroke before clinical symptoms. The present invention proves that ACTB methylation in peripheral blood can be used as a potential marker for early diagnosis of stroke. The invention has important scientific significance and clinical application value for improving the early diagnosis and treatment effect of cerebral apoplexy and reducing the mortality rate.
Description
技术领域Technical Field
本发明涉及医学领域,特别涉及血液骨架蛋白基因甲基化作为脑卒中早期诊断的潜在标志物。The present invention relates to the medical field, and in particular to blood skeleton protein gene methylation as a potential marker for early diagnosis of stroke.
背景技术Background Art
当今世界,脑卒中已成为大多数国家居民的第二大死亡病因[CollaboratorsGBDCoD.Global,regional,and national age-sex specific mortality for 264causesof death,1980-2016:A systematic analysis for the global burden of diseasestudy 2016.Lancet.2017;390:1151-1210]。脑卒中导致的伤残调整寿命年几乎占所有伤残调整寿命年的5%[Feigin VL,Norrving B,Mensah GA.Global burden of stroke.CircRes.2017;120:439-448]。2016年全球25岁及以上人群患脑卒中的终生风险约为25%,中国达到最高估计风险为39.3%,其中男性为41.1%,女性为36.7%[Collaborators GBDLRoS,Feigin VL,Nguyen G,Cercy K,Johnson CO,Alam T,et al.Global,regional,andcountry-specific lifetime risks of stroke,1990and 2016.N Engl J Med.2018;379:2429-2437]。目前,脑卒中已成为中国居民的首位死因,《中国心血管病报告2018年》指出,我国心血管疾病现患人数约为2.9亿,其中脑卒中1300万[《中国心血管病报告2018》概要.中国循环杂志.34:6-17]。脑卒中具有极高的致残率和致死率,开展脑卒中早期识别和诊断以及人群防控研究具有十分重要的意义。In today's world, stroke has become the second leading cause of death in most countries [Collaborators GBD CoD. Global, regional, and national age-sex specific mortality for 264 causes of death, 1980-2016: A systematic analysis for the global burden of diseases study 2016. Lancet. 2017; 390: 1151-1210]. Disability-adjusted life years caused by stroke account for almost 5% of all disability-adjusted life years [Feigin VL, Norrving B, Mensah GA. Global burden of stroke. Circ Res. 2017; 120: 439-448]. In 2016, the lifetime risk of stroke in people aged 25 and above was about 25% worldwide, with the highest estimated risk in China at 39.3%, including 41.1% for men and 36.7% for women [Collaborators GBDLRoS, Feigin VL, Nguyen G, Cercy K, Johnson CO, Alam T, et al. Global, regional, and country-specific lifetime risks of stroke, 1990 and 2016. N Engl J Med. 2018; 379: 2429-2437]. At present, stroke has become the leading cause of death among Chinese residents. The "China Cardiovascular Disease Report 2018" pointed out that the current number of people suffering from cardiovascular disease in my country is about 290 million, of which 13 million are stroke [Summary of "China Cardiovascular Disease Report 2018". Chinese Journal of Circulation. 34: 6-17]. Stroke has extremely high disability and mortality rates. It is of great significance to carry out research on early identification and diagnosis of stroke and population prevention and control.
脑卒中是由遗传和环境共同作用的复杂疾病[Benjamin EJ,Blaha MJ,ChiuveSE,Cushman M,Das SR,Deo R,et al.Heart disease and stroke statistics-2017update:A report from the american heart association.Circulation.2017;135:e146-e603]。血管重塑是心血管疾病的主要病理基础,动脉硬化和血管重塑导致脑血流供应减少及大脑动脉血流动力学的改变,从而增加了脑卒中的发病风险[Qi YX,Han Y,JiangZL.Mechanobiology and vascular remodeling:Frommembrane to nucleus.Adv Exp MedBiol.2018;1097:69-82]。表观遗传学是一种不涉及DNA序列改变但可遗传的基因表达调控方式,并能够遗传给下一代[Nicoglou A,Merlin F.Epigenetics:A way to bridge thegap between biological fields.Stud Hist Philos Biol Biomed Sci.2017;66:73-82]。DNA甲基化是表观遗传调控的重要方式之一,是指在DNA甲基化转移酶的作用下,在基因组CpG二核苷酸的胞嘧啶5'碳位共价键结合一个甲基基团[Bird A.Perceptions ofepigenetics.Nature.2007;447:396-398]。大量研究表明,DNA甲基化能引起染色质结构、DNA构象、DNA稳定性及DNA与蛋白质相互作用方式的改变,从而控制基因表达[Moore LD,LeT,Fan G.DNA methylation and its basic function.Neuropsychopharmacology.2013;38:23-38]。细胞骨架肌动蛋白β(β-actin,ACTB),广泛分布于真核细胞中,调节肌动蛋白的聚合和解聚过程,参与维持细胞和组织的形态,促进细胞迁移、分裂、生长和信号传递[ChenG,Zou Y,Zhang X,Xu L,Hu Q,Li T,et al.Beta-actin protein expression differs inthe submandibular glands of male and female mice.Cell biologyinternational.2016;40:779-786.Herman IM.Actin isoforms.Curr Opin CellBiol.1993;5:48-55]。动物研究表明,肌动蛋白过度聚合可促进细胞骨架及应力纤维的合成,血管壁厚度增加,血流机械力变化,引发血管肥厚和高血压的发生,进一步导致脑血供减少及大脑动脉血流动力学的改变,促进脑动脉的重塑,从而增加了脑卒中的发病风险[Ibrahim J,McGee A,Graham D,McGrath JC,Dominiczak AF.Sex-specific differencesin cerebral arterial myogenic tone in hypertensive and normotensive rats.Am JPhysiol Heart Circ Physiol.2006;290:H1081-1089.Legrand MC,Benessiano J,LevyBI.Endothelium,mechanical compliance,and cgmp content in the carotid arteryfrom spontaneously hypertensive rats.J Cardiovasc Pharmacol.1993;21Suppl 1:S26-30]。目前关于外周血ACTB基因甲基化与人群脑卒中关系的研究还未见报道,ACTB甲基化与缺血性脑卒中和出血性脑卒中均未见报道。此外,ACTB甲基化与脑卒中的关系在动物模型包括小鼠以及细胞系亦无人报道。Stroke is a complex disease caused by the combined effects of genetics and the environment [Benjamin EJ, Blaha MJ, Chiuve SE, Cushman M, Das SR, Deo R, et al. Heart disease and stroke statistics-2017 update: A report from the american heart association. Circulation. 2017; 135: e146-e603]. Vascular remodeling is the main pathological basis of cardiovascular disease. Atherosclerosis and vascular remodeling lead to reduced cerebral blood supply and changes in cerebral arterial hemodynamics, thereby increasing the risk of stroke [Qi YX, Han Y, Jiang ZL. Mechanobiology and vascular remodeling: From membrane to nucleus. Adv Exp Med Biol. 2018; 1097: 69-82]. Epigenetics is a heritable gene expression regulation method that does not involve changes in DNA sequence and can be passed on to the next generation [Nicoglou A, Merlin F. Epigenetics: A way to bridge the gap between biological fields. Stud Hist Philos Biol Biomed Sci. 2017; 66: 73-82]. DNA methylation is one of the important ways of epigenetic regulation, which refers to the covalent bond of a methyl group to the 5' carbon position of cytosine in genomic CpG dinucleotides under the action of DNA methyltransferase [Bird A. Perceptions of epigenetics. Nature. 2007; 447: 396-398]. A large number of studies have shown that DNA methylation can cause changes in chromatin structure, DNA conformation, DNA stability and the way DNA interacts with proteins, thereby controlling gene expression [Moore LD, LeT, Fan G. DNA methylation and its basic function. Neuropsychopharmacology. 2013; 38: 23-38]. Cytoskeletal actin β (β-actin, ACTB) is widely distributed in eukaryotic cells, regulates the polymerization and depolymerization of actin, participates in maintaining the morphology of cells and tissues, and promotes cell migration, division, growth and signal transduction [Chen G, Zou Y, Zhang X, Xu L, Hu Q, Li T, et al. Beta-actin protein expression differs in the submandibular glands of male and female mice. Cell biology international. 2016; 40: 779-786. Herman IM. Actin isoforms. Curr Opin Cell Biol. 1993; 5: 48-55]. Animal studies have shown that excessive actin polymerization can promote the synthesis of the cytoskeleton and stress fibers, increase the thickness of the vascular wall, change the mechanical force of blood flow, induce vascular hypertrophy and hypertension, further lead to reduced cerebral blood supply and changes in cerebral arterial hemodynamics, promote cerebral artery remodeling, and thus increase the risk of stroke [Ibrahim J, McGee A, Graham D, McGrath JC, Dominiczak AF. Sex-specific differences in cerebral arterial myogenic tone in hypertensive and normotensive rats. Am J Physiol Heart Circ Physiol. 2006; 290: H1081-1089. Legrand MC, Benessiano J, Levy BI. Endothelium, mechanical compliance, and cgmp content in the carotid artery from spontaneously hypertensive rats. J Cardiovasc Pharmacol. 1993; 21 Suppl 1: S26-30]. At present, there are no reports on the relationship between ACTB gene methylation in peripheral blood and stroke in the population, and there are no reports on the relationship between ACTB methylation and ischemic stroke and hemorrhagic stroke. In addition, no one has reported the relationship between ACTB methylation and stroke in animal models including mice and cell lines.
发明内容Summary of the invention
本发明的目的是提供外周血ACTB甲基化作为脑卒中早期诊断的潜在标志物。The purpose of the present invention is to provide peripheral blood ACTB methylation as a potential marker for early diagnosis of stroke.
第一方面,本发明要求保护甲基化ACTB基因作为标志物在制备产品中的应用;所述产品具有如下任一功能:In a first aspect, the present invention claims the use of a methylated ACTB gene as a marker in the preparation of a product; the product has any of the following functions:
(1)辅助诊断脑卒中;(1) Assist in the diagnosis of stroke;
(2)在临床症状之前预警脑卒中。(2) Warning of stroke before clinical symptoms occur.
第二方面,本发明要求保护用于检测ACTB基因甲基化水平的物质在制备产品中的应用;所述产品具有如下任一功能:In a second aspect, the present invention claims the use of a substance for detecting the methylation level of the ACTB gene in preparing a product; the product has any of the following functions:
(1)辅助诊断脑卒中;(1) Assist in the diagnosis of stroke;
(2)在临床症状之前预警脑卒中。(2) Warning of stroke before clinical symptoms occur.
第三方面,本发明要求保护用于检测ACTB基因甲基化水平的物质和储存有数学模型建立方法和/或使用方法的介质在制备产品中的应用;所述产品具有如下任一功能:In a third aspect, the present invention claims the use of a substance for detecting the methylation level of the ACTB gene and a medium storing a method for establishing a mathematical model and/or a method for using the mathematical model in preparing a product; the product has any of the following functions:
(1)辅助诊断脑卒中;(1) Assist in the diagnosis of stroke;
(2)在临床症状之前预警脑卒中。(2) Warning of stroke before clinical symptoms occur.
所述数学模型按照包括如下步骤的方法获得:The mathematical model is obtained according to a method comprising the following steps:
(A1)分别检测n1个脑卒中样本和n2个对照样本的ACTB基因甲基化水平;(A1) The methylation levels of ACTB gene were detected in n1 stroke samples and n2 control samples;
(A2)取步骤(A1)获得的所有样本的ACTB基因甲基化水平数据,按照脑卒中样本和对照样本的分类方式,通过二分类逻辑回归法建立数学模型。(A2) Taking the ACTB gene methylation level data of all samples obtained in step (A1), a mathematical model was established by binary logistic regression method according to the classification of stroke samples and control samples.
其中,(A1)中的n1和n2均可为50以上的正整数。Wherein, n1 and n2 in (A1) can both be positive integers greater than 50.
所述数学模型的使用方法包括如下步骤:The method for using the mathematical model comprises the following steps:
(B1)检测待测样本的ACTB基因甲基化水平;(B1) detecting the methylation level of the ACTB gene of the sample to be tested;
(B2)将步骤(B1)获得的所述待测样本的ACTB基因甲基化水平数据代入所述数学模型,得到检测指数;然后比较检测指数和阈值的大小,根据比较结果确定所述待测样本是否来自或候选来自脑卒中患者。(B2) Substituting the ACTB gene methylation level data of the sample to be tested obtained in step (B1) into the mathematical model to obtain a detection index; then comparing the detection index and the threshold, and determining whether the sample to be tested is from or is a candidate to be from a stroke patient based on the comparison result.
其中,所述阈值可根据最大约登指数确定,可以根据实际情况确定为某一个数值比如0.5。大于阈值归为一类,小于阈值归为另外一类,等于阈值作为不确定的灰区。The threshold value can be determined according to the maximum Youden index, and can be determined as a certain value such as 0.5 according to actual conditions. Values greater than the threshold value are classified into one category, values less than the threshold value are classified into another category, and values equal to the threshold value are classified as an uncertain gray area.
第四方面,本发明要求保护前文第三方面中所述的“储存有数学模型建立方法和/或使用方法的介质”在制备产品中的应用;所述产品具有如下任一功能:In a fourth aspect, the present invention claims protection for the use of the "medium storing the method for establishing a mathematical model and/or the method for using the mathematical model" in the third aspect above in the preparation of a product; the product has any of the following functions:
(1)辅助诊断脑卒中;(1) Assist in the diagnosis of stroke;
(2)在临床症状之前预警脑卒中。(2) Warning of stroke before clinical symptoms occur.
第五方面,本发明要求保护一种试剂盒。In a fifth aspect, the present invention claims a kit.
本发明所要求保护的试剂盒,包括用于检测ACTB基因甲基化水平的物质;所述试剂盒的用途为如下中的至少一种:The kit claimed in the present invention comprises a substance for detecting the methylation level of ACTB gene; the purpose of the kit is at least one of the following:
(1)辅助诊断脑卒中;(1) Assist in the diagnosis of stroke;
(2)在临床症状之前预警脑卒中。(2) Warning of stroke before clinical symptoms occur.
进一步地,所述试剂盒中还含有前文所述的储存有数学模型建立方法和/或使用方法的介质。Furthermore, the kit also contains the medium storing the mathematical model establishment method and/or use method as described above.
第六方面,本发明要求保护一种系统。In a sixth aspect, the present invention claims a system.
本发明所要求保护的系统,包括:The system claimed in the present invention comprises:
(D1)用于检测ACTB基因甲基化水平的试剂和/或仪器;(D1) Reagents and/or instruments for detecting the methylation level of ACTB gene;
(D2)装置,所述装置包括单元A和单元B。(D2) A device comprising unit A and unit B.
所述单元A用于建立数学模型,包括数据采集模块、数据分析处理模块和模型输出模块。The unit A is used to establish a mathematical model, including a data acquisition module, a data analysis and processing module and a model output module.
所述数据采集模块用于采集(D1)检测得到的n1个脑卒中样本和n2个对照样本的ACTB基因甲基化水平数据。The data acquisition module is used to acquire (D1) the ACTB gene methylation level data of n1 stroke samples and n2 control samples detected.
所述数据分析处理模块能够基于所述数据采集模块采集的n1个脑卒中样本和n2个对照样本的ACTB基因甲基化水平数据,按照脑卒中样本和对照样本的分类方式,通过二分类逻辑回归法建立数学模型。The data analysis and processing module can establish a mathematical model through a binary logistic regression method based on the ACTB gene methylation level data of n1 stroke samples and n2 control samples collected by the data collection module according to the classification method of the stroke samples and the control samples.
其中,(A1)中的n1和n2均可为50以上的正整数。Wherein, n1 and n2 in (A1) can both be positive integers greater than 50.
所述模型输出模块用于输出所述数据分析处理模块建立的数学模型。The model output module is used to output the mathematical model established by the data analysis and processing module.
所述单元B用于确定待测样本是否来自或候选来自脑卒中患者,包括数据输入模块、数据运算模块、数据比较模块和结论输出模块。The unit B is used to determine whether the sample to be tested comes from or is a candidate for a stroke patient, and includes a data input module, a data calculation module, a data comparison module and a conclusion output module.
所述数据输入模块用于输入(D1)检测得到的待测者的ACTB基因甲基化水平数据。The data input module is used to input (D1) the ACTB gene methylation level data of the subject obtained by the test.
所述数据运算模块用于将所述待测者的ACTB基因甲基化水平数据代入所述数学模型,计算得到检测指数。The data calculation module is used to substitute the ACTB gene methylation level data of the subject into the mathematical model to calculate the detection index.
所述数据比较模块用于将所述检测指数与阈值进行比较。The data comparison module is used to compare the detection index with a threshold.
其中,所述阈值可根据最大约登指数确定,也可以根据实际情况确定为某一个数值比如0.5。大于阈值归为一类,小于阈值归为另外一类,等于阈值作为不确定的灰区。The threshold value can be determined according to the maximum Youden index, or can be determined as a certain value such as 0.5 according to actual conditions. Values greater than the threshold value are classified into one category, values less than the threshold value are classified into another category, and values equal to the threshold value are classified as an uncertain gray area.
所述结论输出模块用于根据所述数据比较模块的比较结果输出所述待测样本的是否来自或候选来自脑卒中患者的结论。The conclusion output module is used to output a conclusion of whether the sample to be tested comes from or is a candidate to come from a stroke patient according to the comparison result of the data comparison module.
另外,本发明还要求保护一种检测待测样本是否来自或候选来自脑卒中患者的方法(即辅助诊断脑卒中的方法或者在临床症状之前预警脑卒中的方法)。该方法可包括如下步骤:In addition, the present invention also claims a method for detecting whether a sample to be tested is from or is a candidate for being from a stroke patient (i.e., a method for assisting in the diagnosis of stroke or a method for warning of stroke before clinical symptoms). The method may include the following steps:
(A)可按照包括如下步骤的方法建立数学模型:(A) A mathematical model may be established according to a method comprising the following steps:
(A1)分别检测n1个脑卒中样本和n2个对照样本的ACTB基因甲基化水平(训练集);(A1) The methylation levels of the ACTB gene were detected in n1 stroke samples and n2 control samples (training set);
(A2)取步骤(A1)获得的所有样本的ACTB基因甲基化水平数据,按照脑卒中样本和对照样本的分类方式,通过二分类逻辑回归法建立数学模型。(A2) Taking the ACTB gene methylation level data of all samples obtained in step (A1), a mathematical model was established by binary logistic regression method according to the classification of stroke samples and control samples.
其中,(A1)中的n1和n2均可为50以上正整数。Wherein, n1 and n2 in (A1) can both be positive integers greater than 50.
(B)可按照包括如下步骤的方法确定所述待测样本是否来自或候选来自脑卒中患者:(B) determining whether the sample to be tested is from or is a candidate to be from a stroke patient can be performed according to a method comprising the following steps:
(B1)检测所述待测样本的ACTB基因甲基化水平;(B1) detecting the methylation level of the ACTB gene of the sample to be tested;
(B2)将步骤(B1)获得的所述待测样本的ACTB基因甲基化水平数据代入所述数学模型,得到检测指数;然后比较检测指数和阈值的大小,根据比较结果确定所述待测样本是否来自或候选来自脑卒中患者。(B2) Substituting the ACTB gene methylation level data of the sample to be tested obtained in step (B1) into the mathematical model to obtain a detection index; then comparing the detection index and the threshold, and determining whether the sample to be tested is from or is a candidate to be from a stroke patient based on the comparison result.
其中,所述阈值可根据最大约登指数确定,也可以根据实际情况确定为某一个数值比如0.5。大于阈值归为一类,小于阈值归为另外一类,等于阈值作为不确定的灰区。The threshold value can be determined according to the maximum Youden index, or can be determined as a certain value such as 0.5 according to actual conditions. Values greater than the threshold value are classified into one category, values less than the threshold value are classified into another category, and values equal to the threshold value are classified as an uncertain gray area.
在前文各方面中,所述ACTB基因甲基化水平为ACTB基因中如下(e1)-(e5)所示片段中全部或部分CpG位点的甲基化水平;In the above aspects, the ACTB gene methylation level is the methylation level of all or part of the CpG sites in the fragments shown below (e1)-(e5) in the ACTB gene;
所述甲基化ACTB基因为ACTB基因中如下(e1)-(e5)所示片段中全部或部分CpG位点甲基化;The methylated ACTB gene is a gene in which all or part of the CpG sites in the fragments shown below (e1) to (e5) in the ACTB gene are methylated;
(e1)SEQ ID No.1所示的DNA片段或与其具有80%以上同一性的DNA片段;(e1) a DNA fragment represented by SEQ ID No. 1 or a DNA fragment having 80% or more identity thereto;
(e2)SEQ ID No.2所示的DNA片段或与其具有80%以上同一性的DNA片段;(e2) a DNA fragment represented by SEQ ID No. 2 or a DNA fragment having 80% or more identity thereto;
(e3)SEQ ID No.3所示的DNA片段或与其具有80%以上同一性的DNA片段;(e3) a DNA fragment represented by SEQ ID No. 3 or a DNA fragment having 80% or more identity thereto;
(e4)SEQ ID No.4所示的DNA片段或与其具有80%以上同一性的DNA片段;(e4) a DNA fragment represented by SEQ ID No. 4 or a DNA fragment having 80% or more identity thereto;
(e5)SEQ ID No.5所示的DNA片段或与其具有80%以上同一性的DNA片段。(e5) A DNA fragment represented by SEQ ID No. 5 or a DNA fragment having 80% or more identity thereto.
进一步地,所述“全部或部分CpG位点”具体可为如下任一:Furthermore, the “all or part of the CpG sites” may specifically be any of the following:
(f1)SEQ ID No.1所示的DNA片段自5’端第128-129位所示CpG位点、SEQ ID No.1所示的DNA片段自5’端第180-181位所示CpG位点、SEQ ID No.1所示的DNA片段自5’端第231-232位所示CpG位点、SEQ ID No.1所示的DNA片段自5’端第313-314位所示CpG位点、SEQID No.1所示的DNA片段自5’端第362-363位所示CpG位点、SEQ ID No.1所示的DNA片段自5’端第367-368位所示CpG位点,或SEQ ID No.1所示的DNA片段自5’端第428-429位所示CpG位点;(f1) the CpG site at positions 128-129 from the 5' end of the DNA fragment shown in SEQ ID No.1, the CpG site at positions 180-181 from the 5' end of the DNA fragment shown in SEQ ID No.1, the CpG site at positions 231-232 from the 5' end of the DNA fragment shown in SEQ ID No.1, the CpG site at positions 313-314 from the 5' end of the DNA fragment shown in SEQ ID No.1, the CpG site at positions 362-363 from the 5' end of the DNA fragment shown in SEQ ID No.1, the CpG site at positions 367-368 from the 5' end of the DNA fragment shown in SEQ ID No.1, or the CpG site at positions 428-429 from the 5' end of the DNA fragment shown in SEQ ID No.1;
(f2)SEQ ID No.2所示的DNA片段自5’端第53-54位所示CpG位点、SEQ ID No.2所示的DNA片段自5’端第57-58位所示CpG位点、SEQ ID No.2所示的DNA片段自5’端第125-126位所示CpG位点、SEQ ID No.2所示的DNA片段自5’端第232-233位所示CpG位点、SEQ IDNo.2所示的DNA片段自5’端第260-261位所示CpG位点,或SEQ ID No.2所示的DNA片段自5’端第283-284位所示CpG位点;(f2) the CpG site at positions 53-54 from the 5' end of the DNA fragment shown in SEQ ID No.2, the CpG site at positions 57-58 from the 5' end of the DNA fragment shown in SEQ ID No.2, the CpG site at positions 125-126 from the 5' end of the DNA fragment shown in SEQ ID No.2, the CpG site at positions 232-233 from the 5' end of the DNA fragment shown in SEQ ID No.2, the CpG site at positions 260-261 from the 5' end of the DNA fragment shown in SEQ ID No.2, or the CpG site at positions 283-284 from the 5' end of the DNA fragment shown in SEQ ID No.2;
(f3)SEQ ID No.3所示的DNA片段自5’端第61-62位所示CpG位点、SEQ ID No.3所示的DNA片段自5’端第87-88位所示CpG位点、SEQ ID No.3所示的DNA片段自5’端第103-104位所示CpG位点、SEQ ID No.3所示的DNA片段自5’端第147-148位所示CpG位点、SEQ IDNo.3所示的DNA片段自5’端第171-172位所示CpG位点、SEQ ID No.3所示的DNA片段自5’端第186-187位所示CpG位点,或SEQ ID No.3所示的DNA片段自5’端第238-239位所示CpG位点;(f3) the CpG site at positions 61-62 from the 5' end of the DNA fragment shown in SEQ ID No.3, the CpG site at positions 87-88 from the 5' end of the DNA fragment shown in SEQ ID No.3, the CpG site at positions 103-104 from the 5' end of the DNA fragment shown in SEQ ID No.3, the CpG site at positions 147-148 from the 5' end of the DNA fragment shown in SEQ ID No.3, the CpG site at positions 171-172 from the 5' end of the DNA fragment shown in SEQ ID No.3, the CpG site at positions 186-187 from the 5' end of the DNA fragment shown in SEQ ID No.3, or the CpG site at positions 238-239 from the 5' end of the DNA fragment shown in SEQ ID No.3;
(f4)SEQ ID No.4所示的DNA片段自5’端第39-40位所示CpG位点、SEQ ID No.4所示的DNA片段自5’端第41-42位所示CpG位点、SEQ ID No.4所示的DNA片段自5’端第69-70位所示CpG位点、SEQ ID No.4所示的DNA片段自5’端第107-108位所示CpG位点、SEQ ID No.4所示的DNA片段自5’端第110-111位所示CpG位点、SEQ ID No.4所示的DNA片段自5’端第139-140位所示CpG位点、SEQ ID No.4所示的DNA片段自5’端第185-186位所示CpG位点,或SEQ ID No.4所示的DNA片段自5’端第275-276位所示CpG位点;(f4) the CpG site at positions 39-40 from the 5' end of the DNA fragment shown in SEQ ID No.4, the CpG site at positions 41-42 from the 5' end of the DNA fragment shown in SEQ ID No.4, the CpG site at positions 69-70 from the 5' end of the DNA fragment shown in SEQ ID No.4, the CpG site at positions 107-108 from the 5' end of the DNA fragment shown in SEQ ID No.4, the CpG site at positions 110-111 from the 5' end of the DNA fragment shown in SEQ ID No.4, the CpG site at positions 139-140 from the 5' end of the DNA fragment shown in SEQ ID No.4, the CpG site at positions 185-186 from the 5' end of the DNA fragment shown in SEQ ID No.4, or the CpG site at positions 275-276 from the 5' end of the DNA fragment shown in SEQ ID No.4;
(f5)SEQ ID No.5所示的DNA片段自5’端第44-45位所示CpG位点、SEQ ID No.5所示的DNA片段自5’端第175-176位所示CpG位点、SEQ ID No.5所示的DNA片段自5’端第266-267位所示CpG位点,或SEQ ID No.5所示的DNA片段自5’端第300-301位所示CpG位点;(f5) the CpG site at positions 44-45 from the 5' end of the DNA fragment shown in SEQ ID No.5, the CpG site at positions 175-176 from the 5' end of the DNA fragment shown in SEQ ID No.5, the CpG site at positions 266-267 from the 5' end of the DNA fragment shown in SEQ ID No.5, or the CpG site at positions 300-301 from the 5' end of the DNA fragment shown in SEQ ID No.5;
(f6)SEQ ID No.1所示的DNA片段的9个可区分CpG位点和SEQ ID No.2所示的DNA片段的7个可区分CpG位点;(f6) 9 distinguishable CpG sites of the DNA fragment shown in SEQ ID No. 1 and 7 distinguishable CpG sites of the DNA fragment shown in SEQ ID No. 2;
(f7)SEQ ID No.1所示的DNA片段的9个可区分CpG位点和SEQ ID No.3所示的DNA片段的12个可区分CpG位点;(f7) 9 distinguishable CpG sites of the DNA fragment shown in SEQ ID No. 1 and 12 distinguishable CpG sites of the DNA fragment shown in SEQ ID No. 3;
(f8)SEQ ID No.1所示的DNA片段的9个可区分CpG位点和SEQ ID No.4所示的DNA片段的11个可区分CpG位点;(f8) 9 distinguishable CpG sites of the DNA fragment shown in SEQ ID No. 1 and 11 distinguishable CpG sites of the DNA fragment shown in SEQ ID No. 4;
(f9)SEQ ID No.1所示的DNA片段的9个可区分CpG位点和SEQ ID No.5所示的DNA片段的5个可区分CpG位点;(f9) 9 distinguishable CpG sites of the DNA fragment shown in SEQ ID No. 1 and 5 distinguishable CpG sites of the DNA fragment shown in SEQ ID No. 5;
(f10)SEQ ID No.2所示的DNA片段的7个可区分CpG位点和SEQ ID No.3所示的DNA片段的12个可区分CpG位点;(f10) 7 distinguishable CpG sites of the DNA fragment shown in SEQ ID No. 2 and 12 distinguishable CpG sites of the DNA fragment shown in SEQ ID No. 3;
(f11)SEQ ID No.2所示的DNA片段的7个可区分CpG位点和SEQ ID No.4所示的DNA片段的11个可区分CpG位点;(f11) 7 distinguishable CpG sites of the DNA fragment shown in SEQ ID No. 2 and 11 distinguishable CpG sites of the DNA fragment shown in SEQ ID No. 4;
(f12)SEQ ID No.2所示的DNA片段的7个可区分CpG位点和SEQ ID No.5所示的DNA片段的5个可区分CpG位点;(f12) 7 distinguishable CpG sites of the DNA fragment shown in SEQ ID No. 2 and 5 distinguishable CpG sites of the DNA fragment shown in SEQ ID No. 5;
(f13)SEQ ID No.3所示的DNA片段的12个可区分CpG位点和SEQ ID No.4所示的DNA片段的11个可区分CpG位点;(f13) 12 distinguishable CpG sites of the DNA fragment shown in SEQ ID No. 3 and 11 distinguishable CpG sites of the DNA fragment shown in SEQ ID No. 4;
(f14)SEQ ID No.3所示的DNA片段的12个可区分CpG位点和SEQ ID No.5所示的DNA片段的5个可区分CpG位点;(f14) 12 distinguishable CpG sites of the DNA fragment shown in SEQ ID No. 3 and 5 distinguishable CpG sites of the DNA fragment shown in SEQ ID No. 5;
(f15)SEQ ID No.4所示的DNA片段的11个可区分CpG位点和SEQ ID No.5所示的DNA片段的5个可区分CpG位点;(f15) 11 distinguishable CpG sites of the DNA fragment shown in SEQ ID No. 4 and 5 distinguishable CpG sites of the DNA fragment shown in SEQ ID No. 5;
(f16)SEQ ID No.1所示的DNA片段的9个可区分CpG位点、SEQ ID No.2所示的DNA片段的7个可区分CpG位点和SEQ ID No.3所示的DNA片段的12个可区分CpG位点;(f16) 9 distinguishable CpG sites of the DNA fragment shown in SEQ ID No. 1, 7 distinguishable CpG sites of the DNA fragment shown in SEQ ID No. 2, and 12 distinguishable CpG sites of the DNA fragment shown in SEQ ID No. 3;
(f17)SEQ ID No.1所示的DNA片段的9个可区分CpG位点、SEQ ID No.2所示的DNA片段的7个可区分CpG位点和SEQ ID No.4所示的DNA片段的11个可区分CpG位点;(f17) 9 distinguishable CpG sites of the DNA fragment shown in SEQ ID No. 1, 7 distinguishable CpG sites of the DNA fragment shown in SEQ ID No. 2, and 11 distinguishable CpG sites of the DNA fragment shown in SEQ ID No. 4;
(f18)SEQ ID No.1所示的DNA片段的9个可区分CpG位点、SEQ ID No.2所示的DNA片段的7个可区分CpG位点和SEQ ID No.5所示的DNA片段的5个可区分CpG位点;(f18) 9 distinguishable CpG sites of the DNA fragment shown in SEQ ID No. 1, 7 distinguishable CpG sites of the DNA fragment shown in SEQ ID No. 2, and 5 distinguishable CpG sites of the DNA fragment shown in SEQ ID No. 5;
(f19)SEQ ID No.1所示的DNA片段的9个可区分CpG位点、SEQ ID No.3所示的DNA片段的12个可区分CpG位点和SEQ ID No.4所示的DNA片段的11个可区分CpG位点;(f19) 9 distinguishable CpG sites of the DNA fragment shown in SEQ ID No. 1, 12 distinguishable CpG sites of the DNA fragment shown in SEQ ID No. 3, and 11 distinguishable CpG sites of the DNA fragment shown in SEQ ID No. 4;
(f20)SEQ ID No.1所示的DNA片段的9个可区分CpG位点、SEQ ID No.3所示的DNA片段的12个可区分CpG位点和SEQ ID No.5所示的DNA片段的5个可区分CpG位点;(f20) 9 distinguishable CpG sites of the DNA fragment shown in SEQ ID No. 1, 12 distinguishable CpG sites of the DNA fragment shown in SEQ ID No. 3, and 5 distinguishable CpG sites of the DNA fragment shown in SEQ ID No. 5;
(f21)SEQ ID No.1所示的DNA片段的9个可区分CpG位点、SEQ ID No.4所示的DNA片段的11个可区分CpG位点和SEQ ID No.5所示的DNA片段的5个可区分CpG位点;(f21) 9 distinguishable CpG sites of the DNA fragment shown in SEQ ID No. 1, 11 distinguishable CpG sites of the DNA fragment shown in SEQ ID No. 4, and 5 distinguishable CpG sites of the DNA fragment shown in SEQ ID No. 5;
(f22)SEQ ID No.2所示的DNA片段的7个可区分CpG位点、SEQ ID No.3所示的DNA片段的12个可区分CpG位点和SEQ ID No.4所示的DNA片段的11个可区分CpG位点;(f22) 7 distinguishable CpG sites of the DNA fragment shown in SEQ ID No. 2, 12 distinguishable CpG sites of the DNA fragment shown in SEQ ID No. 3, and 11 distinguishable CpG sites of the DNA fragment shown in SEQ ID No. 4;
(f23)SEQ ID No.2所示的DNA片段的7个可区分CpG位点、SEQ ID No.3所示的DNA片段的12个可区分CpG位点和SEQ ID No.5所示的DNA片段的5个可区分CpG位点;(f23) 7 distinguishable CpG sites of the DNA fragment shown in SEQ ID No. 2, 12 distinguishable CpG sites of the DNA fragment shown in SEQ ID No. 3, and 5 distinguishable CpG sites of the DNA fragment shown in SEQ ID No. 5;
(f24)SEQ ID No.3所示的DNA片段的12个可区分CpG位点、SEQ ID No.4所示的DNA片段的11个可区分CpG位点和SEQ ID No.5所示的DNA片段的5个可区分CpG位点;(f24) 12 distinguishable CpG sites of the DNA fragment shown in SEQ ID No. 3, 11 distinguishable CpG sites of the DNA fragment shown in SEQ ID No. 4, and 5 distinguishable CpG sites of the DNA fragment shown in SEQ ID No. 5;
(f25)SEQ ID No.1所示的DNA片段的9个可区分CpG位点、SEQ ID No.2所示的DNA片段的7个可区分CpG位点、SEQ ID No.3所示的DNA片段的12个可区分CpG位点和SEQ IDNo.4所示的DNA片段的11个可区分CpG位点;(f25) 9 distinguishable CpG sites of the DNA fragment shown in SEQ ID No. 1, 7 distinguishable CpG sites of the DNA fragment shown in SEQ ID No. 2, 12 distinguishable CpG sites of the DNA fragment shown in SEQ ID No. 3, and 11 distinguishable CpG sites of the DNA fragment shown in SEQ ID No. 4;
(f26)SEQ ID No.1所示的DNA片段的9个可区分CpG位点、SEQ ID No.2所示的DNA片段的7个可区分CpG位点、SEQ ID No.3所示的DNA片段的12个可区分CpG位点和SEQ IDNo.5所示的DNA片段的5个可区分CpG位点;(f26) 9 distinguishable CpG sites of the DNA fragment shown in SEQ ID No. 1, 7 distinguishable CpG sites of the DNA fragment shown in SEQ ID No. 2, 12 distinguishable CpG sites of the DNA fragment shown in SEQ ID No. 3, and 5 distinguishable CpG sites of the DNA fragment shown in SEQ ID No. 5;
(f27)SEQ ID No.1所示的DNA片段的9个可区分CpG位点、SEQ ID No.2所示的DNA片段的7个可区分CpG位点、SEQ ID No.4所示的DNA片段的11个可区分CpG位点和SEQ IDNo.5所示的DNA片段的5个可区分CpG位点;(f27) 9 distinguishable CpG sites of the DNA fragment shown by SEQ ID No. 1, 7 distinguishable CpG sites of the DNA fragment shown by SEQ ID No. 2, 11 distinguishable CpG sites of the DNA fragment shown by SEQ ID No. 4, and 5 distinguishable CpG sites of the DNA fragment shown by SEQ ID No. 5;
(f28)SEQ ID No.1所示的DNA片段的9个可区分CpG位点、SEQ ID No.3所示的DNA片段的12个可区分CpG位点、SEQ ID No.4所示的DNA片段的11个可区分CpG位点和SEQ IDNo.5所示的DNA片段的5个可区分CpG位点;(f28) 9 distinguishable CpG sites of the DNA fragment shown by SEQ ID No. 1, 12 distinguishable CpG sites of the DNA fragment shown by SEQ ID No. 3, 11 distinguishable CpG sites of the DNA fragment shown by SEQ ID No. 4, and 5 distinguishable CpG sites of the DNA fragment shown by SEQ ID No. 5;
(f29)SEQ ID No.2所示的DNA片段的7个可区分CpG位点、SEQ ID No.3所示的DNA片段的12个可区分CpG位点、SEQ ID No.4所示的DNA片段的11个可区分CpG位点和SEQ IDNo.5所示的DNA片段的5个可区分CpG位点;(f29) 7 distinguishable CpG sites of the DNA fragment shown by SEQ ID No. 2, 12 distinguishable CpG sites of the DNA fragment shown by SEQ ID No. 3, 11 distinguishable CpG sites of the DNA fragment shown by SEQ ID No. 4, and 5 distinguishable CpG sites of the DNA fragment shown by SEQ ID No. 5;
(f30)SEQ ID No.1所示的DNA片段的9个可区分CpG位点、SEQ ID No.2所示的DNA片段的7个可区分CpG位点、SEQ ID No.3所示的DNA片段的12个可区分CpG位点、SEQ IDNo.4所示的DNA片段的11个可区分CpG位点和SEQ ID No.5所示的DNA片段的5个可区分CpG位点;(f30) 9 distinguishable CpG sites of the DNA fragment shown by SEQ ID No. 1, 7 distinguishable CpG sites of the DNA fragment shown by SEQ ID No. 2, 12 distinguishable CpG sites of the DNA fragment shown by SEQ ID No. 3, 11 distinguishable CpG sites of the DNA fragment shown by SEQ ID No. 4, and 5 distinguishable CpG sites of the DNA fragment shown by SEQ ID No. 5;
在(f6)-(f30)中,所述SEQ ID No.1所示的DNA片段的9个可区分CpG位点为:SEQID No.1自5’端第128-129位所示CpG位点(ACTB_A_1);第180-181位所示CpG位点(ACTB_A_3);第203-204位所示CpG位点(ACTB_A_4);第231-232位所示CpG位点(ACTB_A_5);第313-314位所示CpG位点(ACTB_A_6);第338-339位所示CpG位点(ACTB_A_7);第362-363位和第367-368位所示CpG位点(ACTB_A_8.9);第406-407位所示CpG位点(ACTB_A_10);第428-429位所示CpG位点(ACTB_A_12);In (f6)-(f30), the 9 distinguishable CpG sites of the DNA fragment shown in SEQ ID No. 1 are: SEQ ID No.1 From the 5' end, the CpG site at positions 128-129 (ACTB_A_1); the CpG site at positions 180-181 (ACTB_A_3); the CpG site at positions 203-204 (ACTB_A_4); the CpG site at positions 231-232 (ACTB_A_5); the CpG site at positions 313-314 (ACTB_A_6); the CpG site at positions 338-339 (ACTB_A_7); the CpG sites at positions 362-363 and 367-368 (ACTB_A_8.9); the CpG site at positions 406-407 (ACTB_A_10); the CpG site at positions 428-429 (ACTB_A_12);
所述SEQ ID No.2所示的DNA片段的7个可区分CpG位点为:SEQ ID No.2自5’端第53-54位和第57-58位所示CpG位点(ACTB_B_2.3);第96-97位和第101-102位所示CpG位点(ACTB_B_4.5);第125-126位所示CpG位点(ACTB_B_6);第232-233位所示CpG位点(ACTB_B_8);第260-261位所示CpG位点(ACTB_B_9);第283-284位所示CpG位点(ACTB_B_10);第335-336位所示CpG位点(ACTB_B_12);The 7 distinguishable CpG sites of the DNA fragment shown in SEQ ID No.2 are: CpG sites shown at positions 53-54 and 57-58 from the 5' end of SEQ ID No.2 (ACTB_B_2.3); CpG sites shown at positions 96-97 and 101-102 (ACTB_B_4.5); CpG sites shown at positions 125-126 (ACTB_B_6); CpG sites shown at positions 232-233 (ACTB_B_8); CpG sites shown at positions 260-261 (ACTB_B_9); CpG sites shown at positions 283-284 (ACTB_B_10); and CpG sites shown at positions 335-336 (ACTB_B_12);
所述SEQ ID No.3所示的DNA片段的12个可区分CpG位点为SEQ ID No.3自5’端第25-26位、第27-28位、第29-30位、32-33位和45-46位所示CpG位点(ACTB_C_1.2.3.4.5);第61-62位所示CpG位点(ACTB_C_6);第63-64位、第66-67位和第81-82位所示CpG位点(ACTB_C_8.9.10);第87-88位和第103-104位所示CpG位点(ACTB_C_11.12);第105-106位、第109-110位和第119-120位所示CpG位点(ACTB_C_14.15.16);第147-148位所示CpG位点(ACTB_C_17);第149-150位和第165-166位所示CpG位点(ACTB_C_19.20);第171-172位所示CpG位点(ACTB_C_24);第186-187位所示CpG位点(ACTB_C_25);第192-193位、第194-195位、第198-199位和第201-202位所示CpG位点(ACTB_C_27.28.29.30);第211-212位和第216-217位所示CpG位点(ACTB_C_31.32);第238-239位所示CpG位点(ACTB_C_34);The 12 distinguishable CpG sites of the DNA fragment shown in SEQ ID No. 3 are SEQ ID No.3 from the 5' end, the CpG sites shown at positions 25-26, 27-28, 29-30, 32-33 and 45-46 (ACTB_C_1.2.3.4.5); the CpG site shown at positions 61-62 (ACTB_C_6); the CpG sites shown at positions 63-64, 66-67 and 81-82 (ACTB_C_8.9.10); the CpG sites shown at positions 87-88 and 103-104 (ACTB_C_11.12); the CpG sites shown at positions 105-106, 109-110 and 119-120 (ACTB_C_14.15.16); the CpG sites shown at positions 147-148 G site (ACTB_C_17); CpG sites shown at positions 149-150 and 165-166 (ACTB_C_19.20); CpG site shown at positions 171-172 (ACTB_C_24); CpG site shown at positions 186-187 (ACTB_C_25); CpG sites shown at positions 192-193, 194-195, 198-199 and 201-202 (ACTB_C_27.28.29.30); CpG sites shown at positions 211-212 and 216-217 (ACTB_C_31.32); CpG site shown at positions 238-239 (ACTB_C_34);
所述SEQ ID No.4所示的DNA片段的11个可区分CpG位点为SEQ ID No.4自5’端第39-40位和第41-42位所示CpG位点(ACTB_D_2.3);第61-62位和第65-66位所示CpG位点(ACTB_D_4.5);第69-70位所示CpG位点(ACTB_D_6);第77-78位和第81-82位所示CpG位点(ACTB_D_7.8);第107-108位和第110-111位所示CpG位点(ACTB_D_9.10);第122-123位所示CpG位点(ACTB_D_11);第139-140位所示CpG位点(ACTB_D_12);第185-186位所示CpG位点(ACTB_D_14);第213-214位和第219-220位所示CpG位点(ACTB_D_15.16);第275-276位所示CpG位点(ACTB_D_17);第304-305位所示CpG位点(ACTB_D_18);The 11 distinguishable CpG sites of the DNA fragment shown in SEQ ID No.4 are the CpG sites shown at positions 39-40 and 41-42 (ACTB_D_2.3) from the 5' end of SEQ ID No.4; the CpG sites shown at positions 61-62 and 65-66 (ACTB_D_4.5); the CpG sites shown at positions 69-70 (ACTB_D_6); the CpG sites shown at positions 77-78 and 81-82 (ACTB_D_7.8); the CpG sites shown at positions 107-108 and 110-111 (ACTB_D_9.10); The CpG site shown at positions 122-123 (ACTB_D_11); the CpG site shown at positions 139-140 (ACTB_D_12); the CpG site shown at positions 185-186 (ACTB_D_14); the CpG sites shown at positions 213-214 and 219-220 (ACTB_D_15.16); the CpG site shown at positions 275-276 (ACTB_D_17); the CpG site shown at positions 304-305 (ACTB_D_18);
所述SEQ ID No.5所示的DNA片段的5个可区分CpG位点为:SEQ ID No.5自5’端第44-45位所示CpG位点(ACTB_E_1);第175-176位所示CpG位点(ACTB_E_2);第266-267位所示CpG位点(ACTB_E_3);第292-293位所示CpG位点(ACTB_E_4);第300-301位所示CpG位点(ACTB_E_5)。The five distinguishable CpG sites of the DNA fragment shown in SEQ ID No.5 are: the CpG site shown at positions 44-45 from the 5' end of SEQ ID No.5 (ACTB_E_1); the CpG site shown at positions 175-176 (ACTB_E_2); the CpG site shown at positions 266-267 (ACTB_E_3); the CpG site shown at positions 292-293 (ACTB_E_4); and the CpG site shown at positions 300-301 (ACTB_E_5).
在前文各方面中,所述用于检测ACTB基因甲基化水平的物质包含(或为)用于扩增ACTB基因全长或部分片段的引物组合。所述用于检测ACTB基因甲基化水平的试剂包含(或为)用于扩增ACTB基因全长或部分片段的引物组合。In the above aspects, the substance for detecting the methylation level of ACTB gene comprises (or is) a primer combination for amplifying the full length or partial fragment of ACTB gene. The reagent for detecting the methylation level of ACTB gene comprises (or is) a primer combination for amplifying the full length or partial fragment of ACTB gene.
进一步地,所述部分片段可为如下中至少一个片段:Further, the partial fragment may be at least one of the following fragments:
(g1)SEQ ID No.1所示的DNA片段或其包含的DNA片段;(g1) a DNA fragment represented by SEQ ID No. 1 or a DNA fragment contained therein;
(g2)SEQ ID No.2所示的DNA片段或其包含的DNA片段;(g2) the DNA fragment shown in SEQ ID No. 2 or a DNA fragment contained therein;
(g3)SEQ ID No.3所示的DNA片段或其包含的DNA片段;(g3) a DNA fragment represented by SEQ ID No. 3 or a DNA fragment contained therein;
(g4)SEQ ID No.4所示的DNA片段或其包含的DNA片段;(g4) a DNA fragment represented by SEQ ID No. 4 or a DNA fragment contained therein;
(g5)SEQ ID No.5所示的DNA片段或其包含的DNA片段;(g5) a DNA fragment represented by SEQ ID No. 5 or a DNA fragment contained therein;
(g6)与SEQ ID No.1所示的DNA片段或其包含的DNA片段具有80%以上同一性的DNA片段;(g6) a DNA fragment having 80% or more identity with the DNA fragment represented by SEQ ID No. 1 or a DNA fragment contained therein;
(g7)与SEQ ID No.2所示的DNA片段或其包含的DNA片段具有80%以上同一性的DNA片段;(g7) a DNA fragment having 80% or more identity with the DNA fragment represented by SEQ ID No. 2 or a DNA fragment contained therein;
(g8)与SEQ ID No.3所示的DNA片段或其包含的DNA片段具有80%以上同一性的DNA片段;(g8) a DNA fragment having 80% or more identity with the DNA fragment represented by SEQ ID No. 3 or a DNA fragment contained therein;
(g9)与SEQ ID No.4所示的DNA片段或其包含的DNA片段具有80%以上同一性的DNA片段;(g9) a DNA fragment having 80% or more identity with the DNA fragment represented by SEQ ID No. 4 or a DNA fragment contained therein;
(g10)与SEQ ID No.5所示的DNA片段或其包含的DNA片段具有80%以上同一性的DNA片段。(g10) A DNA fragment having 80% or more identity with the DNA fragment represented by SEQ ID No. 5 or a DNA fragment contained therein.
更进一步地,所述引物组合为引物对A和/或引物对B和/或引物对C和/或引物对D和/或引物对E。Furthermore, the primer combination is primer pair A and/or primer pair B and/or primer pair C and/or primer pair D and/or primer pair E.
所述引物对A为引物A1和引物A2组成的引物对;所述引物A1为SEQ ID No.6或SEQID No.6的第11-35位核苷酸所示的单链DNA;所述引物A2为SEQ ID No.7或SEQ ID No.7的第32-58位核苷酸所示的单链DNA。The primer pair A is a primer pair consisting of primer A1 and primer A2; the primer A1 is a single-stranded DNA represented by nucleotides 11-35 of SEQ ID No.6 or SEQ ID No.6; the primer A2 is a single-stranded DNA represented by nucleotides 32-58 of SEQ ID No.7 or SEQ ID No.7.
所述引物对B为引物B1和引物B2组成的引物对;所述引物B1为SEQ ID No.8或SEQID No.8的第11-34位核苷酸所示的单链DNA;所述引物B2为SEQ ID No.9或SEQ ID No.9的第32-56位核苷酸所示的单链DNA。The primer pair B is a primer pair consisting of primer B1 and primer B2; the primer B1 is a single-stranded DNA represented by nucleotides 11-34 of SEQ ID No.8 or SEQ ID No.8; the primer B2 is a single-stranded DNA represented by nucleotides 32-56 of SEQ ID No.9 or SEQ ID No.9.
所述引物对C为引物C1和引物C2组成的引物对;所述引物C1为SEQ ID No.10或SEQID No.10的第11-35位核苷酸所示的单链DNA;所述引物C2为SEQ ID No.11或SEQ ID No.11的第32-51位核苷酸所示的单链DNA。The primer pair C is a primer pair consisting of primer C1 and primer C2; the primer C1 is a single-stranded DNA represented by SEQ ID No.10 or nucleotides 11-35 of SEQ ID No.10; the primer C2 is a single-stranded DNA represented by SEQ ID No.11 or nucleotides 32-51 of SEQ ID No.11.
所述引物对D为引物D1和引物D2组成的引物对;所述引物D1为SEQ ID No.12或SEQID No.12的第11-37位核苷酸所示的单链DNA;所述引物D2为SEQ ID No.13或SEQ ID No.13的第32-56位核苷酸所示的单链DNA。The primer pair D is a primer pair consisting of primer D1 and primer D2; the primer D1 is a single-stranded DNA represented by nucleotides 11-37 of SEQ ID No.12; the primer D2 is a single-stranded DNA represented by nucleotides 32-56 of SEQ ID No.13 or SEQ ID No.13.
所述引物对E为引物E1和引物E2组成的引物对;所述引物E1为SEQ ID No.14或SEQID No.14的第11-37位核苷酸所示的单链DNA;所述引物E2为SEQ ID No.15或SEQ ID No.15的第32-56位核苷酸所示的单链DNA。The primer pair E is a primer pair consisting of primer E1 and primer E2; the primer E1 is a single-stranded DNA represented by nucleotides 11-37 of SEQ ID No.14; the primer E2 is a single-stranded DNA represented by nucleotides 32-56 of SEQ ID No.15 or SEQ ID No.15.
在前文各方面中,所述辅助诊断脑卒中和/或所述评估脑卒中患病风险的待测者为符合如下任一条件中至少一种的脑卒中患者或者正常人(未发生脑卒中者):In the above aspects, the subject for the auxiliary diagnosis of stroke and/or the assessment of the risk of stroke is a stroke patient or a normal person (who has not suffered a stroke) who meets at least one of the following conditions:
(h1)年龄小于65周岁;(h1) Aged less than 65 years;
(h2)饮酒;(h2) drinking alcohol;
(h3)饮酒且所述ACTB基因甲基化水平低。(h3) Drinking alcohol and low methylation level of the ACTB gene.
进一步地,所述脑卒中患者为发病时间小于2年或小于1.5年或小于1.32年或小于1年的脑卒中患者。Furthermore, the stroke patient is a stroke patient whose onset time is less than 2 years, less than 1.5 years, less than 1.32 years or less than 1 year.
在本发明中,所述饮酒的定义是目前或过去饮酒≥2次/周且持续饮酒半年。In the present invention, the definition of drinking is drinking ≥ 2 times/week currently or in the past and continuing drinking for half a year.
以上任一所述数学模型在实际应用中可能会根据DNA甲基化的检测方法以及拟合方式不同有所改变,要根据具体的数学模型来确定,无需约定。Any of the above mathematical models may vary in practical applications depending on the detection method and fitting method of DNA methylation. It should be determined based on the specific mathematical model without the need for agreement.
在本发明的实施例中,所述模型具体为log(y/(1-y))=b0+b1x1+b2x2+b3x3+…+bnXn,其中y为因变量即将待测样品的一个或者多个甲基化位点的甲基化值代入模型以后得出的检测指数,b0为常量,x1~xn为自变量即为该测试样品的一个或者多个甲基化位点的甲基化值(每一个值为0-1之间的数值),b1~bn为模型赋予每一个位点甲基化值的权重。In an embodiment of the present invention, the model is specifically log(y/(1-y))=b0+b1x1+b2x2+b3x3+…+bnXn, wherein y is the dependent variable, i.e., the detection index obtained after substituting the methylation value of one or more methylation sites of the test sample into the model, b0 is a constant, x1~xn are independent variables, i.e., the methylation value of one or more methylation sites of the test sample (each value is a value between 0-1), and b1~bn are the weights assigned to the methylation value of each site by the model.
在本发明的实施例中,所述模型的建立还可酌情加入年龄、性别、白细胞计数、体重指数、吸烟、饮酒、高血压史、糖尿病史、HDL-C、LDL-C、TC和TG等已知参数来提高判别效率。本发明的实施例中建立的一个具体模型为用于辅助区分发病时间<2年的脑卒中患者和对照样本的模型,所述模型具体为:log(y/(1-y))=-2.937-0.810*ACTB_D_2.3+0.916*ACTB_D_4.5-1.573*ACTB_D_6-3.181*ACTB_D_7.8+0.931*ACTB_D_9.10+0.882*In an embodiment of the present invention, the establishment of the model can also add known parameters such as age, gender, white blood cell count, body mass index, smoking, drinking, history of hypertension, history of diabetes, HDL-C, LDL-C, TC and TG to improve the discrimination efficiency. A specific model established in an embodiment of the present invention is a model for assisting in distinguishing stroke patients with an onset time of less than 2 years and control samples, and the model is specifically: log(y/(1-y))=-2.937-0.810*ACTB_D_2.3+0.916*ACTB_D_4.5-1.573*ACTB_D_6-3.181*ACTB_D_7.8+0.931*ACTB_D_9.10+0.882*
ACTB_D_11+3.763*ACTB_D_12-2.570*ACTB_D_14+1.142*ACTB_D_15.16+0.221*ACTB_D_17+1.285*ACTB_D_18+0.013*年龄-0.072*性别(男性赋值为1,女性赋值为0)+0.302*白细胞计数+0.034*体重指数+0.025*吸烟(吸烟赋值为1,不吸烟赋值为0)-0.055*饮酒(饮酒赋值为1,不饮酒赋值为0)+0.035*高血压史(有高血压史赋值为1,无高血压史赋值为0)-0.030*(有糖尿病史赋值为1,无糖尿病史赋值为0)+0.009*HDL-C+0.351*LDL-C-0.170*TC-0.013*TG。所述ACTB_D_2.3为SEQ ID No.4所示的DNA片段自5’端第39-40和41-42位所示CpG位点的甲基化水平;所述ACTB_D_4.5为SEQ ID No.4所示的DNA片段自5’端第61-62和65-66位所示CpG位点的甲基化水平;所述ACTB_D_6为SEQ ID No.4所示的DNA片段自5’端第69-70位所示CpG位点的甲基化水平;所述ACTB_D_7.8为SEQ ID No.4所示的DNA片段自5’端第77-78和81-82位所示CpG位点的甲基化水平;所述ACTB_D_9.10为SEQ ID No.4所示的DNA片段自5’端第107-108和110-111位所示CpG位点的甲基化水平;所述ACTB_D_11为SEQ ID No.4所示的DNA片段自5’端第122-123位所示CpG位点的甲基化水平;所述ACTB_D_12为SEQ ID No.4所示的DNA片段自5’端第139-140位所示CpG位点的甲基化水平;所述ACTB_D_14为SEQ ID No.4所示的DNA片段自5’端第185-186位所示CpG位点的甲基化水平;所述ACTB_D_15.16为SEQ ID No.4所示的DNA片段自5’端第213-214和219-220位所示CpG位点的甲基化水平;所述ACTB_D_17为SEQ ID No.4所示的DNA片段自5’端第275-276位所示CpG位点的甲基化水平;所述ACTB_D_18为SEQ ID No.4所示的DNA片段自5’端第304-305位所示CpG位点的甲基化水平。所述模型的阈值为通过最大约登指数得到的诊断阈值0.36。通过模型计算的检测指数小于0.36的待测者候选为脑卒中患者,大于0.36的待测者候选为无脑卒中。ACTB_D_11+3.763*ACTB_D_12-2.570*ACTB_D_14+1.142*ACTB_D_15.16+0.221*ACTB_D_17+1.285*ACTB_D_18+0.013*Age-0.072*Sex (male is assigned 1, female is assigned 0)+0.302*White blood cell count+0.034*BMI+0 .025*Smoking (smoking is assigned to 1, non-smoking is assigned to 0)-0.055*Drinking (drinking is assigned to 1, non-drinking is assigned to 0)+0.035*History of hypertension (history of hypertension is assigned to 1, no history of hypertension is assigned to 0)-0.030*(history of diabetes is assigned to 1, no history of diabetes is assigned to 0)+0.009*HDL-C+0.351*LDL-C-0.170*TC-0.013*TG. The ACTB_D_2.3 is the methylation level of the CpG sites shown at positions 39-40 and 41-42 from the 5' end of the DNA fragment shown in SEQ ID No.4; the ACTB_D_4.5 is the methylation level of the CpG sites shown at positions 61-62 and 65-66 from the 5' end of the DNA fragment shown in SEQ ID No.4; the ACTB_D_6 is the methylation level of the CpG sites shown at positions 69-70 from the 5' end of the DNA fragment shown in SEQ ID No.4; the ACTB_D_7.8 is the methylation level of the CpG sites shown at positions 77-78 and 81-82 from the 5' end of the DNA fragment shown in SEQ ID No.4; the ACTB_D_9.10 is the methylation level of the CpG sites shown at positions 107-108 and 110-111 from the 5' end of the DNA fragment shown in SEQ ID No.4; the ACTB_D_11 is the methylation level of the CpG sites shown at positions 107-108 and 110-111 from the 5' end of the DNA fragment shown in SEQ ID The methylation level of the CpG site shown at positions 122-123 from the 5' end of the DNA fragment shown in SEQ ID No.4; the ACTB_D_12 is the methylation level of the CpG site shown at positions 139-140 from the 5' end of the DNA fragment shown in SEQ ID No.4; the ACTB_D_14 is the methylation level of the CpG site shown at positions 185-186 from the 5' end of the DNA fragment shown in SEQ ID No.4; the ACTB_D_15.16 are the methylation levels of the CpG sites shown at positions 213-214 and 219-220 from the 5' end of the DNA fragment shown in SEQ ID No.4; the ACTB_D_17 is the methylation level of the CpG site shown at positions 275-276 from the 5' end of the DNA fragment shown in SEQ ID No.4; the ACTB_D_18 is the methylation level of the CpG site shown at positions 304-305 from the 5' end of the DNA fragment shown in SEQ ID No.4. The threshold of the model is a diagnostic threshold of 0.36 obtained by the maximum Youden index. Candidates for subjects whose detection index calculated by the model is less than 0.36 are stroke patients, and candidates for subjects whose detection index is greater than 0.36 are non-stroke patients.
在上述各方面中,所述检测ACTB基因甲基化水平为检测血液中ACTB基因甲基化水平。In the above aspects, the detecting of the methylation level of ACTB gene is detecting the methylation level of ACTB gene in blood.
本发明采用巢式病例对照研究,收集了社区队列入选后2年内新发脑卒中患者作为病例组(病例组在血样采集时均未发病,在血液采集后2年以内发生脑卒中),并按年龄性别匹配随访期间未发生脑卒中者作为对照组,探讨外周血ACTB甲基化与中国人群脑卒中的关系。研究证明外周血ACTB甲基化可作为脑卒中预警和早期诊断的潜在标志物。本发明对于提高脑卒中诊疗效果均有重要的科学意义和临床应用价值。The present invention adopts a nested case-control study, collects new stroke patients within 2 years after the community cohort is selected as the case group (the case group has no disease at the time of blood sample collection, and has a stroke within 2 years after blood collection), and matches the age and gender to those who have not had a stroke during the follow-up as the control group, to explore the relationship between peripheral blood ACTB methylation and stroke in the Chinese population. Studies have shown that peripheral blood ACTB methylation can be used as a potential marker for early warning and early diagnosis of stroke. The present invention has important scientific significance and clinical application value for improving the diagnosis and treatment of stroke.
具体实施方式DETAILED DESCRIPTION
下述实施例中所使用的实验方法如无特殊说明,均为常规方法。Unless otherwise specified, the experimental methods used in the following examples are conventional methods.
下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。Unless otherwise specified, the materials and reagents used in the following examples can be obtained from commercial sources.
实施例1、用于检测ACTB基因甲基化位点的引物设计Example 1: Primer design for detecting methylation sites of ACTB gene
ACTB基因共6个外显子,全长共3454bp(chr7:5566779-5570232)。经过大量序列和功能分析,本次检测覆盖ACTB基因启动子区及外显子1(ACTB_A、ACTB_B)、外显子2和内含子2(ACTB_C)、外显子3、4、5及内含子3、4、5区(ACTB_D)、外显子6和内含子6(ACTB_E)上的CpG位点进行甲基化水平和脑卒中的相关性分析。The ACTB gene has 6 exons with a total length of 3454bp (chr7:5566779-5570232). After a large number of sequence and functional analyses, this test covers the CpG sites on the ACTB gene promoter region and exon 1 (ACTB_A, ACTB_B), exon 2 and intron 2 (ACTB_C), exons 3, 4, 5 and introns 3, 4, 5 (ACTB_D), exon 6 and intron 6 (ACTB_E) to analyze the correlation between methylation levels and stroke.
ACTB_A片段(SEQ ID No.1)位于hg19参考基因组chr7:5570155-5571232,反义链。The ACTB_A fragment (SEQ ID No. 1) is located in the hg19 reference genome chr7:5570155-5571232, antisense strand.
ACTB_B片段(SEQ ID No.2)位于hg19参考基因组chr7:5570155-5571232,正义链。The ACTB_B fragment (SEQ ID No. 2) is located in the hg19 reference genome chr7:5570155-5571232, positive strand.
ACTB_C片段(SEQ ID No.3)位于hg19参考基因组chr7:5569032-5570100,正义链。The ACTB_C fragment (SEQ ID No. 3) is located at chr7:5569032-5570100 of the hg19 reference genome, positive strand.
ACTB_D片段(SEQ ID No.4)位于hg19参考基因组chr7:5567000-5569000,正义链。The ACTB_D fragment (SEQ ID No. 4) is located at chr7:5567000-5569000 of the hg19 reference genome, positive strand.
ACTB_E片段(SEQ ID No.5)位于hg19参考基因组chr7:5565779-5566988,正义链。The ACTB_E fragment (SEQ ID No. 5) is located in the hg19 reference genome chr7:5565779-5566988, positive strand.
ACTB_A片段中的CpG位点信息如表1所示。The CpG site information in the ACTB_A fragment is shown in Table 1.
ACTB_B片段中的CpG位点信息如表2所示。The CpG site information in the ACTB_B fragment is shown in Table 2.
ACTB_C片段中的CpG位点信息如表3所示。The CpG site information in the ACTB_C fragment is shown in Table 3.
ACTB_D片段中的CpG位点信息如表4所示。The CpG site information in the ACTB_D fragment is shown in Table 4.
ACTB_E片段中的CpG位点信息如表5所示。The CpG site information in the ACTB_E fragment is shown in Table 5.
表1 ACTB_A片段中CpG位点信息Table 1 CpG site information in ACTB_A fragment
表2 ACTB_B片段中CpG位点信息Table 2 CpG site information in ACTB_B fragment
表3 ACTB_C片段中CpG位点信息Table 3 CpG site information in ACTB_C fragment
表4 ACTB_D片段中CpG位点信息Table 4 CpG site information in ACTB_D fragment
表5 ACTB_E片段中CpG位点信息Table 5 CpG site information in ACTB_E fragment
针对五个片段(ACTB_A片段、ACTB_B片段、ACTB_C片段、ACTB_D片段和ACTB_E片段)设计特异PCR引物,如表6所示。其中,SEQ ID No.6、SEQ ID No.8、SEQ ID No.10、SEQ IDNo.12和SEQ ID No.14为正向引物,SEQ ID No.7、SEQ ID No.9、SEQ ID No.11、SEQ IDNo.13和SEQ ID No.15为反向引物;SEQ ID No.6、SEQ ID No.8、SEQ ID No.10、SEQ IDNo.12和SEQ ID No.14中自5’端第1至10位为非特异标签,SEQ ID No.6和SEQ ID No.10第11至35位、SEQ ID No.8第11至34位、SEQ ID No.12和SEQ ID No.14第11至37位为特异引物序列;SEQ ID No.7、SEQ ID No.9、SEQ ID No.11、SEQ ID No.13和SEQ ID No.15自5’端第1至31位为非特异标签,SEQ ID No.7第32至58位、SEQ ID No.9、SEQ ID No.13和SEQ IDNo.15第32至56位、SEQ ID No.11第32至51位为特异引物序列。引物序列中不包含SNP和CpG位点。Specific PCR primers were designed for the five fragments (ACTB_A fragment, ACTB_B fragment, ACTB_C fragment, ACTB_D fragment and ACTB_E fragment), as shown in Table 6. Among them, SEQ ID No.6, SEQ ID No.8, SEQ ID No.10, SEQ ID No.12 and SEQ ID No.14 are forward primers, and SEQ ID No.7, SEQ ID No.9, SEQ ID No.11, SEQ ID No.13 and SEQ ID No.15 are reverse primers; from the 1st to the 10th position of SEQ ID No.6, SEQ ID No.8, SEQ ID No.10, SEQ ID No.12 and SEQ ID No.14 from the 5' end are non-specific tags, and from the 11th to the 35th position of SEQ ID No.6 and SEQ ID No.10, from the 11th to the 34th position of SEQ ID No.8, and from the 11th to the 37th position of SEQ ID No.12 and SEQ ID No.14 are specific primer sequences; from the 1st to the 31st position of SEQ ID No.7, SEQ ID No.9, SEQ ID No.11, SEQ ID No.13 and SEQ ID No.15 from the 5' end are non-specific tags, and from the 1st to the 31st position of SEQ ID No.7, positions 32 to 58, SEQ ID No.9, SEQ ID No.13 and SEQ ID No.15, positions 32 to 56, and SEQ ID No.11, positions 32 to 51 are specific primer sequences. The primer sequences do not contain SNP and CpG sites.
表6 ACTB甲基化引物序列Table 6 ACTB methylation primer sequences
实施例2、ACTB基因甲基化检测及结果分析Example 2: ACTB gene methylation detection and result analysis
一、研究样本1. Research Sample
采用流行病学整群抽样方法,于2015年10月至12月对江苏省句容市16个镇的18岁以上社区人群进行调查,基线调查共11151人。本研究通过南京医科大学伦理委员会审查,所有调查对象均签署了知情同意书。Using epidemiological cluster sampling, a survey of community residents aged 18 years and above in 16 towns in Jurong City, Jiangsu Province was conducted from October to December 2015, with a total of 11,151 people in the baseline survey. This study was reviewed by the Ethics Committee of Nanjing Medical University, and all respondents signed informed consent.
基线调查内容包括收集调查对象的一般人口学资料信息如性别、年龄、籍贯、民族等;询问疾病史、用药史、家族史等,主要包括心血管疾病、糖尿病、肾脏疾病及血脂异常史等;收集吸烟状况、饮酒状况等。吸烟的定义为>20支/周,且持续吸烟>3个月/年。饮酒的定义是目前或过去饮酒≥2次/周且持续饮酒半年。人体测量指标包括体重、血压、身高和腰围。体重测量要求被调查者着轻装,读数精确到0.1kg。血压测量时,被调查对象需满足清晨空腹、未进行剧烈运动,同时静坐休息5分钟。采用水银汞柱血压计测量右臂肱动脉血压,每位被调查者重复血压测量三次,每次需间隔30s以上,若三次收缩压或舒张压测量的差值≥8mmHg,则需加测一次。身高测量时,将皮尺固定在墙上,所有被调查者脱鞋帽,两脚后跟并拢并直立于皮尺,大三角板的直角边用于读数,精确到0.1cm。腰围测量时,在肚脐上1cm处,使用软皮尺贴皮肤围上一圈读数。体质指数(Body mass index,BMI)等于体重(kg)/身高的平方(m2)。此外,被调查者要求清晨空腹采血,共采集两管外周静脉血(抗凝血和促凝血各1管),用于检测生化指标,主要包括白细胞亚型比例、空腹血糖(GLU)、甘油三脂(TG)、高密度脂蛋白胆固醇(HDL-C)、总胆固醇(TC)和低密度脂蛋白胆固醇(LDL-C)等。The baseline survey included collecting the general demographic information of the subjects, such as gender, age, place of origin, and ethnicity; asking about medical history, medication history, family history, etc., mainly including cardiovascular disease, diabetes, kidney disease, and dyslipidemia; collecting smoking status and drinking status. Smoking was defined as smoking more than 20 cigarettes per week and continuous smoking for more than 3 months per year. Drinking was defined as drinking ≥2 times per week and drinking for half a year. Anthropometric indicators included weight, blood pressure, height, and waist circumference. Weight measurement required the respondents to wear light clothes and the readings were accurate to 0.1kg. When measuring blood pressure, the respondents were required to fast in the morning, not engage in strenuous exercise, and sit quietly for 5 minutes. A mercury sphygmomanometer was used to measure the blood pressure of the right brachial artery. Each respondent repeated the blood pressure measurement three times, with an interval of more than 30 seconds each time. If the difference between the three systolic or diastolic blood pressure measurements was ≥8mmHg, an additional measurement was required. When measuring height, a tape measure was fixed on the wall. All respondents took off their shoes and hats, put their heels together and stood upright on the tape measure. The right angle side of the large triangle was used for reading, accurate to 0.1 cm. When measuring waist circumference, a soft tape measure was placed around the skin 1 cm above the navel to read the reading. Body mass index (BMI) is equal to body weight (kg)/height squared (m 2 ). In addition, respondents were required to draw blood on an empty stomach in the morning. A total of two tubes of peripheral venous blood (1 tube each of anticoagulant and procoagulant) were collected for the detection of biochemical indicators, mainly including the proportion of leukocyte subtypes, fasting blood glucose (GLU), triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C).
每年通过当地医院、疾控中心慢病管理系统、社区卫生服务中心和工作站慢病常规登记项目、社保中心报销数据记录心脑血管疾病发病与死亡信息。队列开始时间为基线调查日期,结局变量为脑卒中发病,对于失访研究对象的随访时间,统一按照随访结束时间的一半来计算。截止随访日期2018年7月13日,共计新发脑卒中234例,我们选择了队列入组后2年内新发脑卒中患者作为病例组,共计139例,经年龄和性别匹配后,选择随访期间未发生脑卒中者作为对照,共计147例。Information on the incidence and mortality of cardiovascular and cerebrovascular diseases is recorded annually through the chronic disease management system of local hospitals, CDCs, routine chronic disease registration projects of community health service centers and workstations, and reimbursement data of social security centers. The start time of the cohort was the baseline survey date, and the outcome variable was the onset of stroke. The follow-up time for subjects who were lost to follow-up was uniformly calculated as half of the end time of follow-up. As of the follow-up date of July 13, 2018, a total of 234 new strokes occurred. We selected patients with new stroke within 2 years after cohort enrollment as the case group, a total of 139 cases. After age and gender matching, those who did not have a stroke during the follow-up period were selected as controls, a total of 147 cases.
脑卒中病例平均年龄为67.64±9.51岁,对照平均年龄为67.59±9.11岁,两组年龄差异无统计学意义(P>0.05)。性别、BMI、SBP、DBP、吸烟、饮酒、高血压史、糖尿病史、TC、TG、HDL-C、LDL-C、葡萄糖、白细胞计数、中性粒细胞比例、单核细胞、嗜酸性粒细胞和嗜碱性粒细胞比例在两组人群中差异均无统计学意义(P>0.05)。所有对象的中位随访时间(抽血到随访截止日期的时间)为2.65年,脑卒中病例的中位发病时间(从抽血到脑卒中确诊的时间)为1.32年。详细结果见表7。The average age of stroke cases was 67.64±9.51 years, and the average age of controls was 67.59±9.11 years. There was no significant difference in age between the two groups (P>0.05). There was no significant difference in gender, BMI, SBP, DBP, smoking, drinking, history of hypertension, history of diabetes, TC, TG, HDL-C, LDL-C, glucose, white blood cell count, neutrophil ratio, monocyte, eosinophil and basophil ratio between the two groups (P>0.05). The median follow-up time (time from blood draw to follow-up deadline) of all subjects was 2.65 years, and the median onset time (time from blood draw to stroke diagnosis) of stroke cases was 1.32 years. Detailed results are shown in Table 7.
表7研究对象一般人口学特征和临床特征分布情况Table 7 Distribution of general demographic and clinical characteristics of the subjects
注:BMI,体质指数;SBP,收缩压;DBP,舒张压;TC,总胆固醇;Glucose,空腹血糖;TG,甘油三酯;HDL-C,高密度脂蛋白胆固醇;LDL-C,低密度脂蛋白胆固醇。Note: BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; TC, total cholesterol; Glucose, fasting blood glucose; TG, triglycerides; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol.
二、甲基化检测2. Methylation Detection
1、提取血液样本的总DNA。1. Extract total DNA from blood samples.
2、将步骤1制备的血液样本总DNA进行重亚硫酸盐处理(参照Qiagen的DNA甲基化试剂盒说明书操作)。重亚硫酸盐处理后,未发生甲基化的胞嘧啶(C)被转化成尿嘧啶(U),而甲基化的胞嘧啶保持不变,即原来CpG位点的C碱基经重亚硫酸盐处理后转化为C或U。2. Treat the total DNA of the blood sample prepared in step 1 with bisulfite (refer to the instructions of the Qiagen DNA methylation kit). After bisulfite treatment, unmethylated cytosine (C) is converted into uracil (U), while methylated cytosine remains unchanged, that is, the C base of the original CpG site is converted into C or U after bisulfite treatment.
3、以步骤2经过重亚硫酸盐处理的DNA为模板,采用表6中的5对特异引物对通过DNA聚合酶按照常规PCR反应要求的反应体系进行PCR扩增,5对引物都采用相同的常规PCR体系,且5对引物都按照以下程序进行扩增。3. Using the DNA treated with bisulfite in step 2 as a template, PCR amplification was performed using the 5 pairs of specific primers in Table 6 by DNA polymerase according to the reaction system required for conventional PCR reaction. The 5 pairs of primers all used the same conventional PCR system, and the 5 pairs of primers were amplified according to the following procedure.
PCR反应程序为:95℃,4min→(95℃,20s→56℃,30s→72℃,2min)45个循环→72℃,5min→4℃,1h。The PCR reaction program was: 95°C, 4 min → (95°C, 20 s → 56°C, 30 s → 72°C, 2 min) 45 cycles → 72°C, 5 min → 4°C, 1 h.
4、取步骤3的扩增产物,通过飞行时间质谱进行DNA甲基化分析,具体方法如下:4. Take the amplified product of step 3 and perform DNA methylation analysis by time-of-flight mass spectrometry. The specific method is as follows:
(1)向5μl PCR产物中加入2μl虾碱性磷酸盐(SAP)溶液(0.3ml SAP[0.5U]+1.7mlH2O)然后按照以下程序在PCR仪中孵育(37℃,20min→85℃,5min→4℃,5min);(1) Add 2 μl of shrimp alkaline phosphate (SAP) solution (0.3 ml SAP [0.5 U] + 1.7 ml H 2 O) to 5 μl of PCR product and then incubate in a PCR instrument according to the following program (37°C, 20 min → 85°C, 5 min → 4°C, 5 min);
(2)取出2μl步骤(1)得到的SAP处理后的产物,根据说明书加入5μl T-Cleavage反应体系中,然后在37℃孵育3h;(2) Take out 2 μl of the SAP-treated product obtained in step (1), add it to 5 μl of T-Cleavage reaction system according to the instructions, and then incubate at 37°C for 3 h;
(3)取步骤(2)的产物,加入19μl去离子水,再用6μg Resin在旋转摇床进行去离子化孵育1h;(3) Take the product of step (2), add 19 μl of deionized water, and then incubate with 6 μg of Resin on a rotary shaker for 1 h for deionization;
(4)2000rpm室温离心5min,将微量上清由Nanodispenser机械手臂上样384SpectroCHIP;(4) Centrifuge at 2000 rpm for 5 min at room temperature, and load a small amount of supernatant onto 384 SpectroCHIP using a Nanodispenser robot;
(5)飞行时间质谱分析;获得的数据用SpectroACQUIRE v3.3.1.3软件收集,通过MassArray EpiTyper v1.2软件实现可视化。(5) Time-of-flight mass spectrometry analysis; the data were collected using SpectroACQUIRE v3.3.1.3 software and visualized using MassArray EpiTyper v1.2 software.
上述飞行时间质谱检测使用的试剂均来试剂盒(T-Cleavage MassCLEAVEReagent Auto Kit,货号:10129A);上述飞行时间质谱检测使用的检测仪器为Analyzer Chip Prep Module 384,型号:41243;上述数据分析软件为检测仪器自带软件。The reagents used in the above-mentioned time-of-flight mass spectrometry detection are all from the kit (T-Cleavage MassCLEAVEReagent Auto Kit, catalog number: 10129A); the detection instrument used in the above-mentioned time-of-flight mass spectrometry detection is Analyzer Chip Prep Module 384, model: 41243; the above data analysis software is the software provided by the testing instrument.
三、质量控制3. Quality Control
现场调查:制定严谨的调查问卷,统一衡量标准;调查前对调查员统一培训和考核;正式调查前进行预调查,及时发现和总结问题;问卷由专门的质控人员现场质控,质量不合格的问卷退回调查员重新对研究对象调查;问卷资料双轨录入,并进行一致性检验;现场收集的血标本及时送检。严格按照实验操作要求进行,定期对操作环境紫外消毒;正式实验前进行预实验;随机抽取5%的样本重复飞行时间质谱检测,保证结果一致率达99%以上。双人判读实验结果,整理甲基化数据,保证数据的真实准确性。通过质谱实验,共获得44个可以区别的G峰图。采用SpectroACQUIRE v3.3.1.3软件根据含G峰和A峰面积比较,计算甲基化水平(SpectroACQUIRE v3.3.1.3软件可自动通过计算峰面积得到每个样本在每个CpG位点的甲基化水平)。On-site investigation: formulate rigorous questionnaires and unify measurement standards; uniformly train and assess investigators before the investigation; conduct preliminary investigations before the formal investigation to promptly identify and summarize problems; questionnaires are quality-controlled on-site by dedicated quality control personnel, and questionnaires with unqualified quality are returned to the investigators for re-investigation of the research subjects; questionnaire data are entered on two tracks and consistency is tested; blood samples collected on-site are sent for inspection in a timely manner. Strictly follow the experimental operation requirements, regularly disinfect the operating environment with ultraviolet light; conduct preliminary experiments before formal experiments; randomly select 5% of the samples for repeated time-of-flight mass spectrometry detection to ensure that the consistency rate of the results is more than 99%. Two people interpret the experimental results, organize the methylation data, and ensure the authenticity and accuracy of the data. Through the mass spectrometry experiment, a total of 44 distinguishable G peaks were obtained. SpectroACQUIRE v3.3.1.3 software was used to calculate the methylation level based on the comparison of the G-containing peak and the A peak area (SpectroACQUIRE v3.3.1.3 software can automatically obtain the methylation level of each sample at each CpG site by calculating the peak area).
四、统计分析Statistical Analysis
呈正态分布的计量资料采用均数±标准差表示,计数资料用率表示,应用成组t检验或卡方检验进行病例组和对照组一般人口学资料分布差异的比较分析。呈非正态分布的计量资料采用中位数(四分位数间距)表示,采用Mann-Whitney U检验进行病例组和对照组之间差异比较。非条件logistic回归模型用于ACTB甲基化和脑卒中之间的关联分析,校正白细胞亚型比例、性别、年龄、饮酒、吸烟、BMI、高血压史、糖尿病史、HDL-C、LDL-C、TC和TG等协变量,以每10%甲基化增量计算比值比(Odds ratio,OR)和95%可信区间(Confidenceinterval,CI)。用Spearman秩相关系数评估两变量之间的统计相关性。通过logistic回归和受试者工作特征曲线(receiver operating characteristic curve,ROC)评价多个CpG位点的组合对脑卒中预警和早期诊断的价值。以双侧P<0.05为差异有统计学意义,所有数据均通过SPSS24.0进行统计分析。Normally distributed quantitative data were expressed as mean ± standard deviation, and count data were expressed as rate. Group t-test or chi-square test was used to compare the distribution of general demographic data between the case group and the control group. Non-normally distributed quantitative data were expressed as median (interquartile range), and Mann-Whitney U test was used to compare the differences between the case group and the control group. Unconditional logistic regression model was used for the association analysis between ACTB methylation and stroke. The odds ratio (OR) and 95% confidence interval (CI) were calculated for every 10% methylation increment after adjusting for covariates such as leukocyte subtype ratio, gender, age, drinking, smoking, BMI, history of hypertension, history of diabetes, HDL-C, LDL-C, TC and TG. Spearman rank correlation coefficient was used to evaluate the statistical correlation between two variables. Logistic regression and receiver operating characteristic curve (ROC) were used to evaluate the value of the combination of multiple CpG sites for early warning and early diagnosis of stroke. The difference was considered statistically significant when the bilateral P value was less than 0.05. All data were analyzed using SPSS 24.0.
五、结果分析V. Results Analysis
1、ACTB甲基化与脑卒中的关联分析1. Analysis of the association between ACTB methylation and stroke
本发明将脑卒中病例按不同的临床发病时间进行关联分析,结果显示,临床发病时间≤1.5年的脑卒中病例ACTB_A片段6个位点[CpG_1(0.30vs.0.35)、CpG_3(0.21vs.0.24)、CpG_5(0.27vs.0.32)、CpG_6(0.25vs.0.30)、CpG_8.9(0.21vs.0.25)、CpG_12(0.39vs.0.43)]、ACTB_B片段5个位点[CpG_2.3(0.59vs.0.63)、CpG_6(0.61vs.0.64)、CpG_8(0.41vs.0.45)、CpG_9(0.31vs.0.35)、CpG_10(0.27vs.0.33)]、ACTB_C片段6个位点[CpG_6(0.32vs.0.35)、CpG_11.12(0.21vs.0.25)、CpG_17(0.46vs.0.50)、CpG_24(0.31vs.0.34)、CpG_25(0.32vs.0.35)、CpG_34(0.36vs.0.40)]、ACTB_D片段6个位点[CpG_2.3(0.43vs.0.47)、CpG_6(0.39vs.0.43)、CpG_9.10(0.32vs.0.36)、CpG_12(0.25vs.0.30)、CpG_14(0.46vs.0.51)、CpG_17(0.45vs.0.50)]和ACTB_E片段4个位点[CpG_1(0.30vs.0.34)、CpG_2(0.31vs.0.35)、CpG_3(0.30vs.0.35)、CpG_5(0.39vs.0.43)]的甲基化水平显著低于对照;logistic回归结果显示,较正白细胞亚型比例、性别、年龄、饮酒、吸烟、BMI、高血压史、糖尿病史、HDL-C、LDL-C、TC和TG等协变量后,ORs(95%CIs)每+10%甲基化分别为ACTB_A[CpG_1:0.820(0.650-0.907),P=0.007;CpG_3:0.778(0.603-0.904),P=0.003;CpG_5:0.711(0.600-0.921),P=0.002;CpG_6:0.700(0.602-0.901),P=0.001;CpG_8.9:0.729(0.607-0.905),P=0.005;CpG_12:0.751(0.617-0.913),P=0.006]、ACTB_B[CpG_2.3:0.715(0.618-0.903),P=0.004;CpG_6:0.722(0.603-0.910),P=0.008;CpG_8:0.715(0.605-0.896),P=0.007;CpG_9:0.712(0.607-0.900),P=0.007;CpG_10:0.702(0.608-0.872),P=0.009]、ACTB_C[CpG_6:0.738(0.619-0.909),P=0.006;CpG_11.12:0.745(0.605-0.906),P=0.003;CpG_17:0.807(0.704-0.913),P=0.001;CpG_24:0.786(0.695-0.910),P=0.002;CpG_25:0.774(0.684-0.909),P=0.005;CpG_34:0.796(0.688-0.907),P=0.002]、ACTB_D[CpG_2.3:0.780(0.683-0.908),P=0.008;CpG_6:0.775(0.678-0.917),P=0.004;CpG_9.10:0.738(0.646-0.902),P=0.004;CpG_12:0.739(0.656-0.901),P=0.002;CpG_14:0.763(0.649-0.897),P=0.001;CpG_17:0.775(0.631-0.905),P=0.003]、ACTB_E[CpG_1:0.788(0.672-0.906),P=0.002;CpG_2:0.773(0.649-0.894),P=0.001;CpG_3:0.774(0.646-0.908),P=0.004;CpG_5:0.779(0.659-0.901),P=0.003],具体结果见表8。有趣的是,临床发病时间≤1.32年及临床发病时间≤1年的脑卒中病例上述CpG位点甲基化水平与对照相比差异更显著。临床发病时间≤1.32年的脑卒中病例和对照上述CpG位点甲基化水平分别为ACTB_A片段6个位点[CpG_1(0.25vs.0.35)、CpG_3(0.15vs.0.24)、CpG_5(0.22vs.0.32)、CpG_6(0.20vs.0.30)、CpG_8.9(0.16vs.0.25)、CpG_12(0.34vs.0.43)]、ACTB_B片段5个位点[CpG_2.3(0.53vs.0.63)、CpG_6(0.55vs.0.64)、CpG_8(0.36vs.0.45)、CpG_9(0.25vs.0.35)、CpG_10(0.23vs.0.33)]、ACTB_C片段6个位点[CpG_6(0.26vs.0.35)、CpG_11.12(0.14vs.0.25)、CpG_17(0.40vs.0.50)、CpG_24(0.25vs.0.34)、CpG_25(0.28vs.0.35)、CpG_34(0.31vs.0.40)]、ACTB_D片段6个位点[CpG_2.3(0.37vs.0.47)、CpG_6(0.34vs.0.43)、CpG_9.10(0.26vs.0.36)、CpG_12(0.20vs.0.30)、CpG_14(0.39vs.0.51)、CpG_17(0.40vs.0.50)]和ACTB_E片段4个位点[CpG_1(0.25vs.0.34)、CpG_2(0.25vs.0.35)、CpG_3(0.24vs.0.35)、CpG_5(0.34vs.0.43)];logistic回归结果显示,较正白细胞亚型比例、性别、年龄、饮酒、吸烟、BMI、高血压史、糖尿病史、HDL-C、LDL-C、TC和TG等协变量后,ORs(95%CIs)每+10%甲基化分别为ACTB_A[CpG_1:0.610(0.506-0.747);CpG_3:0.608(0.493-0.789);CpG_5:0.611(0.500-0.779);CpG_6:0.606(0.502-0.776);CpG_8.9:0.602(0.489-0.715);CpG_12:0.598(0.476-0.713)]、ACTB_B[CpG_2.3:0.607(0.508-0.739);CpG_6:0.612(0.513-0.761);CpG_8:0.605(0.506-0.768);CpG_9:0.617(0.507-0.770);CpG_10:0.617(0.511-0.787)]、ACTB_C[CpG_6:0.609(0.496-0.769);CpG_11.12:0.604(0.505-0.755);CpG_17:0.607(0.504-0.713);CpG_24:0.616(0.505-0.730);CpG_25:0.614(0.504-0.739);CpG_34:0.615(0.508-0.727)]、ACTB_D[CpG_2.3:0.608(0.503-0.708);CpG_6:0.601(0.497-0.707);CpG_9.10:0.607(0.496-0.722);CpG_12:0.609(0.505-0.719);CpG_14:0.613(0.501-0.750);CpG_17:0.615(0.500-0.744)]、ACTB_E[CpG_1:0.611(0.492-0.769);CpG_2:0.613(0.506-0.749);CpG_3:0.606(0.503-0.738);CpG_5:0.602(0.498-0.709)],P值均<0.001(表9)。临床发病时间≤1年的脑卒中病例和对照上述CpG位点甲基化水平分别为ACTB_A片段6个位点[CpG_1(0.18vs.0.35)、CpG_3(0.13vs.0.24)、CpG_5(0.20vs.0.32)、CpG_6(0.18vs.0.30)、CpG_8.9(0.14vs.0.25)、CpG_12(0.32vs.0.43)]、ACTB_B片段5个位点[CpG_2.3(0.51vs.0.63)、CpG_6(0.53vs.0.64)、CpG_8(0.34vs.0.45)、CpG_9(0.23vs.0.35)、CpG_10(0.20vs.0.33)]、ACTB_C片段6个位点[CpG_6(0.24vs.0.35)、CpG_11.12(0.12vs.0.25)、CpG_17(0.38vs.0.50)、CpG_24(0.23vs.0.34)、CpG_25(0.26vs.0.35)、CpG_34(0.29vs.0.40)]、ACTB_D片段6个位点[CpG_2.3(0.35vs.0.47)、CpG_6(0.32vs.0.43)、CpG_9.10(0.24vs.0.36)、CpG_12(0.18vs.0.30)、CpG_14(0.37vs.0.51)、CpG_17(0.38vs.0.50)]和ACTB_E片段4个位点[CpG_1(0.23vs.0.34)、CpG_2(0.22vs.0.35)、CpG_3(0.21vs.0.35)、CpG_5(0.32vs.0.43)];logistic回归结果显示,较正白细胞亚型比例、性别、年龄、饮酒、吸烟、BMI、高血压史、糖尿病史、HDL-C、LDL-C、TC和TG等协变量后,ORs(95%CIs)每+10%甲基化分别为ACTB_A[CpG_1:0.410(0.306-0.647);CpG_3:0.408(0.293-0.689);CpG_5:0.411(0.300-0.679);CpG_6:0.406(0.302-0.667);CpG_8.9:0.412(0.298-0.657);CpG_12:0.398(0.277-0.613)]、ACTB_B[CpG_2.3:0.407(0.308-0.639);CpG_6:0.412(0.313-0.661);CpG_8:0.405(0.306-0.668);CpG_9:0.417(0.307-0.670);CpG_10:0.407(0.311-0.647)]、ACTB_C[CpG_6:0.409(0.296-0.639);CpG_11.12:0.404(0.305-0.655);CpG_17:0.407(0.304-0.613);CpG_24:0.426(0.305-0.630);CpG_25:0.424(0.304-0.639);CpG_34:0.451(0.310-0.657)]、ACTB_D[CpG_2.3:0.428(0.315-0.647);CpG_6:0.416(0.297-0.607);CpG_9.10:0.407(0.296-0.602);CpG_12:0.409(0.305-0.619);CpG_14:0.424(0.296-0.606);CpG_17:0.415(0.300-0.604)]、ACTB_E[CpG_1:0.411(0.292-0.596);CpG_2:0.413(0.306-0.594);CpG_3:0.406(0.303-0.606);CpG_5:0.402(0.298-0.609)],P值均<0.001(表10)。The present invention performed association analysis on stroke cases according to different clinical onset times. The results showed that in stroke cases with clinical onset time ≤ 1.5 years, six sites of ACTB_A fragment [CpG_1 (0.30 vs. 0.35), CpG_3 (0.21 vs. 0.24), CpG_5 (0.27 vs. 0.32), CpG_6 (0.25 vs. 0.30), CpG_8.9 (0.21 vs. 0.25), CpG_12 (0.39 vs. 0.43)], five sites of ACTB_B fragment [CpG_2.3 (0.59 vs. 0.63), Cp G_6 (0.61 vs. 0.64), CpG_8 (0.41 vs. 0.45), CpG_9 (0.31 vs. 0.35), CpG_10 (0.27 vs. 0.33)], 6 sites of ACTB_C fragment [CpG_6 (0.32 vs. 0.35), CpG_11.12 (0.21 vs. 0.25), CpG_17 (0.46 vs. 0.50), CpG_24 (0.31 vs. 0.34), CpG_25 (0.32 vs. 0.35), CpG_34 (0.36 vs. 0.40)], ACT The 6 sites of B_D fragment [CpG_2.3 (0.43 vs. 0.47), CpG_6 (0.39 vs. 0.43), CpG_9.10 (0.32 vs. 0.36), CpG_12 (0.25 vs. 0.30), CpG_14 (0.46 vs. 0.51), CpG_17 (0.45 vs. 0.50)] and the 4 sites of ACTB_E fragment [CpG_1 (0.30 vs. 0.34), CpG_2 (0.31 vs. 0.35), CpG_3 (0.30 vs. 0.35), CpG_5 (0.39 vs. .0.43)] were significantly lower than those in the control group; logistic regression results showed that after adjusting for covariates such as leukocyte subtype ratio, gender, age, drinking, smoking, BMI, history of hypertension, history of diabetes, HDL-C, LDL-C, TC and TG, the ORs (95% CIs) for each +10% methylation were ACTB_A [CpG_1: 0.820 (0.650-0.907), P = 0.007; CpG_3: 0.778 (0.603-0.904), P = 0.003; CpG_5: 0.711 (0.600-0.921), P = 0.002; CpG_6: 0.700 (0.602-0.901), P = 0.001; CpG_8.9: 0.729 (0.607-0.905), P = 0.005; CpG_12: 0.751 (0.617-0.913), P = 0.006], ACTB_B [CpG_2.3: 0.715 (0.618-0.903), P=0.004; CpG_6: 0.722 (0.603-0.910), P=0.008; CpG_8: 0.715 (0.605-0.896), P=0.00 7; CpG_9: 0.712 (0.607-0.900), P = 0.007; CpG_10: 0.702 (0.608-0.872), P = 0.009], ACTB_C [CpG_6: 0.738 (0.619-0.909), P = 0.006; CpG_11.12: 0.7 45 (0.605-0.906), P=0.003; CpG_17: 0.807 (0.704-0.913), P=0.001; CpG_24: 0.786 (0.695-0.910), P=0.002; CpG_25: 0.774 (0.684-0.909), P = 0.005; CpG_34: 0.796 (0.688-0.907), P = 0.002], ACTB_D [CpG_2.3: 0.780 (0.683-0.908), P = 0.008; CpG_6: 0.775 (0 .678-0.917), P=0.004; CpG_9.10: 0.738 (0.646-0.902), P=0.004; CpG_12: 0.739 (0.656-0.901), P=0.002; C CpG_14: 0.763 (0.649-0.897), P = 0.001; CpG_17: 0.775 (0.631-0.905), P = 0.003], ACTB_E [CpG_1: 0.788 (0.672-0.906), P = 0.002; CpG_2: 0.773 (0.649-0.894), P = 0.001; CpG_3: 0.774 (0.646-0.908), P = 0.004; CpG_5: 0.779 (0.659-0.901), P = 0.003], see Table 8 for specific results. Interestingly, the methylation levels of the above CpG sites in stroke cases with clinical onset time ≤1.32 years and clinical onset time ≤1 year were more significantly different from those in controls. The methylation levels of the above CpG sites in stroke cases with clinical onset time ≤1.32 years and controls were 6 sites in ACTB_A fragment [CpG_1 (0.25 vs. 0.35), CpG_3 (0.15 vs. 0.24), CpG_5 (0.22 vs. 0.32), CpG_6 (0.20 vs. 0.30), CpG_8.9 (0.16 vs. 0.25), CpG_12 (0.34 vs. 0.43)], 5 sites in ACTB_B fragment [CpG_2. 3 (0.53 vs. 0.63), CpG_6 (0.55 vs. 0.64), CpG_8 (0.36 vs. 0.45), CpG_9 (0.25 vs. 0.35), CpG_10 (0.23 vs. 0.33)], 6 sites in the ACTB_C fragment [CpG_6 (0.26 vs. 0.35), CpG_11.12 (0.14 vs. 0.25), CpG_17 (0.40 vs. 0.50), CpG_24 (0.25 vs. 0.34 )、CpG_25(0.28vs.0.35)、CpG_34(0.31vs.0.40)]、6 sites of ACTB_D fragment [CpG_2.3(0.37vs.0.47)、CpG_6(0.34vs.0.43)、CpG_9.10(0.26vs.0.36)、CpG_12(0.20vs.0.30)、CpG_14(0.39vs.0.51)、CpG_17(0.40vs.0.50)] and ACTB_E fragment The results of logistic regression showed that after adjusting for covariates such as leukocyte subtype ratio, gender, age, drinking, smoking, BMI, history of hypertension, history of diabetes, HDL-C, LDL-C, TC and TG, the ORs (95% CIs) for each +10% methylation were ACTB_A[ CpG_1:0.610(0.506-0.747); CpG_3:0.608(0.493-0.789); CpG_5:0.611(0.500-0.779); CpG_6:0.606(0.502-0.776); CpG_8.9:0.602(0.489-0. 715);CpG_12:0.598(0.476-0.713)], ACTB_B[CpG_2.3:0.607(0.508-0.739 ; .496-0.769); CpG_11.12:0.604(0.505-0.755); CpG_17:0.607(0.504-0. 713); CpG_24:0.616(0.505-0.730); CpG_25:0.614(0.504-0.739); CpG_34:0.615(0.508-0.727)], ACTB_D[CpG_2.3:0.608(0.503-0.708); CpG_6: 0.601(0.497-0.707); CpG_9.10:0.607(0.496-0.722); CpG_12:0.609(0. 505-0.719); CpG_14: 0.613 (0.501-0.750); CpG_17: 0.615 (0.500-0.744)], ACTB_E [CpG_1: 0.611 (0.492-0.769); CpG_2: 0.613 (0.506-0.749); Cp G_3:0.606(0.503-0.738); CpG_5:0.602(0.498-0.709)], P values are all <0.001 (Table 9). The methylation levels of the above CpG sites in stroke cases with clinical onset time ≤ 1 year and controls were 6 sites in ACTB_A fragment [CpG_1 (0.18 vs. 0.35), CpG_3 (0.13 vs. 0.24), CpG_5 (0.20 vs. 0.32), CpG_6 (0.18 vs. 0.30), CpG_8.9 (0.14 vs. 0.25), CpG_12 (0.32 vs. 0.43)], 5 sites in ACTB_B fragment [CpG_2.3 ( 0.51vs.0.63)、CpG_6(0.53vs.0.64)、CpG_8(0.34vs.0.45)、CpG_9(0.23vs.0.35)、CpG_10(0.20vs.0.33)]、6 sites of ACTB_C fragment [CpG_6(0.24vs.0.35)、CpG_11.12(0.12vs.0.25)、CpG_17(0.38vs.0.50)、CpG_24(0.23vs.0.34)、 CpG_25 (0.26 vs. 0.35), CpG_34 (0.29 vs. 0.40)], 6 sites of ACTB_D fragment [CpG_2.3 (0.35 vs. 0.47), CpG_6 (0.32 vs. 0.43), CpG_9.10 (0.24 vs. 0.36), CpG_12 (0.18 vs. 0.30), CpG_14 (0.37 vs. 0.51), CpG_17 (0.38 vs. 0.50)] and 4 sites of ACTB_E fragment. The logistic regression results showed that after adjusting for covariates such as leukocyte subtype ratio, gender, age, drinking, smoking, BMI, history of hypertension, history of diabetes, HDL-C, LDL-C, TC and TG, the ORs (95% CIs) for each +10% methylation were ACTB_A [Cp G_1:0.410(0.306-0.647); CpG_3:0.408(0.293-0.689); CpG_5:0.411(0.300-0.679); CpG_6:0.406(0.302-0.667); CpG_8.9:0.412(0.298-0.65 7);CpG_12:0.398(0.277-0.613)], ACTB_B[CpG_2.3:0.407(0.308-0.639) ;CpG_6:0.412(0.313-0.661);CpG_8:0.405(0.306-0.668);CpG_9:0.417(0.307-0.670);CpG_10:0.407(0.311-0.647)], ACTB_C[CpG_6:0.409(0 .296-0.639); CpG_11.12:0.404(0.305-0.655); CpG_17:0.407(0.304-0.6 13); CpG_24:0.426(0.305-0.630); CpG_25:0.424(0.304-0.639); CpG_34:0.451(0.310-0.657)], ACTB_D[CpG_2.3:0.428(0.315-0.647); CpG_6: 0.416(0.297-0.607); CpG_9.10:0.407(0.296-0.602); CpG_12:0.409(0.3 05-0.619); CpG_14: 0.424 (0.296-0.606); CpG_17: 0.415 (0.300-0.604)], ACTB_E [CpG_1: 0.411 (0.292-0.596); CpG_2: 0.413 (0.306-0.594); CpG_ 3:0.406(0.303-0.606); CpG_5:0.402(0.298-0.609)], P values are all <0.001 (Table 10).
表8 91例脑卒中病例(临床发病时间≤1.5年)和147例对照ACTB基因CpG位点的甲基化水平比较Table 8 Comparison of methylation levels of ACTB gene CpG sites in 91 stroke cases (clinical onset time ≤ 1.5 years) and 147 controls
注:IQR,四分位数间距;OR:优势比;CI:可信区间;ACTB_A:启动子区及外显子1;ACTB_B:启动子区及外显子1;ACTB_C:外显子2和内含子2;ACTB_D:外显子3、4、5及内含子3、4、5;ACTB_E:外显子6和内含子6;*校正白细胞亚型比例、性别、年龄、饮酒、吸烟、BMI、高血压史、糖尿病史、HDL-C、LDL-C、TC和TG。Note: IQR, interquartile range; OR: odds ratio; CI: confidence interval; ACTB_A: promoter region and exon 1; ACTB_B: promoter region and exon 1; ACTB_C: exon 2 and intron 2; ACTB_D: exons 3, 4, 5 and introns 3, 4, 5; ACTB_E: exon 6 and intron 6; *Adjusted for the proportion of leukocyte subtypes, sex, age, drinking, smoking, BMI, history of hypertension, history of diabetes, HDL-C, LDL-C, TC and TG.
表9 67例脑卒中病例(临床发病时间≤1.32年)和147例对照ACTB基因CpG位点的甲基化水平比较Table 9 Comparison of methylation levels of ACTB gene CpG sites in 67 stroke cases (clinical onset time ≤ 1.32 years) and 147 controls
注:IQR,四分位数间距;OR:优势比;CI:可信区间;ACTB_A:启动子区及外显子1;ACTB_B:启动子区及外显子1;ACTB_C:外显子2和内含子2;ACTB_D:外显子3、4、5及内含子3、4、5;ACTB_E:外显子6和内含子6;*校正白细胞亚型比例、性别、年龄、饮酒、吸烟、BMI、高血压史、糖尿病史、HDL-C、LDL-C、TC和TG。Note: IQR, interquartile range; OR: odds ratio; CI: confidence interval; ACTB_A: promoter region and exon 1; ACTB_B: promoter region and exon 1; ACTB_C: exon 2 and intron 2; ACTB_D: exons 3, 4, 5 and introns 3, 4, 5; ACTB_E: exon 6 and intron 6; *Adjusted for the proportion of leukocyte subtypes, sex, age, drinking, smoking, BMI, history of hypertension, history of diabetes, HDL-C, LDL-C, TC and TG.
表10 35例脑卒中病例(临床发病时间≤1年)和147例对照ACTB基因CpG位点的甲基化水平比较Table 10 Comparison of methylation levels of CpG sites of ACTB gene in 35 stroke cases (clinical onset time ≤ 1 year) and 147 controls
注:IQR,四分位数间距;OR:优势比;CI:可信区间;ACTB_A:启动子区及外显子1;ACTB_B:启动子区及外显子1;ACTB_C:外显子2和内含子2;ACTB_D:外显子3、4、5及内含子3、4、5;ACTB_E:外显子6和内含子6;*校正白细胞亚型比例、性别、年龄、饮酒、吸烟、BMI、高血压史、糖尿病史、HDL-C、LDL-C、TC和TG。Note: IQR, interquartile range; OR: odds ratio; CI: confidence interval; ACTB_A: promoter region and exon 1; ACTB_B: promoter region and exon 1; ACTB_C: exon 2 and intron 2; ACTB_D: exons 3, 4, 5 and introns 3, 4, 5; ACTB_E: exon 6 and intron 6; *Adjusted for the proportion of leukocyte subtypes, sex, age, drinking, smoking, BMI, history of hypertension, history of diabetes, HDL-C, LDL-C, TC and TG.
2、ACTB甲基化与脑卒中临床发病时间的相关性分析2. Correlation analysis between ACTB methylation and clinical onset time of stroke
将脑卒中病例按临床发病时间≤1.5年、1.32年和1年分别进行ACTB甲基化与卒中发病时间的相关性分析,结果表明,ACTB_A片段6个位点(CpG_1、CpG_3、CpG_5、CpG_6、CpG_8.9、CpG_12)、ACTB_B片段5个位点(CpG_2.3、CpG_6、CpG_8、CpG_9、CpG_10)、ACTB_C片段6个位点(CpG_6、CpG_11.12、CpG_17、CpG_24、CpG_25、CpG_34)、ACTB_D片段6个位点(CpG_2.3、CpG_6、CpG_9.10、CpG_12、CpG_14、CpG_17)和ACTB_E片段4个位点(CpG_1、CpG_2、CpG_3、CpG_5)甲基化程度与脑卒中发病时间均呈正相关(表11-13);尤其临床发病时间在1.32年和1年内的脑卒中病例,上述CpG位点甲基化程度与临床发病时间的相关性较强(Spearman秩相关系数均>0.534,表12-13)。The correlation analysis between ACTB methylation and stroke onset time was performed on stroke cases with clinical onset time ≤ 1.5 years, 1.32 years and 1 year. The results showed that 6 sites of ACTB_A fragment (CpG_1, CpG_3, CpG_5, CpG_6, CpG_8.9, CpG_12), 5 sites of ACTB_B fragment (CpG_2.3, CpG_6, CpG_8, CpG_9, CpG_10), 6 sites of ACTB_C fragment (CpG_6, CpG_11.12, CpG_17, CpG_24, CpG_25, C The methylation levels of six sites (CpG_2.3, CpG_6, CpG_9.10, CpG_12, CpG_14, and CpG_17) in the ACTB_D fragment and four sites (CpG_1, CpG_2, CpG_3, and CpG_5) in the ACTB_E fragment were positively correlated with the onset time of stroke (Tables 11-13); especially for stroke cases with clinical onset time within 1.32 years and 1 year, the methylation levels of the above CpG sites were strongly correlated with the clinical onset time (Spearman rank correlation coefficients were all >0.534, Tables 12-13).
表11 ACTB基因甲基化与脑卒中临床发病时间的相关性(91例脑卒中病例临床发病时间≤1.5年)Table 11 Correlation between ACTB gene methylation and clinical onset time of stroke (91 stroke cases with clinical onset time ≤ 1.5 years)
表12 ACTB基因甲基化与脑卒中临床发病时间的相关性(67例脑卒中病例临床发病时间≤1.32年)Table 12 Correlation between ACTB gene methylation and clinical onset time of stroke (clinical onset time of 67 stroke cases ≤ 1.32 years)
表13 ACTB基因甲基化与脑卒中临床发病时间的相关性(35例脑卒中病例临床发病时间≤1年)Table 13 Correlation between ACTB gene methylation and clinical onset time of stroke (clinical onset time of 35 stroke cases ≤ 1 year)
3、ACTB甲基化与年龄的相关性3. Correlation between ACTB methylation and age
根据研究对象的年龄进行分层,分析ACTB甲基化与脑卒中的关联。结果显示,在年龄<65岁的人群中,脑卒中病例ACTB_A片段6个位点[CpG_1(0.29vs.0.35)、CpG_3(0.21vs.0.27)、CpG_5(0.28vs.0.33)、CpG_6(0.25vs.0.29)、CpG_8.9(0.19vs.0.23)、CpG_12(0.37vs.0.43)]、ACTB_B片段5个位点[CpG_2.3(0.56vs.0.64)、CpG_6(0.57vs.0.61)、CpG_8(0.35vs.0.48)、CpG_9(0.24vs.0.35)、CpG_10(0.23vs.0.34)]、ACTB_C片段6个位点[CpG_6(0.25vs.0.35)、CpG_11.12(0.14vs.0.24)、CpG_17(0.39vs.0.49)、CpG_24(0.25vs.0.33)、CpG_25(0.29vs.0.36)、CpG_34(0.31vs.0.39)]、ACTB_D片段6个位点[CpG_2.3(0.36vs.0.45)、CpG_6(0.32vs.0.45)、CpG_9.10(0.26vs.0.35)、CpG_12(0.18vs.0.29)、CpG_14(0.40vs.0.50)、CpG_17(0.37vs.0.49)]和ACTB_E片段4个位点[CpG_1(0.26vs.0.33)、CpG_2(0.24vs.0.35)、CpG_3(0.23vs.0.33)、CpG_5(0.32vs.0.41)]的甲基化水平显著低于对照;logistic回归结果显示,较正白细胞亚型比例、性别、饮酒、吸烟、BMI、高血压史、糖尿病史、HDL-C、LDL-C、TC和TG等协变量后,ORs(95%CIs)每+10%甲基化分别为ACTB_A[CpG_1:0.615(0.416-0.916),P=0.004;CpG_3:0.611(0.413-0.946),P=0.006;CpG_5:0.592(0.373-0.882),P=0.001;CpG_6:0.608(0.431-0.939),P=0.002;CpG_8.9:0.566(0.467-0.906),P=0.003;CpG_12:0.548(0.364-0.903),P=0.001]、ACTB_B[CpG_2.3:0.594(0.375-0.902),P=0.006;CpG_6:0.518(0.307-0.891),P<0.001;CpG_8:0.517(0.302-0.889),P<0.001;CpG_9:0.511(0.315-0.891),P<0.001;CpG_10:0.509(0.364-0.902),P<0.001]、ACTB_C[CpG_6:0.518(0.382-0.901),P=0.002;CpG_11.12:0.522(0.392-0.909),P=0.004;CpG_17:0.526(0.394-0.870),P=0.002;CpG_24:0.504(0.342-0.876),P<0.001;CpG_25:0.507(0.385-0.892),P=0.005;CpG_34:0.506(0.392-0.901),P=0.001]、ACTB_D[CpG_2.3:0.538(0.311-0.903),P=0.002;CpG_6:0.548(0.346-0.899),P<0.001;CpG_9.10:0.537(0.366-0.897),P=0.002;CpG_12:0.546(0.385-0.901),P=0.001;CpG_14:0.528(0.374-0.900),P<0.001;CpG_17:0.537(0.358-0.903),P=0.001]、ACTB_E[CpG_1:0.557(0.366-0.913),P=0.006;CpG_2:0.546(0.370-0.906),P=0.005;CpG_3:0.563(0.409-0.908),P=0.005;CpG_5:0.545(0.424-0.904),P=0.003],具体结果见表14。The association between ACTB methylation and stroke was analyzed by stratification according to the age of the subjects. The results showed that in people aged less than 65 years, 6 sites of ACTB_A fragment [CpG_1 (0.29 vs. 0.35), CpG_3 (0.21 vs. 0.27), CpG_5 (0.28 vs. 0.33), CpG_6 (0.25 vs. 0.29), CpG_8.9 (0.19 vs. 0.23), CpG_12 (0.37 vs. 0.43)], 5 sites of ACTB_B fragment [CpG_2.3 (0.56 vs. 0.64), CpG_6 (0.57 vs. 0.61), CpG_8 (0.35vs.0.48), CpG_9(0.24vs.0.35), CpG_10(0.23vs.0.34)], 6 sites in ACTB_C fragment [CpG_6(0.25vs.0.35), CpG_11.12(0.14vs.0.24), CpG_17(0.39vs.0.49), CpG_24(0.25vs.0.33), CpG_25(0.29vs.0.36), CpG_34(0.31vs.0.39)], 6 sites in ACTB_D fragment [CpG_2.3(0 The methylation levels of four sites in the ACTB_E fragment [CpG_1 (0.26 vs. 0.33), CpG_2 (0.24 vs. 0.35), CpG_3 (0.23 vs. 0.33), CpG_5 (0.32 vs. 0.41)] were significantly lower than those in the CpG_1 fragment [0.36 vs. 0.45), CpG_6 (0.32 vs. 0.45), CpG_9.10 (0.26 vs. 0.35), CpG_12 (0.18 vs. 0.29), CpG_14 (0.40 vs. 0.50), CpG_17 (0.37 vs. 0.49)] Compared with the control group, the logistic regression results showed that after adjusting for covariates such as the proportion of leukocyte subtypes, gender, drinking, smoking, BMI, history of hypertension, history of diabetes, HDL-C, LDL-C, TC and TG, the ORs (95% CIs) per +10% methylation were ACTB_A [CpG_1: 0.615 (0.416-0.916), P = 0.004; CpG_3: 0.611 (0.413-0.946), P = 0.006; CpG_5: 0.592 (0.373-0.882), P = 0.001; CpG_6: 0.6 08 (0.431-0.939), P = 0.002; CpG_8.9: 0.566 (0.467-0.906), P = 0.003; CpG_12: 0.548 (0.364-0.903), P = 0.001], ACTB_B [CpG_2.3: 0.594 (0.375-0. 902), P=0.006; CpG_6:0.518(0.307-0.891), P<0.001; CpG_8:0.517(0.302-0.889), P<0.001; CpG_9:0.5 11 (0.315-0.891), P < 0.001; CpG_10: 0.509 (0.364-0.902), P < 0.001], ACTB_C [CpG_6: 0.518 (0.382-0.901), P = 0.002; CpG_11.12: 0.522 (0.39 2-0.909), P=0.004; CpG_17: 0.526 (0.394-0.870), P=0.002; CpG_24: 0.504 (0.342-0.876), P<0.001; CpG_25:0 .507 (0.385-0.892), P = 0.005; CpG_34: 0.506 (0.392-0.901), P = 0.001], ACTB_D [CpG_2.3: 0.538 (0.311-0.903), P = 0.002; CpG_6: 0.548 (0.346-0. 899), P < 0.001; CpG_9.10: 0.537 (0.366-0.897), P = 0.002; CpG_12: 0.546 (0.385-0.901), P = 0.001; CpG_14 :0.528(0.374-0.900), P<0.001; CpG_17:0.537(0.358-0.903), P=0.001], ACTB_E[CpG_1:0.557(0.366-0.913), P=0.006; CpG_2:0.546(0.370-0.906), P=0.005; CpG_3:0.563(0.409-0.908), P=0.005; CpG_5:0.545(0.424-0.904), P=0.003], the specific results are shown in Table 14.
ACTB甲基化与年龄的相关性分析结果显示,在对照人群中,ACTB_A片段6个位点(CpG_1、CpG_3、CpG_5、CpG_6、CpG_8.9、CpG_12)、ACTB_B片段5个位点(CpG_2.3、CpG_6、CpG_8、CpG_9、CpG_10)、ACTB_C片段6个位点(CpG_6、CpG_11.12、CpG_17、CpG_24、CpG_25、CpG_34)、ACTB_D片段6个位点(CpG_2.3、CpG_6、CpG_9.10、CpG_12、CpG_14、CpG_17)和ACTB_E片段4个位点(CpG_1、CpG_2、CpG_3、CpG_5)甲基化程度与年龄均呈负相关(Spearman秩相关系数绝对值均>0.501,表15)。The results of the correlation analysis between ACTB methylation and age showed that in the control population, 6 sites of ACTB_A fragment (CpG_1, CpG_3, CpG_5, CpG_6, CpG_8.9, CpG_12), 5 sites of ACTB_B fragment (CpG_2.3, CpG_6, CpG_8, CpG_9, CpG_10), and 6 sites of ACTB_C fragment (CpG_6, CpG_11.12, CpG_1 The methylation levels of six sites (CpG_2.7, CpG_24, CpG_25, CpG_34), six sites (CpG_2.3, CpG_6, CpG_9.10, CpG_12, CpG_14, CpG_17) in the ACTB_D fragment and four sites (CpG_1, CpG_2, CpG_3, CpG_5) in the ACTB_E fragment were negatively correlated with age (the absolute values of the Spearman rank correlation coefficients were all >0.501, Table 15).
表14分层分析139例脑卒中病例和147例对照ACTB基因CpG位点的甲基化水平比较Table 14 Comparison of methylation levels of ACTB gene CpG sites in stratified analysis of 139 stroke cases and 147 controls
注:IQR,四分位数间距;OR:优势比;CI:可信区间;ACTB_A:启动子区及外显子1;ACTB_B:启动子区及外显子1;ACTB_C:外显子2和内含子2;ACTB_D:外显子3、4、5及内含子3、4、5;ACTB_E:外显子6和内含子6;*校正白细胞亚型比例、性别、饮酒、吸烟、BMI、高血压史、糖尿病史、HDL-C、LDL-C、TC和TG。Note: IQR, interquartile range; OR: odds ratio; CI: confidence interval; ACTB_A: promoter region and exon 1; ACTB_B: promoter region and exon 1; ACTB_C: exon 2 and intron 2; ACTB_D: exons 3, 4, 5 and introns 3, 4, 5; ACTB_E: exon 6 and intron 6; *Adjusted for the proportion of leukocyte subtypes, sex, drinking, smoking, BMI, history of hypertension, history of diabetes, HDL-C, LDL-C, TC and TG.
表15 ACTB基因甲基化与年龄的相关性(147例对照)Table 15 Correlation between ACTB gene methylation and age (147 controls)
4、ACTB甲基化与饮酒的相关性4. Correlation between ACTB methylation and alcohol consumption
研究表明,除遗传机制外,环境因素(如饮酒)可能导致DNA甲基化模式改变。根据研究对象的饮酒状况进行分层,分析ACTB甲基化与脑卒中的关联。结果显示,在饮酒人群中,脑卒中病例ACTB_A片段6个位点[CpG_1(0.29vs.0.36)、CpG_3(0.19vs.0.26)、CpG_5(0.27vs.0.32)、CpG_6(0.24vs.0.30)、CpG_8.9(0.19vs.0.24)、CpG_12(0.34vs.0.44)]、ACTB_B片段5个位点[CpG_2.3(0.58vs.0.68)、CpG_6(0.57vs.0.64)、CpG_8(0.34vs.0.48)、CpG_9(0.25vs.0.33)、CpG_10(0.23vs.0.33)]、ACTB_C片段6个位点[CpG_6(0.25vs.0.32)、CpG_11.12(0.15vs.0.23)、CpG_17(0.38vs.0.46)、CpG_24(0.25vs.0.33)、CpG_25(0.28vs.0.36)、CpG_34(0.31vs.0.40)]、ACTB_D片段6个位点[CpG_2.3(0.35vs.0.48)、CpG_6(0.31vs.0.45)、CpG_9.10(0.25vs.0.35)、CpG_12(0.17vs.0.28)、CpG_14(0.38vs.0.51)、CpG_17(0.38vs.0.49)]和ACTB_E片段4个位点[CpG_1(0.24vs.0.34)、CpG_2(0.24vs.0.34)、CpG_3(0.22vs.0.32)、CpG_5(0.31vs.0.41)]的甲基化水平显著低于对照;logistic回归结果显示,较正白细胞亚型比例、性别、年龄、吸烟、BMI、高血压史、糖尿病史、HDL-C、LDL-C、TC和TG等协变量后,ORs(95%CIs)每+10%甲基化分别为ACTB_A[CpG_1:0.616(0.466-0.912),P=0.006;CpG_3:0.625(0.447-0.913),P=0.005;CpG_5:0.619(0.437-0.918),P=0.006;CpG_6:0.609(0.413-0.938),P=0.003;CpG_8.9:0.626(0.411-0.906),P=0.004;CpG_12:0.609(0.406-0.903),P=0.001]、ACTB_B[CpG_2.3:0.594(0.405-0.899),P=0.001;CpG_6:0.634(0.437-0.911),P=0.006;CpG_8:0.618(0.416-0.901),P<0.001;CpG_9:0.609(0.405-0.913),P=0.001;CpG_10:0.594(0.406-0.892),P<0.001]、ACTB_C[CpG_6:0.618(0.407-0.914),P=0.007;CpG_11.12:0.623(0.412-0.908),P=0.006;CpG_17:0.566(0.394-0.879),P<0.001;CpG_24:0.618(0.424-0.913),P=0.003;CpG_25:0.617(0.418-0.912),P=0.002;CpG_34:0.607(0.412-0.907),P=0.001]、ACTB_D[CpG_2.3:0.578(0.393-0.883),P<0.001;CpG_6:0.585(0.397-0.891),P<0.001;CpG_9.10:0.572(0.362-0.882),P<0.001;CpG_12:0.576(0.392-0.891),P<0.001;CpG_14:0.594(0.387-0.882),P<0.001;CpG_17:0.575(0.376-0.883),P<0.001]、ACTB_E[CpG_1:0.572(0.360-0.843),P<0.001;CpG_2:0.584(0.370-0.863),P<0.001;CpG_3:0.594(0.377-0.855),P<0.001;CpG_5:0.545(0.337-0.846),P<0.001],具体结果见表16。Studies have shown that in addition to genetic mechanisms, environmental factors (such as drinking) may lead to changes in DNA methylation patterns. The subjects were stratified according to their drinking status to analyze the association between ACTB methylation and stroke. The results showed that among drinkers, stroke cases had 6 sites in the ACTB_A fragment [CpG_1 (0.29 vs. 0.36), CpG_3 (0.19 vs. 0.26), CpG_5 (0.27 vs. 0.32), CpG_6 (0.24 vs. 0.30), CpG_8.9 (0.19 vs. 0.24), CpG_12 (0.34 vs. 0.44)], and 5 sites in the ACTB_B fragment [CpG_2.3 (0.58 vs. 0.68), CpG_6 (0.57 vs. 0.64), CpG_8 (0.34 vs.0.48), CpG_9 (0.25vs.0.33), CpG_10 (0.23vs.0.33)], 6 sites in ACTB_C fragment [CpG_6 (0.25vs.0.32), CpG_11.12 (0.15vs.0.23), CpG_17 (0.38vs.0.46), CpG_24 (0.25vs.0.33), CpG_25 (0.28vs.0.36), CpG_34 (0.31vs.0.40)], 6 sites in ACTB_D fragment [CpG_2.3 (0.35vs.0.32), CpG_11.12 (0.15vs.0.23), CpG_17 (0.38vs.0.46), CpG_24 (0.25vs.0.33), CpG_25 (0.28vs.0.36), CpG_34 (0.31vs.0.40)]. The methylation levels of CpG_1 (0.24 vs. 0.34), CpG_2 (0.24 vs. 0.34), CpG_3 (0.22 vs. 0.32), CpG_5 (0.31 vs. 0.41)] and four sites of ACTB_E fragment [CpG_1 (0.24 vs. 0.34), CpG_2 (0.24 vs. 0.34), CpG_3 (0.22 vs. 0.32), CpG_5 (0.31 vs. 0.41)] were significantly lower than those of the control. ; The results of logistic regression showed that after adjusting for covariates such as leukocyte subtype ratio, gender, age, smoking, BMI, history of hypertension, history of diabetes, HDL-C, LDL-C, TC and TG, the ORs (95% CIs) per +10% methylation were ACTB_A [CpG_1: 0.616 (0.466-0.912), P = 0.006; CpG_3: 0.625 (0.447-0.913), P = 0.005; CpG_5: 0.619 (0.437-0.918), P = 0.006; CpG_6: 0.609 (0.413-0.938), P=0.003; CpG_8.9:0.626 (0.411-0.906), P=0.004; CpG_12: 0.609 (0.406-0.903), P=0.001], ACTB_B[CpG_2.3:0.594 (0.405-0.899 ), P=0.001; CpG_6: 0.634 (0.437-0.911), P=0.006; CpG_8: 0.618 (0.416-0.901), P<0.001; CpG_9: 0.609 (0.405-0.913), P=0.001; CpG_10:0.594 (0.406-0.892), P<0.001], ACTB_C[CpG_6:0.618 (0.407-0.914), P=0.007; CpG_11.12:0.623 (0.412-0.9 08), P=0.006; CpG_17: 0.566 (0.394-0.879), P<0.001; CpG_24: 0.618 (0.424-0.913), P=0.003; CpG_25: 0. 617(0.418-0.912), P=0.002; CpG_34:0.607(0.412-0.907), P=0.001], ACTB_D[CpG_2.3:0.578(0.393-0.883), P<0.001; CpG_6:0.585(0.397-0 .891), P<0.001; CpG_9.10:0.572(0.362-0.882), P<0.001; CpG_12:0.576(0.392-0.891), P<0.001; CpG_14 :0.594(0.387-0.882), P<0.001; CpG_17:0.575(0.376-0.883), P<0.001], ACTB_E[CpG_1:0.572(0.360-0.843), P<0.001; CpG_2:0.584(0.370-0.863), P<0.001; CpG_3:0.594(0.377-0.855), P<0.001; CpG_5:0.545(0.337-0.846), P<0.001], the specific results are shown in Table 16.
ACTB甲基化与饮酒的相关性分析结果显示,在脑卒中病例人群中,ACTB_A片段6个位点(CpG_1、CpG_3、CpG_5、CpG_6、CpG_8.9、CpG_12)、ACTB_B片段5个位点(CpG_2.3、CpG_6、CpG_8、CpG_9、CpG_10)、ACTB_C片段6个位点(CpG_6、CpG_11.12、CpG_17、CpG_24、CpG_25、CpG_34)、ACTB_D片段6个位点(CpG_2.3、CpG_6、CpG_9.10、CpG_12、CpG_14、CpG_17)和ACTB_E片段4个位点(CpG_1、CpG_2、CpG_3、CpG_5)甲基化程度与饮酒量均呈负相关(Spearman秩相关系数绝对值均>0.542,表17)。The results of the correlation analysis between ACTB methylation and drinking showed that in the stroke population, 6 sites of ACTB_A fragment (CpG_1, CpG_3, CpG_5, CpG_6, CpG_8.9, CpG_12), 5 sites of ACTB_B fragment (CpG_2.3, CpG_6, CpG_8, CpG_9, CpG_10), and 6 sites of ACTB_C fragment (CpG_6, CpG_11.12, CpG_ The methylation levels of six sites (CpG_2.3, CpG_6, CpG_9.10, CpG_12, CpG_14, CpG_17, CpG_24, CpG_25, CpG_34) in the ACTB_D fragment and four sites (CpG_1, CpG_2, CpG_3, CpG_5) in the ACTB_E fragment were negatively correlated with the amount of alcohol consumed (the absolute values of the Spearman rank correlation coefficients were all >0.542, Table 17).
为了更好地说明甲基化与饮酒之间的关系,我们基于CpG位点甲基化的中位数将人群分为低甲基化组和高甲基化组。结果显示,ACTB_A片段6个位点(CpG_1、CpG_3、CpG_5、CpG_6、CpG_8.9、CpG_12)、ACTB_B片段5个位点(CpG_2.3、CpG_6、CpG_8、CpG_9、CpG_10)、ACTB_C片段6个位点(CpG_6、CpG_11.12、CpG_17、CpG_24、CpG_25、CpG_34)、ACTB_D片段6个位点(CpG_2.3、CpG_6、CpG_9.10、CpG_12、CpG_14、CpG_17)和ACTB_E片段4个位点(CpG_1、CpG_2、CpG_3、CpG_5)低甲基化人群中,与不饮酒相比,饮酒均增加了脑卒中的发病风险(OR值均>1.287,P值均<0.007,表18)。In order to better illustrate the relationship between methylation and drinking, we divided the population into low methylation group and high methylation group based on the median methylation of CpG sites. The results showed that 6 sites (CpG_1, CpG_3, CpG_5, CpG_6, CpG_8.9, CpG_12) of ACTB_A fragment, 5 sites (CpG_2.3, CpG_6, CpG_8, CpG_9, CpG_10) of ACTB_B fragment, and 6 sites (CpG_6, CpG_11.12, CpG_17, CpG_24, CpG_25, CpG_10) of ACTB_C fragment were significantly higher than those of ACTB_A fragment. Among the people with low methylation of 6 sites (CpG_2.3, CpG_6, CpG_9.10, CpG_12, CpG_14, CpG_17) in ACTB_D fragment and 4 sites (CpG_1, CpG_2, CpG_3, CpG_5) in ACTB_E fragment, drinking alcohol increased the risk of stroke compared with non-drinking (OR values were all >1.287, P values were all <0.007, Table 18).
此外,本研究评估了上述CpG甲基化水平(低与高)和饮酒(是与否)对脑卒中的联合作用,并使用高甲基化、不饮酒组作为评估甲基化水平、饮酒及其交互作用的参考组。结果表明ACTB_A片段6个位点(CpG_1、CpG_3、CpG_5、CpG_6、CpG_8.9、CpG_12)、ACTB_B片段5个位点(CpG_2.3、CpG_6、CpG_8、CpG_9、CpG_10)、ACTB_C片段6个位点(CpG_6、CpG_11.12、CpG_17、CpG_24、CpG_25、CpG_34)、ACTB_D片段6个位点(CpG_2.3、CpG_6、CpG_9.10、CpG_12、CpG_14、CpG_17)和ACTB_E片段4个位点(CpG_1、CpG_2、CpG_3、CpG_5)低甲基化与饮酒之间存在协同作用(OR交互作用均>2.618,P值均<0.001,表19)。In addition, this study evaluated the joint effect of the above CpG methylation levels (low vs. high) and drinking (yes vs. no) on stroke, and used the high methylation, non-drinking group as the reference group to evaluate the methylation level, drinking and their interaction. The results showed that 6 sites of ACTB_A fragment (CpG_1, CpG_3, CpG_5, CpG_6, CpG_8.9, CpG_12), 5 sites of ACTB_B fragment (CpG_2.3, CpG_6, CpG_8, CpG_9, CpG_10), 6 sites of ACTB_C fragment (CpG_6, CpG_11.12, CpG_17, CpG_24, CpG_ There was a synergistic effect between hypomethylation of 6 sites (CpG_2.3, CpG_6, CpG_9.10, CpG_12, CpG_14, CpG_17) in ACTB_D fragment and 4 sites (CpG_1, CpG_2, CpG_3, CpG_5) in ACTB_E fragment and drinking (OR interaction was all >2.618, P values were all <0.001, Table 19).
上述结果提示饮酒可能通过影响ACTB基因甲基化水平,进而导致脑卒中的发生。饮酒作为中国人群最常见的生活习惯之一,结合本次研究结果,戒酒可能显著降低脑卒中发病风险。The above results suggest that drinking may lead to stroke by affecting the methylation level of ACTB gene. Drinking is one of the most common lifestyle habits among Chinese people. Combined with the results of this study, quitting drinking may significantly reduce the risk of stroke.
表16按饮酒与否分层分析139例脑卒中病例和147例对照ACTB基因CpG位点的甲基化水平比较Table 16 Comparison of methylation levels of ACTB gene CpG sites in 139 stroke cases and 147 controls according to whether or not they drank alcohol
注:IQR,四分位数间距;OR:优势比;CI:可信区间;ACTB_A:启动子区及外显子1;ACTB_B:启动子区及外显子1;ACTB_C:外显子2和内含子2;ACTB_D:外显子3、4、5及内含子3、4、5;ACTB_E:外显子6和内含子6;*校正白细胞亚型比例、性别、年龄、吸烟、BMI、高血压史、糖尿病史、HDL-C、LDL-C、TC和TG。Note: IQR, interquartile range; OR: odds ratio; CI: confidence interval; ACTB_A: promoter region and exon 1; ACTB_B: promoter region and exon 1; ACTB_C: exon 2 and intron 2; ACTB_D: exons 3, 4, 5 and introns 3, 4, 5; ACTB_E: exon 6 and intron 6; *Adjusted for the proportion of leukocyte subtypes, sex, age, smoking, BMI, history of hypertension, history of diabetes, HDL-C, LDL-C, TC and TG.
表17 ACTB基因甲基化与饮酒的相关性(139例病例)Table 17 Correlation between ACTB gene methylation and drinking (139 cases)
表18不同甲基化水平饮酒与脑卒中的关系Table 18 Relationship between drinking and stroke at different methylation levels
表19甲基化与饮酒对脑卒中的联合作用Table 19 Combined effects of methylation and drinking on stroke
5、ACTB基因甲基化对脑卒中预警和早期诊断的价值5. The value of ACTB gene methylation in early warning and early diagnosis of stroke
本发明建立的用于辅助脑卒中诊断的数学模型可以达到如下目的:The mathematical model for assisting stroke diagnosis established by the present invention can achieve the following purposes:
(1)区分脑卒中患者和无脑卒中对照;(1) Distinguish between stroke patients and non-stroke controls;
(2)提前预警脑卒中。(2) Provide early warning of stroke.
数学模型的建立方法如下:The mathematical model is established as follows:
(A)数据来源:步骤一中列出的社区队列入选后2年内新发脑卒中患者139例和随访期间未发生脑卒中者147例的离体血液样本的目标CpG位点(表1-表5中的一种或多种的组合)甲基化水平(检测方法同步骤二)。(A) Data source: Methylation levels of target CpG sites (a combination of one or more of those in Tables 1-5) in ex vivo blood samples of 139 patients with new stroke within 2 years after enrollment in the community cohort listed in step 1 and 147 patients who did not develop stroke during follow-up (detection method is the same as step 2).
数据可根据实际需要加入年龄、性别、白细胞计数、体重指数、吸烟、饮酒、高血压史、糖尿病史、HDL-C、LDL-C、TC和TG等已知参数来提高判别效率。The data can be added with known parameters such as age, gender, white blood cell count, body mass index, smoking, drinking, history of hypertension, history of diabetes, HDL-C, LDL-C, TC and TG according to actual needs to improve the discrimination efficiency.
(B)模型建立(B) Model building
根据需要选取任意两类不同类型患者数据即训练集(例如:发病时间<2年的脑卒中患者和对照、发病时间≤1.5年的脑卒中患者和对照、发病时间≤1.32年的脑卒中患者和对照、发病时间≤1年的脑卒中患者和对照、年龄<65岁的脑卒中患者和年龄<65岁的对照、年龄≥65岁的脑卒中患者和年龄≥65岁的对照、饮酒的脑卒中患者和饮酒的对照、不饮酒的脑卒中患者和不饮酒的对照)作为用于建立模型的数据,使用SAS,R,SPSS等统计软件使用二分类逻辑回归的统计方法通过公式建立数学模型。数学模型公式计算出的最大约登指数对应的数值为阈值或直接设定0.5为阈值,待测样品经过测试和代入模型计算后得到的检测指数大于阈值归为一类(B类),小于阈值归为另外一类(A类),等于阈值作为不确定的灰区。在对新的待测样品进行预测来判断属于哪一类时,首先通过DNA甲基化的测定方法检测该待测样品ACTB基因上一个或者多个CpG位点的甲基化水平,然后将这些甲基化水平的数据代入上述数学模型,计算得到所述待测样本对应的检测指数,然后比较所述待测样本对应的检测指数和阈值的大小,根据比较结果确定所述待测样本属于哪一类样本。According to the need, any two different types of patient data, namely the training set (for example: stroke patients with onset time <2 years and controls, stroke patients with onset time ≤1.5 years and controls, stroke patients with onset time ≤1.32 years and controls, stroke patients with onset time ≤1 year and controls, stroke patients with age <65 years and controls <65 years, stroke patients with age ≥65 years and controls with age ≥65 years, stroke patients who drink alcohol and controls who drink alcohol, stroke patients who do not drink alcohol and controls who do not drink alcohol) are selected as the data for building the model, and the mathematical model is established by formula using the statistical method of binary logistic regression using statistical software such as SAS, R, and SPSS. The value corresponding to the maximum Youden index calculated by the mathematical model formula is the threshold value or 0.5 is directly set as the threshold value. After the test sample is tested and substituted into the model calculation, the detection index obtained is greater than the threshold value and is classified into one category (category B), less than the threshold value and is classified into another category (category A), and equal to the threshold value as an uncertain gray area. When predicting a new sample to be tested to determine which category it belongs to, firstly, the methylation level of one or more CpG sites on the ACTB gene of the sample to be tested is detected by a DNA methylation determination method, and then the data of these methylation levels are substituted into the above-mentioned mathematical model to calculate the detection index corresponding to the sample to be tested, and then the detection index corresponding to the sample to be tested is compared with the threshold, and the category of the sample to be tested is determined according to the comparison result.
举例:将训练集中ACTB基因单个CpG位点的甲基化水平或者多个CpG位点组合的甲基化水平的数据通过SAS、R、SPSS等统计软件使用二分类逻辑回归的公式建立用于区分A类和B类的数学模型。该数学模型在此为二类逻辑回归模型,具体为:log(y/(1-y))=b0+b1x1+b2x2+b3x3+…+bnXn,其中y为因变量即将待测样品的一个或者多个甲基化位点的甲基化值代入模型以后得出的检测指数,b0为常量,x1~xn为自变量即为该测试样品的一个或者多个甲基化位点的甲基化值(每一个值为0~1之间的数值),b1~bn为模型赋予每一个位点甲基化值的权重。具体应用时,先根据训练集中已经检测的样本的一个或者多个DNA甲基化位点的甲基化程度(x1~xn)及其已知的分类情况(A类或者B类,分别对y赋值0和1)建立数学模型,由此确定该数学模型的常量b0以及各个甲基化位点的权重b1~bn,并由该数学模型计算出的以最大约登指数对应的数值为阈值或直接设定0.5为划分的阈值。待测样品经过测试和代入模型计算后得到的检测指数即y值大于阈值归为B类,小于阈值归为A类,等于阈值作为不确定的灰区。其中A类和B类为相对应的两分类(二分类的分组,哪一组A类,哪一组是B类,要根据具体的数学模型来确定,在此不做约定)。对受试者的样品进行预测来判断属于哪一类时,首先采集受试者的血液,然后从中提取DNA。将提取的DNA通过重亚硫酸盐转化后,用DNA甲基化的测定方法对受试者ACTB基因的单个CpG位点的甲基化水平或者多个CpG位点组合的甲基化水平进行检测,然后将检测得到的甲基化数据代入上述数学模型。如果该受试者的ACTB基因一个或者多个CpG位点的甲基化水平代入上述数学模型后计算出来的值即检测指数大于阈值,则该受试者判定与训练集中检测指数大于阈值的归属一类(B类);如果该受试者的ACTB基因一个或者多个CpG位点的甲基化水平数据代入上述数学模型后计算出来的值即检测指数小于阈值,则该受试者跟训练集中检测指数小于阈值的归属一类(A类);如果该受试者的ACTB基因一个或者多个CpG位点的甲基化水平数据代入上述数学模型后计算出来的值即检测指数等于阈值,则不能判断该受试者是A类还是B类。For example: The data of the methylation level of a single CpG site of the ACTB gene in the training set or the methylation level of a combination of multiple CpG sites are used to establish a mathematical model for distinguishing between Class A and Class B using a binary logistic regression formula using statistical software such as SAS, R, and SPSS. The mathematical model is a binary logistic regression model, specifically: log(y/(1-y))=b0+b1x1+b2x2+b3x3+…+bnXn, where y is the dependent variable, i.e., the detection index obtained after substituting the methylation value of one or more methylation sites of the sample to be tested into the model, b0 is a constant, x1~xn are independent variables, i.e., the methylation value of one or more methylation sites of the test sample (each value is a value between 0 and 1), and b1~bn are the weights assigned to the methylation value of each site by the model. In specific applications, a mathematical model is first established based on the methylation degree (x1~xn) of one or more DNA methylation sites of the samples that have been tested in the training set and their known classification (class A or class B, y is assigned 0 and 1 respectively), thereby determining the constant b0 of the mathematical model and the weights b1~bn of each methylation site, and the numerical value corresponding to the maximum Youden index calculated by the mathematical model is used as the threshold or 0.5 is directly set as the threshold for division. The detection index obtained after the test sample is tested and substituted into the model calculation, that is, the y value is greater than the threshold and is classified as class B, less than the threshold and classified as class A, and equal to the threshold as an uncertain gray area. Among them, class A and class B are two corresponding categories (the grouping of the two categories, which group is class A and which group is class B, should be determined according to the specific mathematical model, and no agreement is made here). When predicting the sample of the subject to determine which category it belongs to, first collect the blood of the subject, and then extract DNA from it. After the extracted DNA is converted by bisulfite, the methylation level of a single CpG site of the subject's ACTB gene or the methylation level of a combination of multiple CpG sites is detected by a DNA methylation determination method, and then the methylation data obtained by the detection is substituted into the above-mentioned mathematical model. If the value calculated by substituting the methylation level of one or more CpG sites of the subject's ACTB gene into the above-mentioned mathematical model, i.e., the detection index, is greater than the threshold value, the subject is determined to belong to the same category (category B) as the subjects in the training set whose detection index is greater than the threshold value; if the value calculated by substituting the methylation level data of one or more CpG sites of the subject's ACTB gene into the above-mentioned mathematical model, i.e., the detection index, is less than the threshold value, the subject is determined to belong to the same category (category A) as the subjects in the training set whose detection index is less than the threshold value; if the value calculated by substituting the methylation level data of one or more CpG sites of the subject's ACTB gene into the above-mentioned mathematical model, i.e., the detection index, is equal to the threshold value, it cannot be determined whether the subject is in category A or category B.
举例:举例说明ACTB_D的全部CpG位点(ACTB_D_2.3,ACTB_D_4.5,ACTB_D_6,ACTB_D_7.8,ACTB_D_9.10,ACTB_D_11,ACTB_D_12,ACTB_D_14,ACTB_D_15.16,ACTB_D_17和ACTB_D_18)的甲基化以及数学建模在用于提前2年发现脑卒中患者(提前预警脑卒中)的应用:将发病时间<2年的脑卒中患者和对照训练集(在此为:139例发病时间<2年的脑卒中患者和147例对照)中已经检测的ACTB_D的全部CpG位点的甲基化水平的数据以及患者的年龄、性别(男性赋值为1,女性赋值为0)、白细胞计数、体重指数、吸烟(吸烟赋值为1,不吸烟赋值为0)、饮酒(饮酒赋值为1,不饮酒赋值为0)、高血压史(有高血压史赋值为1,无高血压史赋值为0)、糖尿病史(有糖尿病史赋值为1,无糖尿病史赋值为0)、HDL-C、LDL-C、TC和TG通过SPSS软件或R软件使用二分类逻辑回归的公式建立用于提前2年发现脑卒中患者(提前预警脑卒中)的数学模型。该数学模型在此为二类逻辑回归模型,由此确定该数学模型的常量b0以及各个甲基化位点的权重b1~bn,在此例中具体为:log(y/(1-y))=-2.937-0.810*ACTB_D_2.3+0.916*ACTB_D_4.5-1.573*ACTB_D_6-3.181*ACTB_D_7.8+0.931*ACTB_D_9.10+0.882*ACTB_D_11+3.763*ACTB_D_12-2.570*ACTB_D_14+1.142*ACTB_D_15.16+0.221*ACTB_D_17+1.285*ACTB_D_18+0.013*年龄-0.072*性别(男性赋值为1,女性赋值为0)+0.302*白细胞个数+0.034*体重指数+0.025*吸烟(吸烟赋值为1,不吸烟赋值为0)-0.055*饮酒(饮酒赋值为1,不饮酒赋值为0)+0.035*高血压史(有高血压史赋值为1,无高血压史赋值为0)-0.030*(有糖尿病史赋值为1,无糖尿病史赋值为0)+0.009*HDL-C+0.351*LDL-C-0.170*TC-0.013*TG,其中y为因变量即将待测样品的ACTB_D的全部CpG位点的甲基化值以及年龄、性别、白细胞计数、体重指数、吸烟、饮酒、高血压史、糖尿病史、HDL-C、LDL-C、TC和TG代入模型以后得出的检测指数。通过最大约登指数得到的诊断阈值(0.36),待测样品的ACTB_D的全部CpG位点的甲基化水平经过测试后连同其年龄、性别、白细胞计数、体重指数、吸烟、饮酒、高血压史、糖尿病史、HDL-C、LDL-C、TC和TG的信息代入模型进行计算,得到的检测指数即y值小于阈值归为脑卒中患者,大于阈值归为无脑卒中对照,等于阈值则不确定为脑卒中患者还是对照。此模型的曲线下面积(AUC)计算结果为0.76(表20)。具体受试者判断方法举例如下所示,从两位受试者(甲,乙)分别采集血液提取DNA,将提取的DNA通过重亚硫酸盐转化后,用DNA甲基化的测定方法对受试者的ACTB_D的全部CpG位点的甲基化水平进行检测。然后将检测得到的甲基化水平数据连同受试者的年龄、性别、白细胞计数、体重指数、吸烟、饮酒、高血压史、糖尿病史、HDL-C、LDL-C、TC和TG的信息代入上述数学模型。甲受试者经数学模型后计算出来的值为0.35小于0.36,则甲受试者判定为脑卒中患者;乙受试者的ACTB_D的全部CpG位点的甲基化水平数据代入上述数学模型后计算出来的值为0.58大于0.36,则乙受试者判定无脑卒中。Example: The methylation of all CpG sites of ACTB_D (ACTB_D_2.3, ACTB_D_4.5, ACTB_D_6, ACTB_D_7.8, ACTB_D_9.10, ACTB_D_11, ACTB_D_12, ACTB_D_14, ACTB_D_15.16, ACTB_D_17 and ACTB_D_18) and the application of mathematical modeling in detecting stroke patients 2 years in advance (early warning of stroke): the training set of stroke patients with onset time less than 2 years and controls (here: 139 stroke patients with onset time less than 2 years and 147 controls) are used. The data on the methylation levels of all CpG sites of ACTB_D that have been detected in the experiment, as well as the patients' age, gender (male was assigned a value of 1, female was assigned a value of 0), white blood cell count, body mass index, smoking (smoking was assigned a value of 1, non-smoking was assigned a value of 0), drinking (drinking was assigned a value of 1, non-drinking was assigned a value of 0), history of hypertension (history of hypertension was assigned a value of 1, no history of hypertension was assigned a value of 0), history of diabetes (history of diabetes was assigned a value of 1, no history of diabetes was assigned a value of 0), HDL-C, LDL-C, TC and TG were used to establish a mathematical model for detecting stroke patients 2 years in advance (early warning of stroke) using the formula of binary logistic regression using SPSS software or R software. The mathematical model here is a two-class logistic regression model, which determines the constant b0 of the mathematical model and the weights b1~bn of each methylation site, which are specifically as follows in this example: log(y/(1-y))=-2.937-0.810*ACTB_D_2.3+0.916*ACTB_D_4.5-1.573*ACTB_D_6-3.181*ACTB_D_7.8+0.931*ACTB_D_9.10+0.882*ACTB_D_11+3.763*ACTB_D_12-2.570*ACTB_D_14+1.142*ACTB_D_15.16+0.221*ACTB_D_17+1.285*ACTB_D_18+0.013*age-0.072*gender (male is assigned 1, female is assigned to 0)+0.302*number of white blood cells+0.034*body mass index+0.025*smoking (smoking is assigned to 1, non-smoking is assigned to 0)-0.055*drinking (drinking is assigned to 1, non-drinking is assigned to 0)+0.035*history of hypertension (history of hypertension is assigned to 1, no history of hypertension is assigned to 0)-0.030*(history of diabetes is assigned to 1, no history of diabetes is assigned to 0)+0.009*HDL-C+0.351*LDL-C-0.170*TC-0.013*TG, where y is the dependent variable, that is, the methylation value of all CpG sites of ACTB_D of the sample to be tested, as well as age, gender, white blood cell count, body mass index, smoking, drinking, history of hypertension, history of diabetes, HDL-C, LDL-C, TC and TG are substituted into the model to obtain the detection index. The diagnostic threshold (0.36) obtained by the maximum Youden index, the methylation level of all CpG sites of ACTB_D of the sample to be tested is substituted into the model for calculation together with the information of age, gender, white blood cell count, body mass index, smoking, drinking, history of hypertension, history of diabetes, HDL-C, LDL-C, TC and TG. The detection index obtained, that is, the y value less than the threshold is classified as a stroke patient, greater than the threshold is classified as a non-stroke control, and equal to the threshold, it is uncertain whether it is a stroke patient or a control. The area under the curve (AUC) of this model is calculated as 0.76 (Table 20). The specific subject judgment method is exemplified as follows, blood is collected from two subjects (A, B) to extract DNA, and the extracted DNA is converted by bisulfite, and the methylation level of all CpG sites of ACTB_D of the subject is detected by the DNA methylation determination method. Then the methylation level data obtained by the test were substituted into the above mathematical model together with the subject's age, gender, white blood cell count, body mass index, smoking, drinking, history of hypertension, history of diabetes, HDL-C, LDL-C, TC and TG information. If the value calculated by the mathematical model for subject A is 0.35 less than 0.36, then subject A is determined to be a stroke patient; if the methylation level data of all CpG sites of ACTB_D of subject B are substituted into the above mathematical model and the calculated value is 0.58 greater than 0.36, then subject B is determined to have no stroke.
(C)模型效果评价(C) Model effect evaluation
根据上述方法,分别建立用于提前1年、1.32年、1.5年和2年发现脑卒中患者的数学模型,并且通过受试者曲线(ROC曲线)对其有效性进行评价。ROC曲线得出的曲线下面积(AUC)越大,说明模型的区分度越好,分子标志物越有效。采用不同CpG位点进行数学模型构建后的评价结果如表20所示。表20中,1个CpG位点代表ACTB_A/ACTB_B/ACTB_C/ACTB_D/ACTB_E扩增片段中任意一个CpG位点的位点,2个CpG位点代表ACTB_A/ACTB_B/ACTB_C/ACTB_D/ACTB_E中任意2个CpG位点的组合,3个CpG位点代表ACTB_A/ACTB_B/ACTB_C/ACTB_D/ACTB_E中任意3个CpG位点的组合,……以此类推。表中的数值为不同位点组合评价结果的范围值(即任意个CpG位点组合方式的结果均在此范围内)。According to the above method, mathematical models for detecting stroke patients 1 year, 1.32 years, 1.5 years and 2 years in advance were established, and their effectiveness was evaluated by receiver operating characteristic curve (ROC curve). The larger the area under the curve (AUC) obtained by the ROC curve, the better the discrimination of the model and the more effective the molecular marker. The evaluation results after the mathematical model was constructed using different CpG sites are shown in Table 20. In Table 20, 1 CpG site represents the site of any CpG site in the ACTB_A/ACTB_B/ACTB_C/ACTB_D/ACTB_E amplified fragment, 2 CpG sites represent the combination of any 2 CpG sites in ACTB_A/ACTB_B/ACTB_C/ACTB_D/ACTB_E, 3 CpG sites represent the combination of any 3 CpG sites in ACTB_A/ACTB_B/ACTB_C/ACTB_D/ACTB_E, and so on. The values in the table are the range values of the evaluation results of different site combinations (that is, the results of any combination of CpG sites are within this range).
本研究结果显示,ACTB基因甲基化(所有CpG位点)用于提前发现脑卒中分别为1年、1.32年、1.5年和2年的ROC曲线下面积分别为0.91、0.89、0.85、0.81,通过最大约登指数得到的诊断阈值对应的敏感度分别为86.2%、85.3%、83.3%和79.1%,特异度分别为90.2%、86.8%、85.9%和80.2%,提示ACTB基因甲基化对脑卒中有很好的预警和早期诊断效果。此外,我们进一步分析了ACTB基因甲基化对不同年龄和饮酒状态的脑卒中的诊断价值,结果显示ACTB基因甲基化(所有CpG位点)对年龄<65岁和年龄≥65岁者诊断脑卒中的ROC曲线下面积为0.88和0.79,通过最大约登指数得到的诊断阈值对应的敏感度为84.6%和79.8%,特异度为88.4%和80.1%;ACTB基因甲基化(所有CpG位点)诊断饮酒和不饮酒状态下的脑卒中的ROC曲线下面积为0.88和0.80,通过最大约登指数得到的诊断阈值对应的敏感度为83.6%和78.6%,特异度为87.1%和80.3%,提示ACTB基因甲基化对65岁以下人群和饮酒者的脑卒中诊断效果较好(表20)。The results of this study showed that the areas under the ROC curve of ACTB gene methylation (all CpG sites) for early detection of stroke were 0.91, 0.89, 0.85, and 0.81, respectively, for 1 year, 1.32 years, 1.5 years, and 2 years, respectively. The sensitivities corresponding to the diagnostic thresholds obtained by the maximum Youden index were 86.2%, 85.3%, 83.3%, and 79.1%, respectively, and the specificities were 90.2%, 86.8%, 85.9%, and 80.2%, respectively, indicating that ACTB gene methylation has a good warning and early diagnosis effect on stroke. In addition, we further analyzed the diagnostic value of ACTB gene methylation for stroke in different ages and drinking status. The results showed that the areas under the ROC curve of ACTB gene methylation (all CpG sites) for diagnosing stroke in people aged <65 years and ≥65 years were 0.88 and 0.79, and the corresponding sensitivities of the diagnostic thresholds obtained by the maximum Youden index were 84.6% and 79.8%, and the specificities were 88.4% and 80.1%; the areas under the ROC curve of ACTB gene methylation (all CpG sites) for diagnosing stroke in drinking and non-drinking status were 0.88 and 0.80, and the corresponding sensitivities of the diagnostic thresholds obtained by the maximum Youden index were 83.6% and 78.6%, and the specificities were 87.1% and 80.3%, indicating that ACTB gene methylation has a better diagnostic effect on stroke in people under 65 years old and drinkers (Table 20).
表20 ACTB基因甲基化对脑卒中预警和早期诊断的价值Table 20 Value of ACTB gene methylation for early warning and early diagnosis of stroke
<110> 南京医科大学<110> Nanjing Medical University
<120> 血液骨架蛋白基因甲基化作为脑卒中早期诊断的潜在标志物<120> Blood scaffold protein gene methylation as a potential marker for early diagnosis of stroke
<130> GNCLN200632<130> GNCLN200632
<160> 15<160> 15
<170> PatentIn version 3.5<170> PatentIn version 3.5
<210> 1<210> 1
<211> 467<211> 467
<212> DNA<212> DNA
<213> Artificial sequence<213> Artificial sequence
<400> 1<400> 1
gccctgaaag cagggcctga ggacctctgg ctgtggggct cagctagcta aatgtgctgg 60gccctgaaag cagggcctga ggacctctgg ctgtggggct cagctagcta aatgtgctgg 60
gtgggtcact agggagagac ctgggcttga gaggtagagt gtggtgttgg gggagtcagg 120gtgggtcact agggagagac ctgggcttga gaggtagagt gtggtgttgg gggagtcagg 120
tggcttgcgg ccacttagaa gtcgcaggac cacactcccc aggacagggc aggggccagc 180tggcttgcgg ccacttagaa gtcgcaggac cacactcccc aggacagggc aggggccagc 180
ggtccagtgg ctggaggtgg cccgtgatga aggctacaaa cctacccagc cgcagccctg 240ggtccagtgg ctggaggtgg cccgtgatga aggctacaaa cctacccagc cgcagccctg 240
ggaaggaagg tgggctctac agggcagggc accttttacc ctggagctgc ctgcttttga 300ggaaggaagg tgggctctac agggcagggc accttttacc ctggagctgc ctgcttttga 300
gggtaacagt cacgcccagc caagacaagg cctggggcgt tagtgggtga cctaggcact 360gggtaacagt cacgcccagc caagacaagg cctggggcgt tagtgggtga cctaggcact 360
gcggggcggg ggggctgggt ctacacagcc tgggtctggg cccaccgtcc gttgtatgtc 420gcggggcggg ggggctgggt ctacacagcc tgggtctggg cccaccgtcc gttgtatgtc 420
tgctatgcgc agccacagct gaactgccct cccagaccat ctggagg 467tgctatgcgc agccacagct gaactgccct cccagaccat ctggagg 467
<210> 2<210> 2
<211> 462<211> 462
<212> DNA<212> DNA
<213> Artificial sequence<213> Artificial sequence
<400> 2<400> 2
cagatggtct gggagggcag ttcagctgtg gctgcgcata gcagacatac aacggacggt 60cagatggtct gggagggcag ttcagctgtg gctgcgcata gcagacatac aacggacggt 60
gggcccagac ccaggctgtg tagacccagc ccccccgccc cgcagtgcct aggtcaccca 120gggccccagac ccaggctgtg tagacccagc ccccccgccc cgcagtgcct aggtcaccca 120
ctaacgcccc aggccttgtc ttggctgggc gtgactgtta ccctcaaaag caggcagctc 180ctaacgcccc aggccttgtc ttggctgggc gtgactgtta ccctcaaaag caggcagctc 180
cagggtaaaa ggtgccctgc cctgtagagc ccaccttcct tcccagggct gcggctgggt 240cagggtaaaa ggtgccctgc cctgtagagc ccaccttcct tcccagggct gcggctgggt 240
aggtttgtag ccttcatcac gggccacctc cagccactgg accgctggcc cctgccctgt 300aggtttgtag ccttcatcac gggccacctc cagccactgg accgctggcc cctgccctgt 300
cctggggagt gtggtcctgc gacttctaag tggccgcaag ccacctgact cccccaacac 360cctggggagt gtggtcctgc gacttctaag tggccgcaag ccacctgact cccccaacac 360
cacactctac ctctcaagcc caggtctctc cctagtgacc cacccagcac atttagctag 420cacactctac ctctcaagcc caggtctctc cctagtgacc cacccagcac atttagctag 420
ctgagcccca cagccagagg tcctcaggcc ctgctttcag gg 462ctgagcccca cagccagagg tcctcaggcc ctgctttcag gg 462
<210> 3<210> 3
<211> 279<211> 279
<212> DNA<212> DNA
<213> Artificial sequence<213> Artificial sequence
<400> 3<400> 3
ggcttccttt gtccccaatc tgggcgcgcg ccggcgcccc ctggcggcct aaggactcgg 60ggcttccttt gtccccaatc tgggcgcgcg ccggcgcccc ctggcggcct aaggactcgg 60
cgcgccggaa gtggccaggg cgggggcgac ctcggctcac agcgcgcccg gctattctcg 120cgcgccggaa gtggccaggg cgggggcgac ctcggctcac agcgcgcccg gctattctcg 120
cagctcacca tggatgatga tatcgccgcg ctcgtcgtcg acaacggctc cggcatgtgc 180cagctcacca tggatgatga tatcgccgcg ctcgtcgtcg acaacggctc cggcatgtgc 180
aaggccggct tcgcgggcga cgatgccccc cgggccgtct tcccctccat cgtggggcgc 240aaggccggct tcgcgggcga cgatgccccc cgggccgtct tcccctccat cgtggggcgc 240
cccaggcacc aggtagggga gctggctggg tggggcagc 279cccaggcacc aggtagggga gctggctggg tggggcagc 279
<210> 4<210> 4
<211> 367<211> 367
<212> DNA<212> DNA
<213> Artificial sequence<213> Artificial sequence
<400> 4<400> 4
gggacctgac tgactacctc atgaagatcc tcaccgagcg cggctacagc ttcaccacca 60gggacctgac tgactacctc atgaagatcc tcaccgagcg cggctacagc ttcaccacca 60
cggccgagcg ggaaatcgtg cgtgacatta aggagaagct gtgctacgtc gccctggact 120cggccgagcg ggaaatcgtg cgtgacatta aggagaagct gtgctacgtc gccctggact 120
tcgagcaaga gatggccacg gctgcttcca gctcctccct ggagaagagc tacgagctgc 180tcgagcaaga gatggccacg gctgcttcca gctcctccct ggagaagagc tacgagctgc 180
ctgacggcca ggtcatcacc attggcaatg agcggttccg ctgccctgag gcactcttcc 240ctgacggcca ggtcatcacc attggcaatg agcggttccg ctgccctgag gcactcttcc 240
agccttcctt cctgggtgag tggagactgt ctcccggctc tgcctgacat gagggttacc 300agccttcctt cctgggtgag tggagactgt ctcccggctc tgcctgacat gagggttacc 300
cctcggggct gtgctgtgga agctaagtcc tgccctcatt tccctctcag gcatggagtc 360cctcggggct gtgctgtgga agctaagtcc tgccctcatt tccctctcag gcatggagtc 360
ctgtggc 367ctgtggc 367
<210> 5<210> 5
<211> 445<211> 445
<212> DNA<212> DNA
<213> Artificial sequence<213> Artificial sequence
<400> 5<400> 5
gggccctgta gaacaatgag aatctgacct gcaactagct gggcgtgctg gggcatgcct 60gggccctgta gaacaatgag aatctgacct gcaactagct gggcgtgctg gggcatgcct 60
gtgtagtttc agctacttgg gaggctgagg caggagaatt gcttgagccc aaagttgagg 120gtgtagtttc agctacttgg gaggctgagg caggagaatt gcttgagccc aaagttgagg 120
ctgcagtgag ccatggttgt gccattacac tccagcctgg gcaacacaag accccgtctc 180ctgcagtgag ccatggttgt gccattacac tccagcctgg gcaacacaag accccgtctc 180
agaaataaaa agagaacctg gcctgcagtg ccaggcaggc cctgaggtcc aggagcctgg 240agaaataaaa agagaacctg gcctgcagtg ccaggcaggc cctgaggtcc aggagcctgg 240
gtatctccct ctgcagcatg ggtcacgaac aaactgggcc ctcagaggcc acgggatggc 300gtatctccct ctgcagcatg ggtcacgaac aaactgggcc ctcagaggcc acgggatggc 300
gcccagtctc cagtcacaag gcagaatcca gacctcagcc catagctaac cagagctgtc 360gcccagtctc cagtcacaag gcagaatcca gacctcagcc catagctaac cagagctgtc 360
tgcaggccag atatggcccc atggaccccc taccccaact tgactttgat tccaggtccc 420tgcaggccag atatggcccc atggaccccc taccccaact tgactttgat tccaggtccc 420
cctctgtctg gatgaacagg tagga 445cctctgtctggatgaacagg tagga 445
<210> 6<210> 6
<211> 35<211> 35
<212> DNA<212> DNA
<213> Artificial sequence<213> Artificial sequence
<400> 6<400> 6
aggaagagag gttttgaaag tagggtttga ggatt 35aggaagagag gttttgaaag tagggtttga ggatt 35
<210> 7<210> 7
<211> 58<211> 58
<212> DNA<212> DNA
<213> Artificial sequence<213> Artificial sequence
<400> 7<400> 7
cagtaatacg actcactata gggagaaggc tcctccaaat aatctaaaaa aacaattc 58cagtaatacg actcactata gggagaaggc tcctccaaat aatctaaaaa aacaattc 58
<210> 8<210> 8
<211> 34<211> 34
<212> DNA<212> DNA
<213> Artificial sequence<213> Artificial sequence
<400> 8<400> 8
aggaagagag tagatggttt gggagggtag ttta 34aggaagagag tagatggttt gggagggtag ttta 34
<210> 9<210> 9
<211> 56<211> 56
<212> DNA<212> DNA
<213> Artificial sequence<213> Artificial sequence
<400> 9<400> 9
cagtaatacg actcactata gggagaaggc tccctaaaaa caaaacctaa aaacct 56cagtaatacg actcactata gggagaaggc tccctaaaaa caaaacctaa aaacct 56
<210> 10<210> 10
<211> 35<211> 35
<212> DNA<212> DNA
<213> Artificial sequence<213> Artificial sequence
<400> 10<400> 10
aggaagagag ggaaggaaag gataagaagt tttga 35aggaagagag ggaaggaaag gataagaagt tttga 35
<210> 11<210> 11
<211> 51<211> 51
<212> DNA<212> DNA
<213> Artificial sequence<213> Artificial sequence
<400> 11<400> 11
cagtaatacg actcactata gggagaaggc tactacccca cccaaccaac t 51cagtaatacg actcactata gggagaaggc tactacccca cccaaccaac t 51
<210> 12<210> 12
<211> 37<211> 37
<212> DNA<212> DNA
<213> Artificial sequence<213> Artificial sequence
<400> 12<400> 12
aggaagagag gggatttgat tgattatttt atgaaga 37aggaagagag gggatttgat tgattatttt atgaaga 37
<210> 13<210> 13
<211> 56<211> 56
<212> DNA<212> DNA
<213> Artificial sequence<213> Artificial sequence
<400> 13<400> 13
cagtaatacg actcactata gggagaaggc taccacaaaa ctccatacct aaaaaa 56cagtaatacg actcactata gggagaaggc taccacaaaa ctccatacct aaaaaa 56
<210> 14<210> 14
<211> 37<211> 37
<212> DNA<212> DNA
<213> Artificial sequence<213> Artificial sequence
<400> 14<400> 14
aggaagagag gggttttgta gaataatgag aatttga 37aggaagagag gggttttgta gaataatgag aatttga 37
<210> 15<210> 15
<211> 56<211> 56
<212> DNA<212> DNA
<213> Artificial sequence<213> Artificial sequence
<400> 15<400> 15
cagtaatacg actcactata gggagaaggc ttcctaccta ttcatccaaa caaaaa 56cagtaatacg actcactata gggagaaggc ttcctaccta ttcatccaaa caaaaa 56
Claims (22)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010156358.9A CN113373209B (en) | 2020-03-09 | 2020-03-09 | Methylation of blood skeleton protein gene as potential marker for early diagnosis of stroke |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010156358.9A CN113373209B (en) | 2020-03-09 | 2020-03-09 | Methylation of blood skeleton protein gene as potential marker for early diagnosis of stroke |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113373209A CN113373209A (en) | 2021-09-10 |
CN113373209B true CN113373209B (en) | 2023-03-28 |
Family
ID=77569468
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010156358.9A Active CN113373209B (en) | 2020-03-09 | 2020-03-09 | Methylation of blood skeleton protein gene as potential marker for early diagnosis of stroke |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113373209B (en) |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2018214601A1 (en) * | 2017-02-02 | 2019-08-15 | Caris Science, Inc. | Targeted oligonucleotides |
CN106860867A (en) * | 2017-02-23 | 2017-06-20 | 中山大学 | Application of the Hexokinase 2 specific inhibitor in acute central nervous system damage disease |
CN106916217B (en) * | 2017-03-17 | 2021-04-06 | 华南农业大学 | A method of using iTRAQ technology to study the differentially expressed proteome in the brain tissue of mice chronically infected with Toxoplasma gondii |
CN107841549A (en) * | 2017-07-19 | 2018-03-27 | 深圳市南山区慢性病防治院 | Detection kit and determination method for methylation degree of serine hydroxymethyltransferase gene promoter region |
CN107326078A (en) * | 2017-07-19 | 2017-11-07 | 宁波大学 | The detection kit and assay method of a kind of cystathionine beta synthase gene promoter zone methylation degree |
CN107164555A (en) * | 2017-07-19 | 2017-09-15 | 深圳市南山区慢性病防治院 | Kit for detecting methylation degree of adenosylhomocysteinase gene promoter region and determination method |
CN108456727A (en) * | 2018-04-19 | 2018-08-28 | 深圳会众生物技术有限公司 | Mthfr gene polymorphic detection probe, primer, kit and detection method |
-
2020
- 2020-03-09 CN CN202010156358.9A patent/CN113373209B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN113373209A (en) | 2021-09-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Martínez-Llordella et al. | Multiparameter immune profiling of operational tolerance in liver transplantation | |
Dilley et al. | Relation of three genetic traits to venous thrombosis in an African-American population | |
JP6055966B2 (en) | Detection method | |
CN102758010B (en) | Combinations of single nucleotide polymorphisms of multiple genes and environmental factors associated with coronary heart disease and their application | |
Wu et al. | Three single-nucleotide polymorphisms of the angiotensinogen gene and susceptibility to hypertension: single locus genotype vs. haplotype analysis | |
CN106636430B (en) | Biomarker combinations, kits and methods of use for predicting breast cancer | |
CN115029431B (en) | Type 2 diabetes gene detection kit and type 2 diabetes genetic risk assessment system | |
KR20190024923A (en) | System for predicting prognosis and benefit from adjuvant chemotherapy for patients with stage II and III gastric cancer | |
Taylor et al. | Interactions between metallopeptidase 3 polymorphism rs679620 and BMI in predicting blood pressure in African–American women with hypertension | |
WO2013080227A1 (en) | Genetic variants useful for risk assessment of arterial disease | |
Korstanje et al. | Locating Ath8, a locus for murine atherosclerosis susceptibility and testing several of its candidate genes in mice and humans | |
Chen et al. | Transcriptional profiling to identify the key genes and pathways of pterygium | |
CN106591487A (en) | Serum microRNA diagnostic marker for osteoportic fractures in old people and diagnostic kit thereof | |
JP2014504881A (en) | Detection method | |
CN113373209B (en) | Methylation of blood skeleton protein gene as potential marker for early diagnosis of stroke | |
CN112877421B (en) | Scar-related biomarker and application thereof | |
CN106661618B (en) | DNA methylation status as a biomarker for alcohol use and abstinence | |
Ogbah et al. | Evaluation of PAX 3 genetic variants and nevus number | |
CN103468822B (en) | A kind of detection kit of Lumbar Intervertebral Disc Degeneration related SNP | |
EP2673383A1 (en) | Variants predictive of risk of gout | |
RU2339701C2 (en) | Genetic panel and method for determination of predisposition of person to various kinds of physical working capacity | |
Xu et al. | The mitochondrial tRNAAla T5655C mutation may modulate the phenotypic expression of tRNAMet and tRNAGln A4401G mutation in a Han Chinese family with essential hypertension | |
CN108823300A (en) | Application of the circRNA on the product of preparation diagnosis osteoarthritis | |
Yan et al. | Common SNPs of APM1 gene are not associated with hypertension or obesity in Chinese population | |
CN101921863A (en) | A miRNA expression model for independent diagnosis of liver diseases |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
TA01 | Transfer of patent application right | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20220727 Address after: 210032 2nd floor, building 02, life science and technology Island, 11 Yaogu Avenue, Jiangbei new district, Nanjing, Jiangsu Province Applicant after: Nanjing Tengchen Biological Technology Co.,Ltd. Address before: Nanjing Medical University, 101 longmian Avenue, Jiangning District, Nanjing City, Jiangsu Province, 211166 Applicant before: NANJING MEDICAL University |
|
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CP03 | Change of name, title or address | ||
CP03 | Change of name, title or address |
Address after: 200072, 3rd to 4th floors, Building 10, No. 351 Yuexiu Road, Hongkou District, Shanghai Patentee after: Tengchen Biotechnology (Shanghai) Co.,Ltd. Address before: 210032 2nd floor, building 02, life science and technology Island, 11 Yaogu Avenue, Jiangbei new district, Nanjing, Jiangsu Province Patentee before: Nanjing Tengchen Biological Technology Co.,Ltd. |
|
PE01 | Entry into force of the registration of the contract for pledge of patent right | ||
PE01 | Entry into force of the registration of the contract for pledge of patent right |
Denomination of invention: Methylation of blood skeleton protein genes as a potential biomarker for early diagnosis of stroke Granted publication date: 20230328 Pledgee: Hongkou Branch of Shanghai Rural Commercial Bank Co.,Ltd. Pledgor: Tengchen Biotechnology (Shanghai) Co.,Ltd. Registration number: Y2024310001245 |