Disclosure of Invention
In view of the above, the present invention is directed to a direct methanol fuel cell electrode and a method for manufacturing the same, wherein the direct methanol fuel cell electrode has high catalytic activity to methanol, strong anti-poisoning ability, low cost, and long service life.
In order to achieve the above object, the present invention provides a direct methanol fuel cell electrode, which is made of polyaniline-poly (2-acrylamide-2-methylpropanesulfonic acid) coated CoAg-TiO2Nanotube/porous titanium foil, the CoAg-TiO2The inner and outer surfaces of the pore of the nanotube/porous titanium foil are provided with CoAg-TiO2Porous titanium foil of nanotubes.
Further, the CoAg-TiO2The sum of the contents of the CoAg alloys in the nanotubes is CoAg-TiO21-3 wt% of the nanotube.
The invention also provides a preparation method of the direct methanol fuel cell electrode, which comprises the following steps:
(1) forming TiO on the inner and outer surfaces of the porous titanium foil pore2Nanotube to obtain TiO2Nanotube/porous titanium foil;
(2) TiO obtained in step (1)2The surface of the nano tube/porous titanium foil is electroplated and deposited with a nano CoAg alloy to obtain CoAg-TiO2Nanotube/porous titanium foil;
(3) CoAg-TiO obtained in step (2)2And coating polyaniline-poly (2-acrylamide-2-methylpropanesulfonic acid) on the surface of the nanotube/porous titanium foil to obtain the direct methanol fuel cell electrode.
Further, in the above preparation method, the preparation method of the porous titanium foil comprises: cleaning titanium foil, and soaking in H2O2And (3) heating the titanium foil until the color of the titanium foil is dark blue, taking out the titanium foil, cleaning, drying, calcining in a muffle furnace at 300 ℃ for 30min, and taking out to obtain the porous titanium foil, wherein the porous titanium foil has a three-dimensional porous structure.
Further, in the preparation method, the thickness of the titanium foil is 0.1-0.2 mm.
Further, in the above preparation method, the cleaning treatment is: and (3) ultrasonic degreasing of the titanium foil in acetone for 15 minutes, cleaning with methanol or ethanol, treating in 1mol/L HF for 10 minutes, taking out, ultrasonic cleaning with secondary distilled water for 3 times, and drying to obtain the cleaned titanium foil.
Further, in the above preparation method, the heating is: heating for 40-60 min at 90 ℃.
Further, in the above preparation method, the step (1) is specifically: carrying out electrolytic reaction on the porous titanium foil in electrolyte, taking out, washing, drying, roasting at 500-600 ℃ for 3 hours to form TiO on the inner and outer surfaces of the pores of the porous titanium foil2Nanotube to obtain TiO2Nanotube/porous titanium foil; the electrolyte is 0.5 to 1 percent of HF and 1mol/L of H2SO4The mixed solution of (1); the electrolytic potential of the electrolytic reaction is 20V, and the time of the electrolytic reaction is 30-120 minutes.
Further, in the above preparation method, the step (2) is specifically: adding TiO into the mixture2The nanotube/porous titanium foil is used as a cathode and is placed in electroplating solution for electroplating at room temperature to obtain CoAg-TiO2Nanotube/porous titanium foil; the components of the electroplating solution are as follows: 0.01mol/L AgNO30.01mol/L of CoSO4And 20g/L of H3BO3(ii) a The PH of the electroplating solution is 4.4; the current density of the electroplating is 5mA/cm2The time is 30-90 min.
Further, in the above preparation method, the step (3) is specifically: subjecting the CoAg-TiO to2Putting the nanotube/porous titanium foil into HCl solution, performing ultrasonic dispersion for 30min, adding aniline, o-phenylenediamine, 2-acrylamide-2-methylpropanesulfonic acid and p-acetanilide at 5 ℃, after vigorously stirring for 30min, dropping ammonium persulfate solution under stirring, reacting for 6h, repeatedly washing the product with 0.1mol/L HCl solution until the filtrate is colorless, and performing vacuum drying at 60 ℃ for 8h to obtain polyaniline-poly (2-acrylamide-2-methylpropanesulfonic acid) -coated CoAg-TiO2The nanotube/porous titanium foil is used for direct methanol fuel cell electrodes; wherein aniline and 2-propyleneThe molar ratio of the amide-2-methylpropanesulfonic acid is 2:1, and the aniline and the TiO are2The molar ratio of the nanotubes is 3-1: 1.
Compared with the prior art, in the direct methanol fuel cell electrode provided by the invention, TiO is added2The specific surface area of the nano tube/porous titanium foil is high, and the CoAg alloy deposited on the surface of the nano tube/porous titanium foil can regulate and control and greatly reduce TiO2While being able to extract TiO2The conductivity of the nanotube is improved, the catalytic performance of the nanotube is improved, meanwhile, the surface of the nanotube is coated with the porous spongy polymer polyaniline-poly (2-acrylamide-2-methylpropanesulfonic acid) with high conductivity, which is beneficial to the adsorption of methanol, the electronic conductivity and the catalytic activity of the catalyst can be further improved, and the synergistic effect of the polyaniline-poly (2-acrylamide-2-methylpropanesulfonic acid) and the poly (2-acrylamide-2-methylpropanesulfonic acid) improves the TiO2Catalytic oxidation performance to methanol. Meanwhile, CO and other intermediate products generated by methanol oxidation are easy to adsorb and transfer to CoAg-TiO2The nanotube surface is deeply oxidized into CO as a final product2Can improve the nano TiO2The composite catalyst has CO poisoning resisting capacity, and the cost of CoAg and polymer is far lower than that of Pt, Ru and other noble metals, and the CoAg-TiO coated with polyaniline-poly (2-acrylamide-2-methylpropanesulfonic acid)2The amount of the nano tube/porous titanium foil is small, so that the cost of the catalyst can be greatly reduced, and the catalyst is CoAg-TiO2The nano tube/porous titanium foil coated polyaniline-poly (2-acrylamide-2-methylpropanesulfonic acid) battery electrode is used as a direct methanol fuel battery anode, and the battery performance can be improved.
Detailed Description
The present invention will be further illustrated by the following specific examples, which are carried out on the premise of the technical scheme of the present invention, and it should be understood that these examples are only for illustrating the present invention and are not intended to limit the scope of the present invention.
Example 1: preparation of porous titanium foil
(1) Pretreatment of the titanium foil: ultrasonically removing oil in acetone for 15 minutes, cleaning with methanol or ethanol, treating with 1mol/L HF for 10 minutes, ultrasonically cleaning with secondary distilled water for 3 times, and drying;
(2) forming a porous titanium foil: soaking the cleaned titanium foil in H2O2Heating to 90 ℃ in the medium, continuing heating for 40-60 min until H2O2And (3) taking out the titanium foil after the titanium foil is slightly dark blue, washing the titanium foil for a plurality of times by using distilled water and absolute ethyl alcohol, drying the titanium foil, calcining the titanium foil in a muffle furnace at 300 ℃ for 30min, and taking out the titanium foil to obtain the porous titanium foil with the three-dimensional porous structure.
Example 2
(1) 0.6g of the porous titanium foil prepared in the example 1 is put in an electrolyte for electrolytic reaction; composition of the electrolyte: 0.5% -1% of HF, 1mol/L of H2SO4The electrolytic potential is 20V, and the electrolytic time is 30 minutes; after the electrolysis, washing with deionized water, drying, and roasting in a muffle furnace at the temperature of 500-600 ℃ for 3 hours to form TiO on the inner and outer surfaces of the pores of the porous titanium foil2Nanotube to obtain TiO2Nanotube/porous titanium foil, weight 649.26 mg;
(2) TiO obtained in the step (1)2The nanotube/porous titanium foil is used as a cathode for electroplating, and the composition and the process conditions of the electroplating solution are as follows:
after the electroplating is finished, washing with deionized water and drying to obtain the CoAg-TiO2Nanotube/porous titanium foil, weight 650mg, CoAg alloy content and CoAg-TiO content21.48% of the nanotubes.
(3) Leading the CoAg-TiO obtained in the step (2) to be2Nanotube/porous titanium foil (among others)CoAg-TiO250mg of nano tube) is put into 150mL of 2mol/L HCl solution, ultrasonic dispersion is carried out for 30min, 116mg of aniline, 67.5mg of o-phenylenediamine, 518mg of 2-acrylamide-2-methylpropanesulfonic acid and 42mg of p-acetanilide are added at the temperature of 5 ℃, after vigorous stirring is carried out for 30min, 50mL of 285mg ammonium persulfate solution dissolved by 2mol/L HCl is dripped under stirring to initiate polymerization reaction for 6h, the product is repeatedly washed by 0.1mol/L HCl solution until the filtrate is colorless, vacuum drying is carried out for 8h at the temperature of 60 ℃, and the high-conductivity porous spongy polymer polyaniline-poly (2-acrylamide-2-methylpropanesulfonic acid) -coated CoAg-TiO is prepared2The nanotube/porous titanium foil direct methanol fuel cell electrode.
Example 3
(1) 0.6g of the porous titanium foil prepared in the example 1 is put in an electrolyte for electrolytic reaction; composition of the electrolyte: 0.5% -1% of HF, 1mol/L of H2SO4The electrolytic potential is 20V, and the electrolytic time is 30 minutes; after the electrolysis, washing with deionized water, drying, and roasting in a muffle furnace at the temperature of 500-600 ℃ for 3 hours to form TiO on the inner and outer surfaces of the pores of the porous titanium foil2Nanotube to obtain TiO2Nanotube/porous titanium foil, weight 649.26 mg;
(2) TiO obtained in the step (1)2The nanotube/porous titanium foil is used as a cathode for electroplating, and the composition and the process conditions of the electroplating solution are as follows:
after the electroplating is finished, washing with deionized water and drying to obtain the CoAg-TiO2Nanotube/porous titanium foil with a weight of 650.74mg, the sum of the contents of the CoAg alloys being CoAg-TiO22.91% of the nanotubes.
(3) Leading the CoAg-TiO obtained in the step (2) to be2Nanotube/porous titanium foil (of which CoAg-TiO)250.74mg of nanotube) was put into 150mL of a 2mol/L HCl solution, ultrasonically dispersed for 30min, 118mg of aniline, 68.5mg of o-phenylenediamine, 525.6mg of 2-acrylamido-2-methylpropanesulfonic acid, and 42.6mg of p-acetanilide were added at 5 ℃, vigorously stirred for 30min, and 50mL of a solution of 2mol/L HCl was added dropwise with stirring285mg ammonium persulfate solution to initiate polymerization reaction for 6h, repeatedly washing the product with 0.1mol/L HCl solution until the filtrate is colorless, and drying the product in vacuum at 60 ℃ for 8h to prepare the high-conductivity porous spongy polymer polyaniline-poly (2-acrylamide-2-methylpropanesulfonic acid) -coated CoAg-TiO2The nanotube/porous titanium foil direct methanol fuel cell electrode.
Example 4
(1) 0.6g of the porous titanium foil prepared in the example 1 is put in an electrolyte for electrolytic reaction; composition of the electrolyte: 0.5% -1% of HF, 1mol/L of H2SO4The electrolytic potential is 20V, and the electrolytic time is 60 minutes; after the electrolysis, washing with deionized water, drying, and roasting in a muffle furnace at the temperature of 500-600 ℃ for 3 hours to form TiO on the inner and outer surfaces of the pores of the porous titanium foil2Nanotube to obtain TiO2The weight of the nanotube/porous titanium foil is 690 mg;
(2) TiO obtained in the step (1)2The nanotube/porous titanium foil is used as a cathode for electroplating, and the composition and the process conditions of the electroplating solution are as follows:
after the electroplating is finished, washing with deionized water and drying to obtain the CoAg-TiO2Nanotube/porous titanium foil with a weight of 691.48mg, the sum of the contents of the CoAg alloys being CoAg-TiO21.62% of the nanotubes.
(3) Leading the CoAg-TiO obtained in the step (2) to be2Nanotube/porous titanium foil (of which CoAg-TiO)291.48mg of nanotube) is put into 150mL of 2mol/L HCl solution, ultrasonic dispersion is carried out for 30min, 212.7mg of aniline, 123.5mg of o-phenylenediamine, 946.8mg of 2-acrylamide-2-methylpropanesulfonic acid and 76.8mg of p-acetanilide are added at the temperature of 5 ℃, after vigorous stirring for 30min, 50mL of 285mg ammonium persulfate solution dissolved by 2mol/L HCl is dripped under stirring to initiate polymerization reaction for 6h, the product is repeatedly washed by 0.1mol/L of HCl solution until the filtrate is colorless, vacuum drying is carried out for 8h at the temperature of 60 ℃, and the high-conductivity porous spongy polymer polyaniline-poly (2-acrylamide-2-methylpropanesulfonic acid) -coated CoAg-TiO is prepared2Nanotube and method of manufacturing the samePorous titanium foil direct methanol fuel cell electrodes.
Example 5
(1) 0.6g of the porous titanium foil prepared in the example 1 is put in an electrolyte for electrolytic reaction; composition of the electrolyte: 0.5% -1% of HF, 1mol/L of H2SO4The electrolytic potential is 20V, and the electrolytic time is 90 minutes; after the electrolysis, washing with deionized water, drying, and roasting in a muffle furnace at the temperature of 500-600 ℃ for 3 hours to form TiO on the inner and outer surfaces of the pores of the porous titanium foil2Nanotube to obtain TiO2The weight of the nano tube/porous titanium foil is 740 mg;
(2) TiO obtained in the step (1)2The nanotube/porous titanium foil is used as a cathode for electroplating, and the composition and the process conditions of the electroplating solution are as follows:
after the electroplating is finished, washing with deionized water and drying to obtain the CoAg-TiO2Nanotube/porous titanium foil with a weight of 742.22mg, the sum of the contents of the CoAg alloys being CoAg-TiO21.56% of the nanotubes.
(4) Leading the CoAg-TiO obtained in the step (2) to be2Nanotube/porous titanium foil (of which CoAg-TiO)291.48mg of nanotube) is put into 150mL of 2mol/L HCl solution, ultrasonic dispersion is carried out for 30min, 330.6mg of aniline, 192mg of o-phenylenediamine, 1472mg of 2-acrylamide-2-methylpropanesulfonic acid and 119.5mg of p-acetanilide are added at the temperature of 5 ℃, after vigorous stirring is carried out for 30min, 50mL of 285mg of ammonium persulfate solution dissolved by 2mol/L of HCl is dripped under stirring to initiate polymerization reaction for 6h, the product is repeatedly washed by 0.1mol/L of HCl solution until the filtrate is colorless, vacuum drying is carried out for 8h at the temperature of 60 ℃, and the high-conductivity porous spongy polymer polyaniline-poly (2-acrylamide-2-methylpropanesulfonic acid) coated CoAg-TiO is prepared2The nanotube/porous titanium foil direct methanol fuel cell electrode.
Example 6
(1) 0.6g of the porous titanium foil prepared in the example 1 is put in an electrolyte for electrolytic reaction; composition of the electrolyte: 0.5% -1% of HF, 1mol/L of H2SO4The electrolytic potential is 20V, and the electrolytic time is 60 minutes; after the electrolysis, washing with deionized water, drying, and roasting in a muffle furnace at the temperature of 500-600 ℃ for 3 hours to form TiO on the inner and outer surfaces of the pores of the porous titanium foil2Nanotube to obtain TiO2The weight of the nanotube/porous titanium foil is 690 mg;
(2) TiO obtained in the step (1)2The nanotube/porous titanium foil is used as a cathode for electroplating, and the composition and the process conditions of the electroplating solution are as follows:
after the electroplating is finished, washing with deionized water and drying to obtain the CoAg-TiO2Nanotube/porous titanium foil with a weight of 692.22mg, the sum of the contents of the CoAg alloys being CoAg-TiO22.41% of the nanotubes.
(5) Leading the CoAg-TiO obtained in the step (2) to be2Nanotube/porous titanium foil (of which CoAg-TiO)292.22mg of nanotube) is put into 150mL of 2mol/L HCl solution, ultrasonic dispersion is carried out for 30min, 214.4mg of aniline, 124.5mg of o-phenylenediamine, 954.5mg of 2-acrylamide-2-methylpropanesulfonic acid and 77.5mg of p-acetanilide are added at the temperature of 5 ℃, after vigorous stirring for 30min, 50mL of 285mg ammonium persulfate solution dissolved by 2mol/L of HCl is dripped under stirring to initiate polymerization reaction for 6h, the product is repeatedly washed by 0.1mol/L of HCl solution until the filtrate is colorless, vacuum drying is carried out for 8h at the temperature of 60 ℃, and the high-conductivity porous spongy polymer polyaniline-poly (2-acrylamide-2-methylpropanesulfonic acid) coated CoAg-TiO is prepared2The nanotube/porous titanium foil direct methanol fuel cell electrode.
Comparative example 1: RuNi/TiO for direct methanol fuel cell2Nanotube electrode
RuNi/TiO for direct methanol fuel cell2The preparation method of the nanotube electrode comprises the following steps:
(1) pretreatment of a titanium plate: polishing a titanium plate by using metallographic abrasive paper, ultrasonically removing oil in acetone for 15 minutes, cleaning by using methanol or ethanol, treating by using 1mol/L HF for 10 minutes, ultrasonically cleaning by using secondary distilled water for 3 times, and drying.
(2)TiO2Preparation of nanotubes/Ti: carrying out anodic oxidation on the treated titanium plate in electrolyte, wherein the electrolyte comprises the following components: 0.5% -1% of HF, 1mol/L of H2SO4The electrolytic potential is 20V, and the electrolytic time is 30 minutes; after the electrolysis, washing with deionized water, drying, and roasting in a muffle furnace at 500-600 ℃ for 3 hours to obtain TiO2nanotube/Ti;
(3)RuNi/TiO2preparing a nanotube electrode: the prepared TiO is mixed with2The nanotube/Ti is used as a cathode for electroplating, the volume of the electroplating solution is 50mL, and the electroplating solution comprises the following components:
after the electroplating is finished, washing with deionized water and drying to obtain RuNi/TiO2A nanotube electrode.
RuNi/TiO for direct methanol Fuel cell obtained in comparative example 12Cyclic voltammograms of the nanotube electrode, commercial PtRu/C catalyst and direct methanol fuel cell electrode obtained in example 2 of the invention are shown in FIGS. 1 and 2, and from the cyclic voltammograms, it can be seen that the comparative example RuNi/TiO is comparable to the commercial PtRu/C catalyst2Nanotube electrode and polyaniline-poly (2-acrylamide-2-methylpropanesulfonic acid) coated CoAg-TiO provided in embodiment 2 of the invention2The direct methanol fuel cell electrode of the nanotube/porous titanium foil has low methanol oxidation initial potential and low oxidation peak potential, has only one large oxidation peak for methanol and no intermediate product such as CO oxidation peak, and shows the comparative example RuNi/TiO2Nanotube electrode and polyaniline-poly (2-acrylamide-2-methylpropanesulfonic acid) coated CoAg-TiO provided in embodiment 2 of the invention2The direct methanol fuel cell electrode of the nanotube/porous titanium foil has higher catalytic activity and toxicity resistance than the commercial PtRu/C catalyst. And comparative example RuNi/TiO2Compared with the nanotube electrode, the polyaniline-poly (2-acrylamide-2-methylpropanesulfonic acid) coated CoAg-TiO provided by the embodiment 2 of the invention2The electrode of the direct methanol fuel cell electrode of the nanotube/porous titanium foil is shifted to the left by the oxidation peak potential of methanol, and the peak current is larger, which indicates that the electrode is opposite to the oxidation peak potential of methanolMethanol has higher catalytic performance.
The above description of the embodiments is only intended to facilitate the understanding of the method of the invention and its core idea. It should be noted that, for those skilled in the art, it is possible to make various improvements and modifications to the present invention without departing from the principle of the present invention, and those improvements and modifications also fall within the scope of the claims of the present invention.