CN113328748B - Analog to digital conversion circuit - Google Patents
Analog to digital conversion circuit Download PDFInfo
- Publication number
- CN113328748B CN113328748B CN202110488536.2A CN202110488536A CN113328748B CN 113328748 B CN113328748 B CN 113328748B CN 202110488536 A CN202110488536 A CN 202110488536A CN 113328748 B CN113328748 B CN 113328748B
- Authority
- CN
- China
- Prior art keywords
- calibration
- analog
- digital
- voltage
- circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/12—Analogue/digital converters
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D10/00—Energy efficient computing, e.g. low power processors, power management or thermal management
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Analogue/Digital Conversion (AREA)
Abstract
Description
技术领域Technical field
本发明涉及电路技术领域,具体而言,涉及一种模数转换电路。The present invention relates to the field of circuit technology, and in particular, to an analog-to-digital conversion circuit.
背景技术Background technique
流水线模数转换器是一种模数转换结构,具有高速、高精度的优点,被广泛应用于5G(5th generation mobile networks,第五代移动通信技术)以及下一代高速、高容量通讯系统中。由于制作工艺的不对称性,会引入失调电压,会出现转换结果不准确的问题,因此,减小失调电压对设备流水线模数转换器具有重要意义。The pipeline analog-to-digital converter is an analog-to-digital conversion structure that has the advantages of high speed and high precision. It is widely used in 5G (5th generation mobile networks, fifth generation mobile communication technology) and next-generation high-speed and high-capacity communication systems. Due to the asymmetry of the manufacturing process, offset voltage will be introduced and the conversion result will be inaccurate. Therefore, reducing the offset voltage is of great significance to the equipment pipeline analog-to-digital converter.
相关技术中,对于流水线模数转换器中每个器件均设置一个校正电路,例如,对流水线模数转换器中的每个模数转换器设置一个校正电路,通过将模数转换器中比较器的输入端口短接实现校准。In the related art, a correction circuit is provided for each device in the pipeline analog-to-digital converter. For example, a correction circuit is provided for each analog-to-digital converter in the pipeline analog-to-digital converter. By connecting the comparator in the analog-to-digital converter The input port is short-circuited to achieve calibration.
但是,相关技术中,需要对每个器件均设置一个校正电路,所需的校正电路较多,需要额外的时间进行短接,还降低了流水线模数转换器的处理速度。However, in the related art, a correction circuit needs to be provided for each device, which requires a lot of correction circuits, requires extra time for short-circuiting, and also reduces the processing speed of the pipeline analog-to-digital converter.
发明内容Contents of the invention
本发明的目的在于,针对上述现有技术中的不足,提供一种模数转换电路,以便解决相关技术中,需要对每个器件均设置一个校正电路,所需的校正电路较多,需要额外的时间进行短接,还降低了流水线模数转换器的处理速度的问题。The purpose of the present invention is to provide an analog-to-digital conversion circuit to solve the above-mentioned shortcomings in the prior art, so as to solve the problem that in related technologies, each device needs to be provided with a correction circuit, which requires many correction circuits and requires additional The short circuit also reduces the processing speed of the pipeline analog-to-digital converter.
为实现上述目的,本发明实施例采用的技术方案如下:In order to achieve the above objects, the technical solutions adopted in the embodiments of the present invention are as follows:
第一方面,本发明实施例提供了一种模数转换电路,包括:N级模数转换器组成的流水线模数转换器、N-1个检测电路、N-1个校准电路以及N-1个第一校准电压生成电路;N为大于或等于2的整数;In a first aspect, embodiments of the present invention provide an analog-to-digital conversion circuit, including: a pipeline analog-to-digital converter composed of N-stage analog-to-digital converters, N-1 detection circuits, N-1 calibration circuits, and N-1 A first calibration voltage generating circuit; N is an integer greater than or equal to 2;
其中,若i为小于N的整数,第i级模数转换器的数字端电连接一个检测电路的第一检测输入端,以输出第i数字编码;第i+1级模数转换器的数字端电连接所述一个检测电路的第二检测输入端,以输出第i+1数字编码,使得所述一个检测电路基于所述第i数字编码和所述第i+1数字编码,输出第i电压符号检测值;所述一个检测电路的第一检测输出端电连接一个校准电路的第一校准输入端,以使所述一个校准电路基于所述第i电压符号检测值输出第i电压校准编码;Among them, if i is an integer less than N, the digital terminal of the i-th stage analog-to-digital converter is electrically connected to the first detection input terminal of a detection circuit to output the i-th digital code; the digital terminal of the i+1-th stage analog-to-digital converter The terminal is electrically connected to the second detection input terminal of the one detection circuit to output the i+1th digital code, so that the one detection circuit outputs the ith digital code based on the ith digital code and the i+1th digital code. Voltage symbol detection value; the first detection output terminal of the one detection circuit is electrically connected to the first calibration input terminal of a calibration circuit, so that the one calibration circuit outputs the i-th voltage calibration code based on the i-th voltage symbol detection value ;
所述一个校准电路的第一校准输出端电连接一个第一校准电压生成电路的数字端,以使所述一个第一校准电压生成电路基于所述第i电压校准编码输出第i校准电压信号;所述一个第一校准电压生成电路的模拟端电连接所述第i级模数转换器中比较器的第一输入端,以使所述第i级模数转换器中比较器根据所述第i校准电压信号和对应的输入模拟信号输出第i目标数字编码。The first calibration output terminal of the one calibration circuit is electrically connected to the digital terminal of a first calibration voltage generation circuit, so that the one first calibration voltage generation circuit outputs the i-th calibration voltage signal based on the i-th voltage calibration code; The analog terminal of the first calibration voltage generating circuit is electrically connected to the first input terminal of the comparator in the i-th stage analog-to-digital converter, so that the comparator in the i-th stage analog-to-digital converter operates according to the The i calibration voltage signal and the corresponding input analog signal output the i-th target digital code.
可选的,所述模数转换电路还包括:一个第二校准电压生成电路;Optionally, the analog-to-digital conversion circuit further includes: a second calibration voltage generating circuit;
第N-1个检测电路的第二检测输出端电连接第N-1个校准电路的第二校准输入端,以使得所述第N-1个检测电路基于第N级模数转换器输出的第N数字编码输出第N电压检测值;The second detection output terminal of the N-1th detection circuit is electrically connected to the second calibration input terminal of the N-1th calibration circuit, so that the N-1th detection circuit is based on the output of the N-th stage analog-to-digital converter. The Nth digital code outputs the Nth voltage detection value;
所述第N-1个校准电路的第二校准输出端电连接所述第二校准电压生成电路的数字端,以使所述第N-1个校准电路基于所述第N电压检测值输出第N电压校准编码,使得所述第二校准电压生成电路基于所述第N电压校准编码输出第N校准电压信号;The second calibration output terminal of the N-1th calibration circuit is electrically connected to the digital terminal of the second calibration voltage generation circuit, so that the N-1th calibration circuit outputs the Nth voltage detection value based on the N voltage calibration code, so that the second calibration voltage generation circuit outputs the Nth calibration voltage signal based on the Nth voltage calibration code;
所述第二校准电压生成电路的模拟端电连接所述第N级模数转换器中比较器的一个输入端,以使所述第N级模数转换器中比较器基于所述第N校准电压信号和对应的输入模拟信号产生并输出第N目标数字编码。The analog terminal of the second calibration voltage generating circuit is electrically connected to an input terminal of the comparator in the N-th stage analog-to-digital converter, so that the comparator in the N-th stage analog-to-digital converter is calibrated based on the N-th stage. The voltage signal and the corresponding input analog signal generate and output the Nth target digital code.
可选的,所述第一校准电压生成电路和所述第二校准电压生成电路为相同结构的校准电压生成电路,所述校准电压生成电路包括:第一开关阵列、M个第一电阻、M-1个第二电阻以及第三电阻;其中,M等于电压校准编码的位数;Optionally, the first calibration voltage generation circuit and the second calibration voltage generation circuit are calibration voltage generation circuits with the same structure. The calibration voltage generation circuit includes: a first switch array, M first resistors, M -1 second resistor and third resistor; where M is equal to the number of digits of the voltage calibration code;
其中,所述M-1个第二电阻依次串联后的第一端通过所述第三电阻接地,所述依次串联后的第二端为所述校准电压生成电路的模拟端;Wherein, the first end of the M-1 second resistors connected in series is connected to the ground through the third resistor, and the second end connected in series is the analog end of the calibration voltage generating circuit;
所述第一开关阵列的输入端为所述校准电压生成电路的数字端,所述第一开关阵列的电源端电连接预设参考电压;所述第一开关阵列的M个输出端分别电连接M个第一电阻的一端,所述M-1个第二电阻中的每个第二电阻的两端分别电连接两个第一电阻的另一端。The input terminal of the first switch array is the digital terminal of the calibration voltage generating circuit, the power terminal of the first switch array is electrically connected to the preset reference voltage; the M output terminals of the first switch array are electrically connected respectively One end of the M first resistors, and two ends of each of the M-1 second resistors are electrically connected to the other ends of the two first resistors respectively.
可选的,所述第一电阻的阻值为所述第二电阻的阻值的两倍。Optionally, the resistance of the first resistor is twice the resistance of the second resistor.
可选的,所述模数转换电路还包括:N-1个放大器;Optionally, the analog-to-digital conversion circuit also includes: N-1 amplifiers;
所述第i级模数转换器的余量输出端还电连接一个放大器的输入端,所述一个放大器的输出端还电连接所述第i+1级模数转换器的模拟端。The margin output end of the i-th stage analog-to-digital converter is also electrically connected to the input end of an amplifier, and the output end of the one amplifier is also electrically connected to the analog end of the i+1-th stage analog-to-digital converter.
可选的,每级模数转换器包括:比较器和数模转换器,所述比较器的第二输入端电连接所述每级模数转换器的模拟端,所述比较器的输出端为所述每级模数转换器的数字端;Optionally, each stage of the analog-to-digital converter includes: a comparator and a digital-to-analog converter, the second input terminal of the comparator is electrically connected to the analog terminal of each stage of the analog-to-digital converter, and the output terminal of the comparator is the digital end of each stage of the analog-to-digital converter;
所述比较器的输出端还电连接所述数模转换器的数字端,所述数模转换器的模拟端还电连接所述每级模数转换器的模拟端,和所述每级模数转换器的余量输出端。The output end of the comparator is also electrically connected to the digital end of the digital-to-analog converter, and the analog end of the digital-to-analog converter is also electrically connected to the analog end of each stage of the analog-to-digital converter. The residual output of the digital converter.
可选的,所述数模转换器包括:第二开关阵列,电容阵列;其中,所述第二开关阵列的输入端为所述数模转换器的数字端;Optionally, the digital-to-analog converter includes: a second switch array and a capacitor array; wherein the input terminal of the second switch array is the digital terminal of the digital-to-analog converter;
所述第二开关阵列的多个输出端分别电连接所述电容阵列中各电容的一端,所述电容阵列中各电容的另一端为所述数模转换器的模拟端。The plurality of output terminals of the second switch array are respectively electrically connected to one end of each capacitor in the capacitor array, and the other end of each capacitor in the capacitor array is an analog terminal of the digital-to-analog converter.
可选的,每个校准电路还具有触发端;所述每个校准电路具体用于在所述触发端接收的触发信号有效时,根据接收到的电压检测值输出电压校准编码。Optionally, each calibration circuit also has a trigger terminal; each calibration circuit is specifically configured to output a voltage calibration code according to the received voltage detection value when the trigger signal received by the trigger terminal is valid.
可选的,所述每个校准电路还具有重启端,所述每个校准电路还用于在检测到所述重启端输入的重启信号有效时,将输出的电压校准编码复位至预设编码值;在检测到所述重启信号无效,且,在所述触发信号有效时,根据接收到的电压检测值输出电压校准编码。Optionally, each of the calibration circuits also has a restart terminal, and each of the calibration circuits is also configured to reset the output voltage calibration code to a preset code value when detecting that the restart signal input by the restart port is valid. ; When it is detected that the restart signal is invalid, and when the trigger signal is valid, output the voltage calibration code according to the received voltage detection value.
可选的,所述每个校准电路还具有使能端,所述每个校准电路具体用于在所述重启信号无效、所述触发信号有效,且,所述使能端输入的使能信号有效时,根据接收到的电压检测值输出电压校准编码。Optionally, each calibration circuit also has an enable terminal, and each calibration circuit is specifically configured to operate when the restart signal is invalid and the trigger signal is valid, and the enable signal input to the enable terminal When valid, the voltage calibration code is output based on the received voltage detection value.
本发明的有益效果是:本申请实施例提供一种模数转换电路,包括:N级模数转换器组成的流水线模数转换器、N-1个检测电路、N-1个校准电路以及N-1个第一校准电压生成电路;N为大于或等于2的整数;其中,若i为小于N的整数,第i级模数转换器的数字端电连接一个检测电路的第一检测输入端,以输出第i数字编码;第i+1级模数转换器的数字端电连接一个检测电路的第二检测输入端,以输出第i+1数字编码,使得一个检测电路基于第i数字编码和第i+1数字编码,输出第i电压符号检测值;一个检测电路的第一检测输出端电连接一个校准电路的第一校准输入端,以使一个校准电路基于第i电压符号检测值输出第i电压校准编码;一个校准电路的第一校准输出端电连接一个第一校准电压生成电路的数字端,以使一个第一校准电压生成电路基于第i电压校准编码输出第i校准电压信号;一个第一校准电压生成电路的模拟端电连接第i级模数转换器中比较器的第一输入端,以使第i级模数转换器中比较器根据第i校准电压信号和对应的输入模拟信号输出第i目标数字编码。仅需要设置N-1个检测电路、N-1个校准电路以及N-1个第一校准电压生成电路,便可以实现对N级模数转换器组成的流水线模数转换器的校准,减少了所需的失调校准电路的数量。而且,基于第i数字编码、第i+1数字编码生成第i电压符号检测值,基于第i电压符号检测值可以确定第i电压校准编码,基于第i电压校准编码实时确定用于校准的第i校准电压信号,无需额外的时间进行短接,提高了流水线模数转换器的处理速度,并且能够实时跟踪和校准电路产生的失调电压。The beneficial effects of the present invention are: the embodiment of the present application provides an analog-to-digital conversion circuit, including: a pipeline analog-to-digital converter composed of N-stage analog-to-digital converters, N-1 detection circuits, N-1 calibration circuits, and N -1 first calibration voltage generating circuit; N is an integer greater than or equal to 2; where, if i is an integer less than N, the digital terminal of the i-th stage analog-to-digital converter is electrically connected to the first detection input terminal of a detection circuit , to output the i-th digital code; the digital terminal of the i+1-th stage analog-to-digital converter is electrically connected to the second detection input terminal of a detection circuit to output the i+1-th digital code, so that a detection circuit is based on the i-th digital code and the i+1th digital code, outputting the i-th voltage symbol detection value; the first detection output terminal of a detection circuit is electrically connected to the first calibration input terminal of a calibration circuit, so that a calibration circuit outputs based on the i-th voltage symbol detection value The i-th voltage calibration code; a first calibration output terminal of a calibration circuit is electrically connected to a digital terminal of a first calibration voltage generation circuit, so that a first calibration voltage generation circuit outputs an i-th calibration voltage signal based on the i-th voltage calibration code; The analog terminal of a first calibration voltage generating circuit is electrically connected to the first input terminal of the comparator in the i-th stage analog-to-digital converter, so that the comparator in the i-th stage analog-to-digital converter is based on the i-th calibration voltage signal and the corresponding input The analog signal outputs the i-th target digital code. Only N-1 detection circuits, N-1 calibration circuits and N-1 first calibration voltage generation circuits need to be set up to realize the calibration of the pipeline analog-to-digital converter composed of N-stage analog-to-digital converters, reducing the number of The number of offset calibration circuits required. Moreover, the i-th voltage symbol detection value is generated based on the i-th digital code and the i+1-th digital code, the i-th voltage calibration code can be determined based on the i-th voltage symbol detection value, and the i-th voltage calibration code is determined in real time based on the i-th voltage calibration code. The i-calibrated voltage signal eliminates the need for additional time for short circuiting, improves the processing speed of the pipeline analog-to-digital converter, and enables real-time tracking and calibration of the offset voltage generated by the circuit.
附图说明Description of drawings
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本发明的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。In order to explain the technical solutions of the embodiments of the present invention more clearly, the drawings required to be used in the embodiments will be briefly introduced below. It should be understood that the following drawings only show some embodiments of the present invention and therefore do not It should be regarded as a limitation of the scope. For those of ordinary skill in the art, other relevant drawings can be obtained based on these drawings without exerting creative efforts.
图1为本发明实施例提供的一种模数转换电路的结构示意图;Figure 1 is a schematic structural diagram of an analog-to-digital conversion circuit provided by an embodiment of the present invention;
图2为本发明实施例提供的一种模数转换电路的结构示意图;Figure 2 is a schematic structural diagram of an analog-to-digital conversion circuit provided by an embodiment of the present invention;
图3为本发明实施例提供的一种校准电压生成电路的结构示意图;Figure 3 is a schematic structural diagram of a calibration voltage generation circuit provided by an embodiment of the present invention;
图4为本发明实施例提供的一种模数转换电路的结构示意图;Figure 4 is a schematic structural diagram of an analog-to-digital conversion circuit provided by an embodiment of the present invention;
图5为本发明实施例提供的一种模数转换器的结构示意图;Figure 5 is a schematic structural diagram of an analog-to-digital converter provided by an embodiment of the present invention;
图6为本发明实施例提供的一种模数转换器中比较器的结构示意图;Figure 6 is a schematic structural diagram of a comparator in an analog-to-digital converter provided by an embodiment of the present invention;
图7为本发明实施例提供的一种模数转换电路的结构示意图。FIG. 7 is a schematic structural diagram of an analog-to-digital conversion circuit provided by an embodiment of the present invention.
具体实施方式Detailed ways
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。In order to make the purpose, technical solutions and advantages of the embodiments of the present invention clearer, the technical solutions in the embodiments of the present invention will be clearly and completely described below in conjunction with the drawings in the embodiments of the present invention. Obviously, the described embodiments These are some embodiments of the present invention, rather than all embodiments.
因此,以下对在附图中提供的本申请的实施例的详细描述并非旨在限制要求保护的本申请的范围,而是仅仅表示本申请的选定实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。Accordingly, the following detailed description of the embodiments of the application provided in the appended drawings is not intended to limit the scope of the claimed application, but rather to represent selected embodiments of the application. Based on the embodiments in this application, all other embodiments obtained by those of ordinary skill in the art without creative efforts fall within the scope of protection of this application.
在本申请的描述中,需要说明的是,若出现术语“上”、“下”、等指示的方位或位置关系为基于附图所示的方位或位置关系,或者是该申请产品使用时惯常摆放的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。In the description of this application, it should be noted that if the terms "upper", "lower", etc. indicate an orientation or positional relationship, it is based on the orientation or positional relationship shown in the drawings, or it is customary when using the product of the application. The placement of the orientation or positional relationship is only to facilitate the description of the present application and simplify the description, and does not indicate or imply that the device or element referred to must have a specific orientation, be constructed and operated in a specific orientation, and therefore cannot be understood as a limitation of the present application. limits.
此外,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。In addition, the terms "first", "second", etc. in the description and claims of the present invention and the above-mentioned drawings are used to distinguish similar objects, and are not necessarily used to describe a specific order or sequence. It is to be understood that the data so used are interchangeable under appropriate circumstances so that the embodiments of the invention described herein are capable of being practiced in sequences other than those illustrated or described herein. In addition, the terms "including" and "having" and any variations thereof are intended to cover non-exclusive inclusions, e.g., a process, method, system, product, or apparatus that encompasses a series of steps or units and need not be limited to those explicitly listed. Those steps or elements may instead include other steps or elements not expressly listed or inherent to the process, method, product or apparatus.
需要说明的是,在不冲突的情况下,本申请的实施例中的特征可以相互结合。It should be noted that, as long as there is no conflict, the features in the embodiments of the present application can be combined with each other.
图1为本发明实施例提供的一种模数转换电路的结构示意图,如图1所示,该模数转换电路可以包括:N级模数转换器组成的流水线模数转换器101、N-1个检测电路102、N-1个校准电路103以及N-1个第一校准电压生成电路104;N为大于或等于2的整数。Figure 1 is a schematic structural diagram of an analog-to-digital conversion circuit provided by an embodiment of the present invention. As shown in Figure 1, the analog-to-digital conversion circuit may include: a pipeline analog-to-digital converter 101 composed of N-stage analog-to-digital converters, N- 1 detection circuit 102, N-1 calibration circuits 103 and N-1 first calibration voltage generating circuits 104; N is an integer greater than or equal to 2.
其中,若i为小于N的整数,i可以为大于0,小于或者等于N-1的整数。第i级模数转换器101可以为N级模数转换器中除第N级模数转换器101之外的任一个模数转换器。Among them, if i is an integer less than N, i can be an integer greater than 0, less than or equal to N-1. The i-th stage analog-to-digital converter 101 may be any analog-to-digital converter among the N-stage analog-to-digital converters except the N-th stage analog-to-digital converter 101.
第i级模数转换器101的数字端电连接一个检测电路102的第一检测输入端,以输出第i数字编码;第i+1级模数转换器101的数字端电连接一个检测电路102的第二检测输入端,以输出第i+1数字编码,使得一个检测电路102基于第i数字编码和第i+1数字编码,输出第i电压符号检测值;一个检测电路102的第一检测输出端电连接一个校准电路103的第一校准输入端,以使一个校准电路103基于第i电压符号检测值输出第i电压校准编码。The digital terminal of the i-th stage analog-to-digital converter 101 is electrically connected to the first detection input terminal of a detection circuit 102 to output the i-th digital code; the digital terminal of the i+1-th stage analog-to-digital converter 101 is electrically connected to a detection circuit 102 The second detection input terminal is to output the i+1 digital code, so that a detection circuit 102 outputs the i-th voltage symbol detection value based on the i-th digital code and the i+1 digital code; the first detection value of a detection circuit 102 The output terminal is electrically connected to a first calibration input terminal of a calibration circuit 103, so that a calibration circuit 103 outputs the i-th voltage calibration code based on the i-th voltage symbol detection value.
在一些实施方式中,对第i级模数转换器101输入模拟电压,第i级模数转换器101可以对输入的模拟电压进行转换,第i级模数转换器101的数字端可以输出第i数字编码;对第i+1级模数转换器101输入余量电压,第i+1级模数转换器101可以对输入的余量电压进行转换,第i+1级模数转换器101的数字端可以输出第i+1数字编码。其中,余量电压可以为第i级模数转换器101剩余未处理的模拟电压。In some embodiments, an analog voltage is input to the i-th level analog-to-digital converter 101, the i-th level analog-to-digital converter 101 can convert the input analog voltage, and the digital terminal of the i-th level analog-to-digital converter 101 can output the i-th level analog-to-digital converter 101. i digital encoding; input the margin voltage to the i+1-th stage analog-to-digital converter 101, the i+1-th stage analog-to-digital converter 101 can convert the input margin voltage, and the i+1-th stage analog-to-digital converter 101 The digital terminal can output the i+1th digital code. The remaining voltage may be the remaining unprocessed analog voltage of the i-th stage analog-to-digital converter 101 .
相应的,与第i级模数转换器101、第i+1级模数转换器101均电连接的一个检测电路102,可以获取第i数字编码和第i+1数字编码;并根据第i数字编码和第i+1数字编码确定第i电压符号检测值,向校准电路103的第一校准输入端输入第i电压符号检测值;校准电路103可以获取第i电压符号检测值,并根据第i电压符号检测值输出第i电压校准编码。Correspondingly, a detection circuit 102 electrically connected to the i-th stage analog-to-digital converter 101 and the i+1-th stage analog-to-digital converter 101 can obtain the i-th digital code and the i+1-th digital code; and according to the i-th The digital code and the i+1th digital code determine the i-th voltage symbol detection value, and the i-th voltage symbol detection value is input to the first calibration input terminal of the calibration circuit 103; the calibration circuit 103 can obtain the i-th voltage symbol detection value, and calculate it according to the i-th voltage symbol detection value. The i voltage symbol detection value outputs the i voltage calibration code.
需要说明的是,一个检测电路102中可以包含一系列组合逻辑电路,一个检测电路102可以根据第i数字编码和第i+1数字编码中预设位数值的大小关系,对失调电压的极性进行检测,确定第i电压符号检测值。当确定失调电压为正时,第i电压符号检测值可以为1;当确定失调电压为负时,第i电压符号检测值可以为0。It should be noted that a detection circuit 102 may include a series of combinational logic circuits, and a detection circuit 102 may determine the polarity of the offset voltage based on the size relationship between the preset bit values in the i-th digital code and the i+1-th digital code. Detection is performed to determine the i-th voltage symbol detection value. When the offset voltage is determined to be positive, the i-th voltage sign detection value may be 1; when the offset voltage is determined to be negative, the i-th voltage sign detection value may be 0.
另外,校准电路103基于第i电压符号检测值生成并输出第i电压校准编码,第i电压校准编码可以为多位二进制编码。第i电压校准编码的位数越多时,校准电压的步长越小,校准的精度越高,但是电路的硬件消耗也会增大,校准的收敛时间也会延长;反之,第i电压校准编码的位数较少时,校准步长大、精度低、硬件消耗小、收敛时间短,第i电压校准编码的位数设计可以依据电路的整体性能和需求确定。In addition, the calibration circuit 103 generates and outputs the i-th voltage calibration code based on the i-th voltage symbol detection value, and the i-th voltage calibration code may be a multi-bit binary code. When the i-th voltage calibration code has more digits, the step size of the calibration voltage is smaller, and the calibration accuracy is higher, but the hardware consumption of the circuit will also increase, and the convergence time of the calibration will also be extended; conversely, the i-th voltage calibration code When the number of digits is small, the calibration step is large, the accuracy is low, the hardware consumption is small, and the convergence time is short. The design of the number of digits of the i-th voltage calibration code can be determined based on the overall performance and requirements of the circuit.
一个校准电路103的第一校准输出端电连接一个第一校准电压生成电路104的数字端,以使一个第一校准电压生成电路104基于第i电压校准编码输出第i校准电压信号;一个第一校准电压生成电路104的模拟端电连接第i级模数转换器101中比较器的第一输入端,以使第i级模数转换器101中比较器根据第i校准电压信号和对应的输入模拟信号输出第i目标数字编码。其中,第i电压校准编码每增加或者减少“1”,第i校准电压信号可以对应的增加或者减少一个电压步长。A first calibration output terminal of a calibration circuit 103 is electrically connected to a digital terminal of a first calibration voltage generation circuit 104, so that a first calibration voltage generation circuit 104 outputs the i-th calibration voltage signal based on the i-th voltage calibration code; a first The analog terminal of the calibration voltage generation circuit 104 is electrically connected to the first input terminal of the comparator in the i-th stage analog-to-digital converter 101, so that the comparator in the i-th stage analog-to-digital converter 101 is based on the i-th calibration voltage signal and the corresponding input. The analog signal outputs the i-th target digital code. Wherein, every time the i-th voltage calibration code increases or decreases by "1", the i-th calibration voltage signal can correspondingly increase or decrease by one voltage step.
在一些实施方式中,一个校准电路103的第一校准输出端,可以向电连接的一个第一校准电压生成电路104的数字端输入第i电压校准编码;第一校准电压生成电路104可以获取第i电压校准编码,并根据第i电压校准编码输出第i校准电压信号。其中,第i校准电压信号可以为模拟电压。In some embodiments, the first calibration output terminal of a calibration circuit 103 can input the i-th voltage calibration code to the digital terminal of an electrically connected first calibration voltage generation circuit 104; the first calibration voltage generation circuit 104 can obtain the i-th voltage calibration code. i voltage calibration code, and output the i-th calibration voltage signal according to the i-th voltage calibration code. Wherein, the i-th calibration voltage signal may be an analog voltage.
在本申请实施例中,将第i校准电压信号和模拟信号均输入第i级模数转换器101中的比较器,第i校准电压信号可以均衡第i级模数转换器101中的比较器所产生的失调电压,继而使得转换输出的第i目标数字编码更加准确,从而减小了失调电压对设备流水线模数转换器的影响。In the embodiment of the present application, both the i-th calibration voltage signal and the analog signal are input to the comparator in the i-th stage analog-to-digital converter 101. The i-th calibration voltage signal can balance the comparator in the i-th stage analog-to-digital converter 101. The generated offset voltage, in turn, makes the i-th target digital encoding of the conversion output more accurate, thereby reducing the impact of the offset voltage on the equipment pipeline analog-to-digital converter.
另外,第i校准电压信号可以对第i级模数转换器101、第i+1级模数转换器101所产生的失调电压均进行校准,可以使得第i级模数转换器101、第i+1级模数转换器101两者的相对失调电压值为0。In addition, the i-th calibration voltage signal can calibrate the offset voltages generated by the i-th stage analog-to-digital converter 101 and the i+1-th stage analog-to-digital converter 101, so that the i-th stage analog-to-digital converter 101 and the i-th stage analog-to-digital converter 101 can be calibrated. The relative offset voltage value of both +1-stage analog-to-digital converters 101 is 0.
需要说明的是,一个失调校准电路可以包括一个检测电路102、一个校准电路103、第一校准电压生成电路104。It should be noted that an offset calibration circuit may include a detection circuit 102, a calibration circuit 103, and a first calibration voltage generating circuit 104.
可选的,第i级模数转换器101输入的模拟电压可以表示为Vi,第i+1级模数转换器101输入的模拟电压可以表示为Vresi,第i+1级模数转换器101输出的模拟电压可以表示为Vresi+1。第i数字编码可以为表示为Di,第i+1数字编码可以为表示为Di+1,第i电压符号检测值可以表示为Deci,第i电压校准编码可以表示为Dcali,第i校准电压信号可以表示为Vcali。Optionally, the analog voltage input by the i-th level analog-to-digital converter 101 can be expressed as Vi, the analog voltage input by the i+1-th level analog-to-digital converter 101 can be expressed as Vresi, and the i+1-th level analog-to-digital converter 101 can be expressed as Vresi. The output analog voltage can be expressed as Vresi+1. The i-th digital code can be expressed as Di, the i+1-th digital code can be expressed as Di+1, the i-th voltage symbol detection value can be expressed as Deci, the i-th voltage calibration code can be expressed as Dcali, and the i-th calibration voltage signal It can be expressed as Vcali.
综上所述,本申请实施例提供一种模数转换电路,包括:N级模数转换器组成的流水线模数转换器、N-1个检测电路、N-1个校准电路以及N-1个第一校准电压生成电路;N为大于或等于2的整数;其中,若i为小于N的整数,第i级模数转换器的数字端电连接一个检测电路的第一检测输入端,以输出第i数字编码;第i+1级模数转换器的数字端电连接一个检测电路的第二检测输入端,以输出第i+1数字编码,使得一个检测电路基于第i数字编码和第i+1数字编码,输出第i电压符号检测值;一个检测电路的第一检测输出端电连接一个校准电路的第一校准输入端,以使一个校准电路基于第i电压符号检测值输出第i电压校准编码;一个校准电路的第一校准输出端电连接一个第一校准电压生成电路的数字端,以使一个第一校准电压生成电路基于第i电压校准编码输出第i校准电压信号;一个第一校准电压生成电路的模拟端电连接第i级模数转换器中比较器的第一输入端,以使第i级模数转换器中比较器根据第i校准电压信号和对应的输入模拟信号输出第i目标数字编码。仅需要设置N-1个检测电路、N-1个校准电路以及N-1个第一校准电压生成电路,便可以实现对N级模数转换器组成的流水线模数转换器的校准,减少了所需的失调校准电路的数量。而且,基于第i数字编码、第i+1数字编码生成第i电压符号检测值,基于第i电压符号检测值可以确定第i电压校准编码,基于第i电压校准编码实时确定用于校准的第i校准电压信号,无需额外的时间进行短接,提高了流水线模数转换器的处理速度,并且能够实时跟踪和校准电路产生的失调电压。To sum up, embodiments of the present application provide an analog-to-digital conversion circuit, including: a pipeline analog-to-digital converter composed of N-stage analog-to-digital converters, N-1 detection circuits, N-1 calibration circuits, and N-1 a first calibration voltage generating circuit; N is an integer greater than or equal to 2; where, if i is an integer less than N, the digital terminal of the i-th stage analog-to-digital converter is electrically connected to the first detection input terminal of a detection circuit, so as to Output the i-th digital code; the digital terminal of the i+1-th stage analog-to-digital converter is electrically connected to the second detection input terminal of a detection circuit to output the i+1-th digital code, so that a detection circuit is based on the i-th digital code and the i-th digital code. The i+1 digital code outputs the i-th voltage symbol detection value; the first detection output terminal of a detection circuit is electrically connected to the first calibration input terminal of a calibration circuit, so that a calibration circuit outputs the i-th voltage symbol detection value based on the i-th voltage symbol detection value. Voltage calibration code; a first calibration output terminal of a calibration circuit is electrically connected to a digital terminal of a first calibration voltage generation circuit, so that a first calibration voltage generation circuit outputs an i-th calibration voltage signal based on the i-th voltage calibration code; a first calibration voltage signal; The analog terminal of a calibration voltage generating circuit is electrically connected to the first input terminal of the comparator in the i-th stage analog-to-digital converter, so that the comparator in the i-th stage analog-to-digital converter is based on the i-th calibration voltage signal and the corresponding input analog signal. Output the i-th target digital code. Only N-1 detection circuits, N-1 calibration circuits and N-1 first calibration voltage generation circuits need to be set up to realize the calibration of the pipeline analog-to-digital converter composed of N-stage analog-to-digital converters, reducing the number of The number of offset calibration circuits required. Moreover, the i-th voltage symbol detection value is generated based on the i-th digital code and the i+1-th digital code, the i-th voltage calibration code can be determined based on the i-th voltage symbol detection value, and the i-th voltage calibration code is determined in real time based on the i-th voltage calibration code. The i-calibrated voltage signal eliminates the need for additional time for short circuiting, improves the processing speed of the pipeline analog-to-digital converter, and enables real-time tracking and calibration of the offset voltage generated by the circuit.
而且,本申请实施例提供的模数转换电路,可以在流水线模数转换器正常工作的过程中,使得转换得到的数字编码更加准确。Moreover, the analog-to-digital conversion circuit provided by the embodiment of the present application can make the converted digital code more accurate during the normal operation of the pipeline analog-to-digital converter.
可选的,图2为本发明实施例提供的一种模数转换电路的结构示意图,如图2所示,模数转换电路还包括:一个第二校准电压生成电路105;Optionally, Figure 2 is a schematic structural diagram of an analog-to-digital conversion circuit provided by an embodiment of the present invention. As shown in Figure 2, the analog-to-digital conversion circuit also includes: a second calibration voltage generation circuit 105;
第N-1个检测电路102的第二检测输出端电连接第N-1个校准电路103的第二校准输入端,以使得第N-1个检测电路102基于第N级模数转换器101输出的第N数字编码输出第N电压检测值;The second detection output terminal of the N-1th detection circuit 102 is electrically connected to the second calibration input terminal of the N-1th calibration circuit 103, so that the N-1th detection circuit 102 is based on the Nth stage analog-to-digital converter 101 The output Nth digital code outputs the Nth voltage detection value;
第N-1个校准电路103的第二校准输出端电连接第二校准电压生成电路105的数字端,以使第N-1个校准电路103基于第N电压检测值输出第N电压校准编码,使得第二校准电压生成电路105基于第N电压校准编码输出第N校准电压信号;The second calibration output terminal of the N-1th calibration circuit 103 is electrically connected to the digital terminal of the second calibration voltage generation circuit 105, so that the N-1th calibration circuit 103 outputs the Nth voltage calibration code based on the Nth voltage detection value, causing the second calibration voltage generation circuit 105 to output the Nth calibration voltage signal based on the Nth voltage calibration code;
第二校准电压生成电路105的模拟端电连接第N级模数转换器101中比较器的一个输入端,以使第N级模数转换器101中比较器基于第N校准电压信号和对应的输入模拟信号产生并输出第N目标数字编码。The analog terminal of the second calibration voltage generation circuit 105 is electrically connected to an input terminal of the comparator in the N-th stage analog-to-digital converter 101, so that the comparator in the N-th stage analog-to-digital converter 101 is based on the N-th calibration voltage signal and the corresponding The input analog signal generates and outputs the Nth target digital code.
其中,第N级模数转换器101可以为流水线模数转换器中的最后一个模数转换器。最后一个失调校准电路可以包括一个检测电路102、一个校准电路103、第一校准电压生成电路104、第二校准电压生成电路105。Among them, the Nth stage analog-to-digital converter 101 may be the last analog-to-digital converter in the pipeline analog-to-digital converter. The last offset calibration circuit may include a detection circuit 102, a calibration circuit 103, a first calibration voltage generation circuit 104, and a second calibration voltage generation circuit 105.
在一些实施方式中,第N-1个检测电路102可以根据第N-1级模数转换器101输出的第N-1数字编码和第N级模数转换器101输出的第N数字编码,确定第N-1电压检测值;第N-1个校准电路103可以基于第N-1电压检测值输出第N-1电压校准编码;与第N-1个校准电路103电连接的第一校准电压生成电路104,根据第N-1电压校准编码,输出第N-1校准电压信号,第N-1校准电压信号可以用于校准第N-1级模数转换器101、第N级模数转换器101的比较器所产生的失调电压。In some embodiments, the N-1th detection circuit 102 may be based on the N-1th digital code output by the N-1th stage analog-to-digital converter 101 and the Nth digital code output by the N-th stage analog-to-digital converter 101, Determine the N-1th voltage detection value; the N-1th calibration circuit 103 can output the N-1th voltage calibration code based on the N-1th voltage detection value; the first calibration electrically connected to the N-1th calibration circuit 103 The voltage generation circuit 104 outputs the N-1 calibration voltage signal according to the N-1 voltage calibration code. The N-1 calibration voltage signal can be used to calibrate the N-1 level analog-to-digital converter 101 and the N-th level analog-to-digital converter. The offset voltage generated by the comparator of converter 101.
此外,第N-1个校准电路103基于第N电压检测值输出第N电压校准编码,第二校准电压生成电路105基于第N电压校准编码输出第N校准电压信号,第N校准电压信号也可以用于校准第N级模数转换器101的比较器所产生的失调电压,这可以使得对第N级模数转换器101产生的失调电压的校准更加准确,继而使得第N级模数转换器101输出的第N目标数字编码更加准确,还可以使得流水线模数转换器整体输出编码的失调电压校准为0。In addition, the N-1th calibration circuit 103 outputs the Nth voltage calibration code based on the Nth voltage detection value, and the second calibration voltage generation circuit 105 outputs the Nth calibration voltage signal based on the Nth voltage calibration code. The Nth calibration voltage signal may also be Used to calibrate the offset voltage generated by the comparator of the N-th stage analog-to-digital converter 101, which can make the calibration of the offset voltage generated by the N-th stage analog-to-digital converter 101 more accurate, thereby making the N-th stage analog-to-digital converter more accurate. The Nth target digital code output by 101 is more accurate and can also calibrate the offset voltage of the overall output code of the pipeline analog-to-digital converter to 0.
可选的,第N-1级模数转换器101输入的模拟电压可以表示为Vn-1,第N级模数转换器101输入的模拟电压可以表示为Vresn-1。第N-1数字编码可以为表示为Dn-1,第N数字编码可以为表示为Dn;第N-1电压检测值可以表示为Decn-1,第N电压检测值可以表示为Decn;第N-1电压校准编码可以表示为Dcaln-1,第N电压校准编码可以表示为Dcaln;第N-1校准电压信号可以表示为Vcaln-1,第N校准电压信号可以表示为Vcaln。Optionally, the analog voltage input by the N-1th stage analog-to-digital converter 101 can be expressed as Vn-1, and the analog voltage input by the N-th stage analog-to-digital converter 101 can be expressed as Vresn-1. The N-1th digital code can be expressed as Dn-1, and the Nth digital code can be expressed as Dn; the N-1th voltage detection value can be expressed as Decn-1, and the Nth voltage detection value can be expressed as Decn; the Nth The -1 voltage calibration code can be expressed as Dcaln-1, the Nth voltage calibration code can be expressed as Dcaln; the N-1th calibration voltage signal can be expressed as Vcaln-1, and the Nth calibration voltage signal can be expressed as Vcaln.
可选的,图3为本发明实施例提供的一种校准电压生成电路的结构示意图,第一校准电压生成电路104和第二校准电压生成电路105可以为相同结构的校准电压生成电路,如图3所示,校准电压生成电路包括:第一开关阵列107、M个第一电阻R1、M-1个第二电阻R2以及第三电阻R3;其中,M等于电压校准编码的位数,可选的,第三电阻R3的数量可以为2个。Optionally, FIG. 3 is a schematic structural diagram of a calibration voltage generation circuit provided by an embodiment of the present invention. The first calibration voltage generation circuit 104 and the second calibration voltage generation circuit 105 can be calibration voltage generation circuits with the same structure, as shown in FIG. As shown in 3, the calibration voltage generation circuit includes: a first switch array 107, M first resistors R1, M-1 second resistors R2 and a third resistor R3; where M is equal to the number of digits of the voltage calibration code, which is optional. , the number of the third resistor R3 can be two.
其中,M-1个第二电阻R2依次串联后的第一端通过第三电阻R3接地,依次串联后的第二端为校准电压生成电路的模拟端。第一开关阵列107输入的电压校准编码可以表示为Dcal。Among them, the first end of M-1 second resistors R2 connected in series is connected to the ground through the third resistor R3, and the second end connected in series is the analog end of the calibration voltage generating circuit. The voltage calibration code input by the first switch array 107 can be expressed as Dcal.
第一开关阵列107的输入端为校准电压生成电路的数字端,第一开关阵列107的电源端电连接预设参考电压;第一开关阵列107的M个输出端分别电连接M个第一电阻R1的一端,M-1个第二电阻R2中的每个第二电阻R2的两端分别电连接两个第一电阻R1的另一端。可选的,M-1个第二电阻R2中的每个第二电阻R2的两端分别电连接相邻两个第一电阻R1的另一端。The input terminal of the first switch array 107 is the digital terminal of the calibration voltage generating circuit. The power terminal of the first switch array 107 is electrically connected to the preset reference voltage. The M output terminals of the first switch array 107 are respectively electrically connected to M first resistors. One end of R1 and two ends of each of the M-1 second resistors R2 are electrically connected to the other ends of the two first resistors R1 respectively. Optionally, two ends of each second resistor R2 among the M-1 second resistors R2 are electrically connected to the other ends of two adjacent first resistors R1 respectively.
其中,预设参考电压可以包括:VRP(高电平电压)、VRN(低电平电压)。The preset reference voltage may include: VRP (high level voltage), VRN (low level voltage).
另外,校准电压生成电路的数字端可以输出第i电压校准编码,第i电压校准编码可以为多位二进制编码。在第i电压校准编码分别控制每个第一电阻R1的一端连接到参考电压VRP或者VRN,第i电压校准编码的最高权重位控制最左边的第一电阻R1,以此类推,第i电压校准编码的最低权重位控制最右边的第一电阻R1。其中,当第i电压校准编码的一个权重位为1时,该权重位所控制的第一电阻R1连接到参考电压VRP;当第i电压校准编码的一个权重位为0时,该权重位所控制的第一电阻R1连接到参考电压VRN。In addition, the digital terminal of the calibration voltage generating circuit can output the i-th voltage calibration code, and the i-th voltage calibration code can be a multi-bit binary code. The i-th voltage calibration code controls one end of each first resistor R1 to be connected to the reference voltage VRP or VRN. The highest weight bit of the i-th voltage calibration code controls the leftmost first resistor R1, and so on. The i-th voltage calibration The lowest weight bit of the code controls the first rightmost resistor R1. Among them, when a weight bit of the i-th voltage calibration code is 1, the first resistor R1 controlled by the weight bit is connected to the reference voltage VRP; when a weight bit of the i-th voltage calibration code is 0, the weight bit controls The controlled first resistor R1 is connected to the reference voltage VRN.
需要说明的是,其中,第i电压校准编码每增加或者减少“1”,第i校准电压信号可以对应的增加或者减少一个电压步长。It should be noted that, every time the i-th voltage calibration code increases or decreases by "1", the i-th calibration voltage signal can correspondingly increase or decrease by one voltage step.
其中,电压步长可以表示为:其中,VRP、VRN为参考电压,n表示第i电压校准编码的位数,第i电压校准编码的位数可以与第一电阻R1的数量相同,即n可以等于M。Among them, the voltage step can be expressed as: Among them, VRP and VRN are reference voltages, and n represents the number of digits of the i-th voltage calibration code. The number of digits of the i-th voltage calibration code can be the same as the number of first resistors R1, that is, n can be equal to M.
可选的,第一电阻R1的阻值可以为第二电阻R2的阻值的两倍,即,R1=2*R2。Optionally, the resistance of the first resistor R1 may be twice the resistance of the second resistor R2, that is, R1=2*R2.
可选的,图4为本发明实施例提供的一种模数转换电路的结构示意图,如图4所示,所述模数转换电路还可以包括:N-1个放大器106;Optionally, Figure 4 is a schematic structural diagram of an analog-to-digital conversion circuit provided by an embodiment of the present invention. As shown in Figure 4, the analog-to-digital conversion circuit may also include: N-1 amplifiers 106;
其中,放大器106可以为余量电压放大器,第i级模数转换器101的余量输出端还电连接一个放大器106的输入端,一个放大器106的输出端还电连接第i+1级模数转换器101的模拟端。Among them, the amplifier 106 can be a margin voltage amplifier. The margin output terminal of the i-th stage analog-to-digital converter 101 is also electrically connected to the input terminal of an amplifier 106. The output terminal of an amplifier 106 is also electrically connected to the i+1-th stage analog-to-digital converter. Analog side of converter 101.
需要说明的是,相关技术中,当模数转换电路中还包括放大器106时,为每个放大器106也需要设置校正电路。而本申请实施例中,基于N-1个检测电路102、N-1个校准电路103以及N-1个第一校准电压生成电路104,便可以实现对N个模数转换器、N-1个放大器106的失调电压进行调整,进一步减少了所需的校正电路的数量。It should be noted that in the related art, when the analog-to-digital conversion circuit also includes amplifiers 106, a correction circuit also needs to be provided for each amplifier 106. In the embodiment of the present application, based on N-1 detection circuits 102, N-1 calibration circuits 103 and N-1 first calibration voltage generating circuits 104, it is possible to implement N analog-to-digital converters, N-1 The offset voltage of the amplifier 106 is adjusted, further reducing the number of correction circuits required.
另外,第i校准电压信号还可以校准第i级模数转换器101和第i+1级模数转换器101之间的放大器106所产生的失调电压,使得第i级模数转换器101、第i+1级模数转换器101、第i级模数转换器101和第i+1级模数转换器101之间的放大器106三者的相对失调电压值为0。In addition, the i-th calibration voltage signal can also calibrate the offset voltage generated by the amplifier 106 between the i-th stage analog-to-digital converter 101 and the i+1-th stage analog-to-digital converter 101, so that the i-th stage analog-to-digital converter 101, The relative offset voltage value of the amplifier 106 between the i+1-th stage analog-to-digital converter 101, the i-th stage analog-to-digital converter 101, and the i+1-th stage analog-to-digital converter 101 is 0.
可选的,第i级模数转换器101输出的模拟电压可以表示为Vresi,放大器106对Vresi进行放大输出模拟电压Vrai,Vrai可以作为第i+1级模数转换器101的输入。Optionally, the analog voltage output by the i-th stage analog-to-digital converter 101 can be expressed as Vresi. The amplifier 106 amplifies Vresi and outputs the analog voltage Vrai. Vrai can be used as the input of the i+1-th stage analog-to-digital converter 101.
可选的,图5为本发明实施例提供的一种模数转换器的结构示意图,如图5所示,每级模数转换器包括:比较器110和数模转换器,比较器110的第二输入端电连接每级模数转换器的模拟端,比较器110的输出端为每级模数转换器的数字端;Optionally, Figure 5 is a schematic structural diagram of an analog-to-digital converter provided by an embodiment of the present invention. As shown in Figure 5, each stage of the analog-to-digital converter includes: a comparator 110 and a digital-to-analog converter. The second input terminal is electrically connected to the analog terminal of each stage of the analog-to-digital converter, and the output terminal of the comparator 110 is the digital terminal of each stage of the analog-to-digital converter;
比较器110的输出端还电连接数模转换器的数字端,数模转换器的模拟端还电连接每级模数转换器的模拟端,和每级模数转换器的余量输出端。The output terminal of the comparator 110 is also electrically connected to the digital terminal of the digital-to-analog converter, and the analog terminal of the digital-to-analog converter is also electrically connected to the analog terminal of each stage of the analog-to-digital converter and the margin output terminal of each stage of the analog-to-digital converter.
可选的,本申请实施例中的模数转换器101可以为逐次逼近型模数转换器。Optionally, the analog-to-digital converter 101 in the embodiment of the present application may be a successive approximation type analog-to-digital converter.
图6为本发明实施例提供的一种模数转换器中比较器的结构示意图,如图6所示,比较器110的第一输入端1101可以为正相输入端,第i校准电压信号可以通过第一输入端1101输入比较器110中,模拟信号可以通过比较器110的第二输入端1102输入比较器110,从而实现将第i校准电压信号和模拟信号进行叠加。另外,比较器110还可以包括接地端1104和输出端1103。Figure 6 is a schematic structural diagram of a comparator in an analog-to-digital converter provided by an embodiment of the present invention. As shown in Figure 6, the first input terminal 1101 of the comparator 110 can be a non-inverting input terminal, and the i-th calibration voltage signal can be The analog signal can be input into the comparator 110 through the first input terminal 1101, and the analog signal can be input into the comparator 110 through the second input terminal 1102 of the comparator 110, thereby superimposing the i-th calibration voltage signal and the analog signal. In addition, the comparator 110 may also include a ground terminal 1104 and an output terminal 1103.
需要说明,图6中所示比较器为单端电路结构示意图,实际设计中模数转换器可以采用全差分的电路结构,即包括正向信号端口和反向信号端口,两个端口所施加的电压信号具有电压值大小相等、方向相反的特性,因此在全差分的电路结构中,比较器110可以包括第一输入端1101、第二输入端1102两个正向输入端和与之信号对应的负向输入端,可以不再包括接地端1104。It should be noted that the comparator shown in Figure 6 is a schematic diagram of a single-ended circuit structure. In actual design, the analog-to-digital converter can adopt a fully differential circuit structure, that is, it includes a forward signal port and a reverse signal port. The two ports apply Voltage signals have the characteristics of equal voltage values and opposite directions. Therefore, in a fully differential circuit structure, the comparator 110 may include two forward input terminals, a first input terminal 1101 and a second input terminal 1102, and a corresponding input terminal corresponding to the signal. The negative input terminal may no longer include the ground terminal 1104.
可选的,如图5所示,数模转换器还可以包括:第二开关阵列108,电容阵列109;其中,第二开关阵列108的输入端为数模转换器的数字端;Optionally, as shown in Figure 5, the digital-to-analog converter may also include: a second switch array 108 and a capacitor array 109; wherein the input terminal of the second switch array 108 is the digital terminal of the digital-to-analog converter;
第二开关阵列108的多个输出端分别电连接电容阵列109中各电容的一端,电容阵列109中各电容的另一端为数模转换器的模拟端。The plurality of output terminals of the second switch array 108 are respectively electrically connected to one terminal of each capacitor in the capacitor array 109. The other terminal of each capacitor in the capacitor array 109 is an analog terminal of the digital-to-analog converter.
可选的,如图4所示,每个校准电路103还具有触发端;每个校准电路103具体用于在触发端接收的触发信号有效时,根据接收到的电压检测值输出电压校准编码。Optionally, as shown in Figure 4, each calibration circuit 103 also has a trigger terminal; each calibration circuit 103 is specifically configured to output a voltage calibration code according to the received voltage detection value when the trigger signal received by the trigger terminal is valid.
其中,触发信号可以表示为TRIG。Among them, the trigger signal can be expressed as TRIG.
在一种可能的实施方式中,触发信号每有一个上升沿,校准电路103便根据第i电压符号检测值对第i电压校准编码进行调整。当第i电压符号检测值为1时,第i电压校准编码减去“1”;当第i电压符号检测值为0时,第i电压校准编码加上“1”;其中,“1”代表第i电压校准编码的最小权重位。In a possible implementation, every time there is a rising edge of the trigger signal, the calibration circuit 103 adjusts the i-th voltage calibration code according to the i-th voltage symbol detection value. When the i-th voltage symbol detection value is 1, the i-th voltage calibration code is subtracted by "1"; when the i-th voltage symbol detection value is 0, the i-th voltage calibration code is added with "1"; where "1" represents The minimum weight bit of the i-th voltage calibration code.
需要说明的是,当第i电压校准编码达到了上边界,即“111……1”,在下一个触发信号上升沿来临,当第i电压符号检测值为0时,则输出第i电压校准编码保持不变;当第i电压符号检测值为1时,则对第i电压校准编码进行减“1”操作。如果第i电压校准编码达到了下边界,即“000……0”,而在下一个触发信号上升沿来临,当第i电压符号检测值为1时,则输出编码保持不变;当第i电压符号检测值为0时,则对第i电压校准编码进行加“1”操作。It should be noted that when the i-th voltage calibration code reaches the upper boundary, that is, "111...1", the next rising edge of the trigger signal comes, and when the i-th voltage symbol detection value is 0, the i-th voltage calibration code is output Remain unchanged; when the i-th voltage symbol detection value is 1, the i-th voltage calibration code is subtracted by "1". If the i-th voltage calibration code reaches the lower boundary, that is, "000...0", and the next rising edge of the trigger signal comes, when the i-th voltage symbol detection value is 1, the output code remains unchanged; when the i-th voltage symbol detection value When the symbol detection value is 0, "1" is added to the i-th voltage calibration code.
可选的,如图4所示,每个校准电路103还具有重启端,每个校准电路103还用于在检测到重启端输入的重启信号有效时,将输出的电压校准编码复位至预设编码值;在检测到重启信号无效,且,在触发信号有效时,根据接收到的电压检测值输出电压校准编码。Optionally, as shown in Figure 4, each calibration circuit 103 also has a restart terminal. Each calibration circuit 103 is also used to reset the output voltage calibration code to the preset when detecting that the restart signal input by the restart terminal is valid. Coding value; when the restart signal is detected to be invalid, and when the trigger signal is valid, the voltage calibration code is output according to the received voltage detection value.
其中,重启信号可以表示为RST,重启信号也可以称为复位信号。Among them, the restart signal can be expressed as RST, and the restart signal can also be called a reset signal.
在本申请实施例中,当重启信号为0时,重启信号有效;重启信号为1时,重启信号无效。当重启信号为0时,将输出的电压校准编码复位至预设编码值“100……0”,预设编码值的第一位是最高权重位,可以用于控制校准电压生成电路中的最高位电容;当重启信号为1时,重启信号不对电路产生影响,由其他信号控制校准电路103,可以由触发信号控制校准电路103。In the embodiment of the present application, when the restart signal is 0, the restart signal is valid; when the restart signal is 1, the restart signal is invalid. When the restart signal is 0, the output voltage calibration code is reset to the preset code value "100...0". The first bit of the preset code value is the highest weight bit and can be used to control the highest value in the calibration voltage generation circuit. bit capacitance; when the restart signal is 1, the restart signal does not affect the circuit. The calibration circuit 103 is controlled by other signals, and the calibration circuit 103 can be controlled by the trigger signal.
可选的,如图4所示,每个校准电路103还具有使能端,每个校准电路103具体用于在重启信号无效、触发信号有效,且,使能端输入的使能信号有效时,根据接收到的电压检测值输出电压校准编码。Optionally, as shown in Figure 4, each calibration circuit 103 also has an enable terminal. Each calibration circuit 103 is specifically used when the restart signal is invalid, the trigger signal is valid, and the enable signal input to the enable terminal is valid. , output the voltage calibration code according to the received voltage detection value.
其中,使能信号可以用EN表示,当使能信号为0时,使能信号无效;使能信号为1时,使能信号有效。Among them, the enable signal can be represented by EN. When the enable signal is 0, the enable signal is invalid; when the enable signal is 1, the enable signal is valid.
需要说明的是,当RST=1,EN=0时,校准电路103保持当前电压校准编码的输出不变,TRIG不起作用;当RST=1,EN=1时,TRIG起作用,校准电路103正常工作。It should be noted that when RST=1, EN=0, the calibration circuit 103 keeps the output of the current voltage calibration code unchanged, and TRIG does not work; when RST=1, EN=1, TRIG works, and the calibration circuit 103 normal work.
以下以包括两级模数转换器的流水线模数转换器为例进行说明,图7为本发明实施例提供的一种模数转换电路的结构示意图,如图7所示,流水线模数转换器可以包括:第一级模数转换器101、放大器106、第二级模数转换器101。相应的,失调校准电路包括检测电路102、校准电路103、第一校准电压生成电路104和第二校准电压生成电路105。The following description takes a pipeline analog-to-digital converter including a two-stage analog-to-digital converter as an example. Figure 7 is a schematic structural diagram of an analog-to-digital conversion circuit provided by an embodiment of the present invention. As shown in Figure 7, the pipeline analog-to-digital converter It may include: a first-stage analog-to-digital converter 101, an amplifier 106, and a second-stage analog-to-digital converter 101. Correspondingly, the offset calibration circuit includes a detection circuit 102, a calibration circuit 103, a first calibration voltage generation circuit 104 and a second calibration voltage generation circuit 105.
其中,输入模拟电压信息Vin首先被第一级模数转换器101采样,然后由第一级模数转换器101的比较器进行量化,得到第一级数字编码(D1),同时生成第一级余量电压(Vres1)。比较器由于存在失调,会引入失调电压(Vos1)。Vos1会包含在D1和Vres1。Among them, the input analog voltage information Vin is first sampled by the first-stage analog-to-digital converter 101, and then quantized by the comparator of the first-stage analog-to-digital converter 101 to obtain the first-stage digital code (D1), and at the same time generate the first-stage digital code. Margin voltage (Vres1). Due to the offset of the comparator, an offset voltage (Vos1) will be introduced. Vos1 will be included in D1 and Vres1.
另外,当第一级模数转换器转换完成后,Vres1传递到放大器106,放大器106将Vres1放大G倍后输出电压Vra。放大器106的放大倍数与校准没有联系,放大器106的放大倍数可以根据第一级模数转换器101、放大器106、第二级模数转换器101的功耗和精度来设置。在放大过程中,放大器106由于晶体管失配等影响,同样会引入失调电压(Vosra),Vosra会叠加在Vra中,并被传递到下一级模数转换器。In addition, when the conversion of the first-stage analog-to-digital converter is completed, Vres1 is passed to the amplifier 106, and the amplifier 106 amplifies Vres1 by G times and outputs the voltage Vra. The amplification factor of the amplifier 106 is not related to the calibration. The amplification factor of the amplifier 106 can be set according to the power consumption and accuracy of the first-stage analog-to-digital converter 101, the amplifier 106, and the second-stage analog-to-digital converter 101. During the amplification process, the amplifier 106 will also introduce an offset voltage (Vosra) due to transistor mismatch and other effects. Vosra will be superimposed on Vra and passed to the next-stage analog-to-digital converter.
在本申请实施例中,第二级模数转换器101可以对Vra采样,然后第二级模数转换器101中的比较器进行量化,得到第二级数字编码(D2)。第二级模数转换器101的比较器会引入失调电压(Vos2),也会包含在D2中。在放大器106放大过程中,Vres1需要由第一级模数转换器101保持,第一级模数转换器101处于静止状态;等到放大完成后,第一级模数转换器101进行下一个周期的采样和转换,第二级模数转换器101同时进行对Vra的转换。In the embodiment of the present application, the second-stage analog-to-digital converter 101 can sample Vra, and then the comparator in the second-stage analog-to-digital converter 101 performs quantization to obtain the second-stage digital code (D2). The comparator of the second-stage analog-to-digital converter 101 will introduce an offset voltage (Vos2), which will also be included in D2. During the amplification process of the amplifier 106, Vres1 needs to be maintained by the first-stage analog-to-digital converter 101, and the first-stage analog-to-digital converter 101 is in a static state; after the amplification is completed, the first-stage analog-to-digital converter 101 performs the next cycle. Sampling and conversion, the second-stage analog-to-digital converter 101 simultaneously converts Vra.
需要说明的是,假设级间放大器106的放大倍数为G,则总的失调电压Vosin可以为:其中,根据D1和D2生成的第一电压检测值是对Vosin的极性进行判断,检测电路102输出的第一电压检测值可以表示为Dec1;根据D2生成的第二电压检测值是对Vos2的极性进行判断,检测电路102输出的第二电压检测值可以表示为Dec2。校准电路103根据Dec1输出第一电压校准编码(Dcal1),根据Dec2输出第二电压校准编码(Dcal2)。It should be noted that, assuming that the amplification factor of the interstage amplifier 106 is G, the total offset voltage Vosin can be: Among them, the first voltage detection value generated according to D1 and D2 is to determine the polarity of Vosin. The first voltage detection value output by the detection circuit 102 can be expressed as Dec1; the second voltage detection value generated according to D2 is to determine the polarity of Vos2. The polarity is determined, and the second voltage detection value output by the detection circuit 102 can be expressed as Dec2. The calibration circuit 103 outputs a first voltage calibration code (Dcal1) based on Dec1 and a second voltage calibration code (Dcal2) based on Dec2.
另外,对于如图7所示的模数转换电路,第一级模数转换器101的第一校准电压信号可以表示为Vcal1,第二级模数转换器101的第二校准电压信号可以表示为Vcal2,进行校准后,模数转换器101总的输入失调电压可以表示为:经过若干次校准过程,Vcal2最终将Vos2完全抵消,Vcal1将/>完全抵消,实现失调校准功能。In addition, for the analog-to-digital conversion circuit as shown in Figure 7, the first calibration voltage signal of the first-stage analog-to-digital converter 101 can be expressed as Vcal1, and the second calibration voltage signal of the second-stage analog-to-digital converter 101 can be expressed as Vcal2, after calibration, the total input offset voltage of the analog-to-digital converter 101 can be expressed as: After several calibration processes, Vcal2 finally completely offsets Vos2, and Vcal1 will/> Completely offset to achieve offset calibration function.
综上所述,本申请实施例提供的模数转换电路,仅需要设置N-1个检测电路、N-1个校准电路以及N-1个第一校准电压生成电路,便可以实现对N级模数转换器组成的流水线模数转换器的校准,减少了所需的失调校准电路的数量。而且,基于第i数字编码、第i+1数字编码生成第i电压符号检测值,基于第i电压符号检测值可以确定第i电压校准编码,基于第i电压校准编码实时确定用于校准的第i校准电压信号,无需额外的时间进行短接,提高了流水线模数转换器的处理速度。而且,无需为模数转换电路中的每个放大器设置校正电路,减少了所需的失调校准电路的数量。To sum up, the analog-to-digital conversion circuit provided by the embodiment of the present application only needs to set up N-1 detection circuits, N-1 calibration circuits and N-1 first calibration voltage generation circuits, so as to realize N-level Calibration of the ADC consists of pipelined ADCs, reducing the number of offset calibration circuits required. Moreover, the i-th voltage symbol detection value is generated based on the i-th digital code and the i+1-th digital code, the i-th voltage calibration code can be determined based on the i-th voltage symbol detection value, and the i-th voltage calibration code is determined in real time based on the i-th voltage calibration code. i calibrates the voltage signal without requiring additional time for short circuiting, improving the processing speed of the pipeline analog-to-digital converter. Furthermore, there is no need to provide a correction circuit for each amplifier in the analog-to-digital conversion circuit, reducing the number of offset calibration circuits required.
本申请实施例还可以提供一种电子设备,该电子设备中可以包括上述的模数转换电路。Embodiments of the present application may also provide an electronic device, which may include the above-mentioned analog-to-digital conversion circuit.
以上仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above are only preferred embodiments of the present invention and are not intended to limit the present invention. For those skilled in the art, the present invention may have various modifications and changes. Any modifications, equivalent substitutions, improvements, etc. made within the spirit and principles of the present invention shall be included in the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110488536.2A CN113328748B (en) | 2021-04-30 | 2021-04-30 | Analog to digital conversion circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110488536.2A CN113328748B (en) | 2021-04-30 | 2021-04-30 | Analog to digital conversion circuit |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113328748A CN113328748A (en) | 2021-08-31 |
CN113328748B true CN113328748B (en) | 2023-12-15 |
Family
ID=77414327
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110488536.2A Active CN113328748B (en) | 2021-04-30 | 2021-04-30 | Analog to digital conversion circuit |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113328748B (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5929796A (en) * | 1997-04-29 | 1999-07-27 | National Semiconductor Corporation | Self-calibrating reversible pipeline analog to digital and digital to analog converter |
US6563445B1 (en) * | 2001-11-28 | 2003-05-13 | Analog Devices, Inc. | Self-calibration methods and structures for pipelined analog-to-digital converters |
US6894631B1 (en) * | 2004-03-31 | 2005-05-17 | Analog Devices, Inc. | Pipeline ADC digital dithering for increased digital calibration resolution |
CN1647388A (en) * | 2002-04-02 | 2005-07-27 | 艾利森电话股份有限公司 | Comparator offset calibration for A/D converters |
CN101783683A (en) * | 2008-12-29 | 2010-07-21 | 英特赛尔美国股份有限公司 | Error estimation and correction in a two-channel time-interleaved analog-to-digital converter |
CN102055476A (en) * | 2009-11-06 | 2011-05-11 | 财团法人工业技术研究院 | Pipelined Time-to-Digital Converter |
CN102739252A (en) * | 2011-04-12 | 2012-10-17 | 美信集成产品公司 | System and method for background calibration of time interleaved analog to digital converter |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2696506A1 (en) * | 2012-08-09 | 2014-02-12 | Innovaciones Microelectronicas S.L. | Two-stage analog-to-digital converter for high-speed image sensor |
-
2021
- 2021-04-30 CN CN202110488536.2A patent/CN113328748B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5929796A (en) * | 1997-04-29 | 1999-07-27 | National Semiconductor Corporation | Self-calibrating reversible pipeline analog to digital and digital to analog converter |
US6563445B1 (en) * | 2001-11-28 | 2003-05-13 | Analog Devices, Inc. | Self-calibration methods and structures for pipelined analog-to-digital converters |
CN1647388A (en) * | 2002-04-02 | 2005-07-27 | 艾利森电话股份有限公司 | Comparator offset calibration for A/D converters |
US6894631B1 (en) * | 2004-03-31 | 2005-05-17 | Analog Devices, Inc. | Pipeline ADC digital dithering for increased digital calibration resolution |
CN101783683A (en) * | 2008-12-29 | 2010-07-21 | 英特赛尔美国股份有限公司 | Error estimation and correction in a two-channel time-interleaved analog-to-digital converter |
CN102055476A (en) * | 2009-11-06 | 2011-05-11 | 财团法人工业技术研究院 | Pipelined Time-to-Digital Converter |
CN102739252A (en) * | 2011-04-12 | 2012-10-17 | 美信集成产品公司 | System and method for background calibration of time interleaved analog to digital converter |
Non-Patent Citations (3)
Title |
---|
Yan Song ; Yan Zhu ; Chi Hang Chan ; Rui Paulo Martins.9.6 A 2.56mW 40MHz-Bandwidth 75dB-SNDR Partial-Interleaving SAR-Assisted NS Pipeline ADC With Background Inter-Stage Offset Calibration. 2020 IEEE International Solid- State Circuits Conference .2020,全文. * |
一种0.18μm数字工艺的12bit 100MS/s流水线型ADC设计;栗成智;瞿小峰;隋文泉;;固体电子学研究与进展(第04期);全文 * |
延迟链ADC校准算法的研究与设计;万祝娟;中国优秀硕士学位论文全文数据库 (信息科技辑);全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN113328748A (en) | 2021-08-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8310388B2 (en) | Subrange analog-to-digital converter and method thereof | |
US6958722B1 (en) | SAR ADC providing digital codes with high accuracy and high throughput performance | |
CN109120268B (en) | A dynamic comparator offset voltage calibration method | |
CN101854174B (en) | Streamline analog-digital converter and sub conversion stage circuit thereof | |
CN103916127B (en) | Analog/digital converter | |
US20230198535A1 (en) | Calibration method of capacitor array type successive approximation register analog-to-digital converter | |
CN106788429B (en) | DAC offset error calibration circuit based on charge domain signal processing | |
CN111934689B (en) | High-precision analog-to-digital converter and conversion method | |
US7847720B2 (en) | Pipelined analog-to-digital converter | |
CN111446964B (en) | Novel fourteen-bit pipeline-successive approximation type analog-to-digital converter | |
CN106253901A (en) | Analog-digital conversion device and related calibration method and calibration module | |
WO2010140523A1 (en) | Successive approximation a/d converter circuit and semiconductor integrated circuit | |
CN111034052A (en) | Method and apparatus for enabling wide input common mode range in a SAR ADC without additional active circuitry | |
JP4526919B2 (en) | A / D converter | |
CN109084931B (en) | Sensor maladjustment calibration method | |
CN113271102B (en) | Pipeline Analog-to-Digital Converter | |
CN113098511B (en) | Front-end self-calibration method of pipeline successive approximation type analog-to-digital converter | |
CN113328748B (en) | Analog to digital conversion circuit | |
CN101072031A (en) | Comparator, Analog-to-Digital Converter and Its Circuit Layout Method | |
CN114499529B (en) | Analog-digital converter circuit, analog-digital converter, and electronic apparatus | |
CN107786206A (en) | Pipeline SAR-ADC system | |
CN115701687A (en) | Calibration device and method for pipelined analog-to-digital conversion circuit and radar | |
CN113746481B (en) | Pipelined successive approximation analog-to-digital converter | |
Shende et al. | VLSI design of low power high speed 4 bit resolution pipeline ADC in submicron CMOS technology | |
JP4756095B2 (en) | Analog-digital conversion cell and analog-digital converter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |