[go: up one dir, main page]

CN113350577A - 3d打印复合水凝胶支架及其制备方法与无菌冻干支架 - Google Patents

3d打印复合水凝胶支架及其制备方法与无菌冻干支架 Download PDF

Info

Publication number
CN113350577A
CN113350577A CN202110661457.7A CN202110661457A CN113350577A CN 113350577 A CN113350577 A CN 113350577A CN 202110661457 A CN202110661457 A CN 202110661457A CN 113350577 A CN113350577 A CN 113350577A
Authority
CN
China
Prior art keywords
printing
composite hydrogel
solution
support
scaffold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110661457.7A
Other languages
English (en)
Inventor
曹晓东
戴旗远
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN202110661457.7A priority Critical patent/CN113350577A/zh
Publication of CN113350577A publication Critical patent/CN113350577A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08HDERIVATIVES OF NATURAL MACROMOLECULAR COMPOUNDS
    • C08H1/00Macromolecular products derived from proteins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/40Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • A61L27/44Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix
    • A61L27/446Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix with other specific inorganic fillers other than those covered by A61L27/443 or A61L27/46
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/52Hydrogels or hydrocolloids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/58Materials at least partially resorbable by the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/10Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing inorganic materials
    • A61L2300/102Metals or metal compounds, e.g. salts such as bicarbonates, carbonates, oxides, zeolites, silicates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/40Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
    • A61L2300/412Tissue-regenerating or healing or proliferative agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/60Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a special physical form
    • A61L2300/62Encapsulated active agents, e.g. emulsified droplets
    • A61L2300/624Nanocapsules

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Transplantation (AREA)
  • Epidemiology (AREA)
  • Dermatology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Public Health (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Biochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Materials For Medical Uses (AREA)

Abstract

本发明公开了一种3D打印复合水凝胶支架及其制备方法与无菌冻干支架,具体涉及到丝素、酪胺改性明胶和元素掺杂铜无机微纳米颗粒作为原材料进行3D打印制备一种促进血管化骨组织再生支架的制备方法及应用。该复合水凝胶支架有0.1~10wt%的元素掺杂铜无机微纳米颗粒、10~20wt%的酪胺改性明胶(Tyr‑Gel)和5~7wt%的再生丝素。本发明通过丝素的复合赋予支架良好的压缩强度和降解性能,通过元素掺杂铜无机微纳米颗粒的掺杂赋予支架促进血管新生和骨组织再生的活性,解决了元素掺杂铜无机微纳米颗粒难于直接进行3D打印和实现原位微量铜离子释放的问题。

Description

3D打印复合水凝胶支架及其制备方法与无菌冻干支架
技术领域
本发明涉及生物医用3D打印组织工程支架的技术领域,尤其是指一种能够促进血管化骨再生的3D打印复合水凝胶支架及其制备方法与无菌冻干支架。
背景技术
使用3D打印技术制备的组织工程骨具有高度的可设计性,能够通过结合医学影像程序技术、CAD和3D打印技术制备出具备高度匹配患者骨缺损的组织工程支架,并且支架的孔隙率、力学强度、生物学性能可以通过材料的选择设计和复合,打印支架的结构设计而实现,并且还可以避免由自体骨移植、同种异体骨移植导致的供体部位不足,供体部分发病率以及免疫排斥反应,因此在骨组织再生领域有宽广的应用潜力。已知支架的孔隙率、孔隙大小以及支架的壁厚对于血管和组织的长入有着明显的作用。
硅基纳米颗粒具有高的比表面积和丰富的表面硅羟基,当适量的硅基纳米颗粒复合到连续相的水凝胶中时,无机相与有机连续相之间由于比表面积增大和氢键形成导致的摩擦力增大,体系粘度增大,因此可以提高可打印性和保真度。同时无机颗粒的掺杂还可以有效提高材料的力学强度,使之更加符合骨植入物的力学要求。硅基纳米颗粒在缓慢降解的过程中释放出来的硅离子具有刺激细胞间隙通讯的作用,能够促进成血管相关生长因子如VEGF、bFGF和IGF的表达,促进毛细血管网络的出芽、发展、融合和成熟。
铜离子可以模拟低氧环境激活HIF-1通路促进成血管相关基因的表达,促进血管新生和组织再生修复。适宜浓度的微量铜离子可以直接促进骨髓间充质干细胞的成骨分化。因此将掺杂有铜元素的无机颗粒如Cu-BG、Cu-BG或天然的含铜无机微纳米颗粒,复合到水凝胶中能够兼顾生物相容性和生物活性,实现铜离子的原位释放,避免血清铜水平过高导致的生理毒性,能够发挥抗菌、实现成血管和成骨的耦合作用。
水凝胶是一种具有高含水量、呈三维网状交联结构的亲水类胶状聚合物材料,具有能够在水溶液中迅速溶胀至一平衡体积而不被溶解,并仍保持其形状和空间结构的特点。明胶是一种使用十分广泛的天然高分子,其分子链上具有细胞识别位点RGD序列,能够促进细胞的粘附、伸展和爬行,具有良好的生物相容性,通过对其进行分子结构的设计可以赋予材料适宜的降解速率、吸水和力学等特性如甲基丙烯酸化明胶(GelMA)。丝素蛋白是一种坚韧而有弹性的蛋白质,其大分子中存在结晶区和非结晶区,能够通过β-sheet构像转变形成纳米微晶从而提高整体的力学强度。
综上所述,针对目前骨缺损修复支架所存在的问题,提出一更加符合理想骨组织工程支架需求,可设计性强,制造方式先进,原材料获取简单,能够促进血管化骨组织再生的3D打印复合水凝胶支架十分重要。
发明内容
本发明的第一目的在于克服现有技术的缺点与不足,提供一种能够促进血管化骨再生的3D打印复合水凝胶支架,具有原材料易得、力学强度高、生物相容性好和生物活性高等优点,本发明通过丝素的复合赋予支架良好的压缩强度和降解性能,通过元素掺杂铜无机微纳米颗粒的掺杂赋予支架促进血管新生和骨组织再生的活性,解决了元素掺杂铜无机微纳米颗粒难于直接进行3D打印和实现原位微量铜离子释放的问题。
本发明的第二目的在于提供一种能够促进血管化骨再生的3D打印复合水凝胶支架的制备方法。
本发明的第三目的在于提供一种利用复合水凝胶支架制备的无菌冻干支架,可用于动物实验。
本发明的第一目的通过下述技术方案实现:一种能够促进血管化骨再生的3D打印复合水凝胶支架,该复合水凝胶支架有0.1~10wt%的元素掺杂铜无机微纳米颗粒、10~20wt%的酪胺改性明胶(Tyr-Gel)和5~7wt%的再生丝素。
进一步,所述元素掺杂铜无机微纳米颗粒为Cu-BG或Cu-MSN,且Cu元素在该无机微纳米颗粒中所占的质量分数为0.1~10%。
本发明的第二目的通过下述技术方案实现:一种能够促进血管化骨再生的3D打印复合水凝胶支架的制备方法,包括以下步骤:
1)将明胶溶于MES缓存溶液中,加入酪胺盐酸盐以及EDC/NHS常温反应后得到酪胺改性明胶溶液,冻干后得到酪胺改性明胶,将酪胺改性明胶溶解到再生丝素蛋白中得到混合溶液A;
2)将元素掺杂铜无机微纳米颗粒分散在去离子水溶液中,使用超声机超声,然后使用均质机高速均质,得到均匀分散的混合溶液B;
3)特定搅拌速率下,将混合溶液B逐渐滴加到混合溶液A中去,得到混合溶液C;
4)特定搅拌速率下,在混合溶液C中加入高浓度HRP水溶液,均匀搅拌得到混合溶液D,即打印墨水;
5)将混合溶液D置于恒温保存3~12h,使得打印墨水具有合适的粘度以支持打印;
6)将恒温保存稳定后的打印墨水转移到打印料筒中,按照设定程序打印,接受平台温度4~20℃,得到打印好的复合水凝胶支架。
本发明的第三目的通过下述技术方案实现:一种利用复合水凝胶支架制备的无菌冻干支架,首先,将打印好的复合水凝胶支架浸泡在H2O2溶液中,浸泡时间30min~2h,然后再将复合水凝胶支架浸泡在醇溶液中处理过夜,最后,将经过上述处理后的复合水凝胶支架冻干后使用伽马射线辐射灭菌,即可得到无菌冻干支架。
本发明与现有技术相比,具有如下优点与有益效果:
1、本发明所用材料为明胶和丝素均为天然可再生高分子,其来源广泛易获取,水凝胶的高含水量细胞的生长和代谢提供了更为相似的环境。
2、本发明的制备过程简单易操作,制备条件温和。
3、本发明将微纳米的元素掺杂铜无机纳米颗粒均匀分散在水凝胶基质当中,克服了微纳米颗粒的团聚,改善了墨水的打印性和支架的力学性能。
4、本发明制备的复合水凝胶支架能够实现原位铜离子的释放,有效促进血管的新生和骨组织的再生。
5、本发明制备的复合水凝胶支架具有良好的力学性能和降解性能,能够在组织再生的期间起到支持作用。
附图说明
图1为不同Cu-BG复合水凝胶支架的电动体式显微镜图。
图2为不同Cu-BG复合水凝胶支架的扫描电镜图。
图3为不同Cu-BG复合水凝胶支架的压缩曲线图。
图4为不同Cu-BG复合水凝胶支架的降解曲线图。
图5为不同Cu-BG复合水凝胶支架培养内皮细胞的激光共聚焦图片。
具体实施方式
下面结合多个实施例对本发明作进一步详细的描述,但本发明的实施方式不限于此。
实施例1
5.4g一水合吗啉乙磺酸溶解在500ml去离子水中,搅拌溶解后加热至50℃,加入10g猪皮来源明胶,冷气至室温后,加入5g酪胺盐酸盐,加入0.74g/0.22g(EDC/NHS)以活化羧基,反应12h得到酪胺改性明胶,透析4d后冻干备用。将溶解于去离子水中的酪胺改性明胶使用核磁氢谱分析其化学结构,可以观察到相对于没有改性的明胶,属于酪胺基团的特征峰出现在酪胺改性明胶的核磁氢谱曲线上表明酪胺基团的修饰成功。
将脱胶蚕丝溶解在9.3M的溴化锂溶液中,60℃煮4h,然后转移到8000~14000的透析袋中使用去离子水透析1d,换水4次,适当稀释后得到6%的丝素水溶液。
将0.005gCu-BG溶解在5ml去离子水中,使用超声仪超声30min×3次,然后使用高速均质机10krpm高速均质5min,得到均匀的Cu-BG水溶液。
将0.5gTyr-Gel溶解在10ml的6%SF溶液中,60℃下加热使之溶解,然后逐滴加上述均匀的Cu-BG溶液,根据所得混合溶液的体积,滴加100μL3000U/L的HRP水溶液。中速搅拌使之均匀后在29℃水浴锅中保温3h即可用于3D打印。
将上述打印墨水转移到打印料筒中去,打印头设置保温温度29度,打印压力0.8bar,打印速率12mm/s,打印针头内径260μm,打印模型为R10mmH3的圆柱支架,纤维间距500μm,接受平台温度为4℃。
打印完成后将支架连同打印垫板转移到5℃冰的5mM H2O2溶液中浸泡30min,然后小心从垫板上移除支架,转移到75%甲醇溶液中处理过夜,得到的支架使用去离子水浸泡以置换甲醇,然后将支架冻干并送伽马射线辐照灭菌。
实施例2
5.4g一水合吗啉乙磺酸溶解在500ml去离子水中,搅拌溶解后加热至50℃,加入10g猪皮来源明胶,冷气至室温后,加入5g酪胺盐酸盐,加入0.74g/0.22g(EDC/NHS)以活化羧基,反应24h得到酪胺改性明胶,透析4d后冻干备用。
将脱胶蚕丝溶解在9.3M的溴化锂溶液中,60℃煮4h,然后转移到8000~14000的透析袋中使用去离子水透析1d,换水4次,适当稀释后得到5%的丝素水溶液。
将0.1g Cu-MSN溶解在5ml去离子水中,使用超声仪超声30min×3次,然后使用高速均质机均质使之分散,得到均匀的Cu-MSN水溶液。
将1.5g Tyr-Gel溶解在10ml的6%SF溶液中,60℃下加热使之溶解,然后逐滴加上述均匀的Cu-MSN溶液,根据所得混合溶液的体积,滴加100μL3000U/L的HRP水溶液。中速搅拌使之均匀后在29℃水浴锅中保温3h即可用于3D打印。
将上述打印墨水转移到打印料筒中去,打印头设置保温温度29度,打印压力0.8bar,打印速率12mm/s,打印针头内径260μm,打印模型为R10mmH3的圆柱支架,纤维间距500μm,接受平台温度为4℃。
打印完成后将支架连同打印垫板转移到5℃冰的5mM H2O2溶液中浸泡30min,然后小心从垫板上移除支架,转移到75%甲醇溶液中处理过夜,得到的支架使用去离子水浸泡以置换甲醇,然后将支架冻干并送伽马射线辐照灭菌。
实施例3
5.4g一水合吗啉乙磺酸溶解在500ml去离子水中,搅拌溶解后加热至50℃,加入10g猪皮来源明胶,冷气至室温后,加入5g酪胺盐酸盐,加入0.74g/0.22g(EDC/NHS)以活化羧基,反应12h得到酪胺改性明胶,透析4d后冻干备用。
将脱胶蚕丝溶解在9.3M的溴化锂溶液中,60℃煮8h,然后转移到8000~14000的透析袋中使用去离子水透析1d,换水4次,得到7%的丝素水溶液。
将0.5gCu-BG溶解在5ml去离子水中,使用超声仪超声30min×3次,然后使用高速均质机10krpm高速均质5min,得到均匀的Cu-BG水溶液。
将3gTyr-Gel溶解在14ml的7%SF溶液中,60℃下加热使之溶解,然后逐滴加上述均匀的Cu-BG溶液,根据所得混合溶液的体积,滴加400μL3000U/L的HRP水溶液。中速搅拌使之均匀后在29℃水浴锅中保温3h即可用于3D打印。
将上述打印墨水转移到打印料筒中去,打印头设置保温温度29度,打印压力2.0bar,打印速率25mm/s,打印针头内径260μm,打印模型为R10mmH3的圆柱支架,纤维间距500μm,接受平台温度为4℃。
打印完成后将支架连同打印垫板转移到5℃的5mM H2O2溶液中浸泡30min,然后小心从垫板上移除支架,转移到75%甲醇溶液中处理过夜,得到的支架使用去离子水浸泡以置换甲醇,然后将支架冻干并送伽马射线辐照灭菌。
实施例4(不同Cu-BG掺杂复合水凝胶支架的微观形貌表征)
使用不同的Cu-BG以1%的质量分数进行制备打印墨水进而得到3D打印复合水凝胶支架,使其溶胀完全。再于-20℃条件下冰冻,使用冻干机冻干水凝胶,使用体式显微镜观察支架的孔隙结构,如图1所示。使用手术刀片切开剖面,用导电胶固定在电镜台上,喷金60s,用扫描电子显微镜观察各组水凝胶支架的截面,以观察水凝胶支架的内部形貌与孔径规律。3D打印复合水凝胶支架的SEM照片如图2所示。结果表示,复合水凝胶支架纤维粗约200μm,孔径约为500μm。
实施例5(不同Cu-BG掺杂复合水凝胶支架的力学性能测试)
使用不同的Cu-BG以1%的质量分数进行制备打印墨水进而得到3D打印复合水凝胶支架,使其溶胀完全。使用万能实验机对在不同Cu-BG掺杂复合水凝胶溶胀完全后进行压缩性能测试,所得到的压缩曲线如图3所示。结果表示,掺杂了SF的水凝胶支架的力学性能显著提升,压缩强度和模量都有明显提高。
实施例6(不同Cu-BG掺杂复合水凝胶支架的降解性能测试)
使用不同的Cu-BG以1%的质量分数进行制备打印墨水进而得到3D打印复合水凝胶支架,根据支架中的生物活性玻璃质量换算浸泡在1mg/ml的模拟体液当中,放置在120rpm,37℃的烘箱当中进行降解实验,隔天换液,持续进行21天,所得到的降解曲线如图4所示。结果表示,相比于纯明胶支架,复合有纯明胶的组别的降解速率明显减缓,21天时的质量损失率约在30%左右。
实施例6(不同Cu-BG掺杂复合水凝胶支架的细胞相容性实验)
将冻干辐照灭菌后的支架放置到48孔板中,使用基础培养基复水两次,一次30min,然后每孔支架上种植2×105人脐静脉内皮细胞将水凝胶注射到48孔板中,置于37℃培养箱2h,加入完全培养基,并每两天换一次液。
对于培养到1,3,7天的支架进行细胞活死染色使用激光共聚焦显微镜观察,共聚焦照片如图5所示。结果表示,各组复合水凝胶支架在培养了不同天数之后,2Cu-BG支架上内皮细胞粘附增殖的数量最多,表现出最好的生物相容性。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (4)

1.一种能够促进血管化骨再生的3D打印复合水凝胶支架,其特征在于,该复合水凝胶支架有0.1~10wt%的元素掺杂铜无机微纳米颗粒、10~20wt%的酪胺改性明胶和5~7wt%的再生丝素。
2.根据权利要求1所述的一种能够促进血管化骨再生的3D打印复合水凝胶支架,其特征在于,所述元素掺杂铜无机微纳米颗粒为Cu-BG或Cu-MSN,且Cu元素在该无机微纳米颗粒中所占的质量分数为0.1~10%。
3.权利要求1或2所述3D打印复合水凝胶支架的制备方法,其特征在于,包括以下步骤:
1)将明胶溶于MES缓存溶液中,加入酪胺盐酸盐以及EDC/NHS常温反应后得到酪胺改性明胶溶液,冻干后得到酪胺改性明胶,将酪胺改性明胶溶解到再生丝素蛋白中得到混合溶液A;
2)将元素掺杂铜无机微纳米颗粒分散在去离子水溶液中,使用超声机超声,然后使用均质机高速均质,得到均匀分散的混合溶液B;
3)特定搅拌速率下,将混合溶液B逐渐滴加到混合溶液A中去,得到混合溶液C;
4)特定搅拌速率下,在混合溶液C中加入高浓度HRP水溶液,均匀搅拌得到混合溶液D,即打印墨水;
5)将混合溶液D置于恒温保存3~12h,使得打印墨水具有合适的粘度以支持打印;
6)将恒温保存稳定后的打印墨水转移到打印料筒中,按照设定程序打印,接受平台温度4~20℃,得到打印好的复合水凝胶支架。
4.利用权利要求3所述复合水凝胶支架制备的无菌冻干支架,其特征在于:首先,将打印好的复合水凝胶支架浸泡在H2O2溶液中,浸泡时间30min~2h,然后再将复合水凝胶支架浸泡在醇溶液中处理过夜,最后,将经过上述处理后的复合水凝胶支架冻干后使用伽马射线辐射灭菌,即可得到无菌冻干支架。
CN202110661457.7A 2021-06-15 2021-06-15 3d打印复合水凝胶支架及其制备方法与无菌冻干支架 Pending CN113350577A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110661457.7A CN113350577A (zh) 2021-06-15 2021-06-15 3d打印复合水凝胶支架及其制备方法与无菌冻干支架

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110661457.7A CN113350577A (zh) 2021-06-15 2021-06-15 3d打印复合水凝胶支架及其制备方法与无菌冻干支架

Publications (1)

Publication Number Publication Date
CN113350577A true CN113350577A (zh) 2021-09-07

Family

ID=77534241

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110661457.7A Pending CN113350577A (zh) 2021-06-15 2021-06-15 3d打印复合水凝胶支架及其制备方法与无菌冻干支架

Country Status (1)

Country Link
CN (1) CN113350577A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116173308A (zh) * 2023-02-27 2023-05-30 苏州大学 一种控释金属离子的可注射丝蛋白水凝胶及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150307728A1 (en) * 2012-11-27 2015-10-29 Tufts University Biopolymer-based inks and use thereof
CN106806943A (zh) * 2016-03-31 2017-06-09 中国科学院上海硅酸盐研究所 原位成型可注射生物活性复合水凝胶及其制备方法和应用
CN109251323A (zh) * 2018-07-25 2019-01-22 华南理工大学 一种丝素蛋白-明胶双交联水凝胶及其制备方法
CN110201225A (zh) * 2019-05-06 2019-09-06 华南理工大学 用于软骨修复的3d打印丝素/明胶支架及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150307728A1 (en) * 2012-11-27 2015-10-29 Tufts University Biopolymer-based inks and use thereof
CN106806943A (zh) * 2016-03-31 2017-06-09 中国科学院上海硅酸盐研究所 原位成型可注射生物活性复合水凝胶及其制备方法和应用
CN109251323A (zh) * 2018-07-25 2019-01-22 华南理工大学 一种丝素蛋白-明胶双交联水凝胶及其制备方法
CN110201225A (zh) * 2019-05-06 2019-09-06 华南理工大学 用于软骨修复的3d打印丝素/明胶支架及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ALESSANDRA BARI: ""Copper-containing mesoporous bioactive glass nanoparticles as multifunctional agent for bone regeneration"", 《ACTA BIOMATERIALIA》, 12 April 2017 (2017-04-12), pages 493 - 504, XP085034292, DOI: 10.1016/j.actbio.2017.04.012 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116173308A (zh) * 2023-02-27 2023-05-30 苏州大学 一种控释金属离子的可注射丝蛋白水凝胶及其制备方法

Similar Documents

Publication Publication Date Title
Razavi et al. Three‐dimensional cryogels for biomedical applications
Xu et al. A moldable thermosensitive hydroxypropyl chitin hydrogel for 3D cartilage regeneration in vitro and in vivo
JP2022078243A (ja) インビトロ培養及び移植のための組織構築物の生理学的3dバイオプリンティングのためのバイオガム及び植物性ガムハイドロゲルバイオインク
CN103877617B (zh) 可注射蚕丝素蛋白-海藻酸盐双交联水凝胶及其制备方法和使用方法
CN103877616B (zh) 一种软骨组织工程修复支架及其制备方法
Sahranavard et al. Three-dimensional bio-printing of decellularized extracellular matrix-based bio-inks for cartilage regeneration: a systematic review
CN112980001B (zh) 一种胶原蛋白复合透明质酸凝胶、细胞外基质仿生材料及制备方法
Wang et al. Elastic fiber-reinforced silk fibroin scaffold with a double-crosslinking network for human ear-shaped cartilage regeneration
CN111282021B (zh) 半月板复合支架及其制备方法
CN112972760A (zh) 一种负载内皮细胞外基质的3d打印骨缺损修复支架及其制备方法
CN111228574A (zh) 组织工程半月板支架及其制备方法
CN115382020B (zh) 基于人源脱细胞基质的生物墨水及其制备方法与应用
Wang et al. One-step fabrication of cell sheet-laden hydrogel for accelerated wound healing
CN114904056B (zh) 一种基于人胎盘脱细胞基质的复合水凝胶及其制备方法
CN111166937A (zh) 脱细胞细胞外基质及其制备方法和生物墨水
CN102813961A (zh) 一种含有亚微米级透明质酸微球的注射凝胶与制备方法
Tamay et al. Bioinks—materials used in printing cells in designed 3D forms
CN113082295A (zh) 一种基于皮肤源脱细胞基质衍生支架及其构建方法
CN115212353B (zh) 一种生物支架及其制备方法与应用
CN108992709B (zh) 一种脱细胞神经基质材料及其制备方法和应用
JP6240997B2 (ja) ガラス化後のハイドロゲル膜の製造方法、ハイドロゲル材料の製造方法、ガラス化後のハイドロゲル膜、ガラス化後のハイドロゲル膜の乾燥体および細胞シート
CN111450319A (zh) 一种仿生的预脉管化材料及其制备方法和应用
CN113350577A (zh) 3d打印复合水凝胶支架及其制备方法与无菌冻干支架
CN112773932A (zh) 一种具有定向孔结构的促血管化组织修复材料及其制备方法和应用
CN101690830B (zh) 组织工程用仿生软骨细胞外基质的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20210907