CN113354561B - Biguanide derivatives and their use and formulations - Google Patents
Biguanide derivatives and their use and formulations Download PDFInfo
- Publication number
- CN113354561B CN113354561B CN202110414905.3A CN202110414905A CN113354561B CN 113354561 B CN113354561 B CN 113354561B CN 202110414905 A CN202110414905 A CN 202110414905A CN 113354561 B CN113354561 B CN 113354561B
- Authority
- CN
- China
- Prior art keywords
- heptadecadienyl
- acid
- compound
- octadecadienyl
- nonadienyl
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C279/00—Derivatives of guanidine, i.e. compounds containing the group, the singly-bound nitrogen atoms not being part of nitro or nitroso groups
- C07C279/20—Derivatives of guanidine, i.e. compounds containing the group, the singly-bound nitrogen atoms not being part of nitro or nitroso groups containing any of the groups, X being a hetero atom, Y being any atom, e.g. acylguanidines
- C07C279/24—Y being a hetero atom
- C07C279/26—X and Y being nitrogen atoms, i.e. biguanides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K45/00—Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
- A61K45/06—Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/50—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
- A61K9/51—Nanocapsules; Nanoparticles
- A61K9/5107—Excipients; Inactive ingredients
- A61K9/5123—Organic compounds, e.g. fats, sugars
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/50—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
- A61K9/51—Nanocapsules; Nanoparticles
- A61K9/5107—Excipients; Inactive ingredients
- A61K9/513—Organic macromolecular compounds; Dendrimers
- A61K9/5161—Polysaccharides, e.g. alginate, chitosan, cellulose derivatives; Cyclodextrin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/04—Anorexiants; Antiobesity agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/06—Antihyperlipidemics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/08—Drugs for disorders of the metabolism for glucose homeostasis
- A61P3/10—Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/04—Antibacterial agents
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/30—Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Organic Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Diabetes (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Obesity (AREA)
- Hematology (AREA)
- Epidemiology (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Nanotechnology (AREA)
- Biomedical Technology (AREA)
- Emergency Medicine (AREA)
- Oncology (AREA)
- Communicable Diseases (AREA)
- Endocrinology (AREA)
- Child & Adolescent Psychology (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
Abstract
Description
技术领域Technical Field
本发明属于医药领域,涉及双胍衍生物及其应用与制剂,尤其涉及其用于治疗胞内细菌感染、由胞内菌感染引起的疾病以及葡萄糖或脂质代谢疾病。The present invention belongs to the field of medicine, and relates to biguanide derivatives and their application and preparation, and in particular to biguanide derivatives used for treating intracellular bacterial infection, diseases caused by intracellular bacterial infection, and glucose or lipid metabolism diseases.
背景技术Background Art
自噬是细胞特异性识别并降解细菌和病毒等外来病原体的过程,可以保护细胞抵御病原体的侵袭。正常情况下,细胞中包裹病原菌的自噬体能与功能正常的溶酶体融合形成自噬溶酶体,利用溶酶体的多种酶降解病原菌。但在病理情况下,某些细菌进化至可逃避宿主识别,如通过阻断溶酶体成熟而抑制细胞正常自噬从而促进其存活。感染宿主后,主要寄居在细胞内的细菌称为胞内菌,胞内细菌的持续存在被认为可导致慢性感染。在细胞内存活的常见细菌包括结核分枝杆菌(Mycobacterium tuberculosis, M. tuberculosis)、伤寒沙门菌(Salmonella typhi, S. typhi)、李斯特菌(Listeria)、金黄色葡萄球菌(Staphylococcus aureus, S. aureus)及幽门螺杆菌(Helicobacter pylori, H. pylori)等。Autophagy is a process in which cells specifically recognize and degrade foreign pathogens such as bacteria and viruses, which can protect cells from invasion by pathogens. Under normal circumstances, autophagosomes encapsulating pathogens in cells can fuse with functioning lysosomes to form autophagolysosomes, which use a variety of lysosomal enzymes to degrade pathogens. However, under pathological conditions, some bacteria have evolved to evade host recognition, such as inhibiting normal cell autophagy by blocking lysosomal maturation and promoting their survival. After infecting the host, bacteria that mainly reside in cells are called intracellular bacteria, and the continued presence of intracellular bacteria is believed to lead to chronic infection. Common bacteria that survive in cells include Mycobacterium tuberculosis ( M. tuberculosis ), Salmonella typhi ( S. typhi ), Listeria ( Listeria ), Staphylococcus aureus ( S. aureus ) and Helicobacter pylori ( H. pylori ).
H. pylori是一种定植于胃部及十二指肠的革兰氏阴性菌,引起全球超过半数的人群感染,H. pylori具有侵袭性能在宿主细胞内存活。H. pylori通过分泌的空泡毒素(VacA)等毒力因子损害细胞的溶酶体钙离子通道TRPML1的活性,溶酶体内钙水平非正常升高,致使氢离子不能正常交换被摄入,溶酶体酸性因而环境发生改变,功能受损的溶酶体无法正常降解自噬体中的细菌。胞内存活的H. pylori在适宜的条件下可重新出胞而引起新一轮感染,因此针对胞内细菌的治疗可以进一步提高对H. pylori清除率,减少持续性复发性感染的发生。 H. pylori is a Gram-negative bacterium that colonizes the stomach and duodenum, causing infection in more than half of the world's population. H. pylori has invasive properties and can survive in host cells. H. pylori damages the activity of the cell's lysosomal calcium channel TRPML1 by secreting vacuolating toxin (VacA) and other virulence factors. The abnormal increase in calcium levels in the lysosomes causes hydrogen ions to be unable to be exchanged and ingested normally, and the acidic environment of the lysosomes changes. The functionally impaired lysosomes cannot normally degrade bacteria in the autophagosomes. H. pylori that survives in the cell can re-exit the cell under appropriate conditions and cause a new round of infection. Therefore, treatment of intracellular bacteria can further improve the clearance rate of H. pylori and reduce the occurrence of persistent recurrent infections.
最新研究表明,腺苷酸活化蛋白激酶(AMPK)的激动剂二甲双胍可增强溶酶体酸化能力,恢复细胞正常自噬功能,并且在体内和体外都有抑制H. pylori生长的作用。另有多项临床数据发现,二甲双胍可通过拮抗结核分枝杆菌典型胞内感染而辅助结核病的治疗。遗憾的是,二甲双胍的水溶性高及用量大等问题限制其在治疗细菌感染方面的应用。由于目前细菌耐药性问题在全世界范围内形势日益严峻,胞内菌的存在易引起顽固性持续感染,临床上仍需要更高效的治疗细菌感染疾病的药物。 The latest studies have shown that metformin, an agonist of adenylate-activated protein kinase (AMPK), can enhance lysosomal acidification, restore normal cell autophagy, and inhibit the growth of H. pylori both in vitro and in vivo. Several other clinical data have found that metformin can assist in the treatment of tuberculosis by antagonizing typical intracellular infection of Mycobacterium tuberculosis. Unfortunately, metformin's high water solubility and large dosage limit its application in the treatment of bacterial infections. As the problem of bacterial resistance is becoming increasingly severe worldwide, the presence of intracellular bacteria can easily cause stubborn and persistent infections, and more effective drugs for the treatment of bacterial infections are still needed clinically .
发明内容Summary of the invention
本发明的双胍衍生物与二甲双胍相比能够增强对宿主细胞AMPK的激动活性,并且是安全、有效、低毒的抗击胞内细菌药物。同时,本发明的双胍衍生物构建成的纳米粒进一步提高H. pylori清除率,能够治疗与H. pylori相关的持续性反复性感染。Compared with metformin, the biguanide derivatives of the present invention can enhance the agonist activity of host cell AMPK and are safe, effective and low-toxic drugs for fighting intracellular bacteria. At the same time, the nanoparticles constructed from the biguanide derivatives of the present invention further improve the clearance rate of H. pylori and can treat persistent and recurrent infections associated with H. pylori .
本发明在一方面提供式(I)的化合物、其氘代物或其药学上可接受的盐,In one aspect, the present invention provides a compound of formula (I), a deuterated substance thereof or a pharmaceutically acceptable salt thereof,
式(I) Formula (I)
其中,R为被取代的或未被取代的具有10至20个碳原子的饱和或不饱和烷基。Here, R is a substituted or unsubstituted saturated or unsaturated alkyl group having 10 to 20 carbon atoms.
在一些实施方式中,R为被取代的或未被取代的C15-20烷基、被取代的或未被取代的C15-20烯基、或被取代的或未被取代的C15-20炔基。In some embodiments, R is substituted or unsubstituted C 15-20 alkyl, substituted or unsubstituted C 15-20 alkenyl, or substituted or unsubstituted C 15-20 alkynyl.
在一些实施方式中,R选自正癸烷、正十一烷基、正十二烷基、正十三烷基、正十四烷基、正十五烷基、正十六烷基、正十七烷基、正十八烷基、正十九烷基和正二十烷基、正癸烯基、正十一烯基、正十二烯基、正十三烯基、正十四烯基、正十五烯基、正十六烯基、正十七烯基、正十八烯基、正十九烯基、正二十烯基、1,3-十五烷二烯基、2,5-十五烷二烯基、3,6-十五烷二烯基、4,7-十五烷二烯基、5,8-十五烷二烯基、6,9-十五烷二烯基、7,10-十五烷二烯基、8,11-十五烷二烯基、1,3-十六烷二烯基、2,5-十六烷二烯基、3,6-十六烷二烯基、4,7-十六烷二烯基、5,8-十六烷二烯基、6,9-十六烷二烯基、7,10-十六烷二烯基、8,11-十六烷二烯基、1,3-十七烷二烯基、2,5-十七烷二烯基、3,6-十七烷二烯基、4,7-十七烷二烯基、5,8-十七烷二烯基、6,9-十七烷二烯基、7,10-十七烷二烯基、8,11-十七烷二烯基、9,12-十七烷二烯基;1,3-十八烷二烯基、2,5-十八烷二烯基、3,6-十八烷二烯基、4,7-十八烷二烯基、5,8-十八烷二烯基、6,9-十八烷二烯基、7,10-十八烷二烯基、8,11-十八烷二烯基、9,12-十八烷二烯基;1,3-十九烷二烯基、2,5-十九烷二烯基、3,6-十九烷二烯基、4,7-十九烷二烯基、5,8-十九烷二烯基、6,9-十九烷二烯基、7,10-十九烷二烯基、8,11-十九烷二烯基、9,12-十九烷二烯基、10,13-十九烷二烯基、1,3-二十烷二烯基、2,5-二十烷二烯基、3,6-二十烷二烯基、4,7-二十烷二烯基、5,8-二十烷二烯基、6,9-二十烷二烯基、7,10-二十烷二烯基、8,11-二十烷二烯基、9,12-二十烷二烯基、10,13-二十烷二烯基、1,4,7-十七烷三烯基、2,5,8-十七烷三烯基、3,6,9-十七烷三烯基、4,7,10-十七烷三烯基和5,8,11-十七烷三烯基、正癸炔基、正十一炔基、正十二炔基、正十三炔基、正十四炔基、正十五炔基、正十六炔基、正十七炔基、正十八炔基、正十九炔基和正二十炔基。In some embodiments, R is selected from the group consisting of n-decane, n-undecyl, n-dodecyl, n-tridecyl, n-tetradecyl, n-pentadecyl, n-hexadecyl, n-heptadecyl, n-octadecyl, n-nonadecyl, and n-eicosyl, n-decenyl, n-undecenyl, n-dodecenyl, n-tridecenyl, n-tetradecenyl, n-pentadecyl, n-hexadecenyl, n-heptadecenyl, n-octadecenyl, n-nonadecyl, and n-eicosyl, n-decenyl, n-undecenyl, n-dodecenyl, n-tridecenyl, n-tetradecenyl, n-pentadecyl, n-hexadecenyl, n-heptadecenyl, n-octadecenyl, n-nonadecyl, n-eicosyl, 1,3-pentadecadienyl, 2,5-pentadecadienyl, 3,6-pentadecadienyl, 4,7-pentadecadienyl, 5,8-pentadecadienyl, 6,9-pentadecadienyl, 7,10-pentadecadienyl, 8, 11-pentadecadienyl, 1,3-hexadecadienyl, 2,5-hexadecadienyl, 3,6-hexadecadienyl, 4,7-hexadecadienyl, 5,8-hexadecadienyl, 6,9-hexadecadienyl, 7,10-hexadecadienyl, 8,11-hexadecadienyl, 1,3-heptadecadienyl, 2,5-heptadecadienyl, 3,6-heptadecadienyl, 4,7-heptadecadienyl, 5,8-heptadecadienyl, 6,9-heptadecadienyl, 7,10-heptadecadienyl, 8,11-heptadecadienyl, 9,12-heptadecadienyl; 1,3-octadecadienyl, 2,5-octadecadienyl, 1,3-nonadecadienyl, 2,5-nonadecadienyl, 3,6-nonadecadienyl, 4,7-nonadecadienyl, 5,8-nonadecadienyl, 6,9-nonadecadienyl, 7,10-nonadecadienyl, 8,11-nonadecadienyl, 9,12-nonadecadienyl, 1,3-nonadecadienyl, 2,5-nonadecadienyl, 3,6-nonadecadienyl, 4,7-nonadecadienyl, 5,8-nonadecadienyl, 6,9-nonadecadienyl, 7,10-nonadecadienyl, 8,11-nonadecadienyl, 9,12-nonadecadienyl, 10,13-nonadecadienyl, 1,3-eicosadienyl, 2,5-eicosadienyl, 3,6 -eicosadienyl, 4,7-eicosadienyl, 5,8-eicosadienyl, 6,9-eicosadienyl, 7,10-eicosadienyl, 8,11-eicosadienyl, 9,12-eicosadienyl, 10,13-eicosadienyl, 1,4,7-heptadecatrienyl, 2,5,8-heptadecatrienyl, 3,6,9-heptadecatrienyl, 4,7,10-heptadecatrienyl and 5,8,11-heptadecatrienyl, n-decynyl, n-undecynyl, n-dodecynyl, n-tridecynyl, n-tetradecynyl, n-pentadecaynyl, n-hexadecynyl, n-heptadecatrienyl, n-octadecynyl, n-nonadecatrienyl and n-eicosadienyl.
在一些实施方式中,所述化合物为:In some embodiments, the compound is:
式(II)或 Formula (II) or
式(III)。 Formula (III).
本发明再一方面提供一种药物组合物,其包含任意上述的化合物、其氘代物或其药学上可接受的盐。在一些实施方式中,该药物组合物还包括脲酶抑制剂、抗生素、质子泵抑制剂、铋剂中的一种或多种。In another aspect, the present invention provides a pharmaceutical composition comprising any of the above compounds, deuterated substances or pharmaceutically acceptable salts thereof. In some embodiments, the pharmaceutical composition further comprises one or more of a urease inhibitor, an antibiotic, a proton pump inhibitor or a bismuth agent.
本发明再一方面提供任意上述所述的化合物、其氘代物或其药学上可接受的盐在制备治疗胞内菌感染、由胞内菌感染引起的疾病或葡萄糖或脂质代谢疾病的药物中的应用。在一些实施方式中,其中所述胞内菌选自结核分枝杆菌、伤寒沙门菌、李斯特菌、金黄色葡萄球菌和幽门螺杆菌。在一些实施方式中,所述胞内菌优选为幽门螺杆菌。在一些实施方式中,所述由胞内菌感染引起的疾病选自消化性溃疡、胃炎、消化性食管炎、无食管炎的症状性胃食管反流疾病、非溃疡性消化不良、胃酸过多性消化不良、上消化道出血、胃癌和胃MALT淋巴瘤。在一些实施方式中,所述葡萄糖或脂质代谢疾病为肥胖症、异常脂血症、高血糖症、I型糖尿病或II型糖尿病及糖尿病并发症中的一种或多种。In another aspect, the present invention provides the use of any of the above-mentioned compounds, their deuterated substances or pharmaceutically acceptable salts thereof in the preparation of drugs for treating intracellular bacterial infection, diseases caused by intracellular bacterial infection or glucose or lipid metabolism diseases. In some embodiments, the intracellular bacteria are selected from Mycobacterium tuberculosis, Salmonella typhi, Listeria, Staphylococcus aureus and Helicobacter pylori. In some embodiments, the intracellular bacteria are preferably Helicobacter pylori. In some embodiments, the disease caused by intracellular bacterial infection is selected from peptic ulcer, gastritis, peptic esophagitis, symptomatic gastroesophageal reflux disease without esophagitis, non-ulcer dyspepsia, hyperacid dyspepsia, upper gastrointestinal bleeding, gastric cancer and gastric MALT lymphoma. In some embodiments, the glucose or lipid metabolism disease is one or more of obesity, dyslipidemia, hyperglycemia, type I diabetes or type II diabetes and diabetic complications.
本发明再一方面提供一种自组装纳米粒,其包括:(a)任意上述所述的化合物、其氘代物或其药学上可接受的盐:(b)C10-20脂肪酸,其中所述C10-20脂肪酸与所述化合物、其氘代物或其药学上可接受的盐构成所述自组装纳米粒的载体结构;以及,(c)脲酶抑制剂或抗生素,所述脲酶抑制剂或抗生素被包载嵌入所述自组装纳米粒中。在一些实施方式中,所述C10-20脂肪酸选自癸酸、9-癸烯酸、十一酸、10-十一烯酸、月桂酸、肉豆蔻酸、棕榈酸、硬脂酸、油酸、亚油酸、亚麻酸或其组合。在一些实施方式中,所述C10-20脂肪酸优选为油酸、亚油酸、亚麻酸。在一些实施方式中,所述C10-20脂肪酸优选为亚油酸。在一些实施方式中,所述脲酶抑制剂为依布硒或乙酰氧肟酸。在一些实施方式中,所述脲酶抑制剂优选为依布硒。在一些实施方式中,所述抗生素选自阿莫西林、克拉霉素、甲硝唑、四环素、左氧氟沙星、呋喃唑酮或其组合。In another aspect, the present invention provides a self-assembled nanoparticle, which comprises: (a) any of the above-mentioned compounds, deuterated substances thereof or pharmaceutically acceptable salts thereof; (b) C 10-20 fatty acids, wherein the C 10-20 fatty acids and the compounds, deuterated substances thereof or pharmaceutically acceptable salts thereof constitute the carrier structure of the self-assembled nanoparticles; and (c) urease inhibitors or antibiotics, wherein the urease inhibitors or antibiotics are encapsulated and embedded in the self-assembled nanoparticles. In some embodiments, the C 10-20 fatty acids are selected from decanoic acid, 9-decenoic acid, undecanoic acid, 10-undecenoic acid, lauric acid, myristic acid, palmitic acid, stearic acid, oleic acid, linoleic acid, linolenic acid or a combination thereof. In some embodiments, the C 10-20 fatty acids are preferably oleic acid, linoleic acid, linolenic acid. In some embodiments, the C 10-20 fatty acids are preferably linoleic acid. In some embodiments, the urease inhibitor is ebselen or acetohydroxamic acid. In some embodiments, the urease inhibitor is preferably ebselen. In some embodiments, the antibiotic is selected from amoxicillin, clarithromycin, metronidazole, tetracycline, levofloxacin, furazolidone, or a combination thereof.
在一些实施方式中,所述自组装纳米粒还包含:(d)多糖,其包覆于所述自组装纳米粒外部。在一些实施方式中,所述多糖选自岩藻多糖、甘露聚糖、右旋糖酐、甘露醇。在一些实施方式中,所述多糖优选为岩藻多糖(FU)。在一些实施方式中,所述自组装纳米粒包含:亚油酸,其与双胍衍生物MU或ML构成所述自组装纳米粒的载体结构;依布硒,其被包载嵌入所述自组装纳米粒中。在一些实施方式中,所述自组装纳米粒包含:亚油酸,其与双胍衍生物MU或ML构成所述自组装纳米粒的载体结构;和依布硒,其被包载嵌入所述自组装纳米粒;以及FU,其包覆于所述自组装纳米粒的外部。在一些实施方式中,所述自组装纳米粒的粒径为100~180 nm。在一些实施方式中,所述粒径优选为125 nm或150 nm。在一些实施方式中,所述自组装纳米粒的包封率大于75%。在一些实施方式中,所述自组装纳米的包封率优选为大于80%。在一些实施方式中,所述自组装纳米的载药量大于55%。In some embodiments, the self-assembled nanoparticles further comprise: (d) a polysaccharide, which is coated on the outside of the self-assembled nanoparticles. In some embodiments, the polysaccharide is selected from fucoidan, mannan, dextran, and mannitol. In some embodiments, the polysaccharide is preferably fucoidan (FU). In some embodiments, the self-assembled nanoparticles comprise: linoleic acid, which constitutes the carrier structure of the self-assembled nanoparticles with the biguanide derivatives MU or ML; ebselen, which is encapsulated and embedded in the self-assembled nanoparticles. In some embodiments, the self-assembled nanoparticles comprise: linoleic acid, which constitutes the carrier structure of the self-assembled nanoparticles with the biguanide derivatives MU or ML; and ebselen, which is encapsulated and embedded in the self-assembled nanoparticles; and FU, which is coated on the outside of the self-assembled nanoparticles. In some embodiments, the particle size of the self-assembled nanoparticles is 100-180 nm. In some embodiments, the particle size is preferably 125 nm or 150 nm. In some embodiments, the encapsulation rate of the self-assembled nanoparticles is greater than 75%. In some embodiments, the encapsulation efficiency of the self-assembled nanoparticles is preferably greater than 80%. In some embodiments, the drug loading of the self-assembled nanoparticles is greater than 55%.
本发明的纳米粒通过宿主细胞的内吞作用而被摄取,进而干扰胞内H. pylori的细胞膜通透性而使细菌破裂,并且抑制H. pylori内部脲酶活性而发挥抗H. pylori作用,与此同时,进入胞内的双胍衍生物能够恢复细胞自噬溶酶体降解作用,联合纳米粒的优势增强胞内H. pylori清除效果,从而达到根除H. pylori的目的。The nanoparticles of the present invention are taken up by the endocytosis of the host cells, thereby interfering with the cell membrane permeability of intracellular H. pylori to rupture the bacteria, and inhibiting the internal urease activity of H. pylori to exert an anti- H. pylori effect. At the same time, the biguanide derivatives that enter the cells can restore the cell's autophagic lysosomal degradation effect, and the advantages of the combined nanoparticles enhance the intracellular H. pylori clearance effect, thereby achieving the purpose of eradicating H. pylori .
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1:a. 双胍衍生物ML的中间体1a的核磁共振氢谱图;b. 双胍衍生物ML的中间体1a的质谱图。Figure 1: a. H NMR spectrum of intermediate 1a of biguanide derivative ML; b. Mass spectrum of intermediate 1a of biguanide derivative ML.
图2:a. 双胍衍生物ML的中间体1b的核磁共振氢谱图;b. 双胍衍生物ML的中间体1b的质谱图。Figure 2: a. H NMR spectrum of the intermediate 1b of the biguanide derivative ML; b. Mass spectrum of the intermediate 1b of the biguanide derivative ML.
图3:a. 双胍衍生物ML的核磁共振氢谱图;b. 双胍衍生物ML的质谱图。Figure 3: a. H NMR spectrum of the biguanide derivative ML; b. Mass spectrum of the biguanide derivative ML.
图4:a. 双胍衍生物MU的中间体3a的核磁共振氢谱图;b. 双胍衍生物MU的中间体3a的质谱图。Figure 4: a. H NMR spectrum of the intermediate 3a of the biguanide derivative MU; b. Mass spectrum of the intermediate 3a of the biguanide derivative MU.
图5:a. 双胍衍生物MU的中间体3b的核磁共振氢谱图;b. 双胍衍生物MU的中间体3b的质谱图。Figure 5: a. H NMR spectrum of the intermediate 3b of the biguanide derivative MU; b. Mass spectrum of the intermediate 3b of the biguanide derivative MU.
图6:a.双胍衍生物MU的核磁共振氢谱图;b. 双胍衍生物MU的质谱图。Figure 6: a. H NMR spectrum of the biguanide derivative MU; b. Mass spectrum of the biguanide derivative MU.
图7:二甲双胍(MET)及双胍衍生物(ML和MU)对GES-1人胃上皮细胞中的腺苷酸活化蛋白激酶(AMPK)的活性水平的影响。加入MET、ML、MU处理GES-1细胞后,按照人磷酸化腺苷酸活化蛋白激酶酶联免疫吸附试剂盒步骤测定并比较。与对照组相比,*表示P<0.05,***表示P<0.001;与MET相比,###表示P<0.001;与MU相比,··表示P<0.01。Figure 7: Effects of metformin (MET) and biguanide derivatives (ML and MU) on the activity level of adenylate-activated protein kinase (AMPK) in GES-1 human gastric epithelial cells. After adding MET, ML, and MU to treat GES-1 cells, the activity was determined and compared according to the steps of the human phosphorylated adenylate-activated protein kinase ELISA kit. Compared with the control group, * indicates P <0.05, *** indicates P <0.001; compared with MET, ### indicates P <0.001; compared with MU, ·· indicates P <0.01.
图8:二甲双胍(MET)及双胍衍生物(ML和MU)对RAW 264.7巨噬细胞细胞内H. pylori的清除效果的评价。在构建的胞内细菌模型中,加入MET、ML和MU处理GES-1细胞后,采用涂布平板法进行测定比较。与对照组相比,*表示P<0.05;***表示P<0.001;与MET相比,#表示P<0.05,###表示P<0.001;与MU相比,··表示P<0.01。Figure 8: Evaluation of the clearance effect of metformin (MET) and biguanide derivatives (ML and MU) on H. pylori in RAW 264.7 macrophages. In the constructed intracellular bacteria model, GES-1 cells were treated with MET, ML and MU, and then the results were compared by the spread plate method. Compared with the control group, * indicates P <0.05; *** indicates P <0.001; compared with MET, # indicates P < 0.05, ### indicates P <0.001; compared with MU, ·· indicates P < 0.01.
图9:a. 双胍衍生物纳米粒和C6在RAW 264.7巨噬细胞摄取的平均荧光强度。加入游离香豆素-6(C6)、C6标记的纳米粒(ML-LA/C6 NPs和Fu/ML-LA/C6 NPs)与细胞共同孵育4h后,收集1×104个细胞,通过流式细胞仪测量C6的荧光强度并比较。b. 双胍衍生物纳米粒和C6在GES-1人胃上皮细胞摄取的平均荧光强度。加入C6、C6标记的纳米粒(ML-LA/C6 NPs和 Fu/ML-LA/C6 NPs)与细胞共同孵育4h后,收集1×104个细胞,通过流式细胞仪测量C6的荧光强度并比较。与对照组相比,***表示P < 0.001;与C6相比,##表示P<0.01,###表示P<0.001;与ML-LA/C6相比,·表示P<0.05,··表示P<0.01,···表示P<0.001。Figure 9: a. Average fluorescence intensity of biguanide derivative nanoparticles and C6 uptake in RAW 264.7 macrophages. After adding free coumarin-6 (C6) and C6-labeled nanoparticles (ML-LA/C6 NPs and Fu/ML-LA/C6 NPs) and incubating the cells for 4 hours, 1×10 4 cells were collected, and the fluorescence intensity of C6 was measured by flow cytometry and compared. b. Average fluorescence intensity of biguanide derivative nanoparticles and C6 uptake in GES-1 human gastric epithelial cells. After adding C6 and C6-labeled nanoparticles (ML-LA/C6 NPs and Fu/ML-LA/C6 NPs) and incubating the cells for 4 hours, 1×10 4 cells were collected, and the fluorescence intensity of C6 was measured by flow cytometry and compared. Compared with the control group, *** indicates P <0.001; compared with C6, ## indicates P < 0.01, ### indicates P <0.001; compared with ML-LA/C6, · indicates P < 0.05, ·· indicates P < 0.01, and ··· indicates P < 0.001.
图10:a. 双胍衍生物纳米粒对RAW 264.7巨噬细胞内H. pylori的清除效果的评价。在构建的胞内细菌模型中,加入药物处理RAW 264.7细胞后,采用涂布平板法进行测定比较。b. 双胍衍生物纳米粒对GES-1人胃上皮细胞内H. pylori的清除效果的评价。在构建的胞内细菌模型中,加入MET及ML处理GES-1细胞后,采用涂布平板法进行测定比较。与对照组相比,**表示P<0.01,***表示P<0.001;与MET相比,#表示P<0.05,##表示P<0.01,###表示P<0.001;与ML相比,··表示P<0.01,···表示P<0.001;与ML+LA+EB相比,◆表示P<0.05,◆◆表示P<0.01;与ML-LA/EB相比,&表示P<0.05。Figure 10: a. Evaluation of the clearance effect of biguanide derivative nanoparticles on H. pylori in RAW 264.7 macrophages. In the constructed intracellular bacterial model, RAW 264.7 cells were treated with drugs, and then the results were compared using the plate spreading method. b. Evaluation of the clearance effect of biguanide derivative nanoparticles on H. pylori in GES-1 human gastric epithelial cells. In the constructed intracellular bacterial model, GES-1 cells were treated with MET and ML, and then the results were compared using the plate spreading method. Compared with the control group, ** indicates P < 0.01, *** indicates P <0.001; compared with MET, # indicates P < 0.05, ## indicates P < 0.01, ### indicates P <0.001; compared with ML, ·· indicates P < 0.01, ··· indicates P <0.001; compared with ML+LA+EB, ◆ indicates P < 0.05, ◆◆ indicates P <0.01; compared with ML-LA/EB, & indicates P < 0.05.
图11. 双胍衍生物纳米粒对RAW 264.7巨噬细胞内H. pylori的清除效果的评价。在构建的胞内细菌模型中,加入药物处理RAW 264.7细胞后,通过激光共聚焦观察结果。蓝色荧光标记细胞核,绿色荧光标记H. pylori,红色荧光标记溶酶体,叠加图为以上三个图像的叠加结果。Figure 11. Evaluation of the effect of biguanide derivative nanoparticles on the clearance of H. pylori in RAW 264.7 macrophages. In the constructed intracellular bacterial model, RAW 264.7 cells were treated with drugs and the results were observed by laser confocal microscopy. Blue fluorescence marks the nucleus, green fluorescence marks H. pylori , and red fluorescence marks lysosomes. The overlay image is the overlay result of the above three images.
图12. 双胍衍生物纳米粒对GES-1人胃上皮细胞内H. pylori清除效果的评价。在构建的胞内细菌模型中,加入药物处理GES-1细胞后,通过激光共聚焦观察结果。蓝色荧光标记细胞核,绿色荧光标记H. pylori,红色荧光标记溶酶体,叠加图为以上三个图像的叠加结果。Figure 12. Evaluation of the effect of biguanide derivative nanoparticles on the clearance of H. pylori in GES-1 human gastric epithelial cells. In the constructed intracellular bacterial model, GES-1 cells were treated with drugs and the results were observed by laser confocal microscopy. Blue fluorescence marks the cell nucleus, green fluorescence marks H. pylori , and red fluorescence marks lysosomes. The overlay image is the overlay result of the above three images.
具体实施方式DETAILED DESCRIPTION
术语“烷基”是指具有指定的碳原子数目的直链或支链烃基。例如,C10-20烷基是指具有10、11、12、13、14、15、16、17、18、19或20个碳原子的直链或支链烃基,包括但不限于C10烷基、C11-12烷基、C13-14烷基、C15-20烷基、C17烷基、C16-18烷基和C19-20烷基。饱和烷基的例子包含正癸烷、正十一烷基、正十二烷基、正十三烷基、正十四烷基、正十五烷基、正十六烷基、正十七烷基、正十八烷基、正十九烷基和正二十烷基。在一些实施方式中,所述烷基可以被卤素、羟基、巯基、或杂原子取代。“卤素”是指氟、氯、溴、或碘。杂原子旨在包括氧、氮、硫。不饱和烷基的例子包括烯基、炔基或其组合。The term "alkyl" refers to a straight or branched hydrocarbon group with a specified number of carbon atoms. For example, a C10-20 alkyl group refers to a straight or branched hydrocarbon group with 10, 11, 12, 13, 14, 15 , 16 , 17, 18 , 19 or 20 carbon atoms, including but not limited to C10 alkyl, C11-12 alkyl, C13-14 alkyl, C15-20 alkyl, C17 alkyl, C16-18 alkyl and C19-20 alkyl. Examples of saturated alkyl groups include n-decane, n-undecyl, n-dodecyl, n-tridecyl, n-tetradecyl, n-pentadecyl, n-hexadecyl, n-heptadecyl, n-octadecyl, n-nonadecyl and n-eicosyl. In some embodiments, the alkyl group may be substituted with halogen, hydroxyl, sulfhydryl or heteroatom. "Halogen" refers to fluorine, chlorine, bromine or iodine. Heteroatoms are intended to include oxygen, nitrogen, sulfur. Examples of unsaturated alkyl groups include alkenyl, alkynyl or a combination thereof.
术语“烯基”指具有前缀所示碳原子数目并且含有至少一个双键的直链烃基基团或支链烃基基团。例如,(C2-C6)烯基旨在包含乙烯基、丙烯基等。C10-20烯基是指10、11、12、13、14、15、16、17、18、19或20个碳原子的直链或支链烯基,并且包括但不限于C10烯基、C11-12烯基、C13-14烯基、C15-20烯基、C17烯基、C16-18烯基和C19-20烯基。烯基基团的例子包含正癸烯基、正十一烯基、正十二烯基、正十三烯基、正十四烯基和C15-20链烯基。C15-20链烯基包含1、2或3个双键的直链烃基或支链烃基。C15-20链烯基包含正十五烯基、正十六烯基、正十七烯基、正十八烯基、正十九烯基和正二十烯基、1,3-十五烷二烯基、2,5-十五烷二烯基、3,6-十五烷二烯基、4,7-十五烷二烯基、5,8-十五烷二烯基、6,9-十五烷二烯基、7,10-十五烷二烯基、8,11-十五烷二烯基、1,3-十六烷二烯基、2,5-十六烷二烯基、3,6-十六烷二烯基、4,7-十六烷二烯基、5,8-十六烷二烯基、6,9-十六烷二烯基、7,10-十六烷二烯基、8,11-十六烷二烯基、1,3-十七烷二烯基、2,5-十七烷二烯基、3,6-十七烷二烯基、4,7-十七烷二烯基、5,8-十七烷二烯基、6,9-十七烷二烯基、7,10-十七烷二烯基、8,11-十七烷二烯基、9,12-十七烷二烯基;1,3-十八烷二烯基、2,5-十八烷二烯基、3,6-十八烷二烯基、4,7-十八烷二烯基、5,8-十八烷二烯基、6,9-十八烷二烯基、7,10-十八烷二烯基、8,11-十八烷二烯基、9,12-十八烷二烯基;1,3-十九烷二烯基、2,5-十九烷二烯基、3,6-十九烷二烯基、4,7-十九烷二烯基、5,8-十九烷二烯基、6,9-十九烷二烯基、7,10-十九烷二烯基、8,11-十九烷二烯基、9,12-十九烷二烯基、10,13-十九烷二烯基、1,3-二十烷二烯基、2,5-二十烷二烯基、3,6-二十烷二烯基、4,7-二十烷二烯基、5,8-二十烷二烯基、6,9-二十烷二烯基、7,10-二十烷二烯基、8,11-二十烷二烯基、9,12-二十烷二烯基、10,13-二十烷二烯基、1,4,7-十七烷三烯基、2,5,8-十七烷三烯基、3,6,9-十七烷三烯基、4,7,10-十七烷三烯基、5,8,11-十七烷三烯基。在一些实施方式中,所述烯基可以被卤素、羟基、巯基、或杂原子取代。“卤素”是指氟、氯、溴、或碘。杂原子旨在包括氧、氮、硫。The term "alkenyl" refers to a straight or branched chain hydrocarbon group having the number of carbon atoms indicated by the prefix and containing at least one double bond. For example, (C 2 -C 6 )alkenyl is intended to include vinyl, propenyl, etc. C 10-20 alkenyl refers to a straight or branched chain alkenyl of 10, 11, 12, 13, 14, 15 , 16, 17, 18, 19 or 20 carbon atoms, and includes but is not limited to C 10 alkenyl, C 11-12 alkenyl, C 13-14 alkenyl, C 15-20 alkenyl, C 17 alkenyl, C 16-18 alkenyl and C 19-20 alkenyl. Examples of alkenyl groups include n-decenyl, n-undecenyl, n-dodecenyl, n-tridecenyl, n-tetradecenyl and C 15-20 alkenyl. C 15-20 alkenyl contains a straight or branched chain hydrocarbon group of 1, 2 or 3 double bonds. C 15-20 alkenyl includes n-pentadecenyl, n-hexadecene, n-heptadecenyl, n-octadecene, n-nonadecenyl and n-eicosenyl, 1,3-pentadecanadienyl, 2,5-pentadecanadienyl, 3,6-pentadecanadienyl, 4,7-pentadecanadienyl, 5,8-pentadecanadienyl, 6,9-pentadecanadienyl, 7,10-pentadecanadienyl, 8,11-pentadecanadienyl, 1,3-hexadecene, 2,5-hexadecene, 3,6-hexadecene, 4,7-hexadecene, 5,8-pentadecanadienyl, 6,9-pentadecanadienyl, 7,10-pentadecanadienyl, 8,11-pentadecanadienyl, ,8-hexadecadienyl, 6,9-hexadecadienyl, 7,10-hexadecadienyl, 8,11-hexadecadienyl, 1,3-heptadecadienyl, 2,5-heptadecadienyl, 3,6-heptadecadienyl, 4,7-heptadecadienyl, 5,8-heptadecadienyl, 6,9-heptadecadienyl, 7,10-heptadecadienyl, 8,11-heptadecadienyl, 9,12-heptadecadienyl; 1,3-octadecadienyl, 2,5-octadecadienyl, 3,6-octadecadienyl, 4,7-heptadecadienyl, 5,8-heptadecadienyl, 6,9-heptadecadienyl, 7,10-heptadecadienyl, 8,11-heptadecadienyl, 9,12-heptadecadienyl; 7-octadecadienyl, 5,8-octadecadienyl, 6,9-octadecadienyl, 7,10-octadecadienyl, 8,11-octadecadienyl, 9,12-octadecadienyl; 1,3-nonadecadienyl, 2,5-nonadecadienyl, 3,6-nonadecadienyl, 4,7-nonadecadienyl, 5,8-nonadecadienyl, 6,9-nonadecadienyl, 7,10-nonadecadienyl, 8,11-nonadecadienyl, 9,12-nonadecadienyl, 10,13-nonadecadienyl, 1,3-eicosadienyl, 2,5-eicosadienyl, 3,6-eicosadienyl, 4,7-eicosadienyl, 5,8-eicosadienyl, 6,9-eicosadienyl, 7,10-eicosadienyl, 8,11-eicosadienyl, 9,12-eicosadienyl, 10,13-eicosadienyl, 1,4,7-heptadecatrienyl, 2,5,8-heptadecatrienyl, 3,6,9-heptadecatrienyl, 4,7,10-heptadecatrienyl, 5,8,11-heptadecatrienyl. In some embodiments, the alkenyl group may be substituted with halogen, hydroxyl, sulfhydryl, or heteroatoms. "Halogen" refers to fluorine, chlorine, bromine, or iodine. Heteroatoms are intended to include oxygen, nitrogen, and sulfur.
相似地,术语“炔基”指含有至少一个三键并且具有前缀所示碳原子数目的直链烃基基团或支链烃基基团。炔基的例子包含乙炔基、1-和3-丙炔基、3-丁炔基、以及更高阶的同系物和同分异构体。C10-20炔基是指10、11、12、13、14、15、16、17、18、19或20个碳原子的直链或支链炔基,并且包括但不限于C10炔基、C11-12炔基、C13-14炔基、C15-20炔基、C17炔基、和C16-18炔基和C19-20炔基。炔基基团的例子包含正癸炔基、正十一炔基、正十二炔基、正十三炔基、正十四炔基、正十五炔基、正十六炔基、正十七炔基、正十八炔基、正十九炔基和正二十炔基。在一些实施方式中,所述炔基可以被卤素、羟基、巯基、或杂原子取代。“卤素”是指氟、氯、溴、或碘。杂原子旨在包括氧、氮、硫。Similarly, the term "alkynyl" refers to a straight or branched chain hydrocarbon group containing at least one triple bond and having the number of carbon atoms shown in the prefix. Examples of alkynyl include ethynyl, 1- and 3-propynyl, 3-butynyl, and higher order homologues and isomers. C10-20 alkynyl refers to a straight or branched chain alkynyl of 10, 11, 12, 13, 14, 15, 16, 17 , 18, 19 or 20 carbon atoms, and includes but is not limited to C10 alkynyl, C11-12 alkynyl, C13-14 alkynyl, C15-20 alkynyl, C17 alkynyl, and C16-18 alkynyl and C19-20 alkynyl. Examples of alkynyl groups include n-decynyl, n-undecynyl, n-dodecynyl, n-tridecynyl, n-tetradecynyl, n-pentadecinyl, n-hexadecynyl, n-heptadecynyl, n-octadecynyl, n-nonadecinyl, and n-eicosynyl. In some embodiments, the alkynyl may be substituted with halogen, hydroxyl, sulfhydryl, or heteroatoms. "Halogen" refers to fluorine, chlorine, bromine, or iodine. Heteroatoms are intended to include oxygen, nitrogen, sulfur.
本发明的一些化合物可以以非溶剂化形式以及溶剂化形式(包含水合形式)存在。“水合物”是指由水分子和溶质的分子或离子结合形成的复合物。“溶剂化物”是指有溶剂分子和溶质的分子或离子组合结合的复合物。溶剂可以是有机化合物、无机化合物或其混合物。溶剂化物旨在包含水合物。溶剂的一些例子包含但不限于甲醇(MT)、N,N-二甲基甲酰胺(DMF)、四氢呋喃(THF)、二氯甲烷(DCM)、三氟乙酸(TFA)、二氧杂环乙烷(Diox)、二甲亚砜(DMSO)以及水。通常,溶剂化形式等效于非溶剂化形式并且被包含在本发明的范围内。本发明的一些化合物可以以多个结晶的或无定形形式存在。通常,对于本发明预期的应用来说,所有物理形式都是等效的,并且它们旨在被包含在本发明的范围内。Some compounds of the present invention may exist in non-solvated forms as well as solvated forms (including hydrated forms). "Hydrate" refers to a complex formed by the combination of water molecules and molecules or ions of a solute. "Solvate" refers to a complex in which a combination of solvent molecules and molecules or ions of a solute is combined. The solvent may be an organic compound, an inorganic compound, or a mixture thereof. Solvates are intended to include hydrates. Some examples of solvents include, but are not limited to, methanol (MT), N,N-dimethylformamide (DMF), tetrahydrofuran (THF), dichloromethane (DCM), trifluoroacetic acid (TFA), dioxane (Diox), dimethyl sulfoxide (DMSO), and water. Generally, solvated forms are equivalent to non-solvated forms and are included within the scope of the present invention. Some compounds of the present invention may exist in multiple crystalline or amorphous forms. Generally, all physical forms are equivalent for the intended applications of the present invention, and they are intended to be included within the scope of the present invention.
制剂和给药Preparation and administration
本发明提供包括药学上可接受的载体或赋形剂以及本文所述的化合物或其药学上可接受的盐或溶剂化物的药物组合物。在示例性的实施方式中,本发明提供包括本文所述的化合物的药物制剂。在一个实施方式中,所述药物制剂或组合物包含式(I)化合物:The present invention provides a pharmaceutical composition comprising a pharmaceutically acceptable carrier or excipient and a compound described herein or a pharmaceutically acceptable salt or solvate thereof. In an exemplary embodiment, the present invention provides a pharmaceutical formulation comprising a compound described herein. In one embodiment, the pharmaceutical formulation or composition comprises a compound of formula (I):
式(I) Formula (I)
其中,R基团如以上所定义。wherein the R group is as defined above.
本发明还预期包括使用该化合物的药学上可接受的氘代化合物或其他非放射性取代化合物。氘代是将药物活性分子基团中的一个或多个或全部氢替换成同位素氘,因其无毒无放射性,又比碳氢键稳定约6~9倍,可以封闭代谢位点而延长药物的半衰期,从而降低治疗剂量,同时又不影响药物的药理活性,而被认为是一种优良的修饰方法。The present invention also contemplates the use of pharmaceutically acceptable deuterated compounds or other non-radioactive substituted compounds of the compound. Deuteration is the replacement of one or more or all hydrogens in the active molecular group of the drug with the isotope deuterium, which is considered to be an excellent modification method because it is non-toxic and non-radioactive, and is about 6 to 9 times more stable than carbon-hydrogen bonds. It can block metabolic sites and prolong the half-life of the drug, thereby reducing the therapeutic dose without affecting the pharmacological activity of the drug.
这些化合物通常会用于治疗人的疾病。但是,它们也可被用来治疗其他动物的类似或相同适应症。本文所述的化合物可通过不同途径给药,包括注射(静脉、腹膜内、皮下和肌内)、口服、经皮、直肠、引道或吸入。这些剂量形式应允许化合物达到靶细胞。其他因素在本领域是熟知的,包括例如毒性等考虑因素以及阻止化合物或组合物发挥其作用的剂量形式。These compounds are usually used to treat human diseases. However, they can also be used to treat similar or identical indications in other animals. The compounds described herein can be administered by different routes, including injection (intravenous, intraperitoneal, subcutaneous and intramuscular), oral, transdermal, rectal, intubation or inhalation. These dosage forms should allow the compound to reach the target cells. Other factors are well known in the art, including considerations such as toxicity and dosage forms that prevent the compound or composition from exerting its effect.
在一些实施方式中,组合物会包含药学上可接受的载体或赋形剂,例如填充剂、粘合剂、崩解剂、助流剂、润滑剂、络合剂、增溶剂和表面活性剂,它们可被选择以便于通过特定途径给药。载体的例子包括碳酸钙、磷酸钙、各种糖类(如乳糖、葡萄糖或蔗糖)、各类型淀粉、纤维素衍生物、明胶、脂质、脂质体、纳米颗粒等等。载体也包括生理上相容性液体作为溶剂或用于悬浮液,包括例如注射用无菌水溶液(WFI)、生理盐水溶液、葡萄糖溶液、Hank氏溶液、Ringer氏溶液、植物油、矿物油、动物油、聚乙二醇、液体石蜡等等。赋形剂也可包括例如胶态二氧化硅、硅胶、滑石、硅酸镁、硅酸钙、铝硅酸钠、三硅酸镁、粉末状纤维素、粗晶纤维素、羧甲基纤维素、交联羧甲基纤维素钠、苯甲酸钠、碳酸钙、碳酸镁、硬脂酸、硬脂酸铝、硬脂酸钙、硬脂酸镁、硬脂酸锌、硬脂酰醇富马酸钠、消光粉(syloid)、stearowet C、氧化镁、淀粉、羧甲淀粉钠、单硬脂酸甘油酯、二山嵛酸甘油酯、棕榈酰硬脂酸甘油酯、氢化植物油、氢化棉籽油、蓖麻籽油矿物油、聚乙二醇(如PEG 4000-8000)、聚氧乙二醇、泊洛沙姆、聚维酮、交聚维酮、交联羧甲基纤维素钠、藻酸、酪蛋白、甲基丙烯酸二乙烯基苯共聚物、多库酯钠、环糊精(例如2-羟丙基-δ-环糊精)、聚山梨醇酯(如聚山梨醇酯80)、溴棕三甲铵、d-α-生育酚聚乙二醇1000琥珀酸酯(TPGS)、月桂硫酸镁、月桂硫酸钠、聚乙二醇醚、聚乙二醇的二脂肪酸酯、或聚氧乙烯山梨糖醇酐脂肪酸酯(如聚氧乙烯山梨糖醇酐酯Tween®)、聚氧乙烯山梨糖醇酐脂肪酸酯、山梨糖醇酐脂肪酸酯(如来自像油酸、硬脂酸或棕榈酸的脂肪酸的山梨糖醇酐脂肪酸酯)、甘露糖醇、木糖醇、山梨醇、麦芽糖、乳糖、乳糖一水合物或喷雾干燥的乳糖、蔗糖、果糖、磷酸钙、磷酸氢钙、磷酸钙、硫酸钙、葡萄糖结合剂、葡聚糖、糊精、右旋糖、醋酸纤维素、麦芽糖糊精、二甲基硅油、聚葡萄糖、壳聚糖、明胶、羟丙基甲基纤维素(HPMC)、羟丙基纤维素(HPC)、羟乙基纤维素等。In some embodiments, the composition may include a pharmaceutically acceptable carrier or excipient, such as a filler, a binder, a disintegrant, a glidant, a lubricant, a complexing agent, a solubilizer, and a surfactant, which may be selected to facilitate administration by a specific route. Examples of carriers include calcium carbonate, calcium phosphate, various sugars (such as lactose, glucose, or sucrose), various types of starch, cellulose derivatives, gelatin, lipids, liposomes, nanoparticles, and the like. Carriers also include physiologically compatible liquids as solvents or for suspensions, including, for example, sterile aqueous solutions for injection (WFI), physiological saline solutions, glucose solutions, Hank's solutions, Ringer's solutions, vegetable oils, mineral oils, animal oils, polyethylene glycols, liquid paraffin, and the like. Excipients may also include, for example, colloidal silicon dioxide, silica gel, talc, magnesium silicate, calcium silicate, sodium aluminosilicate, magnesium trisilicate, powdered cellulose, macrocrystalline cellulose, carboxymethyl cellulose, croscarmellose sodium, sodium benzoate, calcium carbonate, magnesium carbonate, stearic acid, aluminum stearate, calcium stearate, magnesium stearate, zinc stearate, sodium stearyl fumarate, syloid, stearowet C, magnesium oxide, starch, sodium starch glycolate, glyceryl monostearate, glyceryl dibehenate, glyceryl palmitostearate, hydrogenated vegetable oil, hydrogenated cottonseed oil, castor seed oil, mineral oil, polyethylene glycols (e.g., PEG 4000-8000), polyoxyethylene glycol, poloxamer, povidone, crospovidone, croscarmellose sodium, alginic acid, casein, divinylbenzene methacrylate copolymer, docusate sodium, cyclodextrin (e.g., 2-hydroxypropyl-delta-cyclodextrin), polysorbate (e.g., polysorbate 80), cetrimide, d-alpha-tocopheryl polyethylene glycol 1000 succinate (TPGS), magnesium lauryl sulfate, sodium lauryl sulfate, polyethylene glycol ethers, di-fatty acid esters of polyethylene glycol, or polyoxyethylene sorbitan fatty acid esters (e.g., polyoxyethylene sorbitan ester Tween® ), polyoxyethylene sorbitan fatty acid esters, sorbitan fatty acid esters (such as sorbitan fatty acid esters from fatty acids such as oleic acid, stearic acid or palmitic acid), mannitol, xylitol, sorbitol, maltose, lactose, lactose monohydrate or spray-dried lactose, sucrose, fructose, calcium phosphate, calcium hydrogen phosphate, calcium phosphate, calcium sulfate, dextrates, dextran, dextrin, dextrose, cellulose acetate, maltodextrin, dimethicone, polydextrose, chitosan, gelatin, hydroxypropyl methylcellulose (HPMC), hydroxypropyl cellulose (HPC), hydroxyethyl cellulose, etc.
药物制剂可以单位剂量形式呈现,每单位剂量含有预定量的活性组分。这种单位剂量可含有例如0.5 mg至1 g(优选1 mg至700 mg,更优选5 mg至100 mg)的本发明的化合物(游离形式、任何形式的溶剂化物(包括水合物)或盐),含量取决于被治疗的病症、给药途径、患者的年龄、体重和状况。优选的单位剂量制剂是含有日剂量、周剂量、月剂量、它们的子剂量或合适比例的活性组分的那些制剂。而且,这种药物制剂可通过制药领域熟知的任何方法来制备。Pharmaceutical preparations can be presented in unit dose form, each unit dose containing a predetermined amount of active ingredient. Such unit doses may contain, for example, 0.5 mg to 1 g (preferably 1 mg to 700 mg, more preferably 5 mg to 100 mg) of the compound of the present invention (free form, any form of solvate (including hydrate) or salt), depending on the condition to be treated, the route of administration, the age, weight and condition of the patient. Preferred unit dose formulations are those containing daily doses, weekly doses, monthly doses, their sub-doses or suitable proportions of active ingredients. Moreover, such pharmaceutical preparations can be prepared by any method well known in the pharmaceutical field.
药物制剂可被制成适合任何适当途径给药的形式,例如口服(包括胶囊、片剂、充液胶囊、崩解片、立即释放片剂、缓释片剂、控释片剂、口服条带(oral strip)、溶液、糖浆剂、颊含片和舌下片)、鼻腔、肺部、直肠、阴道、局部(包括经皮)或注射(包括皮下、肌内、静脉或皮内)途径。这些制剂可通过制药领域已知的任何方法制备,例如通过将活性组分与载体、赋形剂或稀释剂联合而制备。通常,用在药物制剂中的载体、赋形剂或稀释剂是“非毒性的”和“惰性的”,前者的意思是指以在药物组合物中的量服用其是安全的,后者是指其不会明显地与活性组分反应或导致对活性组分的治疗活性产生不期望的作用。Pharmaceutical preparations may be prepared in a form suitable for administration by any appropriate route, such as oral (including capsules, tablets, liquid-filled capsules, disintegrating tablets, immediate release tablets, sustained release tablets, controlled release tablets, oral strips, solutions, syrups, buccal tablets and sublingual tablets), nasal, pulmonary, rectal, vaginal, topical (including transdermal) or injection (including subcutaneous, intramuscular, intravenous or intradermal) routes. These preparations may be prepared by any method known in the pharmaceutical art, such as by combining the active ingredient with a carrier, excipient or diluent. Generally, the carrier, excipient or diluent used in the pharmaceutical preparation is "non-toxic" and "inert", the former meaning that it is safe to take in the amount in the pharmaceutical composition, and the latter meaning that it does not significantly react with the active ingredient or cause an undesirable effect on the therapeutic activity of the active ingredient.
各种化合物的给药量可通过标准程序测定并考虑例如下列因素:化合物活性(体外活性,例如化合物IC50 vs. 靶标,或在动物药效模型中的体内活性)、动物模型中药代动力学结果(如生物学半衰期或生物利用度)、对象的年龄、大小和体重、以及对象相关的疾病。这些因子以及其他因子的重要性对于本领域技术人员来说是熟知的。一般而言,剂量范围会在约0.01至50 mg/kg,或约0.1至20 mg/kg。可使用多剂量给药。The dosage of each compound can be determined by standard procedures and takes into account factors such as compound activity (in vitro activity, such as compound IC 50 vs. target, or in vivo activity in animal efficacy models), pharmacokinetic results in animal models (such as biological half-life or bioavailability), age, size and weight of the subject, and diseases associated with the subject. The importance of these factors and other factors is well known to those skilled in the art. In general, the dosage range will be about 0.01 to 50 mg/kg, or about 0.1 to 20 mg/kg. Multiple doses can be used.
本文所述的化合物也可与其他用于治疗相同疾病的疗法联合使用。这种联合使用包括在不同时间给予所述化合物以及一种或多种其他治疗剂,或联合给予所述化合物和一种或多种其他治疗剂。在一些实施方式中,可通过本领域技术人员熟知的方法,对本发明的一种或多种化合物或联合使用的其他治疗剂的剂量进行修改,例如相对于单独使用该化合物或治疗剂减少用药量。The compounds described herein may also be used in combination with other therapies for treating the same disease. Such combination includes administering the compound and one or more other therapeutic agents at different times, or administering the compound and one or more other therapeutic agents in combination. In some embodiments, the dosage of one or more compounds of the present invention or other therapeutic agents used in combination may be modified by methods well known to those skilled in the art, such as reducing the dosage relative to the use of the compound or therapeutic agent alone.
要理解的是,联合使用包括与其他疗法、药物、医学程序等一起使用,其中其他疗法或程序可在不同于本文所述化合物的时间施用(例如在短时间内,如数小时内(如1、2、3、4-24小时内),或在较长时间内(如1-2天、2-4天、4-7天、1-4周)),或与本发明的化合物在相同时间施用。联合使用也包括与施用一次或不频繁施用的疗法或医疗程序(例如手术)一起使用,并在进行所述其他疗法或程序之前或之后的短时间内或较长时间内施用本发明所述的化合物。在一些实施方式中,本发明提供递送本发明所述的化合物和一种或多种其他药物治疗剂,所述其他药物治疗剂通过不同途径给药,或通过相同途径给药。任何给药途径的联合施用包括递送本发明所述的化合物和一种或多种其他药物治疗剂,所述其他药物治疗剂通过相同给药方式以任何制剂形式一起递送,包括将两种化合物化学性地连在一起以使得它们在给药时维持它们的治疗活性的制剂形式。在一个方面,该其他药物疗法可与本文所述的化合物共同施用。共同施用方式的联合使用包括使用共同制剂或化学上结合在一起的化合物的制剂,或在彼此来说短的时间内(如在1小时、2小时、3小时、至多24小时内)以相同或不同途径施用不同制剂形式的两种或多种化合物。单独制剂的共同施用包括通过一个装置的递送而共同施用,例如相同的吸入装置、相同注射器等,或在彼此来说短的时间内由单独的装置施用。通过相同途径给药的本文所述的化合物与一种或多种额外药物治疗剂的共同制剂包括一起制备材料,从而它们可通过一个装置给药,包括结合在一个制剂中的不同化合物,或者被修饰而可化学性地连接但仍维持它们的生物学活性的化合物。这种化学上连接的化合物可具有一个连接体,其在体内被实质性地保持,或者该连接体在体内分解从而将两种活性组分分开。在一些实施方式中,本发明的化合物可以与脲酶抑制剂、抗生素、质子泵抑制剂、铋剂或其组合一起应用。该抗生素可以选自阿莫西林、克拉霉素、甲硝唑和四环素。在一些实施方式中,所述质子泵抑制剂选自兰索拉唑、奥美拉唑、泮托拉唑、雷贝拉唑和埃索美拉唑。在一些实施方式中,该铋剂选自水杨酸铋、枸橼酸铋钾和果胶铋。在一些实施方式中,所述脲酶抑制剂为依布硒或乙酰氧肟酸。It is to be understood that the combined use includes use with other therapies, drugs, medical procedures, etc., wherein the other therapies or procedures may be administered at a different time from the compounds described herein (e.g., within a short period of time, such as within a few hours (e.g., 1, 2, 3, 4-24 hours), or over a longer period of time (e.g., 1-2 days, 2-4 days, 4-7 days, 1-4 weeks)), or at the same time as the compounds of the present invention. The combined use also includes use with a therapy or medical procedure (e.g., surgery) that is administered once or infrequently, and administering the compounds described herein within a short period of time or within a longer period of time before or after the other therapy or procedure. In some embodiments, the present invention provides delivery of the compounds described herein and one or more other drug therapeutic agents, which are administered by different routes, or by the same route. The combined administration of any route of administration includes delivery of the compounds described herein and one or more other drug therapeutic agents, which are delivered together in any formulation form by the same administration method, including two compounds chemically linked together so that they maintain their therapeutic activity when administered. In one aspect, the other drug therapy can be co-administered with the compounds described herein. The combined use of co-administration includes the use of a co-formulation or a formulation of chemically bound compounds, or the administration of two or more compounds in different formulations in the same or different routes within a short time relative to each other (such as within 1 hour, 2 hours, 3 hours, up to 24 hours). The co-administration of a separate formulation includes co-administration through the delivery of a device, such as the same inhalation device, the same syringe, etc., or by a separate device within a short time relative to each other. The co-formulation of the compounds described herein and one or more additional drug therapeutic agents administered by the same route includes preparing materials together so that they can be administered by a device, including different compounds combined in a formulation, or modified compounds that can be chemically connected but still maintain their biological activity. This chemically connected compound may have a linker that is substantially maintained in vivo, or the linker decomposes in vivo to separate the two active components. In some embodiments, the compounds of the present invention may be used together with urease inhibitors, antibiotics, proton pump inhibitors, bismuth agents, or combinations thereof. The antibiotic may be selected from amoxicillin, clarithromycin, metronidazole, and tetracycline. In some embodiments, the proton pump inhibitor is selected from lansoprazole, omeprazole, pantoprazole, rabeprazole and esomeprazole. In some embodiments, the bismuth agent is selected from bismuth salicylate, potassium bismuth citrate and bismuth pectin. In some embodiments, the urease inhibitor is ebselen or acetohydroxamic acid.
腺苷酸活化蛋白激酶(AMPK)Adenylate-activated protein kinase (AMPK)
AMPK是细胞的能量感受器和调节器,在维持细胞代谢平衡中发挥重要作用。激活的AMPK可通过对代谢环节中的关键酶活性的急性调节以及关键转录因子表达的慢性调节,一方面可增强机体的分解代谢而促进ATP产生,另一方面可抑制合成代谢而降低ATP消耗。AMPK对葡萄糖和脂质代谢的调节作用的证据使其成为用于治疗糖尿病和代谢综合征的潜在药物靶点。AMPK能够抑制肝脏葡萄糖异生和脂质产生,同时通过增加脂质氧化而减少肝脏脂质沉积,进而改善葡萄糖和脂质分布。研究表明,瘦蛋白和脂连蛋白(脂肪因子)通过活化AMPK而调节葡萄糖和脂质代谢,进而发挥其抗糖尿病作用。其中,瘦蛋白通过直接活化AMPK并且经由下丘脑肾上腺素能通路来刺激肌肉脂肪酸氧化,脂连蛋白通过活化AMPK来在体外刺激葡萄糖摄取和脂肪酸氧化。此外,AMPK通过抑制葡萄糖异生关键基因如编码磷酸烯醇丙酮酸羧激酶(PEPCK)和葡萄糖-6-磷酸酶(G6Pase)的基因表达来发挥它的降血糖作用。并且在药理学水平,AMPK作为用于治疗代谢综合征的靶点的概念已经得到大量研究的支持:现有抗糖尿病药物的两种主要类型,即噻唑烷二酮类(罗格列酮(rosiglitazone)、曲格列酮(troglitazone)和吡格列酮(pioglitazone))和双胍类(二甲双胍(metformin)和苯乙双胍(phenformin))在体外细胞实验中以及在体内均活化AMPK。已有证据表明,AMPK介导罗格列酮的抗糖尿病作用。研究证实二甲双胍能够通过抑制复合物I在体外和在体内均能活化AMPK,若敲除AMPK的上游激酶LKBl则完全阻止二甲双胍的降糖作用,证明了AMPK在介导二甲双胍的抗糖尿病作用中的关键作用。许多AMPK活化剂(例如,A-769662和PT1)能够在体内发挥抗糖尿病作用。本发明的化合物是有效的AMPK活化剂。AMPK is a cell energy sensor and regulator, and plays an important role in maintaining cellular metabolic balance. Activated AMPK can enhance the body's catabolism and promote ATP production through acute regulation of key enzyme activities in metabolic links and chronic regulation of key transcription factor expression. On the one hand, it can inhibit anabolism and reduce ATP consumption. Evidence of AMPK's regulatory effects on glucose and lipid metabolism makes it a potential drug target for the treatment of diabetes and metabolic syndrome. AMPK can inhibit hepatic gluconeogenesis and lipid production, while reducing hepatic lipid deposition by increasing lipid oxidation, thereby improving glucose and lipid distribution. Studies have shown that leptin and adiponectin (adipokine) regulate glucose and lipid metabolism by activating AMPK, thereby exerting their anti-diabetic effects. Among them, leptin directly activates AMPK and stimulates muscle fatty acid oxidation via the hypothalamic adrenergic pathway, and adiponectin stimulates glucose uptake and fatty acid oxidation in vitro by activating AMPK. In addition, AMPK exerts its hypoglycemic effect by inhibiting the expression of key genes for gluconeogenesis, such as genes encoding phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase). And at the pharmacological level, the concept of AMPK as a target for the treatment of metabolic syndrome has been supported by a large number of studies: the two main types of existing antidiabetic drugs, namely thiazolidinediones (rosiglitazone, troglitazone and pioglitazone) and biguanides (metformin and phenformin), activate AMPK in in vitro cell experiments and in vivo. There is evidence that AMPK mediates the antidiabetic effect of rosiglitazone. Studies have shown that metformin can activate AMPK both in vitro and in vivo by inhibiting complex I. If the upstream kinase LKB1 of AMPK is knocked out, the hypoglycemic effect of metformin is completely blocked, proving the key role of AMPK in mediating the antidiabetic effect of metformin. Many AMPK activators (e.g., A-769662 and PT1) are able to exert anti-diabetic effects in vivo. The compounds of the present invention are effective AMPK activators.
AMPK已经作为治疗若干种肾病的富有前景的靶标。据报道,AMPK是肾脏中的若干离子通道、转运蛋白和泵的调节剂,且使用AMPK活化剂的治疗对于在各种疾病背景中预防肾损害方面是有益的。此外,AMPK活化诱导细胞中的自溶作用,而这已被证明在若干种动物模型中对肾脏有保护作用。AMPK has been proposed as a promising target for the treatment of several kidney diseases. AMPK is reported to be a regulator of several ion channels, transporters and pumps in the kidney, and treatment with AMPK activators is beneficial in preventing kidney damage in various disease settings. In addition, AMPK activation induces autolysis in cells, which has been shown to protect the kidneys in several animal models.
术语“葡萄糖或脂质代谢疾病”是指由葡萄糖代谢或脂质代谢异常引起的代谢综合症。在本发明的一些实施方式中,“葡萄糖或脂质代谢疾病”是指可通过调节AMPK的活性(例如AMPK激活)治疗的疾病。本发明的化合物可以治疗的“葡萄糖或脂质代谢疾病”包括但不限于肥胖症、肾病、异常脂血症、高血糖症、I型糖尿病、II型糖尿病以及糖尿病并发症。The term "glucose or lipid metabolism disease" refers to metabolic syndrome caused by abnormal glucose metabolism or lipid metabolism. In some embodiments of the present invention, "glucose or lipid metabolism disease" refers to a disease that can be treated by regulating the activity of AMPK (e.g., AMPK activation). "Glucose or lipid metabolism diseases" that can be treated by the compounds of the present invention include, but are not limited to, obesity, nephropathy, dyslipidemia, hyperglycemia, type I diabetes, type II diabetes, and diabetic complications.
术语“C10-20脂肪酸”通常指10、11、12、13、14、15、16、17、18、19或20个碳原子的直链或支链脂肪酸,并且包括但不限于C10脂肪酸、C11-12脂肪酸、C13-14脂肪酸、C15-20脂肪酸、C18脂肪酸、C16-18脂肪酸、和C19-20脂肪酸。C10-20脂肪酸的例子包括但不限于:癸酸、9-癸烯酸、十一酸、10-十一烯酸、月桂酸、肉豆蔻酸、棕榈酸、硬脂酸、油酸、亚油酸或亚麻酸。在优选的实施方式中,C10-20脂肪酸为C18单和/或二不饱和脂肪酸酸。The term "C 10-20 fatty acid" generally refers to a straight or branched fatty acid of 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20 carbon atoms, and includes but is not limited to C 10 fatty acids, C 11-12 fatty acids, C 13-14 fatty acids, C 15-20 fatty acids, C 18 fatty acids, C 16-18 fatty acids, and C 19-20 fatty acids. Examples of C 10-20 fatty acids include but are not limited to capric acid, 9-decenoic acid, undecanoic acid, 10-undecenoic acid, lauric acid, myristic acid, palmitic acid, stearic acid, oleic acid, linoleic acid or linolenic acid. In a preferred embodiment, the C 10-20 fatty acid is a C 18 mono- and/or di-unsaturated fatty acid acid.
下面通过具体实施例进一步解释本发明,但是本发明不仅限于实例中。The present invention is further explained below by means of specific examples, but the present invention is not limited to the examples.
实施例1. 双胍衍生物ML的合成与鉴定Example 1. Synthesis and identification of biguanide derivative ML
本发明双胍衍生物ML的一个示例性合成路线如下:An exemplary synthesis route of the biguanide derivative ML of the present invention is as follows:
取亚油酸5.6 g,N-叔丁基-1,2-乙二胺4.8 g,1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐4.6 g,以及1-羟基苯并三唑3.24 g,加入无水二氯甲烷,室温反应过夜,干燥浓缩后通过柱层析纯化,得中间体1a 7.4g,产率88%。结构验证如图1所示:Take 5.6 g of linoleic acid, 4.8 g of N-tert-butyl-1,2-ethylenediamine, 4.6 g of 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride, and 3.24 g of 1-hydroxybenzotriazole, add anhydrous dichloromethane, react at room temperature overnight, dry and concentrate, and purify by column chromatography to obtain 7.4 g of intermediate 1a with a yield of 88%. The structure verification is shown in Figure 1:
1H NMR (400 MHz, DMSO) δ 7.75 (d, J = 5.0 Hz, 1H), 6.76 (d, J = 5.4Hz, 1H), 5.39 – 5.29 (m, 4H), 3.05 (dd, J = 12.2, 6.1 Hz, 2H), 2.97 – 2.89(m, 2H), 2.74 (t, J = 6.3 Hz, 2H), 2.02 (dd, J = 13.6, 6.7 Hz, 6H), 1.48 (dd,J = 14.3, 7.3 Hz, 2H), 1.38 – 1.19 (m, 14H), 0.85 (t, J = 7.0 Hz, 3H);ESI-MSm/z: 445.40 [M+Na]+。 1 H NMR (400 MHz, DMSO) δ 7.75 (d, J = 5.0 Hz, 1H), 6.76 (d, J = 5.4Hz, 1H), 5.39 – 5.29 (m, 4H), 3.05 (dd, J = 12.2 , 6.1 Hz, 2H), 2.97 – 2.89(m, 2H), 2.74 (t, J = 6.3 Hz, 2H), 2.02 (dd, J = 13.6, 6.7 Hz, 6H), 1.48 (dd,J = 14.3, 7.3 Hz, 2H), 1.38 – 1.19 (m, 14H), 0.85 (t, J = 7.0 Hz, 3H); ESI-MS m/z : 445.40 [M+Na] + .
取上述化合物1a 7.4 g,溶于二氯甲烷中,然后加入三氟乙酸,室温反应,充分浓缩干燥,得中间体1b 4.8 g,产率85%。结构验证如图2所示:Take 7.4 g of the above compound 1a, dissolve it in dichloromethane, then add trifluoroacetic acid, react at room temperature, fully concentrate and dry, and obtain 4.8 g of intermediate 1b with a yield of 85%. The structural verification is shown in Figure 2:
1H NMR (400 MHz, DMSO) δ 8.01 (t, J = 5.5 Hz, 1H), 7.90 (s, 3H), 5.48– 5.26 (m, 4H), 3.28 (q, J = 6.3 Hz, 2H), 2.91 – 2.80 (m, 2H), 2.74 (t, J =6.2 Hz, 2H), 2.08 (dd, J = 13.6, 5.9 Hz, 2H), 2.02 (dd, J = 13.4, 6.7 Hz,4H), 1.50 (dd, J = 14.1, 7.1 Hz, 2H), 1.32 – 1.09 (m, 14H), 0.90 – 0.78 (m,3H);ESI-MS m/z: 323.30 [M]+。 1 H NMR (400 MHz, DMSO) δ 8.01 (t, J = 5.5 Hz, 1H), 7.90 (s, 3H), 5.48– 5.26 (m, 4H), 3.28 (q, J = 6.3 Hz, 2H), 2.91 – 2.80 (m, 2H), 2.74 (t, J =6.2 Hz, 2H), 2.08 (dd, J = 13.6, 5.9 Hz, 2H), 2.02 (dd, J = 13.4, 6.7 Hz, 4H), 1.50 (dd, J = 14.1, 7.1 Hz, 2H), 1.32 – 1.09 (m, 14H), 0.90 – 0.78 (m,3H); ESI-MS m/z : 323.30 [M] + .
将上述中间体1b 4.8 g,双氰胺 2.21 g及氯化铁 4.26 g加入到二氧六环中,100℃反应过夜,干燥浓缩后通过柱层析纯化,得产物1.9 g,产率31%。结构验证如图3所示:The intermediate 1b 4.8 g, dicyandiamide 2.21 g and ferric chloride 4.26 g were added to dioxane, reacted at 100°C overnight, dried and concentrated, and purified by column chromatography to obtain 1.9 g of the product with a yield of 31%. The structural verification is shown in Figure 3:
1H NMR (400 MHz, DMSO) δ 8.06 (s, 2H), 7.86 (s, 1H), 7.47 (s, 1H),5.42 – 5.22 (m, 4H), 3.23 – 3.07 (m, 4H), 2.73 (t, J = 6.1 Hz, 2H), 2.10 –1.93 (m, 6H), 1.47 (s, 2H), 1.30 (dd, J = 36.0, 16.5 Hz, 18H), 0.86 (t, J =6.6 Hz, 3H);ESI-MS m/z:408.35 [M+2H]+。 1 H NMR (400 MHz, DMSO) δ 8.06 (s, 2H), 7.86 (s, 1H), 7.47 (s, 1H), 5.42 – 5.22 (m, 4H), 3.23 – 3.07 (m, 4H), 2.73 (t, J = 6.1 Hz, 2H), 2.10 –1.93 (m, 6H), 1.47 (s, 2H), 1.30 (dd, J = 36.0, 16.5 Hz, 18H), 0.86 (t, J =6.6 Hz, 3H); ESI-MS m/z : 408.35 [M+2H] + .
实施例2. 双胍衍生物MU的合成与鉴定Example 2. Synthesis and identification of biguanide derivative MU
本发明双胍衍生物MU的一个示例性合成路线如下:An exemplary synthesis route of the biguanide derivative MU of the present invention is as follows:
取十一酸3.7 g,N-叔丁基-1,2-乙二胺4.8 g,1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐4.6 g,及1-羟基苯并三唑3.2 g,加入无水二氯甲烷,室温反应过夜,干燥浓缩后通过柱层析纯化,得中间体3a 5.9 g,产率90%,结构验证如图4所示:Take 3.7 g of undecanoic acid, 4.8 g of N-tert-butyl-1,2-ethylenediamine, 4.6 g of 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride, and 3.2 g of 1-hydroxybenzotriazole, add anhydrous dichloromethane, react at room temperature overnight, dry and concentrate, and purify by column chromatography to obtain 5.9 g of intermediate 3a with a yield of 90%. The structure verification is shown in Figure 4:
1H NMR (400 MHz, DMSO) δ 6.16 (s, 1H), 5.91 (s, 1H), 3.70 (s, 1H),3.59 – 3.58 (d, J = 4.0 Hz, 1H), 3.53 – 3.51 (t, J = 4.0 Hz, 1H), 3.44 – 3.42(t, J = 4.0 Hz, 1H), 2.32 – 2.29 (t, J = 4.0 Hz, 2H), 1.56 (dd, J = 14.0, 7.0Hz, 2H), 1.33 (s, 9H), 1.29 (m, 14H), 0.96 – 0.94 (t, J = 4.0 Hz, 3H);ESI-MSm/z: 351.32 [M+Na]+。 1 H NMR (400 MHz, DMSO) δ 6.16 (s, 1H), 5.91 (s, 1H), 3.70 (s, 1H), 3.59 – 3.58 (d, J = 4.0 Hz, 1H), 3.53 – 3.51 (t , J = 4.0 Hz, 1H), 3.44 – 3.42 (t, J = 4.0 Hz, 1H), 2.32 – 2.29 (t, J = 4.0 Hz, 2H), 1.56 (dd, J = 14.0, 7.0Hz, 2H) , 1.33 (s, 9H), 1.29 (m, 14H), 0.96 – 0.94 (t, J = 4.0 Hz, 3H); ESI-MS m/z : 351.32 [M+Na] + .
取上述化合物3a 5.8 g,溶于二氯甲烷中,然后加入三氟乙酸,室温反应,充分浓缩干燥,得中间体3b 3.4 g,产率85%。结构验证如图5所示:Take 5.8 g of the above compound 3a, dissolve it in dichloromethane, then add trifluoroacetic acid, react at room temperature, fully concentrate and dry, and obtain 3.4 g of intermediate 3b with a yield of 85%. The structural verification is shown in Figure 5:
1H NMR (400 MHz, DMSO) δ 7.02 (s, 1H), 3.69 – 3.58 (dt, J = 35.2, 8.0Hz, 2H), 2.83 – 2.80 (t, J = 8.0 Hz, 2H), 2.18 – 2.16 (d, J = 8.0 Hz, 4H),1.81 (s, 2H), 1.50 (dd, J = 14.2, 7.0 Hz, 2H), 1.30 (m, 14H), 0.96 – 0.94 (m,3H);ESI-MS m/z: 229.31 [M]+。 1 H NMR (400 MHz, DMSO) δ 7.02 (s, 1H), 3.69 – 3.58 (dt, J = 35.2, 8.0Hz, 2H), 2.83 – 2.80 (t, J = 8.0 Hz, 2H), 2.18 – 2.16 (d, J = 8.0 Hz, 4H),1.81 (s, 2H), 1.50 (dd, J = 14.2, 7.0 Hz, 2H), 1.30 (m, 14H), 0.96 – 0.94 (m,3H); ESI- MS m/z : 229.31 [M] + .
将上述中间体3b 3.2 g,双氰胺2.2 g及氯化铁4.2 g加入到二氧六环中,100 ℃反应过夜,干燥浓缩后通过柱层析纯化,得产物1.5 g,产率35%。结构验证如图6所示:3.2 g of the intermediate 3b, 2.2 g of dicyandiamide and 4.2 g of ferric chloride were added to dioxane, reacted at 100 °C overnight, dried and concentrated, and purified by column chromatography to obtain 1.5 g of the product with a yield of 35%. The structural verification is shown in Figure 6:
1H NMR (400 MHz, DMSO) δ 6.66 (s, 1H), 5.05 (s, 1H), 4.65 (s, 1H),3.84 (s, 1H), 3.80 (s, 1H), 3.68 (s, 1H), 3.59 – 3.57 (d, J = 8.0 Hz, 1H),2.30 – 2.27 (t, J = 6.1 Hz, 2H), 1.50 (dd, J = 14.0, 7.0 Hz, 2H), 1.37 – 1.00(m, 14H), 1.00 (s, 1H), 0.95 – 0.94 (t, J = 4.0 Hz, 3H), 0.54 (s, 2H);ESI-MSm/z:314.29 [M+2H]+。 1 H NMR (400 MHz, DMSO) δ 6.66 (s, 1H), 5.05 (s, 1H), 4.65 (s, 1H), 3.84 (s, 1H), 3.80 (s, 1H), 3.68 (s, 1H ), 3.59 – 3.57 (d, J = 8.0 Hz, 1H), 2.30 – 2.27 (t, J = 6.1 Hz, 2H), 1.50 (dd, J = 14.0, 7.0 Hz, 2H), 1.37 – 1.00(m, 14H), 1.00 (s, 1H), 0.95 – 0.94 (t, J = 4.0 Hz, 3H), 0.54 (s, 2H); ESI-MS m/z :314.29 [M+2H] + .
实施例3. 双胍衍生物对腺苷酸活化蛋白激酶激活作用Example 3. Activation of AMP-activated protein kinase by biguanide derivatives
采用Elisa试剂盒法测定双胍衍生物对腺苷酸活化蛋白激酶(AMPK)激活作用。将GES-1人胃上皮细胞接种于12孔板中培养24 h,吸弃培养基并加入药物(即,浓度为100 μg/mL的MET及浓度为100 μg/mL的双胍衍生物ML和MU),继续孵育24h。离心收集细胞并加入PBS吹打混匀,置于-20 ℃反复冻融5次,按照人磷酸化腺苷酸活化蛋白激酶酶联免疫吸附测定试剂盒使用说明书所示方法,检测各组中GES-1细胞的AMPK的磷酸化水平。加药组对AMPK的活化程度表示为相对于空白组细胞的磷酸化AMPK水平,药物组细胞的磷酸化AMPK程度,结果如图7所示。在本发明的双胍衍生物MU和ML处理后,GES-1细胞的AMPK的磷酸化水平明显增强,并且比盐酸二甲双胍阳性对照组的激活能力更强。此外,与MU相比,ML对AMPK的激活效果更加显著,具有AMPK增强活性的ML能更好地辅助抗菌药物清除胞内细菌。Elisa kit method was used to determine the activation effect of biguanide derivatives on adenylate-activated protein kinase (AMPK). GES-1 human gastric epithelial cells were inoculated in 12-well plates and cultured for 24 h. The culture medium was aspirated and drugs (i.e., MET at a concentration of 100 μg/mL and biguanide derivatives ML and MU at a concentration of 100 μg/mL) were added and incubated for another 24 h. The cells were collected by centrifugation and mixed by blowing PBS, placed at -20 °C and repeatedly frozen and thawed 5 times. The phosphorylation level of AMPK in GES-1 cells in each group was detected according to the method indicated in the instruction manual of the human phosphorylated adenylate-activated protein kinase enzyme-linked immunosorbent assay kit. The degree of activation of AMPK in the drug-added group was expressed as the phosphorylated AMPK level of the cells in the drug group relative to the level of phosphorylated AMPK in the blank group, and the results are shown in Figure 7. After treatment with the biguanide derivatives MU and ML of the present invention, the phosphorylation level of AMPK in GES-1 cells was significantly enhanced, and the activation ability was stronger than that of the metformin hydrochloride positive control group. In addition, compared with MU, ML has a more significant activation effect on AMPK, and ML with AMPK enhancing activity can better assist antimicrobial drugs in eliminating intracellular bacteria.
实施例4. 双胍衍生物对胞内菌的清除效果Example 4. Effect of biguanide derivatives on the elimination of intracellular bacteria
采用涂布平板法定量评价双胍衍生物对胞内H. pylori的清除效果。将GES-1人胃上皮细胞接种于细胞孔板中培养24h,收集H. pylori菌悬液并加入孔板中与细胞共孵育,吸弃培养基并加入含庆大霉素的无双抗培养基杀灭未进入胞内的H. pylori,吸弃培养基并用无菌PBS洗涤,加入药物(即,浓度为100 μg/mL的盐酸二甲双胍MET及浓度为100 μg/mL的双胍衍生物ML和MU)继续培养24 h。加入0.1%茶皂素溶液裂解细胞,收集细胞裂解液,待用。取部分细胞裂解液涂布平板,微需氧环境下37 ℃培养72 h后,采用平板计数法量化胞内H. pylori水平,结果如图8所示。在ML和MU处理后,细胞中的H. pylori水平均明显降低,并且低于MET处理后的细菌水平。ML降低胞内细菌水平比MU组更显著,ML降低胞内菌负荷的能力更强。The plate-spreading method was used to quantitatively evaluate the clearance effect of biguanide derivatives on intracellular H. pylori . GES-1 human gastric epithelial cells were inoculated in cell well plates and cultured for 24 h. The H. pylori suspension was collected and added to the well plates for co-incubation with the cells. The culture medium was aspirated and a medium without biguanide containing gentamicin was added to kill H. pylori that had not entered the cells. The culture medium was aspirated and washed with sterile PBS. Drugs (i.e., metformin hydrochloride MET at a concentration of 100 μg/mL and biguanide derivatives ML and MU at a concentration of 100 μg/mL) were added and cultured for another 24 h. 0.1% tea saponin solution was added to lyse the cells, and the cell lysate was collected and set aside. Part of the cell lysate was spread on the plate, and after culturing at 37 °C for 72 h under a microaerobic environment, the plate count method was used to quantify the intracellular H. pylori level. The results are shown in Figure 8. After treatment with ML and MU, the H. pylori levels in the cells were significantly reduced and were lower than the bacterial levels after treatment with MET. ML reduced the level of intracellular bacteria more significantly than the MU group, and ML had a stronger ability to reduce the intracellular bacterial load.
实施例5. 双胍衍生物自组装纳米粒的制备与表征。Example 5. Preparation and characterization of self-assembled nanoparticles of biguanide derivatives.
选择纳米沉淀法制备4种双胍衍生物自组装纳米粒(ML-LA NPs、ML-LA/EB NPs、FU/ML-LA NPs和FU/ML-LA/EB NPs)。制备方法如下:取不同体积的ML、LA和EB的DMF溶液混合,固定ML及LA的浓度均为25 mM,加入或不加入EB溶液(6.2 mM),使ML与EB质量比为6:1,在搅拌下滴入900 μL纯水或FU水溶液(1 mg/mL)中,继续搅拌2 min,得4种双胍衍生物自组装纳米粒。测定4种纳米粒的粒径、PDI及zeta电势,结果如表1所示,4种纳米粒均具有较小的粒径及PDI,其中ML-LA NPs和ML-LA/EB NPs带有正电荷,粒径约为125 nm。FU/ML-LANPs、FU/ML-LA/EB NPs带有负电荷,并且两者的粒径明显比ML-LA NPs和ML-LA/EB NPs大约25 nm,证明了FU的成功包覆。Nanoprecipitation method was selected to prepare four kinds of biguanide derivative self-assembled nanoparticles (ML-LA NPs, ML-LA/EB NPs, FU/ML-LA NPs and FU/ML-LA/EB NPs). The preparation method is as follows: different volumes of ML, LA and EB DMF solutions were mixed, the concentrations of ML and LA were fixed at 25 mM, EB solution (6.2 mM) was added or not, and the mass ratio of ML to EB was 6:1. Then, 900 μL of pure water or FU aqueous solution (1 mg/mL) was added dropwise under stirring, and stirring was continued for 2 min to obtain four kinds of biguanide derivative self-assembled nanoparticles. The particle size, PDI and zeta potential of the four kinds of nanoparticles were measured. The results are shown in Table 1. All four kinds of nanoparticles have small particle size and PDI. Among them, ML-LA NPs and ML-LA/EB NPs have positive charges and particle sizes of about 125 nm. FU/ML-LANPs and FU/ML-LA/EB NPs were negatively charged, and the particle sizes of both were significantly larger than those of ML-LA NPs and ML-LA/EB NPs by about 25 nm, demonstrating the successful encapsulation of FU.
表1 纳米粒的粒径、PDI及电势Table 1 Particle size, PDI and potential of nanoparticles
采用高效液相色谱法建立4种纳米粒的定量分析方法,并测定各成分的包封率及载药量,结果如表2所示,4种纳米粒的包封率均高于80%,载药量大于55%。High performance liquid chromatography was used to establish a quantitative analysis method for the four nanoparticles, and the encapsulation efficiency and drug loading of each component were determined. The results are shown in Table 2. The encapsulation efficiency of the four nanoparticles was higher than 80%, and the drug loading was greater than 55%.
表2 纳米粒的包封率和载药量Table 2 Encapsulation efficiency and drug loading of nanoparticles
实施例6. 双胍衍生物纳米粒的细胞摄取效果Example 6. Cellular uptake effect of biguanide derivative nanoparticles
采用流式细胞仪定量分析纳米粒(根据实施例5制备)被RAW 264.7巨噬细胞和GES-1人胃上皮细胞摄取的情况。将RAW 264.7细胞和GES-1细胞于12孔板中培养24 h,加入2 mL游离C6、C6标记的纳米粒(ML-LA/C6 NPs和FU/ML-LA/C6 NPs)与细胞共同孵育4h,用PBS洗涤2次,收集1×104个细胞,通过流式细胞仪测量C6的荧光强度,结果如图9所示。在RAW 264.7细胞中,游离C6的平均荧光强度为1.52×105,ML-LA/C6 NPs为2.01×105,FU/ML-LA/C6 NPs为2.11×105。与游离C6相比,ML-LA/C6 NPs和FU/ML-LA/C6 NPs明显增强被两种细胞摄取的能力。FU/ML-LA/C6 NPs显示比ML-LA/C6 NPs更高的细胞摄取率。在GES-1细胞中检测到了两种纳米粒被细胞摄取的相同趋势,进一步证明了ML-LA/C6 NPs和FU/ML-LA/C6 NPs能提高被细胞摄取的能力。Flow cytometry was used to quantitatively analyze the uptake of nanoparticles (prepared according to Example 5) by RAW 264.7 macrophages and GES-1 human gastric epithelial cells. RAW 264.7 cells and GES-1 cells were cultured in 12-well plates for 24 h, 2 mL of free C6 and C6-labeled nanoparticles (ML-LA/C6 NPs and FU/ML-LA/C6 NPs) were added and incubated with the cells for 4 h, washed twice with PBS, 1×10 4 cells were collected, and the fluorescence intensity of C6 was measured by flow cytometry. The results are shown in Figure 9. In RAW 264.7 cells, the average fluorescence intensity of free C6 was 1.52×10 5 , ML-LA/C6 NPs was 2.01×10 5 , and FU/ML-LA/C6 NPs was 2.11×10 5 . Compared with free C6, ML-LA/C6 NPs and FU/ML-LA/C6 NPs significantly enhanced the ability to be taken up by both cells. FU/ML-LA/C6 NPs showed a higher cellular uptake rate than ML-LA/C6 NPs. The same trend of cellular uptake of the two nanoparticles was detected in GES-1 cells, further proving that ML-LA/C6 NPs and FU/ML-LA/C6 NPs can improve their ability to be taken up by cells.
实施例7. 双胍衍生物纳米粒对胞内菌的清除效果Example 7. Effect of biguanide derivative nanoparticles on the removal of intracellular bacteria
采用涂布平板法定量评价双胍衍生物纳米粒(根据实施例5制备)对胞内H. pylori的清除效果。将GES-1人胃上皮细胞和RAW 264.7巨噬细胞于细胞孔板中培养24 h,收集H. pylori菌悬液并加入孔板中与细胞共孵育,吸弃培养基并加入含庆大霉素的无双抗培养基杀灭未进入胞内的H. pylori,吸弃培养基并用无菌PBS洗涤。设置以下给药组别:游离MET、游离ML、游离ML+LA+EB、ML-LA NPs、ML-LA/EB NPs及FU/ML-LA/EB NPs,同种药物浓度在各组别中保持一致(即,MET为100 μg/mL、ML为100 μg/mL、LA为70 μg/mL、EB为17 μg/mL、FU为90 μg/mL)。每孔加入上述药物2 mL继续培养24 h。加入0.1%茶皂素溶液裂解细胞,收集细胞裂解液,待用。取部分细胞裂解液涂布平板,微需氧环境下37 ℃培养72 h后,采用平板计数法量化胞内H. pylori水平,结果如图10所示。在双胍衍生物ML处理后,两种细胞中的H. pylori水平均明显降低,并且低于盐酸二甲双胍处理后的胞内细菌水平。在ML+LA+EB混合药物组,胞内细菌数进一步减少,因此LA和EB的加入能与ML协同发挥杀灭细胞内细菌的作用。在RAW 264.7细胞中,ML-LA/EB NPs和FU/ML-LA /EB NPs的细胞内细菌数分别降低78%和87%,显示出比游离药物组更高的胞内菌杀灭能力,GES-1细胞中具有同样的降低胞内菌负荷趋势。由此可知,本发明的FU/ML-LA /EB NPs能明显增强药物的摄取,提高药物到达胞内水平而发挥杀灭胞内菌作用。The coating plate method was used to quantitatively evaluate the clearance effect of biguanide derivative nanoparticles (prepared according to Example 5) on intracellular H. pylori . GES-1 human gastric epithelial cells and RAW 264.7 macrophages were cultured in cell well plates for 24 h, H. pylori bacterial suspension was collected and added to the well plates for co-incubation with cells, the culture medium was aspirated and a medium without double antibiotics containing gentamicin was added to kill H. pylori that did not enter the cells, the culture medium was aspirated and washed with sterile PBS. The following dosing groups were set: free MET, free ML, free ML+LA+EB, ML-LA NPs, ML-LA/EB NPs and FU/ML-LA/EB NPs, and the concentration of the same drug was kept consistent in each group (i.e., MET was 100 μg/mL, ML was 100 μg/mL, LA was 70 μg/mL, EB was 17 μg/mL, and FU was 90 μg/mL). 2 mL of the above drugs were added to each well and cultured for 24 h. 0.1% tea saponin solution was added to lyse the cells, and the cell lysate was collected for standby use. Part of the cell lysate was coated on a plate, and after culturing at 37 °C for 72 h under a microaerobic environment, the plate counting method was used to quantify the intracellular H. pylori level, and the results are shown in Figure 10. After treatment with the biguanide derivative ML, the H. pylori levels in both cells were significantly reduced and lower than the intracellular bacterial levels after metformin hydrochloride treatment. In the ML+LA+EB mixed drug group, the number of intracellular bacteria was further reduced, so the addition of LA and EB can synergize with ML to kill intracellular bacteria. In RAW 264.7 cells, the number of intracellular bacteria of ML-LA/EB NPs and FU/ML-LA/EB NPs decreased by 78% and 87%, respectively, showing a higher intracellular bacterial killing ability than the free drug group, and the same trend of reducing intracellular bacterial load was found in GES-1 cells. It can be seen that the FU/ML-LA/EB NPs of the present invention can significantly enhance the uptake of drugs, increase the level of drugs reaching the intracellular level, and play a role in killing intracellular bacteria.
采用荧光染色法评价双胍衍生物纳米粒(根据实施例5制备)对胞内H. pylori的清除效果。收集H. pylori菌悬液并与CFDA-SE荧光染料孵育30 min后,离心收集沉淀并用无菌PBS洗涤三次,然后用无双抗的培养基重悬后加入种有GES-1人胃上皮细胞和RAW264.7巨噬细胞的细胞孔板中共同孵育。吸弃培养基并加入含庆大霉素的无双抗培养基杀灭未进入胞内的H. pylori,吸弃培养基并用无菌PBS洗涤,加入上述药液继续孵育24 h。去除含药液的培养基并用无菌PBS洗涤,分别用DAPI染料染细胞核及用DAD 99染料染溶酶体,采用激光扫描共聚焦显微镜观察胞内外H. pylori水平以评价双胍衍生物对其清除效果,结果如图11和图12所示。绿色荧光表示H. pylori,红色荧光表示细胞中的溶酶体,蓝色荧光表示细胞核。在模型组中,绿色荧光和红色荧光高度重叠,说明细菌被细胞摄取后大部分聚集于溶酶体内。在双胍衍生物ML处理后,两种细胞中的H. pylori水平均明显降低,并且绿色荧光强度明显比盐酸二甲双胍处理后更弱。在ML+LA+EB混合药物组,绿色荧光强度进一步减少。ML-LA/EB NPs和FU/ML-LA/EB NPs组显示出比游离药物组更低的绿色荧光强度,说明两者具有更高的胞内菌杀灭能力,其中FU/ML-LA/EB NPs组效果更为显著,与上述涂布平板法定量结果相一致。Fluorescence staining was used to evaluate the effect of biguanide derivative nanoparticles (prepared according to Example 5) on the removal of intracellular H. pylori . After collecting the H. pylori bacterial suspension and incubating it with CFDA-SE fluorescent dye for 30 min, the precipitate was collected by centrifugation and washed three times with sterile PBS, and then resuspended with a medium without double antibodies and added to a cell plate with GES-1 human gastric epithelial cells and RAW264.7 macrophages for co-incubation. The culture medium was discarded and a medium without double antibodies containing gentamicin was added to kill H. pylori that did not enter the cell. The culture medium was discarded and washed with sterile PBS, and the above-mentioned drug solution was added to continue incubation for 24 h. The culture medium containing the drug solution was removed and washed with sterile PBS, and the cell nucleus was stained with DAPI dye and the lysosome was stained with
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110414905.3A CN113354561B (en) | 2021-04-17 | 2021-04-17 | Biguanide derivatives and their use and formulations |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110414905.3A CN113354561B (en) | 2021-04-17 | 2021-04-17 | Biguanide derivatives and their use and formulations |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113354561A CN113354561A (en) | 2021-09-07 |
CN113354561B true CN113354561B (en) | 2023-03-28 |
Family
ID=77525299
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110414905.3A Active CN113354561B (en) | 2021-04-17 | 2021-04-17 | Biguanide derivatives and their use and formulations |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113354561B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118221560B (en) * | 2024-05-23 | 2024-07-26 | 南方医科大学 | A nano antibacterial compound and preparation method thereof |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2822464B1 (en) * | 2001-03-21 | 2004-08-06 | Lipha | BIGUANIDE DERIVATIVES AND THEIR THERAPEUTIC APPLICATIONS |
US9133110B2 (en) * | 2010-01-06 | 2015-09-15 | Hanall Biopharma Co., Ltd. | Biguanide derivative, preparation method thereof, and pharmaceutical composition containing same as an active ingredient |
US20130059916A1 (en) * | 2010-05-26 | 2013-03-07 | Stephane Rocchi | Biguanide compounds and its use for treating cancer |
CN104557944B (en) * | 2014-12-31 | 2017-05-31 | 北京瑞都医药科技有限公司 | A kind of hypoglycemic medicine and preparation method thereof |
CN104829497B (en) * | 2015-06-01 | 2017-07-18 | 上海仁力医药科技有限公司 | A kind of biguanide compound and its preparation method and application |
CN109928897B (en) * | 2019-04-01 | 2021-09-14 | 四川大学华西医院 | Biguanide derivatives for preventing and treating infarct diseases and application thereof |
-
2021
- 2021-04-17 CN CN202110414905.3A patent/CN113354561B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN113354561A (en) | 2021-09-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103228662B (en) | Preparation of rifaximin and application thereof | |
EP2760821B1 (en) | Choline salt of an anti-inflammatory substituted cyclobutenedione compound | |
EP3409666A2 (en) | Seca inhibitors and methods of making and using thereof | |
EP3383372B1 (en) | Solid dispersions comprising a sgc stimulator | |
US10752651B2 (en) | Antimicrobial compounds, compositions, and uses thereof | |
KR20010114225A (en) | Orally administered pharmaceutical formulations of benzimidazole derivatives and the method of preparing the same | |
CN113354561B (en) | Biguanide derivatives and their use and formulations | |
JP2003519632A (en) | A therapeutic agent for ischemia that suppresses apoptosis under ischemic conditions | |
US20240391944A1 (en) | Antimicrobial compounds, compositions, and uses thereof | |
US20230391727A1 (en) | Analogues of pentamidine and methods for treating infections | |
US11377468B2 (en) | Antimicrobial compounds, compositions, and uses thereof | |
WO2009103209A1 (en) | Stable s-(-)- nadifloxacin-l-arginine composition, its preparation method and use | |
TWI705814B (en) | Pharmaceutical composition and use thereof | |
US12030908B2 (en) | Antimicrobial compounds, compositions, and uses thereof | |
CN1321997C (en) | Application of stable thiabutyldine quinoline carboxylate in preparing anti-infective | |
WO2005070426A1 (en) | Freeze-dried (-)-pantoprazole preparation and (-)-pantoprazole injection | |
US20230000853A1 (en) | Pharmaceutical composition containing nitroxoline, nitroxoline tablet, preparation method therefor and use thereof | |
KR101944124B1 (en) | Pharmaceutical compositions | |
CN116650407A (en) | A kind of roxithromycin nasal in situ gel and its preparation method and application | |
CN110818684A (en) | A kind of inhibitor Lo-SH against Staphylococcus aureus virulence and biofilm formation and use thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |