CN113333976B - Tungsten carbide powder core wire double-induction and electric arc composite heating material increasing device and method - Google Patents
Tungsten carbide powder core wire double-induction and electric arc composite heating material increasing device and method Download PDFInfo
- Publication number
- CN113333976B CN113333976B CN202110589031.5A CN202110589031A CN113333976B CN 113333976 B CN113333976 B CN 113333976B CN 202110589031 A CN202110589031 A CN 202110589031A CN 113333976 B CN113333976 B CN 113333976B
- Authority
- CN
- China
- Prior art keywords
- tungsten carbide
- core wire
- carbide powder
- heating
- powder core
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000010438 heat treatment Methods 0.000 title claims abstract description 195
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 title claims abstract description 124
- 239000000843 powder Substances 0.000 title claims abstract description 111
- 238000000034 method Methods 0.000 title claims abstract description 38
- 239000000463 material Substances 0.000 title claims abstract description 25
- 239000002131 composite material Substances 0.000 title claims abstract description 21
- 238000010891 electric arc Methods 0.000 title abstract 2
- 230000006698 induction Effects 0.000 claims abstract description 134
- 229910052751 metal Inorganic materials 0.000 claims abstract description 77
- 239000002184 metal Substances 0.000 claims abstract description 77
- 230000000996 additive effect Effects 0.000 claims abstract description 72
- 239000000654 additive Substances 0.000 claims abstract description 66
- 238000009529 body temperature measurement Methods 0.000 claims abstract description 34
- 230000008569 process Effects 0.000 claims abstract description 17
- 230000009977 dual effect Effects 0.000 claims description 75
- 238000003466 welding Methods 0.000 claims description 23
- 238000004519 manufacturing process Methods 0.000 claims description 11
- 238000005259 measurement Methods 0.000 claims description 11
- 239000000919 ceramic Substances 0.000 claims description 9
- 239000011248 coating agent Substances 0.000 claims description 7
- 238000000576 coating method Methods 0.000 claims description 7
- 238000009413 insulation Methods 0.000 claims description 7
- 230000001681 protective effect Effects 0.000 claims description 5
- 230000001939 inductive effect Effects 0.000 claims 1
- 239000010410 layer Substances 0.000 abstract description 45
- 239000011229 interlayer Substances 0.000 abstract description 4
- 230000008018 melting Effects 0.000 abstract description 4
- 238000002844 melting Methods 0.000 abstract description 4
- 239000011159 matrix material Substances 0.000 abstract description 3
- 230000004927 fusion Effects 0.000 abstract description 2
- 238000005336 cracking Methods 0.000 abstract 1
- 230000001360 synchronised effect Effects 0.000 abstract 1
- 238000005253 cladding Methods 0.000 description 4
- 230000007547 defect Effects 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000010894 electron beam technology Methods 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 229910001566 austenite Inorganic materials 0.000 description 2
- 238000003763 carbonization Methods 0.000 description 2
- 238000004372 laser cladding Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 229910000859 α-Fe Inorganic materials 0.000 description 2
- 238000007664 blowing Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 230000008676 import Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000005272 metallurgy Methods 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical group [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K28/00—Welding or cutting not covered by any of the preceding groups, e.g. electrolytic welding
- B23K28/02—Combined welding or cutting procedures or apparatus
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K10/00—Welding or cutting by means of a plasma
- B23K10/02—Plasma welding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K9/00—Arc welding or cutting
- B23K9/24—Features related to electrodes
- B23K9/28—Supporting devices for electrodes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K9/00—Arc welding or cutting
- B23K9/32—Accessories
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y10/00—Processes of additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y30/00—Apparatus for additive manufacturing; Details thereof or accessories therefor
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- General Induction Heating (AREA)
Abstract
Description
技术领域technical field
本发明属于电弧增材制造技术领域,主要涉及一种碳化钨粉芯丝材双感应与电弧复合加热增材装置及方法。The invention belongs to the technical field of arc additive manufacturing, and mainly relates to a double induction and arc composite heating additive device and method for tungsten carbide powder core wire.
背景技术Background technique
碳化钨作为硬质合金由于其具有硬度高、耐磨、强度和韧性较好、耐热、耐腐蚀等一系列优良性能,特别是它的高硬度和耐磨性,广泛应用于军工、航天航空、机械加工、冶金、石油钻井、矿山工具、电子通讯、建筑等领域。然而由于其具有热膨胀系数大、温度敏感性强的特点,具有脆性高、韧性差的缺点,导致其在电弧堆敷易出现裂纹、缩孔、熔合不良等缺陷,更无法实现多层的连续增材制造。目前,碳化钨的增材多选用激光或电子束粉材为主,这二种方法虽然可以均可以实现碳化钨粉末增材制造,但均具有增材效率低、增材件的致密度不高、成型精度差的不足。As a cemented carbide, tungsten carbide is widely used in military industry, aerospace industry due to its high hardness, wear resistance, good strength and toughness, heat resistance, corrosion resistance and a series of excellent properties, especially its high hardness and wear resistance. , machining, metallurgy, oil drilling, mining tools, electronic communications, construction and other fields. However, due to its characteristics of large thermal expansion coefficient and strong temperature sensitivity, it has the shortcomings of high brittleness and poor toughness, which leads to defects such as cracks, shrinkage cavities, and poor fusion in arc deposition, and it is impossible to achieve multi-layer continuous growth. material manufacturing. At present, laser or electron beam powder materials are the main materials for tungsten carbide additive materials. Although these two methods can realize additive manufacturing of tungsten carbide powders, they both have low additive efficiency and low density of additive parts. , The lack of poor molding accuracy.
专利《一种硬质合金零件的制造方法》(申请号:201811006376.8)公布了一种硬质合金激光扫描增材的方法,其通过高能束扫描使底板处于较高温度状态,降低硬质合金零件的成型应力,从而减小它的开裂倾向。但是该方法在对底板进行预热时无法控制预热温度、设备成本相对较高,同时由于其使用的是粉末,材料的利用率较低,浪费较严重,成型件的致密度不高。专利《激光熔覆碳化钨陶瓷颗粒增强金属基涂层及其加工方法》(申请号:201510601351.2)公布了一种采用激光熔覆的方法制备碳化钨陶瓷颗粒增强金属基涂层的方法。该方法实现了制备碳化钨涂层的制备,然而涂层的表面成型较差、整体致密度也不高。而利用粉芯碳化钨丝材电弧增材制造代替激光或电子束粉末为原材料的增材制造,不但避免了粉末增材中吹粉现象,而且设备成本低、增材效率高、工艺简化、成型件致密度高的优点。The patent "Manufacturing Method of Cemented Carbide Parts" (application number: 201811006376.8) discloses a method of laser scanning for cemented carbide parts, which makes the base plate in a higher temperature state through high-energy beam scanning, reducing the reduction of cemented carbide parts forming stress, thereby reducing its tendency to crack. However, this method cannot control the preheating temperature when preheating the bottom plate, and the equipment cost is relatively high. At the same time, because it uses powder, the utilization rate of the material is low, the waste is serious, and the compactness of the molded part is not high. The patent "Laser Cladding Tungsten Carbide Ceramic Particle Reinforced Metal-Based Coating and Its Processing Method" (application number: 201510601351.2) discloses a method for preparing tungsten carbide ceramic particle reinforced metal-based coating by laser cladding. The method realizes the preparation of the tungsten carbide coating, but the surface of the coating is poorly formed and the overall density is not high. The use of powder-core tungsten carbide wire arc additive manufacturing instead of laser or electron beam powder as the raw material for additive manufacturing not only avoids the phenomenon of powder blowing in powder additive, but also has low equipment cost, high additive efficiency, process simplification, and molding. The advantage of high density.
发明内容SUMMARY OF THE INVENTION
本发明旨在提供一种碳化钨粉芯丝材双感应与电弧复合加热增材装置及方法,能够有效降低碳化钨粉芯丝材增材过程中的裂纹倾向,提升增材构件的成型内部组织的致密度,增强增材构件质量和提高增材成型效率。The present invention aims to provide a dual induction and arc composite heating additive device and method for tungsten carbide powder core wire, which can effectively reduce the tendency of cracks in the process of adding tungsten carbide powder core wire, and improve the forming internal structure of the additive component. density, enhance the quality of additive components and improve the efficiency of additive molding.
为了实现上述的目的,本发明采取的技术方案为:In order to achieve the above-mentioned purpose, the technical scheme adopted by the present invention is:
一种碳化钨粉芯丝材双感应与电弧复合加热增材装置,由碳化钨粉芯丝材感应加热模块、提升式感应加热模块、温度传感控制模块、双感应加热控制仪以及触屏自动控制平台组成。A tungsten carbide powder core wire dual induction and arc composite heating additive device, which is composed of a tungsten carbide powder core wire induction heating module, a lifting induction heating module, a temperature sensing control module, a dual induction heating controller and a touch screen automatic heating module. Control platform composition.
碳化钨粉芯丝材感应加热模块由高频电源I、绝缘陶瓷管、丝材感应线圈、隔热板、保护壳组成,高频电源I给丝材感应线圈提供高频电流,高频感应加热通过绝缘陶瓷管的碳化钨粉芯丝材,其启动和停止经由机器人控制柜发送信号给双感应加热功率控制仪加以控制;The tungsten carbide powder core wire induction heating module is composed of a high frequency power supply I, an insulating ceramic tube, a wire induction coil, a heat shield, and a protective shell. The high frequency power supply I provides high frequency current to the wire induction coil, and high frequency induction heating Through the tungsten carbide powder core wire of the insulating ceramic tube, its start and stop are controlled by sending signals to the dual induction heating power controller through the robot control cabinet;
提升式感应加热模块由高频电源II、金属感应加热线圈、气动装置和线圈提升控制盒构成,高频电源II给金属感应线圈提供高频电流,通过高频感应加热前层金属,其启动和停止经由机器人控制柜发送信号给双感应加热功率控制仪加以控制;金属感应加热线圈的提升经由机器人控制柜发送信号给线圈提升控制盒加以控制,再通过气动装置调整气压控制实现;The lifting induction heating module is composed of a high frequency power supply II, a metal induction heating coil, a pneumatic device and a coil lifting control box. Stop sending signals through the robot control cabinet to the dual induction heating power controller for control; the lifting of the metal induction heating coil sends a signal to the coil lifting control box through the robot control cabinet for control, and then adjusts the air pressure control through the pneumatic device;
温度传感控制模块由红外温度传感器I、红外温度传感器II和双温测控仪,双温测控仪同时检测靠近电弧位置的碳化钨粉芯丝材和前层金属的温度;The temperature sensing control module consists of infrared temperature sensor I, infrared temperature sensor II and dual temperature measurement and control instruments. The dual temperature measurement and control instruments simultaneously detect the temperature of the tungsten carbide powder core wire and the front layer metal near the arc position;
触屏自动控制平台显示双温测控仪测量的碳化钨粉芯丝材和前层金属的温度信息、高频电源I和高频电源II的状态以及金属感应线圈的提升状态信息等。The touch-screen automatic control platform displays the temperature information of the tungsten carbide powder core wire and the front layer metal measured by the dual temperature measurement and control instrument, the status of the high-frequency power supply I and the high-frequency power supply II, and the lifting status information of the metal induction coil.
其特殊之处在于:所述红外温度传感器I、红外温度传感器II与等离子焊枪同轴放置,共同固定在于机器人末端连接的机械支架上,红外温度传感器I与等离子焊枪同轴放置平行放置,红外温度传感器II与焊枪垂直方向的夹角范围为30°~60°,通过关节调节实现;所述金属感应加热线圈的固定端与气动装置相连,金属感应加热线圈通过绝热套筒穿过机械支架,气动装置带动金属感应加热线圈提升与下降,绝热套筒的直径为10~30mm,套筒内壁包覆一层绝热防滑涂层。Its special feature is: the infrared temperature sensor I and the infrared temperature sensor II are placed coaxially with the plasma welding torch, and are jointly fixed on the mechanical bracket connected to the end of the robot. The infrared temperature sensor I and the plasma welding torch are placed coaxially and parallel. The included angle between the sensor II and the vertical direction of the welding torch ranges from 30° to 60°, which is realized by joint adjustment; the fixed end of the metal induction heating coil is connected to the pneumatic device, and the metal induction heating coil passes through the mechanical support through the heat insulation sleeve, and the pneumatic The device drives the metal induction heating coil to lift and lower, the diameter of the heat insulating sleeve is 10-30mm, and the inner wall of the sleeve is covered with a layer of heat insulating anti-skid coating.
基于上述的一种碳化钨粉芯丝材双感应与电弧复合加热增材装置,本发明还提供了一种利用上述装置进行碳化钨粉芯丝材增材的方法,具体步骤如下:Based on the above-mentioned dual-induction and arc composite heating and additive device for tungsten carbide powder core wire, the present invention also provides a method for using the above device to add material to tungsten carbide powder core wire. The specific steps are as follows:
步骤1:选择好碳化钨粉芯丝材的等离子弧增材工艺参数后,机器人控制柜与触屏自动控制平台开始启动;Step 1: After selecting the plasma arc additive process parameters of the tungsten carbide powder core wire, the robot control cabinet and the touch screen automatic control platform start to start;
步骤2:首先触屏自动控制平台通过与之相连的机器人控制柜发送控制信号,机器人控制柜通过双感应加热功率控制仪同时启动高频电源I和高频电源II,按照设定的感应加热频率和加热电流分别加热碳化钨粉芯丝材和前层金属;同时由触屏自动控制平台通过与之相连的双温测控仪分别启动红外温度传感器I和红外温度传感器II,开始采集碳化钨粉芯丝材和前层金属的温度信息,温度信息同时发送到触屏自动控制平台上的显示屏进行实时显示;Step 2: First, the touch-screen automatic control platform sends a control signal through the robot control cabinet connected to it. The robot control cabinet simultaneously activates the high-frequency power supply I and the high-frequency power supply II through the dual induction heating power controller, according to the set induction heating frequency. The tungsten carbide powder core wire and the front layer metal are heated respectively with the heating current; at the same time, the touch screen automatic control platform activates the infrared temperature sensor I and the infrared temperature sensor II through the dual temperature measurement and control instrument connected to it, and starts to collect the tungsten carbide powder core. The temperature information of the wire and the front layer metal, the temperature information is simultaneously sent to the display screen on the touch screen automatic control platform for real-time display;
步骤3:根据触屏自动控制平台设置的碳化钨粉芯丝材的预定加热温度T1和前层金属预定的加热温度T2,当红外温度传感器I检测到碳化钨粉芯丝材达到预定加热温度T1时,触屏自动控制平台通过与之相连的双感应加热功率控制仪,发送控制信号给高频电源I,实时调整感应电流,使得碳化钨粉芯丝材温度维持在T1;同时当红外温度传感器II11检测到前层金属1达到预定加热温度T2时,双温测控仪发送开关信号给机器人控制柜,机器人控制柜通过双感应加热功率控制仪关闭高频电源II,停止加热,然后控制与之相连的线圈提升控制盒调整气动装置的气压,气动装置带动金属加热线圈通过绝热套筒沿着焊枪垂直方向提升预定高度H1;Step 3 : According to the predetermined heating temperature T1 of the tungsten carbide powder core wire and the predetermined heating temperature T2 of the front layer metal set according to the automatic control platform of the touch screen, when the infrared temperature sensor I detects that the tungsten carbide powder core wire reaches the predetermined heating temperature When the temperature is T1, the touch screen automatic control platform sends a control signal to the high-frequency power supply I through the double induction heating power controller connected to it, and adjusts the induced current in real time, so that the temperature of the tungsten carbide powder core wire is maintained at T1 ; When the infrared temperature sensor II11 detects that the
步骤4:等离子焊枪按照预定的工艺参数引燃电弧后,触屏自动控制平台发送信号给机器人控制柜,控制送丝装置按照预定的送丝速度送入电弧熔化增材,同时红外温度传感器I在线实时检测到碳化钨粉芯丝材加热温度,把丝材温度测量数据发送给触屏自动控制平台加以显示,并通过与之相连的双感应加热功率控制仪,发送控制信号给高频电源I,实时调整感应电流,使得碳化钨粉芯丝材温度维持在预设温度T1,另一方面,电弧引燃后,触屏自动控制平台发送信号给机器人控制柜,通过双温测控仪关闭红外温度传感器II11的测量;Step 4: After the plasma torch ignites the arc according to the predetermined process parameters, the touch-screen automatic control platform sends a signal to the robot control cabinet, and controls the wire feeding device to feed the arc to melt the additive according to the predetermined wire feeding speed. At the same time, the infrared temperature sensor I is online The heating temperature of tungsten carbide powder core wire is detected in real time, the wire temperature measurement data is sent to the touch screen automatic control platform for display, and the control signal is sent to the high-frequency power supply I through the double-induction heating power controller connected to it. The induced current is adjusted in real time, so that the temperature of the tungsten carbide powder core wire is maintained at the preset temperature T 1 . On the other hand, after the arc is ignited, the touch screen automatic control platform sends a signal to the robot control cabinet, and the infrared temperature is turned off through the dual temperature measuring and control instrument. Measurement of sensor II11;
步骤5:按照设定机器人程序,完成单道增材,在电弧熄灭前,触屏自动控制平台发送信号给机器人控制柜,控制送丝装置停止送丝,然后通过机器人控制柜,发送控制信号给双感应加热功率控制仪,关闭高频电源I,停止加热丝材,并发送控制信号给线圈提升控制盒调整气动装置的气压,气动装置带动金属加热线圈通过绝热套筒沿着焊枪垂直方向下降恢复到原来位置,也通过双温测控仪关闭红外温度传感器I的测量;Step 5: Complete the single-channel additive process according to the set robot program. Before the arc is extinguished, the touch-screen automatic control platform sends a signal to the robot control cabinet, controls the wire feeding device to stop wire feeding, and then sends a control signal to the robot control cabinet through the robot control cabinet. Double induction heating power controller, turn off the high-frequency power supply I, stop heating the wire, and send a control signal to the coil lift control box to adjust the air pressure of the pneumatic device. To the original position, also close the measurement of the infrared temperature sensor I through the dual temperature measurement and control instrument;
步骤6:按照上述相关步骤,按照机器人电弧增材程序重复执行,直至完成预定尺寸构件的增材。Step 6: According to the above relevant steps, the robot arc additive program is repeated until the additive of the predetermined size component is completed.
优选的,碳化钨粉芯丝材的预热温度为300-800℃。Preferably, the preheating temperature of the tungsten carbide powder core wire is 300-800°C.
优选的,前层金属的预热温度为80~250℃。Preferably, the preheating temperature of the front layer metal is 80-250°C.
优选的,线圈提升的高度H1为40~80mm。Preferably, the height H 1 of the coil lifting is 40-80 mm.
优选的,高频电源I的加热频率f1为80~120KHz,加热电流I1为50~160A,高频电源II的加热频率f2为160~300KHz,加热电流I2为150~300A。Preferably, the heating frequency f1 of the high-frequency power supply I is 80-120KHz, the heating current I1 is 50-160A, the heating frequency f2 of the high-frequency power supply II is 160-300KHz, and the heating current I2 is 150-300A.
本发明对于现有技术相比具有以下显著优点:①本发明提出的一种碳化钨粉芯丝材双感应与电弧复合加热增材装置,采用等离子弧熔化碳化钨粉芯丝材,相比激光或电子束粉末增材,设备成本低,增材效率更高;②本发明采用的感应加热粉芯碳化钨丝材和感应预热前层金属的双感应加热模式,有效提高了丝材和前层金属的温度,改变了温度散热条件,有效避免了电弧碳化钨粉芯增材层间裂纹的产生;③本发明的方法采用双红外温度在线控制模式,实时检测丝材与熔池的感应加热温度,实现加热温度的实时与适时,有效提升了丝材碳化钨粉芯熔化特性,提高每道熔覆层的成型质量和尺寸精度,控制熔覆层的组织性能的均匀。Compared with the prior art, the present invention has the following significant advantages: 1. a dual induction and arc composite heating additive device for tungsten carbide powder core wire proposed by the present invention uses plasma arc to melt tungsten carbide powder core wire, compared with laser or electron beam powder additive, the equipment cost is low, and the additive efficiency is higher; ② the dual induction heating mode of the induction heating powder core tungsten carbide wire and the induction preheating front layer metal used in the present invention effectively improves the quality of the wire and the front layer. The temperature of the layer metal changes the temperature heat dissipation conditions, and effectively avoids the generation of interlayer cracks in the arc tungsten carbide powder core additive material; 3. The method of the present invention adopts the dual infrared temperature online control mode to detect the induction heating of the wire and the molten pool in real time. Real-time and timely heating temperature, effectively improve the melting characteristics of wire tungsten carbide powder core, improve the forming quality and dimensional accuracy of each cladding layer, and control the uniformity of the structure and properties of the cladding layer.
附图说明Description of drawings
图1碳化钨粉芯丝材双感应与电弧复合加热增材装置整体结构示意图;Figure 1 is a schematic diagram of the overall structure of the double induction and arc composite heating additive device for tungsten carbide powder core wire;
1为前层金属,2为金属感应加热线圈,3为碳化钨粉芯丝材,4为碳化钨粉芯丝材感应加热装置高频电源I401、绝缘陶瓷管402、丝材感应线圈403、隔热板404、保护壳405,5为送丝装置,6为高频电源II,7为气动装置,8为等离子焊枪,9为绝热套筒,10为红外温度传感器I,11为红外温度传感器II,12为双温测控仪,13 为机械支架,14为机器人,15为机器人控制柜,16为线圈提升控制盒,17为双感应加热功率控制仪,18为触屏自动控制平台。1 is the front layer metal, 2 is the metal induction heating coil, 3 is the tungsten carbide powder core wire, 4 is the high frequency power supply I401 of the tungsten carbide powder core wire induction heating device, the insulating
图2碳化钨粉芯丝材双感应与电弧复合加热增材方法的流程图。Figure 2 is a flow chart of the double induction and arc composite heating additive method for tungsten carbide powder core wire.
图3为碳化钨含量10%的碳化钨粉芯丝材增材块体。Figure 3 is an additive block of tungsten carbide powder core wire material with a tungsten carbide content of 10%.
图4为熔覆层的500倍金相图采用碳化钨含量10%的碳化钨粉芯丝材。Figure 4 is a 500-fold metallographic diagram of the cladding layer using a tungsten carbide powder core wire with a tungsten carbide content of 10%.
图5为碳化钨含量20%的碳化钨粉芯丝材增材块体。Figure 5 is a tungsten carbide powder core wire additive block with a tungsten carbide content of 20%.
图6为熔覆层的500倍金相图采用碳化钨含量20%的碳化钨粉芯丝材。Figure 6 is a 500-fold metallographic diagram of the cladding layer using a tungsten carbide powder core wire with a tungsten carbide content of 20%.
具体实施方式Detailed ways
下面结合附图对本发明的较佳实施例进行详细阐述,以使本发明的优点和特征能更易于被本领域技术人员理解,从而对本发明的保护范围做出更为清楚明确的界定。The preferred embodiments of the present invention will be described in detail below with reference to the accompanying drawings, so that the advantages and features of the present invention can be more easily understood by those skilled in the art, and the protection scope of the present invention can be more clearly defined.
本发明所述的一种碳化钨粉芯丝材双感应与电弧复合加热增材装置,具体采用的设备为:机器人等离子弧增材平台、MOTOMAN MH6弧焊机器人、DX100机器人控制柜,焊接电源为Fronius MagicWave 3000型、等离子控制柜、等离子焊枪、 VK-K8100IR型红外温度传感器、ZHCGP-06型/JXG-60-A型高频电源。The dual-induction and arc composite heating additive device for tungsten carbide powder core wire described in the present invention specifically adopts the following equipment: a robot plasma arc additive platform, a MOTOMAN MH6 arc welding robot, and a DX100 robot control cabinet, and the welding power source is: Fronius MagicWave 3000, plasma control cabinet, plasma torch, VK-K8100IR infrared temperature sensor, ZHCGP-06/JXG-60-A high frequency power supply.
结合图1,本发明一种碳化钨粉芯丝材双感应与电弧复合加热增材装置,主要由碳化钨粉芯丝材感应加热模块、提升式感应加热模块、温度传感控制模块、双感应加热控制仪以及触屏自动控制平台组成。碳化钨粉芯丝材感应加热模块由高频电源 I401、绝缘陶瓷管402、丝材感应线圈403、隔热板404、保护壳405组成,高频电源 I401给丝材感应线圈403提供高频电流,高频感应加热通过绝缘陶瓷管402的碳化钨粉芯丝材3,其启动和停止经由机器人控制柜15发送信号给双感应加热功率控制仪 17加以控制。提升式感应加热模块由高频电源II6、金属感应加热线圈2、气动装置7 和线圈提升控制盒16构成,高频电源II6给金属感应加热线圈2提供高频电流,通过高频感应加热前层金属1,其启动和停止经由机器人控制柜15发送信号给双感应加热功率控制仪17加以控制;金属感应加热线圈2的固定端与气动装置7相连,通过直径为15mm的绝热套筒9穿过机械支架13,其中绝热套筒9的内壁包覆一层绝热防滑涂层。机器人控制柜15发送信号给线圈提升控制盒16控制气动装置7调整气压带动金属感应加热线圈2提升与下降。温度传感控制模块由红外温度传感器I10、红外温度传感器II11和双温测控仪12组成,红外温度传感器I10、红外温度传感器II11 与等离子焊枪8同轴放置,共同固定在机器人14末端连接的机械支架13上,红外温度传感器I10与等离子焊枪8同轴平行放置,红外温度传感器II11与焊枪垂直方向的夹角范围为45°,通过关节调节实现;双温测控仪12同时检测靠近电弧位置的碳化钨粉芯丝材3和前层金属1的温度。触屏自动控制平台18显示双温测控仪12测量的碳化钨粉芯丝材3和前层金属1的温度信息、高频电源I401和高频电源II6的状态以及金属感应线圈2的提升状态信息等。Referring to Figure 1, a dual induction and arc composite heating additive device for tungsten carbide powder core wire of the present invention is mainly composed of a tungsten carbide powder core wire induction heating module, a lift-type induction heating module, a temperature sensing control module, a dual induction heating module, and a dual induction heating module. It consists of heating controller and touch screen automatic control platform. The tungsten carbide powder core wire induction heating module is composed of a high-frequency power supply I401, an insulating
其工作模式为:1对增材构件进行几何建模,将零件模型进行切片路径规划设计并导入触屏自动控制平台,根据材料选择适当的参数进行设置;2触屏自动控制平台开始工作,发送信号给机器人控制柜通过双感应加热功率控制仪启动高频电源分别按照预设的参数加热碳化钨粉芯丝材和前层金属;与此同时触屏自动控制平台通过双温测控仪启动红外温度传感器分别采集碳化钨粉芯丝材和前层金属的温度;3当碳化钨粉芯丝材达到预定温度时,触屏自动控制平台通过双感应加热功率控制仪控制高频电源的感应电流,使碳化钨粉芯丝材的温度维持在预设温度;同时当前层金属达到预定温度时,双感应加热功率控制仪关闭前层金属的高频加热电源,触屏自动控制平台通过机器人控制柜,控制线圈提升控制盒调整气动装置的气压带动感应加热线圈沿焊枪垂直方向提升到预定高度;4等离子焊枪按照预定的工艺参数引弧,触屏自动控制平台发送信号给机器人控制柜,控制送丝装置按照预定的送丝速度送丝,同时双温测控仪一方面关闭前层金属的红外温度传感器,另一方面控制红外温度传感器实时检测碳化钨粉芯丝材的温度,触屏自动控制平台根据采集到的温度数据通过双感应加热功率控制仪实时调控丝材加热的感应电流,使丝材温度维持在预设温度;5按照预设的路径完成单层增材,触屏自动控制平台通过机器人控制柜分别控制送丝装置停送丝、发信号给双感应加热控制仪关闭高频电源、控制线圈提升盒调整气动装置气压带动感应加热线圈沿焊枪垂直方向下降恢复到原来的位置、控制双温测控仪关闭测量丝材温度的红外温度传感器;6根据上述相关步骤,按照机器人电弧增材程序重复执行,直至完成预定尺寸构件的增材。Its working mode is: 1. Perform geometric modeling of additive components, plan and design the slicing path of the part model and import it into the touch-screen automatic control platform, and select appropriate parameters according to the material to set; 2. The touch-screen automatic control platform starts to work and sends The signal is sent to the robot control cabinet to start the high-frequency power supply through the dual induction heating power controller to heat the tungsten carbide powder core wire and the front layer metal respectively according to the preset parameters; at the same time, the touch screen automatic control platform starts the infrared temperature through the dual temperature measurement and control instrument. The sensor collects the temperature of the tungsten carbide powder core wire and the front layer metal respectively; 3 When the tungsten carbide powder core wire reaches the predetermined temperature, the touch screen automatic control platform controls the induction current of the high frequency power supply through the dual induction heating power controller, so that the The temperature of the tungsten carbide powder core wire is maintained at the preset temperature; at the same time, when the front layer metal reaches the predetermined temperature, the dual-induction heating power controller turns off the high-frequency heating power supply of the front layer metal, and the touch screen automatic control platform controls the robot control cabinet. The coil lifting control box adjusts the air pressure of the pneumatic device to drive the induction heating coil to be lifted to a predetermined height along the vertical direction of the welding torch; 4. The plasma welding torch strikes the arc according to the predetermined process parameters, and the touch-screen automatic control platform sends a signal to the robot control cabinet to control the wire feeding device according to The wire is fed at a predetermined wire feeding speed, and at the same time, the dual temperature measurement and control instrument closes the infrared temperature sensor of the front layer metal on the one hand, and controls the infrared temperature sensor to detect the temperature of the tungsten carbide powder core wire in real time. The temperature data of the wire is controlled in real time by the dual induction heating power controller, so that the wire temperature is maintained at the preset temperature; 5. The single-layer additive is completed according to the preset path, and the touch screen automatic control platform passes through the robot control cabinet. Respectively control the wire feeding device to stop wire feeding, send a signal to the dual induction heating controller to turn off the high frequency power supply, control the coil lifting box to adjust the air pressure of the pneumatic device to drive the induction heating coil to descend along the vertical direction of the welding torch and return to its original position, control the dual temperature measurement and control instrument Turn off the infrared temperature sensor that measures the temperature of the wire material; 6. According to the above-mentioned relevant steps, repeat the execution according to the robot arc additive program until the additive of the predetermined size component is completed.
结合图2,本发明一种碳化钨粉芯丝材双感应与电弧复合加热增材方法,包含以下具体步骤:2, a double induction and arc composite heating and additive method for tungsten carbide powder core wire of the present invention includes the following specific steps:
步骤1:选择好碳化钨粉芯丝材3的等离子弧增材工艺参数后,机器人控制柜15 与触屏自动控制平台18开始启动;Step 1: After selecting the plasma arc additive process parameters of the tungsten carbide
步骤2:首先触屏自动控制平台18通过与之相连的机器人控制柜15发送控制信号,机器人控制柜15通过双感应加热功率控制仪17同时启动高频电源I401和高频电源II6,按照设定的感应加热频率和加热电流,高频电源I的加热频率f1为 80~120KHz,加热电流I1为50~160A,高频电源II的加热频率f2为160~300KHz,加热电流I2为150~300A。分别加热碳化钨粉芯丝材3和前层金属1;同时由触屏自动控制平台18通过与之相连的双温测控仪12分别启动红外温度传感器I10和红外温度传感器II11,开始采集碳化钨粉芯丝材3和前层金属1的温度信息,温度信息同时发送到触屏自动控制平台18上的显示屏进行实时显示;Step 2: First, the touch-screen
步骤3:根据触屏自动控制平台18设置的碳化钨粉芯丝材3的预定加热温度T1为300℃~800℃和前层金属预定的加热温度T2为80~250℃,当红外温度传感器I10 检测到碳化钨粉芯丝材3达到预定加热温度T1为300℃~800℃时,触屏自动控制平台 18通过与之相连的双感应加热功率控制仪,发送控制信号给高频电源I401,实时调整感应电流,使得碳化钨粉芯丝材温度维持在T1为300℃~800℃;同时当红外温度传感器II11检测到前层金属1达到预定加热温度T2为80~250℃时,双温测控仪12发送开关信号给机器人控制柜15,机器人控制柜15通过双感应加热功率控制仪17关闭高频电源II6,停止加热,然后控制与之相连的线圈提升控制盒16调整气动装置7的气压,气动装置7带动金属加热线圈2通过绝热套筒9沿着焊枪垂直方向提升预定高度 H1=60mm;Step 3: The predetermined heating temperature T 1 of the tungsten carbide
步骤4:等离子焊枪8按照预定的工艺参数引燃电弧后,触屏自动控制平台18 发送信号给机器人控制柜15,控制送丝装置5按照预定的送丝速度送入电弧熔化增材,同时红外温度传感器I10在线实时检测到碳化钨粉芯丝材3加热温度,把丝材温度测量数据发送给触屏自动控制平台18加以显示,并通过与之相连的双感应加热功率控制仪,发送控制信号给高频电源I401,实时调整感应电流,使得碳化钨粉芯丝材温度维持在预设温度T1为300℃~800℃,另一方面,电弧引燃后,触屏自动控制平台 18发送信号给机器人控制柜15,通过双温测控仪12关闭红外温度传感器II11的测量;Step 4: After the
步骤5:按照设定机器人程序,完成单道增材,在电弧熄灭前,触屏自动控制平台18发送信号给机器人控制柜15,控制送丝装置5停止送丝,然后通过机器人控制柜15,发送控制信号给双感应加热功率控制仪17,关闭高频电源I401,停止加热丝材,并发送控制信号给线圈提升控制盒16调整气动装置7的气压,气动装置7带动金属加热线圈2通过绝热套筒9沿着焊枪垂直方向下降恢复到原来位置,也通过双温测控仪12关闭红外温度传感器I10的测量;Step 5: According to the set robot program, the single-channel additive is completed. Before the arc is extinguished, the touch-screen
步骤6:按照上述相关步骤,按照机器人电弧增材程序重复执行,直至完成预定尺寸构件的增材。Step 6: According to the above relevant steps, the robot arc additive program is repeated until the additive of the predetermined size component is completed.
实施例1Example 1
采用上述发明的装置进行直径1.6mm碳化钨含量10%的碳化钨粉芯丝材的增材,具体步骤如下:Using the device of the above invention to carry out the addition of tungsten carbide powder core wire with a diameter of 1.6mm and a tungsten carbide content of 10%, the specific steps are as follows:
步骤1:选择好碳化钨粉芯丝材3的等离子弧增材工艺参数后,机器人控制柜15 与触屏自动控制平台18开始启动;Step 1: After selecting the plasma arc additive process parameters of the tungsten carbide
步骤2:首先触屏自动控制平台18通过与之相连的机器人控制柜15发送控制信号,机器人控制柜15通过双感应加热功率控制仪17同时启动高频电源I401和高频电源II6,按照设定的碳化钨粉芯丝材感应加热频率f1=90KHz,感应加热电流为 I1=80A,前层金属感应加热频率为f2=200KHz,感应加热电流为I2=200A,分别加热碳化钨粉芯丝材3和前层金属1;同时由触屏自动控制平台18通过与之相连的双温测控仪12分别启动红外温度传感器I10和红外温度传感器II11,开始采集碳化钨粉芯丝材3和前层金属1的温度信息,温度信息同时发送到触屏自动控制平台18上的显示屏进行实时显示;Step 2: First, the touch-screen
步骤3:根据触屏自动控制平台18设置的碳化钨粉芯丝材3的预定加热温度T1为700℃和前层金属预定的加热温度T2为200℃,当红外温度传感器I10检测到碳化钨粉芯丝材3达到预定加热温度T1为700℃时,触屏自动控制平台18通过与之相连的双感应加热功率控制仪,发送控制信号给高频电源I401,实时调整感应电流,使得碳化钨粉芯丝材温度保持在T1为700℃;同时当红外温度传感器II11检测到前层金属 1达到预定加热温度T2为200℃时,双温测控仪12发送开关信号给机器人控制柜15,机器人控制柜15通过双感应加热功率控制仪17关闭感应高频加热电源II6,停止加热,然后控制与之相连的线圈提升控制盒16调整气动装置7的气压,气动装置7带动金属加热线圈2通过绝热套筒9沿着焊枪垂直方向提升H1=60mm;Step 3: The predetermined heating temperature T1 of the tungsten carbide
步骤4:等离子焊枪8按照预定的工艺参数引燃电弧后,触屏自动控制平台18 发送信号给机器人控制柜15,控制送丝装置5按照预定的送丝速度0.8m/min送入电弧熔化增材,同时红外温度传感器I10在线实时检测到碳化钨粉芯丝材3加热温度,把丝材温度测量数据发送给触屏自动控制平台18加以显示,并通过与之相连的双感应加热功率控制仪,发送控制信号给高频电源I401,实时调整感应电流,使得丝材温度保持在预设温度T1为700℃,另一方面,电弧引燃后,触屏自动控制平台18发送信号给机器人控制柜15,通过双温测控仪12关闭红外温度传感器II11的测量;Step 4: After the
步骤5:按照设定机器人程序,完成单道增材,在电弧熄灭前,触屏自动控制平台18发送信号给机器人控制柜15,控制送丝装置5停止送丝,然后并通过机器人控制柜15,发送控制信号给双感应加热功率控制仪17,关闭高频电源I401,停止加热丝材,并发送控制信号给线圈提升控制盒16调整气动装置7的气压,气动装置7带动金属加热线圈2通过绝热套筒9沿着焊枪垂直方向下降恢复到原来位置,也通过双温测控仪12关闭红外温度传感器I10的测量;Step 5: According to the set robot program, the single-channel additive is completed. Before the arc is extinguished, the touch-screen
步骤6:按照上述相关步骤,按照机器人电弧增材程序重复执行,直至完成预定尺寸构件的增材。Step 6: According to the above relevant steps, the robot arc additive program is repeated until the additive of the predetermined size component is completed.
作为优选方式,所述的碳化钨粉芯丝材感应加热频率90KHz,感应加热电流为80A;前层金属感应加热频率为200KHz,感应加热电流为200A,所述的电弧增材采用的是等离子弧,初始增材电流为160A,电弧行进速度为18cm/min,送丝速度为 0.8m/min,离子气1.3L/min,保护气18L/min。As a preferred way, the induction heating frequency of the tungsten carbide powder core wire is 90KHz, and the induction heating current is 80A; the induction heating frequency of the front layer metal is 200KHz, and the induction heating current is 200A, and the arc additive uses a plasma arc. , the initial additive current is 160A, the arc travel speed is 18cm/min, the wire feeding speed is 0.8m/min, the ion gas is 1.3L/min, and the protective gas is 18L/min.
图3所示的碳化钨含量10%的碳化钨粉芯丝材增材的块体,层间结合良好,未出现裂纹、气孔等可见表面缺陷,整体成型良好。图4为该增材试样的500倍金相组织照片,可知增材试样的基体主要为奥氏体相、少量的铁素体和以及少量的弥散分布的碳化物颗粒,组织致密无缺陷。As shown in Figure 3, the tungsten carbide powder core wire additive block with tungsten carbide content of 10% has good interlayer bonding, no visible surface defects such as cracks and pores, and the overall shape is good. Figure 4 is a 500-fold photo of the metallographic structure of the additive sample. It can be seen that the matrix of the additive sample is mainly austenite phase, a small amount of ferrite and a small amount of dispersed carbide particles, and the structure is dense and defect-free. .
实施例2Example 2
采用上述发明的装置进行直径1.6mm碳化钨含量20%的碳化钨粉芯丝材的增材,具体步骤如下:Using the device of the above invention to carry out the addition of tungsten carbide powder core wire with a diameter of 1.6mm and a tungsten carbide content of 20%, the specific steps are as follows:
步骤1:选择好碳化钨粉芯丝材3的等离子弧增材工艺参数后,机器人控制柜15 与触屏自动控制平台18开始启动;Step 1: After selecting the plasma arc additive process parameters of the tungsten carbide
步骤2:首先触屏自动控制平台18通过与之相连的机器人控制柜15发送控制信号,机器人控制柜15通过双感应加热功率控制仪17同时启动高频电源I401和高频电源II6,按照设定的碳化钨粉芯丝材感应加热频率f1为100KHz,感应加热电流为I1为90A,前层金属感应加热频率f2=300KHz,感应加热电流为I2为250A,分别加热碳化钨粉芯丝材3和前层金属1;同时由触屏自动控制平台18通过与之相连的双温测控仪12分别启动红外温度传感器I10和红外温度传感器II11,开始采集碳化钨粉芯丝材3和前层金属1的温度信息,温度信息同时发送到触屏自动控制平台18上的显示屏进行实时显示;Step 2: First, the touch-screen
步骤3:根据触屏自动控制平台18设置的碳化钨粉芯丝材3的预定加热温度T1为800℃和前层金属预定的加热温度T2为250℃,当丝外温度传感器I10检测到碳化钨粉芯丝材3达到预定加热温度T1为800℃时,触屏自动控制平台18通过与之相连的双感应加热功率控制仪,发送控制信号给高频电源I401,实时调整感应电流,使得碳化钨粉芯丝材温度保持在T1为800℃;同时当红外温度传感器II11检测到前层金属 1达到预定加热温度T2为250℃时,双温测控仪12发送开关信号给机器人控制柜15,机器人控制柜15通过双感应加热功率控制仪17关闭高频电源II6,停止加热,然后控制与之相连的线圈提升控制盒16调整气动装置7的气压,气动装置7带动金属加热线圈2通过绝热套筒9沿着焊枪垂直方向提升预定高度H1为60mm;Step 3: The predetermined heating temperature T1 of the tungsten carbide
步骤4:等离子焊枪8按照预定的工艺参数引燃电弧后,触屏自动控制平台18 发送信号给机器人控制柜15,控制送丝装置5按照预定的送丝速度1.0m/min送入电弧熔化增材,同时红外温度传感器I10在线实时检测到碳化钨粉芯丝材3加热温度,把丝材温度测量数据发送给触屏自动控制平台18加以显示,并通过与之相连的双感应加热功率控制仪,发送控制信号给高频电源I401,实时调整感应电流,使得丝材温度保持在预设温度T1为800℃,另一方面,电弧引燃后,触屏自动控制平台18发送信号给机器人控制柜15,通过双温测控仪12关闭红外温度传感器II11的测量;Step 4: After the
步骤5:按照设定机器人程序,完成单道增材,在电弧熄灭前,触屏自动控制平台18发送信号给机器人控制柜15,控制送丝装置5停止送丝,然后并通过机器人控制柜15,发送控制信号给双感应加热功率控制仪17,关闭高频电源I401,停止加热丝材,并发送控制信号给线圈提升控制盒16调整气动装置7的气压,气动装置7带动金属加热线圈2通过绝热套筒9沿着焊枪垂直方向下降恢复到原来位置,也通过双温测控仪12关闭红外温度传感器I10的测量;Step 5: According to the set robot program, the single-channel additive is completed. Before the arc is extinguished, the touch-screen
步骤6:按照上述相关步骤,按照机器人电弧增材程序重复执行,直至完成预定尺寸构件的增材。Step 6: According to the above relevant steps, the robot arc additive program is repeated until the additive of the predetermined size component is completed.
作为优选方式,所述的碳化钨粉芯丝材感应加热频率100KHz,感应加热电流为90A,前层金属感应加热频率为300KHz,感应加热电流为250A,所述的电弧增材采用的是等离子弧,初始增材电流为170A,电弧行进速度为20cm/min,送丝速度为 1.0m/min。As a preferred way, the induction heating frequency of the tungsten carbide powder core wire is 100KHz, the induction heating current is 90A, the induction heating frequency of the front layer metal is 300KHz, and the induction heating current is 250A, and the arc additive uses a plasma arc. , the initial additive current is 170A, the arc travel speed is 20cm/min, and the wire feeding speed is 1.0m/min.
图5所示的多层多道堆敷的碳化钨含量20%的碳化钨粉芯丝材块体,层间结合良好,未出现裂纹、气孔等可见表面缺陷,整体成型良好。图6为该试样的金相组织照片,增材试样的500倍金相组织照片,增材试样的基体主要为奥氏体相、少量的铁素体和以及少量的弥散分布的碳化物颗粒,组织致密无缺陷。The multi-layer and multi-pass stacked tungsten carbide powder core wire block with tungsten carbide content of 20% shown in Figure 5 has good interlayer bonding, no visible surface defects such as cracks and pores, and the overall shape is good. Figure 6 is a photo of the metallographic structure of the sample, a 500-fold photo of the metallographic structure of the additive sample. The matrix of the additive sample is mainly austenite phase, a small amount of ferrite and a small amount of dispersed carbonization Material particles, dense tissue without defects.
以上所述仅为本发明的优选实施例,并不是限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的原则之下,所做的修改,替换,改进等,均应该在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention, and do not limit the present invention. For those skilled in the art, the present invention may have various modifications and changes. All modifications, substitutions, improvements, etc. made under the principles of the present invention should fall within the protection scope of the present invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110589031.5A CN113333976B (en) | 2021-05-28 | 2021-05-28 | Tungsten carbide powder core wire double-induction and electric arc composite heating material increasing device and method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110589031.5A CN113333976B (en) | 2021-05-28 | 2021-05-28 | Tungsten carbide powder core wire double-induction and electric arc composite heating material increasing device and method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113333976A CN113333976A (en) | 2021-09-03 |
CN113333976B true CN113333976B (en) | 2022-07-19 |
Family
ID=77472196
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110589031.5A Active CN113333976B (en) | 2021-05-28 | 2021-05-28 | Tungsten carbide powder core wire double-induction and electric arc composite heating material increasing device and method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113333976B (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105983742A (en) * | 2015-03-23 | 2016-10-05 | 林肯环球股份有限公司 | Method and system for additive manufacturing using high energy source and hot-wire |
CN106956060A (en) * | 2017-03-23 | 2017-07-18 | 湘潭大学 | The method of electromagnetic induction heating active control electric arc increasing material manufacturing interlayer temperature |
CN107433379A (en) * | 2016-05-27 | 2017-12-05 | 南京理工大学 | Infrared temperature detection device and method for silk material plasma arc increasing material manufacturing |
CN108367349A (en) * | 2015-12-18 | 2018-08-03 | 伊利诺斯工具制品有限公司 | Device and method for increasing material manufacturing welding wire |
CN212094335U (en) * | 2020-02-17 | 2020-12-08 | 浙江大学 | An electromagnetic induction heating metal wire semi-liquid 3D printing control device |
CN112828430A (en) * | 2021-02-08 | 2021-05-25 | 深圳先进技术研究院 | A plasma arc additive manufacturing integrated forming equipment system |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10792682B2 (en) * | 2017-10-02 | 2020-10-06 | Illinois Tool Works Inc. | Metal manufacturing systems and methods using mechanical oscillation |
-
2021
- 2021-05-28 CN CN202110589031.5A patent/CN113333976B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105983742A (en) * | 2015-03-23 | 2016-10-05 | 林肯环球股份有限公司 | Method and system for additive manufacturing using high energy source and hot-wire |
CN108367349A (en) * | 2015-12-18 | 2018-08-03 | 伊利诺斯工具制品有限公司 | Device and method for increasing material manufacturing welding wire |
CN107433379A (en) * | 2016-05-27 | 2017-12-05 | 南京理工大学 | Infrared temperature detection device and method for silk material plasma arc increasing material manufacturing |
CN106956060A (en) * | 2017-03-23 | 2017-07-18 | 湘潭大学 | The method of electromagnetic induction heating active control electric arc increasing material manufacturing interlayer temperature |
CN212094335U (en) * | 2020-02-17 | 2020-12-08 | 浙江大学 | An electromagnetic induction heating metal wire semi-liquid 3D printing control device |
CN112828430A (en) * | 2021-02-08 | 2021-05-25 | 深圳先进技术研究院 | A plasma arc additive manufacturing integrated forming equipment system |
Non-Patent Citations (1)
Title |
---|
丝材电弧增材制造技术的研究现状与应用;江宏亮等;《热加工工艺》;20180930;第47卷(第18期);第25-28页 * |
Also Published As
Publication number | Publication date |
---|---|
CN113333976A (en) | 2021-09-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109663917B (en) | Device and method for manufacturing titanium-based composite material through electromagnetic induction heating assisted laser additive manufacturing | |
CN201053029Y (en) | Automatic powder-feeding laser induction composite smelting and coating device | |
CN201300207Y (en) | Selective laser melting rapid molding device for metal parts | |
CN101392382B (en) | Method and device for strengthening surface modification by combination of laser cladding and laser peening | |
CN201626977U (en) | Device for rapid preparation of metal-ceramic coatings by laser induction composite melt injection | |
CN105543839B (en) | A kind of gradient wear-resistant coating and the method for preparing gradient wear-resistant coating | |
CN107931781B (en) | Double metallic composite material electric arc increasing material manufacturing device and its manufacturing method | |
WO2019000523A1 (en) | Method and device for rapidly forming component using combined arc fused deposition and laser impact forging | |
CN104174842B (en) | A kind of metal wire material based on alternating magnetic field increases material equipment and increases material method | |
CN101239413B (en) | Electromagnetic surfacing welding repair and surface modification method and equipment for waste molds | |
CN102191495A (en) | Method for quickly preparing metal ceramic coating through laser induced composite fusioncast | |
CN106623939B (en) | A kind of resistance electromagnetic induction composite heating metal wire material manufacturing process | |
CN102179517A (en) | Laser-induction hybrid melting direct forming method and device | |
CN105734560B (en) | The eight road coaxial powder-feeding nozzles for the manufacture of double-deck gradient laser gain material | |
CN108161229A (en) | A kind of method of silk filling formula increasing material manufacturing entity class aluminium alloy structure | |
CN110548960A (en) | Method for manufacturing multi-material component by ultrasonic vibration assisted arc additive manufacturing | |
CN112705731A (en) | Multi-material additive manufacturing and forming system and method | |
CN101468420B (en) | Hollow stud composite turn arc heat source welding method | |
CN102701734B (en) | A preparation method of self-preheating laser forming ZrO2-Al2O3 composite ceramic thin-walled parts | |
CN108817389A (en) | It is a kind of for improving the device and method of metal increasing material manufacturing part performance | |
CN111872393A (en) | A kind of laser 3D printing method and device of titanium alloy | |
CN109759707B (en) | A laser-TIG composite heat source additive manufacturing method for aluminum alloy ring parts | |
CN110158010B (en) | Shaft part preparation method based on thermal spraying and induction cladding technology | |
CN113333976B (en) | Tungsten carbide powder core wire double-induction and electric arc composite heating material increasing device and method | |
CN110315082A (en) | A kind of the metal parts manufacture system and method for micro- casting laser-impact texture |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |