CN113325563B - A multicolor 3D super-resolution expansion microscope system with a large field of view - Google Patents
A multicolor 3D super-resolution expansion microscope system with a large field of view Download PDFInfo
- Publication number
- CN113325563B CN113325563B CN202110431378.7A CN202110431378A CN113325563B CN 113325563 B CN113325563 B CN 113325563B CN 202110431378 A CN202110431378 A CN 202110431378A CN 113325563 B CN113325563 B CN 113325563B
- Authority
- CN
- China
- Prior art keywords
- light
- component
- mirror
- scanning
- imaging
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000005284 excitation Effects 0.000 claims abstract description 64
- 238000003384 imaging method Methods 0.000 claims abstract description 56
- 230000004075 alteration Effects 0.000 claims abstract description 40
- 238000012937 correction Methods 0.000 claims abstract description 30
- 239000006185 dispersion Substances 0.000 claims abstract description 29
- 230000003287 optical effect Effects 0.000 claims abstract description 18
- 239000000523 sample Substances 0.000 claims description 51
- 230000010287 polarization Effects 0.000 claims description 44
- 238000000799 fluorescence microscopy Methods 0.000 claims description 19
- 230000005540 biological transmission Effects 0.000 claims description 11
- 238000010587 phase diagram Methods 0.000 claims description 9
- 210000001747 pupil Anatomy 0.000 claims description 9
- 238000001514 detection method Methods 0.000 claims description 8
- 238000005286 illumination Methods 0.000 claims description 7
- 230000010339 dilation Effects 0.000 claims description 6
- 238000005516 engineering process Methods 0.000 claims description 6
- 239000012472 biological sample Substances 0.000 claims description 4
- 239000007850 fluorescent dye Substances 0.000 claims description 3
- 238000007654 immersion Methods 0.000 claims description 3
- 238000001228 spectrum Methods 0.000 claims description 3
- 238000001914 filtration Methods 0.000 claims description 2
- 230000003044 adaptive effect Effects 0.000 abstract description 25
- 238000000034 method Methods 0.000 abstract description 10
- 238000010586 diagram Methods 0.000 description 8
- 230000009467 reduction Effects 0.000 description 7
- 238000000386 microscopy Methods 0.000 description 6
- 230000008859 change Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 3
- 238000002189 fluorescence spectrum Methods 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 238000010869 super-resolution microscopy Methods 0.000 description 3
- 239000007787 solid Substances 0.000 description 2
- 238000002834 transmittance Methods 0.000 description 2
- 230000004304 visual acuity Effects 0.000 description 2
- 102000029749 Microtubule Human genes 0.000 description 1
- 108091022875 Microtubule Proteins 0.000 description 1
- 238000010870 STED microscopy Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004061 bleaching Methods 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000003234 fluorescent labeling method Methods 0.000 description 1
- 102000034287 fluorescent proteins Human genes 0.000 description 1
- 108091006047 fluorescent proteins Proteins 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical group [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000007901 in situ hybridization Methods 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 230000010874 maintenance of protein location Effects 0.000 description 1
- 210000004688 microtubule Anatomy 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000000399 optical microscopy Methods 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 230000007170 pathology Effects 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B21/00—Microscopes
- G02B21/0004—Microscopes specially adapted for specific applications
- G02B21/002—Scanning microscopes
- G02B21/0024—Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
- G02B21/0032—Optical details of illumination, e.g. light-sources, pinholes, beam splitters, slits, fibers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/645—Specially adapted constructive features of fluorimeters
- G01N21/6456—Spatial resolved fluorescence measurements; Imaging
- G01N21/6458—Fluorescence microscopy
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/6486—Measuring fluorescence of biological material, e.g. DNA, RNA, cells
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B21/00—Microscopes
- G02B21/0004—Microscopes specially adapted for specific applications
- G02B21/002—Scanning microscopes
- G02B21/0024—Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
- G02B21/0036—Scanning details, e.g. scanning stages
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B21/00—Microscopes
- G02B21/0004—Microscopes specially adapted for specific applications
- G02B21/002—Scanning microscopes
- G02B21/0024—Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
- G02B21/0052—Optical details of the image generation
- G02B21/0064—Optical details of the image generation multi-spectral or wavelength-selective arrangements, e.g. wavelength fan-out, chromatic profiling
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B21/00—Microscopes
- G02B21/0004—Microscopes specially adapted for specific applications
- G02B21/002—Scanning microscopes
- G02B21/0024—Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
- G02B21/0052—Optical details of the image generation
- G02B21/0076—Optical details of the image generation arrangements using fluorescence or luminescence
Landscapes
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Optics & Photonics (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Biochemistry (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Engineering & Computer Science (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Microscoopes, Condenser (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
本发明公开了一种具有大视场的多色三维超分辨膨胀显微镜系统,属于显微成像领域,该系统利用空间光调制器和变形镜等自适应元件对光学像差进行校正,同时引入色散补偿组件对激发光源进行色散校正。该系统可以避免由于光学像差对超分辨显微镜系统性能产生影响,在保证系统分辨率的同时,可以增大三维成像视场。同时,与已有方法相比,本发明所公开的系统可以很方便地实现多色成像。
The invention discloses a multi-color three-dimensional super-resolution expansion microscope system with a large field of view, belonging to the field of microscopic imaging. The system uses adaptive elements such as spatial light modulators and deformable mirrors to correct optical aberrations, while introducing dispersion The compensation component performs dispersion correction on the excitation light source. The system can avoid the influence of optical aberration on the performance of the super-resolution microscope system, and can increase the three-dimensional imaging field of view while ensuring the system resolution. Meanwhile, compared with the existing methods, the system disclosed in the present invention can easily realize multi-color imaging.
Description
技术领域technical field
本发明涉及光学显微成像以及细胞生物学领域,特别用于荧光显微镜实现大视场的多色三维超分辨膨胀显微成像。The invention relates to the fields of optical microscopic imaging and cell biology, and is particularly used for realizing multicolor three-dimensional super-resolution expansion microscopic imaging with a large field of view in a fluorescence microscope.
背景技术Background technique
自从2014年诺贝尔化学奖颁给了Eric Betzig、Stefan W.Hell和WilliamE.Moerner三人之后,超分辨显微成像技术取得了长足的发展,并且逐步走向实用化。在理论上,现有的主流超分辨显微成像方法,包括目标开关(STED(stimulated emissiondepletion microscopy)、RESOLFT)、单分子定位(PALM、STORM、FPALM、GSDIM)、饱和结构光照明(SSIM)、荧光振荡(SOFI)等,均可以获得无限小的分辨能力。在对生物样品成像时,大多可以实现横向30-80nm,轴向分辨100nm左右的分辨率水平。虽然依靠光学系统的改进可以在一定程度上改善时空分辨能力,但其总体提升效果往往受到样品本身荧光性能的限制,即在现有技术条件下,信息原位生成质量的不足对显微镜分辨率的提高构成巨大障碍。Since the Nobel Prize in Chemistry was awarded to Eric Betzig, Stefan W. Hell and William E. Moerner in 2014, super-resolution microscopy imaging technology has made great progress and is gradually becoming practical. In theory, the existing mainstream super-resolution microscopy imaging methods, including target switching (STED (stimulated emissiondepletion microscopy), RESOLFT), single-molecule localization (PALM, STORM, FPALM, GSDIM), saturated structured light illumination (SSIM), Fluorescence oscillation (SOFI), etc., can obtain infinitely small resolving power. When imaging biological samples, most of them can achieve a resolution level of 30-80 nm in the lateral direction and about 100 nm in the axial direction. Although the improvement of the optical system can improve the spatial and temporal resolution to a certain extent, the overall improvement effect is often limited by the fluorescence performance of the sample itself. Improvement constitutes a huge obstacle.
2015年,Edward Boyden实验室发表了被称为“膨胀显微”的新方法(ExpansionMicroscopy,ExM),为提高显微成像技术分辨能力提供了新思路。该方法通过将生物样本各向同性地物理放大,使得尺寸小于传统显微镜分辨率的样品可以在膨胀状态后被解析。此外,膨胀处理后的样本是几乎透明的,极大地减少了背景噪声,提高了获取图像的对比度。在随后的几年,ExM发展迅速,针对不同的荧光标记手段提出了不同的改进版本:包括使用传统抗体标记或荧光蛋白的膨胀方法protein-retention ExM(proExM)、使用原位杂交标记RNA的膨胀方法expansion FISH(ExFISH)、通过重复进行样本膨胀实现极高分辨率的膨胀方法iterative ExM(iExM),以及出于病理学或诊断学的目的研究人类组织样本的膨胀方法expansion pathology(ExPath)等。从本质而言,ExM是一种样品处理方法而不依赖于具体成像技术,因此几乎可以与所有的现有光学显微成像技术相兼容。In 2015, Edward Boyden's laboratory published a new method called "expansion microscopy" (Expansion Microscopy, ExM), which provided a new idea for improving the resolving power of microscopic imaging technology. By physically enlarging biological samples isotropically, this method enables samples with dimensions smaller than the resolution of conventional microscopy to be resolved after the expanded state. In addition, the dilated samples are almost transparent, which greatly reduces background noise and improves the contrast of acquired images. In the following years, ExM developed rapidly, and different improved versions were proposed for different fluorescent labeling methods: including the expansion method protein-retention ExM (proExM) using traditional antibody labeling or fluorescent protein, the expansion method using in situ hybridization labeled RNA The method expansion FISH (ExFISH), the expansion method iterative ExM (iExM), which achieves extremely high resolution through repeated sample expansion, and the expansion pathology (ExPath) method for studying human tissue samples for pathological or diagnostic purposes, among others. Essentially, ExM is a sample processing method independent of specific imaging techniques and is therefore compatible with almost all existing optical microscopy imaging techniques.
2018年,Helge Ewers实验室将ExM与STED超分辨显微成像技术结合实现ExSTED,进一步提高了分辨率,实现了二维~10nm、三维50-70nm的分辨率,并且通过2D ExSTED看到了微管的管状结构。但是,如果要观察更深(5μm以上的深度)的结构,则会由于折射率不匹配而产生球差。为解决这个问题,Helge Ewers课题组使用的方法是将油镜换成水镜,在一定程度上减小球差的影响,但同时也使得三维分辨率50nm降至70nm。除此之外,实际中这种技术结合还存在着巨大挑战,其主要瓶颈,包括:膨胀造成的实际视场范围缩小、成像速度变慢问题和荧光标记密度降低、性能恶化(主要是荧光漂白和荧光信号降低)问题等。In 2018, Helge Ewers laboratory combined ExM and STED super-resolution microscopy imaging technology to realize ExSTED, which further improved the resolution, achieving two-dimensional ~10nm, three-dimensional 50-70nm resolution, and saw microtubules through 2D ExSTED. tubular structure. However, if a deeper structure (a depth of 5 μm or more) is to be observed, spherical aberration occurs due to refractive index mismatch. To solve this problem, the method used by Helge Ewers' research group is to replace the oil mirror with a water mirror, which reduces the influence of spherical aberration to a certain extent, but also reduces the three-dimensional resolution from 50nm to 70nm. In addition, there are still huge challenges in this combination of technologies in practice. The main bottlenecks include: the reduction of the actual field of view caused by the expansion, the slow imaging speed and the reduction of the density of fluorescent labels, and the deterioration of performance (mainly fluorescent bleaching). and fluorescence signal reduction) problems, etc.
发明内容SUMMARY OF THE INVENTION
本发明的目的为提供一种具有大视场的多色三维超分辨膨胀显微镜系统,在保证膨胀STED显微镜具有大视场的同时,兼顾它的多色成像功能。The purpose of the present invention is to provide a multi-color three-dimensional super-resolution expansion microscope system with a large field of view, which takes into account its multi-color imaging function while ensuring that the expansion STED microscope has a large field of view.
为了实现上述目的,本发明提供一种具有大视场的多色三维超分辨膨胀显微镜系统,该系统包括:照明单元和探测单元。In order to achieve the above object, the present invention provides a multi-color three-dimensional super-resolution expansion microscope system with a large field of view, the system comprising: an illumination unit and a detection unit.
所述照明单元包括损耗光光路、激发光光路和混合光光路。The lighting unit includes a loss light path, an excitation light path and a mixed light path.
所述损耗光光路依次设有损耗光光源、第一光调制器、相对位相延迟组件、第一反射镜、第一望远组件、对抑制光束进行相位调制的相位调制组件、第二望远组件、第二反射镜、第一1/2波片、第三望远组件;其中相对位相延迟组件将损耗光光束分束为两个互相垂直的偏振分量并对这两个分量产生位相延迟以破坏其相干性。The lossy light path is sequentially provided with a lossy light source, a first light modulator, a relative phase delay component, a first reflector, a first telescopic component, a phase modulation component for phase modulation of the suppressed beam, and a second telescopic component , the second mirror, the first 1/2 wave plate, and the third telephoto component; wherein the relative phase retardation component splits the lost light beam into two mutually perpendicular polarization components and produces phase delay for these two components to destroy its coherence.
所述激发光光路依次设有激发光光源、第二光调制器、色散补偿组件、第四望远组件;其中色散补偿组件用以补偿不同波长的光的色散。The excitation light path is sequentially provided with an excitation light source, a second light modulator, a dispersion compensation component, and a fourth telephoto component; wherein the dispersion compensation component is used to compensate the dispersion of light of different wavelengths.
所述混合光光路依次设有第一二色镜、第二二色镜、扫描组件、第五望远组件、自适应像差校正组件、第一1/4波片、第六望远组件、第三反射镜、显微物镜和样品台。所述第六望远组件中的光路上设置有分束器,所述第一二色镜将损耗光从第三望远组件出来的光束和激发光从第四望远组件出来的光束合束成混合光束。所述扫描组件的作用是改变混合光束在显微物镜入瞳处的偏转角,使混合光束焦点在显微物镜焦平面上实现二维扫描。所述自适应像差校正组件依次设置第九反射镜、变形镜;混合光束经第九反射镜反射后,到达变形镜表面,对混合光束的波前进行校正。The mixed light path is sequentially provided with a first dichroic mirror, a second dichroic mirror, a scanning component, a fifth telephoto component, an adaptive aberration correction component, a first 1/4 wave plate, a sixth telephoto component, Third mirror, microscope objective and sample stage. A beam splitter is arranged on the optical path in the sixth telescopic assembly, and the first dichroic mirror combines the beam of loss light from the third telescopic assembly and the beam of excitation light from the fourth telescopic assembly. into a mixed beam. The function of the scanning component is to change the deflection angle of the mixed light beam at the entrance pupil of the microscope objective lens, so that the focus of the mixed light beam realizes two-dimensional scanning on the focal plane of the microscope objective lens. The self-adaptive aberration correction component is provided with a ninth reflection mirror and a deformation mirror in sequence; after the mixed light beam is reflected by the ninth reflection mirror, it reaches the surface of the deformation mirror, and the wave front of the mixed light beam is corrected.
所述探测单元包括散射光成像组件和荧光成像组件,混合光束照在样品上产生散射信号,所述散射光成像组件设置在散射信号经过分束器的反射光路上,用于探测样品的散射信号;混合光束激发产生的荧光信号原路返回经变形镜波前校正后,到达荧光成像组件。所述荧光成像组件设置在荧光信号经过第二二色镜的透射光路上,用于探测样品的荧光信号。The detection unit includes a scattered light imaging component and a fluorescence imaging component. The mixed light beam illuminates the sample to generate a scattered signal. The scattered light imaging component is arranged on the reflected light path of the scattered signal passing through the beam splitter, and is used to detect the scattered signal of the sample. ; The fluorescence signal generated by the excitation of the mixed beam returns to the fluorescence imaging component after being corrected by the deformed mirror wavefront. The fluorescence imaging component is arranged on the transmission light path of the fluorescence signal passing through the second dichroic mirror, and is used for detecting the fluorescence signal of the sample.
进一步地,相位调制组件包括沿光路依次设置的第七反射镜、空间光调制器、第三1/4波片、第一透镜、第八反射镜;第一透镜位于空间光调制器与第八反射镜的中间位置,且第一透镜的焦距等于第一透镜到第八反射镜之间的距离。损耗光首先到达空间光调制器的第一相位图区域,并对其水平偏振分量进行一次相位调制;然后损耗光经空间光调制器反射后依次经过第三1/4波片和第一透镜,随后经第八反射镜反射后返回,经过第一透镜和第三1/4波片后,再次到达空间光调制器的第二相位图区域对损耗光源垂直偏振分量进行二次相位调制;经过调制后的损耗光被显微物镜聚焦后,聚焦光斑内光强围绕焦点呈中空分布。空间光调制器的第一、第二相位图为圆形,处于整个空间光调制器有效区域的水平居中位置,两个相位图位置可交换,直径与相位调制组件有效孔径等大。Further, the phase modulation component includes a seventh reflector, a spatial light modulator, a third 1/4 wave plate, a first lens, and an eighth reflector arranged in sequence along the optical path; the first lens is located between the spatial light modulator and the eighth reflector. The middle position of the reflector, and the focal length of the first lens is equal to the distance between the first lens and the eighth reflector. The loss light first reaches the first phase map area of the spatial light modulator, and performs a phase modulation on its horizontal polarization component; then the loss light is reflected by the spatial light modulator and passes through the third 1/4 wave plate and the first lens in turn, Then it is reflected by the eighth mirror and returned, and after passing through the first lens and the third 1/4 wave plate, it reaches the second phase map area of the spatial light modulator again to perform secondary phase modulation on the vertical polarization component of the lossy light source; after modulation After the lost light is focused by the microscope objective, the light intensity in the focused spot is distributed in a hollow around the focal point. The first and second phase diagrams of the spatial light modulator are circular and are located in the horizontal center of the entire effective area of the spatial light modulator. The positions of the two phase diagrams can be exchanged, and the diameter is equal to the effective aperture of the phase modulation component.
进一步地,所述扫描组件包括依次布置的第一扫描镜、第二扫描镜和第三扫描镜。第一扫描镜与扫描组件有效孔径等大,扫描方向与第二扫描镜和第三扫描镜垂直。第一扫描镜扫描频率快于第二扫描镜和第三扫描镜。Further, the scanning assembly includes a first scanning mirror, a second scanning mirror and a third scanning mirror arranged in sequence. The first scanning mirror has the same size as the effective aperture of the scanning assembly, and the scanning direction is perpendicular to the second scanning mirror and the third scanning mirror. The scanning frequency of the first scanning mirror is faster than that of the second scanning mirror and the third scanning mirror.
进一步地,所述第一望远组件、第二望远组件、第三望远组件、第四望远组件、第五望远组件、第六望远组件均包含两个凸面向背设置且共焦的凸透镜。用于扩束(或者缩小光束)准直并维持系统中空间光调制器、第一扫描镜、变形镜和显微物镜后焦平面的共轭关系。Further, the first telephoto assembly, the second telephoto assembly, the third telephoto assembly, the fourth telephoto assembly, the fifth telephoto assembly, and the sixth telephoto assembly all include two convexes that are arranged back-to-back and are confocal. convex lens. It is used to expand the beam (or reduce the beam) to collimate and maintain the conjugate relationship between the spatial light modulator, the first scanning mirror, the deformable mirror and the back focal plane of the microscope objective in the system.
进一步地,本发明通过光调制器、色散补偿组件以及荧光成像组件实现多色荧光成像。Further, the present invention realizes multicolor fluorescence imaging through the light modulator, the dispersion compensation component and the fluorescence imaging component.
具体来说,激发光光源优选为白光激光器,其后放置第二光调制器,用于选择激发光束的波长并调制对应波长的透射光强,第二光调制器优选为声光可调谐滤波器,所需要调制的波长由样品中所用的荧光染料确定,优选波长包括488nm、590nm和650nm。色散补偿组件包括依次设置的第三1/2波片、第三偏振分束器、第二1/4波片、第三二色镜、第四二色镜、第五二色镜。三个二色镜的相对位置根据激发光波长对应的色散值确定,即由不同波长的激发光脉冲所对应的发射先后顺序确定,在白光激光器中,650nm的激发光最先发出,其次是590nm,最后是488nm。三路激发光首先经过第三1/2波片,变成垂直偏振光,然后经第三偏振分束器反射,再经过第二1/4波片。随后,488nm激发光经第三二色镜反射原路返回,590nm激发光经第三二色镜透射、第四二色镜反射原路返回,650nm激发光经第三二色镜透射、第四二色镜透射以及第五二色镜反射原路返回。反射后原路返回的三路激发光再次经过1/4波片,变为水平偏振光,经第三偏振分束器透射,最终经显微物镜聚焦在样品上产生荧光信号,荧光信号由荧光成像组件收集。荧光成像组件包括用于分离当前成像模块探测荧光信号与后续成像模块荧光信号的第六二色镜、用于过滤不属于探测通道光谱外的杂散光信号的滤光片、将收集的荧光聚焦到光子计数器上的第二透镜以及根据收集到的荧光光子数将荧光信号线性转换为电信号的光子计数器。Specifically, the excitation light source is preferably a white light laser, and a second light modulator is placed behind it to select the wavelength of the excitation light beam and modulate the transmitted light intensity of the corresponding wavelength, and the second light modulator is preferably an acousto-optic tunable filter , the wavelength required for modulation is determined by the fluorescent dye used in the sample, and preferred wavelengths include 488 nm, 590 nm and 650 nm. The dispersion compensation component includes a third 1/2 wave plate, a third polarization beam splitter, a second 1/4 wave plate, a third dichroic mirror, a fourth dichroic mirror, and a fifth dichroic mirror, which are arranged in sequence. The relative positions of the three dichroic mirrors are determined according to the dispersion value corresponding to the excitation light wavelength, that is, determined by the emission sequence corresponding to the excitation light pulses of different wavelengths. , and finally 488nm. The three-way excitation light first passes through the third 1/2 wave plate to become vertically polarized light, then is reflected by the third polarization beam splitter, and then passes through the second 1/4 wave plate. Subsequently, the 488nm excitation light is reflected by the third dichroic mirror and returned to the original path, the 590nm excitation light is transmitted through the third dichroic mirror, and the fourth The dichroic mirror transmits and the fifth dichroic mirror reflects back the same way. After reflection, the three-way excitation light returned from the original path passes through the 1/4 wave plate again, becomes horizontally polarized light, transmits through the third polarization beam splitter, and finally is focused on the sample by the microscope objective lens to generate a fluorescent signal. Imaging components are collected. The fluorescence imaging assembly includes a sixth dichroic mirror for separating the fluorescence signal detected by the current imaging module and the fluorescence signal of the subsequent imaging module, a filter for filtering stray light signals that do not belong to the spectrum of the detection channel, and focusing the collected fluorescence to A second lens on the photon counter and a photon counter that linearly converts fluorescent signals into electrical signals according to the number of collected fluorescent photons.
进一步地,本发明通过相对位相延迟组件来保证两束损耗光的非相干叠加,进而实现三维超分辨显微成像。Further, the present invention ensures the incoherent superposition of the two beams of loss light through the relative phase delay component, thereby realizing three-dimensional super-resolution microscopic imaging.
具体来说,相对位相延迟组件包括将损耗光光束分为垂直偏振分量和水平偏振分量的第二1/2波片和第一偏振分束器、用于改变垂直偏振分量方向的第四反射镜、用于改变水平偏振分量方向及光程的第五反射镜和第六反射镜、以及对所述垂直偏振分量和水平偏振分量进行合束的第二偏振分光器。Specifically, the relative phase retardation component includes a second half-wave plate and a first polarization beam splitter for dividing the lost light beam into a vertical polarization component and a horizontal polarization component, and a fourth mirror for changing the direction of the vertical polarization component , a fifth mirror and a sixth mirror for changing the direction and optical path of the horizontal polarization component, and a second polarization beam splitter for combining the vertical polarization component and the horizontal polarization component.
进一步地,本发明不仅能够与膨胀显微技术结合,还能通过自适应像差校正组件解决因膨胀生物样品与油浸物镜折射率不匹配所产生的像差问题。Further, the present invention can not only be combined with the expansion microscopy technology, but also solve the aberration problem caused by the mismatch between the refractive index of the expanded biological sample and the oil immersion objective lens through an adaptive aberration correction component.
进一步地,本发明能够通过样品台、扫描组件和自适应像差校正组件实现三维空间大视场显微成像。Further, the present invention can realize three-dimensional large-field microscopic imaging through the sample stage, the scanning component and the adaptive aberration correction component.
具体来说,样品台具有三维移动能力,扫描组件为三振镜系统,包括沿光路依次布置的第一扫描镜、第二扫描镜和第三扫描镜,通过改变混合光束在显微物镜入瞳处的偏转角,使混合光束焦点在显微物镜焦平面上实现二维高速扫描,两者结合实现三维快速扫描;自适应像差校正组件能够解决深层成像所带来的像差问题,在保证分辨能力的前提下实现深层成像,从而增大了成像深度,进而实现三维空间大视场显微成像。Specifically, the sample stage has the ability to move in three dimensions, and the scanning component is a three-galvo mirror system, including a first scanning mirror, a second scanning mirror and a third scanning mirror arranged in sequence along the optical path. By changing the mixed beam at the entrance pupil of the microscope objective The deflection angle of the hybrid beam can achieve two-dimensional high-speed scanning on the focal plane of the microscope objective lens, and the combination of the two can achieve three-dimensional fast scanning; the adaptive aberration correction component can solve the aberration problem caused by deep imaging, while ensuring the resolution Under the premise of the ability to achieve deep imaging, the imaging depth is increased, and the three-dimensional space large field of view microscopic imaging is realized.
与现有技术相比,本发明的有益效果为:Compared with the prior art, the beneficial effects of the present invention are:
(1)同时具有多色荧光成像、三维超分辨以及膨胀显微成像能力;(1) Simultaneous multi-color fluorescence imaging, three-dimensional super-resolution and expansion microscopy imaging capabilities;
(2)在深度成像和膨胀显微成像时,能够借助自适应光学对由于折射率不匹配而产生的样品像差进行校正;(2) In depth imaging and dilation microscopy imaging, adaptive optics can be used to correct sample aberrations caused by refractive index mismatch;
(3)在观察样品前,该系统可以通过空间光调制器和变形镜矫正系统光路上的像差。(3) Before observing the sample, the system can correct the aberration on the optical path of the system through the spatial light modulator and the deformable mirror.
(4)简化现有系统光学原件数量,结构简单,系统稳定,实现难度低,成本便宜。(4) Simplify the number of optical components of the existing system, the structure is simple, the system is stable, the realization difficulty is low, and the cost is low.
(5)本发明通过改变混合光束在显微物镜入瞳处的偏转角,使混合光束焦点在显微物镜焦平面上实现二维高速扫描,两者结合实现三维快速扫描,成像速度快;自适应像差校正组件能够解决深层成像所带来的像差问题,在保证分辨能力的前提下实现深层成像,从而增大了成像深度,进而实现三维空间大视场显微成像。(5) In the present invention, by changing the deflection angle of the mixed light beam at the entrance pupil of the microscope objective lens, the focus of the mixed light beam realizes two-dimensional high-speed scanning on the focal plane of the microscope objective lens, and the combination of the two realizes three-dimensional fast scanning and high imaging speed; The adaptive aberration correction component can solve the aberration problem caused by deep imaging, and realize deep imaging on the premise of ensuring the resolution capability, thereby increasing the imaging depth, and then realizing three-dimensional space large field of view microscopic imaging.
附图说明Description of drawings
图1为本发明实施例中具有大视场的多色三维超分辨膨胀显微镜系统的结构示意图;1 is a schematic structural diagram of a multicolor three-dimensional super-resolution expansion microscope system with a large field of view in an embodiment of the present invention;
图2为本发明实施例中相对位相延迟组件的结构示意图;2 is a schematic structural diagram of a relative phase delay component in an embodiment of the present invention;
图3为本发明实例中色散补偿组件的结构示意图;3 is a schematic structural diagram of a dispersion compensation component in an example of the present invention;
图4为本发明实施例中相位调制组件的结构示意图;4 is a schematic structural diagram of a phase modulation component in an embodiment of the present invention;
图5为本发明实施例中扫描组件的结构示意图;5 is a schematic structural diagram of a scanning component in an embodiment of the present invention;
图6为本发明实例中自适应像差校正组件的结构示意图;6 is a schematic structural diagram of an adaptive aberration correction component in an example of the present invention;
图7为本发明实施例中荧光成像组件的结构示意图;7 is a schematic structural diagram of a fluorescence imaging assembly in an embodiment of the present invention;
图8为本发明实施例中激发光光源的色散曲线图。FIG. 8 is a dispersion curve diagram of an excitation light source in an embodiment of the present invention.
具体实施方式Detailed ways
为使本发明的目的、技术方案和优点更加清楚,以下结合实施例及其附图对本发明作进一步说明。In order to make the objectives, technical solutions and advantages of the present invention clearer, the present invention will be further described below with reference to the embodiments and the accompanying drawings.
实施例Example
参见图1至图7,本实施例的具有大视场的多色三维超分辨膨胀显微镜系统包括:Referring to FIGS. 1 to 7 , the multicolor 3D super-resolution expansion microscope system with a large field of view of this embodiment includes:
损耗光光源1、激发光光源2、第一光调制器3、第二光调制器4、相对位相延迟组件5、色散补偿组件6、第一反射镜7、第一望远组件8、相位调制组件9、第二望远组件10、第二反射镜11、第一1/2波片12、第三望远组件13、第四望远组件14、第一二色镜15、第二二色镜16、扫描组件17、第五望远组件18、自适应像差校正组件19、第一1/4波片20、第六望远组件21、第三反射镜22、显微物镜23、样品24、样品台25、分束器26、光电倍增管27、荧光成像组件28。所有光学元件和样品均位于同轴光路上。Loss light source 1,
本实施例中,来自损耗光光源1的损耗光光束经过第一调制器3后到达相对位相延迟组件5,从相对位相延迟组件5输出后依次经过第一反射镜7、第一望远组件8、相位调制组件9、第二望远组件10、第一1/2波片12和第三望远组件13后到达第一二色镜15。来自激发光光源2的激发光光束经过第二调制器4后到达色散补偿组件6,从色散补偿组件6输出后经过第四望远组件14到达第一二色镜15。损耗光光束和激发光光束通过第一二色镜15合并为混合光束。混合光束经过第二二色镜16后,再经过扫描组件17。从扫描组件17输出的混合光束经过第五望远组件18重新扩束准直,经过扩束准直的混合光束到达自适应像差校正组件19。从自适应像差校正组件19输出的混合光束依次经过第一1/4波片20、第六望远组件21,随后被第三反射镜22反射后进入显微物镜23、最后被聚焦到放置在样品台25上的样品24内。来自样品24的散射信号经显微物镜23反向收集后,依次通过第三反射镜22、分束器26,进入光电倍增管27,经计算机处理后形成散射样品的图像。来自样品24的荧光信号经显微物镜23反向收集后,依次通过第三反射镜22、第六望远组件21、第一1/4波片20、自适应像差校正组件19、第五望远组件18、扫描组件17,最后被第二二色镜透射进入荧光成像组件28,通过计算机处理后形成荧光样品的图像。In this embodiment, the lossy light beam from the lossy light source 1 passes through the first modulator 3 and then reaches the relative phase delay component 5 . After being output from the relative phase delay component 5 , it sequentially passes through the first reflecting mirror 7 and the first telephoto component 8 , the
本实施例中,损耗光光源1为显微镜系统提供损耗光光束,其波长范围为770~775nm。损耗光光源1的平均功率大于3W/nm;损耗光光束为纯度高于10000:1的线偏振光。In this embodiment, the loss light source 1 provides a loss light beam for the microscope system, and the wavelength range thereof is 770-775 nm. The average power of the loss light source 1 is greater than 3W/nm; the loss light beam is linearly polarized light with a purity higher than 10000:1.
本实施例中,激发光光源2为显微镜系统提供激发光光束,可以是白光激光器、也可以是由多个固体激光器组成的激光器组,本实施例为白光激光器;波长范围为410~2400nm。激发光光源2的平均功率不小于0.5mW/nm;激发光束为纯度高于1000:1的线偏振光。In this embodiment, the
损耗光光源1和激发光光源2可以是连续激光器,也可以是脉冲激光器。在本实施例中,两者为脉冲激光器,两者的脉冲频率在20~200MHz之间并保持同步,优选为78MHz。其中,损耗光光源1的脉冲宽度应该介于500~1000ps之间,激发光光源1的脉冲宽度应小于100ps。The loss light source 1 and the
第一光调制器3用来调制损耗光的透射光强,本实例中的第一光调制器为声光调制器。第二光调制器4用来选择需要的激发光光束波长并调制对应波长的透射光强,本实施例的第二光调制器为声光可调谐滤波器,所需要调制的波长由样品中所用的荧光染料确定,优选波长包括488nm、590nm和650nm。The first light modulator 3 is used to modulate the transmitted light intensity of the lost light, and the first light modulator in this example is an acousto-optic modulator. The second light modulator 4 is used to select the desired wavelength of the excitation light beam and modulate the transmitted light intensity of the corresponding wavelength. The second light modulator in this embodiment is an acousto-optic tunable filter, and the wavelength to be modulated is the one used in the sample. Determined by the fluorescent dye, preferred wavelengths include 488nm, 590nm and 650nm.
相对位相延迟组件5用于对损耗光光束进行分束并且产生足够大的位相延迟以破坏两个分量间的相干性。相对相位延迟组件5有多种实现方案。本实施例的相对位相延迟组件如图2所示,包括第二1/2波片29、和第一偏振分束器30、第四反射镜31、第五反射镜32、第六反射镜33和第二偏振分束器34。进入相对位相延迟组件5的损耗光光路走向如图2箭头所示,损耗光束首先经过第二1/2波片29到达第一偏振分束器30。其中,第二1/2波片的作用是调节损耗光的偏振方向,从而调节损耗光经过第一偏振分束器30的能量占比。损耗光经过第一偏振分束器30后被分为水平偏振光和垂直偏振光这两个分量,其中垂直偏振光分量被第一偏振分束器30反射,随后经第四反射镜31反射后到达第二偏振分束器34;水平偏振光分量直接透过第一偏振分束器30,随后经第五反射镜32和第六反射镜33反射后到达第二偏振分束器34。垂直偏振光分量和水平偏振光分量经第二偏振经过第二偏振分束器34合束后出射。The relative phase delay element 5 is used to split the lost light beam and generate a phase delay large enough to destroy the coherence between the two components. There are various implementations of the relative phase delay component 5 . As shown in FIG. 2 , the relative phase retardation component of this embodiment includes a second half-
色散补偿组件6用于对多路激发光进行色散补偿,使得不同波长的激发光脉冲同时出射。在本实施例中,所用的激发光光源2为白光激光器,所优选的激发光波长为650nm、590nm和488nm。激发光光源2的色散曲线如图8所示,可以看到长波长的激发光脉冲较短波长的激发光脉冲优先出射。在优选的三个波长中,650nm的激发光脉冲最先出射,随后是590nm的激发光脉冲,最后是480nm。为此,需要对三路激发光进行色散补偿,使其光脉冲同时出射且同时到达样品24中。实现所述功能的色散补偿组件6有多种实现方案。本实施例的色散补偿组件如图3所示,包括第三1/2波片35、第三偏振分束器36、第二1/4波片37、第三二色镜38、第四二色镜39、第五二色镜40。进入色散补偿组件的6的激发光光路走向如图3所示,激发光首先经过第三1/2波片35到达第三偏振分束器36。其中,第三1/2波片的作用是将入射激发光调节为垂直偏振光。激发光被第三偏振分束器36反射后直接透过第二1/4波片37。随后,488nm激发光经第三二色镜38反射原路返回,590nm激发光经第三二色镜38透射、第四二色镜39反射原路返回,650nm激发光经第三二色镜38透射、第四二色镜39透射以及第五二色镜40反射原路返回。反射后原路返回的三路激发光再次经过1/4波片37,变为水平偏振光,经第三偏振分束器36透射后出射。The dispersion compensation component 6 is used to perform dispersion compensation on the multiplex excitation light, so that excitation light pulses of different wavelengths are emitted simultaneously. In this embodiment, the used excitation
从相对位相延迟组件5出射的损耗光光束经第一反射镜7反射后,随后入射到第一望远组件8。第一望远组件8包括两个凸面向背设置且共焦的凸透镜,用于扩束(或者缩小光束)准直,匹配从第一反射镜7反射后的损耗光光束大小和相位调制组件9有效孔径,其放大倍率等于相位调制组件9有效孔径除以损耗光从第一反射镜7反射后的损耗光光束大小。The loss light beam emitted from the relative phase retardation element 5 is reflected by the first reflecting mirror 7 and then incident on the first telescopic element 8 . The first telephoto assembly 8 includes two convex lenses that are confocal and arranged to face the back and are used for beam expansion (or beam reduction) collimation, which is effective for matching the size of the lost light beam reflected from the first mirror 7 and the
从第一望远组件8出射的损耗光光束进入相位调制组件9。相位调制组件9用于对输入损耗光的相位进行调制,有多种实现方案。本实施例的相位调制组件9包括第七反射镜37、空间光调制器38、第三1/4波片39、第一透镜40、第八反射镜41。第一透镜40位于空间光调制器38与第八反射镜41的中间位置,且第一透镜的焦距等于第一透镜40到第八反射镜41之间的距离。损耗光光束在相位调制组件12内的传输方向如图4箭头所示,损耗光首先经过第七反射镜37到达空间光调制器38的第一相位图区域,并对其水平偏振分量进行一次相位调制;然后损耗光经空间光调制器38反射后依次经过第三1/4波片39和第一透镜40,随后经第八反射镜41反射后返回,经过第一透镜40和第三1/4波片39后,再次到达空间光调制器38的第二相位图区域对损耗光源垂直偏振分量进行二次相位调制;经过调制后的损耗光被显微物镜聚焦,聚焦光斑内光强围绕焦点呈中空分布。The lossy light beam exiting from the first telescopic element 8 enters the
其中,空间光调制器38只对单一方向线偏振光具有相位调制作用,对应工作波长范围为750~850nm,对应工作波长范围外的其它可见光波段仅表现为高反射率效果,优选为日本Hamamatsu公司的X13139-02型空间光调制器。空间光调制器的第一、第二相位图为圆形,处于整个空间光调制器有效区域的水平居中位置,两个相位图位置可交换,直径与相位调制组件9有效孔径等大。Among them, the spatial
从相位调制组件9出射的损耗光光束,经第二望远组件10、第一1/2波片12和第三望远组件13后到达第一二色镜15。其中,第二望远组件10和第三望远组件13均包括两个凸面向背设置且共焦的凸透镜。第二望远组件10用于用于扩束(或者缩小光束)准直,匹配相位调制组件9的有效孔径和扫描组件17的有效孔径,放大倍率为扫描组件17的有效孔径除以相位调制有效组件9的有效孔径。此外,第二望远组件10和第三望远组件13可一并用于维持系统中相位调制组件9和扫描组件17的共轭关系。第一1/2波片12用于纯化损耗光的偏振态,避免系统中反射镜的使用而引起的损耗光的偏振态变化。The loss light beam emitted from the
从色散延迟组件6出射的激发光光束通过第四望远组件14到达第一二色镜15。其中,第四望远组件14包括两个凸面向背设置且共焦的凸透镜。第四望远组件用于扩束(或者缩小光束)准直,匹配从色散延迟组件6出射的激发光光束大小和扫描组件17的有效孔径,放大倍率为扫描组件17的有效孔径除以从色散延迟组件6出射的激发光光束大小。The excitation light beam emitted from the dispersion delay element 6 reaches the first
从第三望远组件13出射的损耗光光束经第一二色镜15反射,从第四望远组件14出射的激发光光束直接透过第一二色镜15,两束光合并为混合光束。随后,混合光束经第二二色镜16反射,进入扫描组件17。The loss light beam emitted from the third
扫描组件17的作用是改变混合光束在显微物镜23入瞳处的偏转角,使混合光束焦点在样品24内部显微物镜23焦平面上二维扫描,有多种实现方案。本实施例的扫描组件17包括第一扫描镜42、第二扫描镜43和第三扫描镜44,混合光束在扫描组件17的传输方向如图5箭头所示。其中,第一扫描镜42与扫描组件17有效孔径等大,扫描方向与第二扫描镜43和第三扫描镜44垂直。第一扫描镜42扫描频率快于第二扫描镜43和第三扫描镜43。作为优选,第一扫描镜42、第二扫描镜43和第三扫描镜44的扫描频率分别为16KHz、0.1KHz和0.1KHz。The function of the
从扫描组件17出来的混合光束,经过第五望远组件18后入射到自适应像差校正组件19。其中,第五望远组件18包括两个凸面向背设置且共焦的凸透镜。第四望远组件用于扩束(或者缩小光束)准直,匹配扫描组件17的有效孔径和自适应像差校正组件19的有效孔径并维持两者的共轭关系,放大倍率为自适应像差校正组件19的有效孔径除以扫描组件17的有效孔径。The mixed beam from the
自适应像差校正组件19的作用是改变混合光束和样品24激发出的荧光信号的波前,使得混合光束可以完美聚焦在样品24的各个深度上,并且所激发的荧光可以被荧光成像组件28充分接收。本实施例的自适应像差校正组件包括第九反射镜45、变形镜46。混合光束在自适应像差校正组件19的传输方向如图6箭头所示,混合光束经第九反射镜45反射后到达变形镜46,被变形镜反射后出射。变形镜46与自适应像差校正组件19的有效孔径等大,优选为Boston Micromachines Corporation公司的DM140A-35-P01型变形镜。The function of the adaptive
从自适应像差校正组件19出射的混合光束,经过第一1/4波片20、第六望远组件21,随后被第三反射镜22反射后进入显微物镜23入瞳,最后被聚焦到放置在样品台25上的样品24内。其中,第一1/4波片的作用是将混合光束的偏振态由线偏振改为圆偏振。第六望远组件21包括两个凸面向背设置且共焦的凸透镜,用于扩束(或者缩小光束)准直并维持系统中自适应像差校正组件19和显微物镜23后焦平面的共轭关系,其放大倍率等于显微物镜入瞳大小除以自适应像差校正组件有效孔径。显微物镜23用于将混合光束聚焦在样品上照明,并反向收集来自样品的荧光;为保证分辨率,选择数值孔径大于1.05、放大倍率60~100倍的平场消色差浸没式显微物镜。样品台25用于承载样品24,并提供三维移动能力;样品台25选择二维径向移动范围大于5mm、轴向移动范围大于100μm,移动精度小于1μm。The mixed beam emitted from the adaptive
样品24既可以是散射光样品,也可以是荧光样品。对于散射光样品,在混合光的照明下,样品24发出的散射光信号被显微物镜23反向收集。散射光依次经过第三反射镜22、第六望远组件21中右侧透镜、分束器26和光电倍增管27。光电倍增管的作用是将探测到的散射光信号转为电信号,最红由计算机读取,将其还原成散射光样品信号。本实施例中,散射光样品为金颗粒,可以用其对损耗光中空聚焦光斑和激发光实心聚焦光斑成像,并利用空间光调制器38实现对损耗光聚焦光斑的整形以及实现其和激发光实心聚焦光斑的空间对准。The
对于荧光样品,在混合光的照明下,样品24发出的荧光信号被显微物镜23反向收集。荧光依次经过第三反射镜22、第六望远组件21、第一1/4波片20、自适应像差校正组件19、第五望远组件18、扫描组件17后,最终在第二二色镜16透射进入荧光成像组件28。根据是否需要多色成像,成像组件28可包含1个或多个基本成像模块,荧光在成像组件中的走向如图7箭头所示。本实施例包括三个基本成像模块,其中,第一基本成模块47、第二基本成像模块48、第三成像基本模块49均有相同光学元件构成,结构也完全相同。以第一基本成像模块47为例,包含第六二色镜50、第一滤光片51、第二滤光片52、第二透镜53和单光子计数器54。其中,第六二色镜50的作用是分离该通道探测荧光信号与后续通道荧光信号,其透过率曲线由所探测荧光光谱决定,其中对本通道荧光光谱道保持高反射率(>95%),对于后续通道探测荧光光谱段保持高透过率(>98%);第一滤光片51和第二滤光片52的作用是过滤不属于探测通道光谱外的杂散光信号;第二透镜53的作用是将收集的荧光聚焦到光子计数器上,本实施例的第二透镜选择焦距为125mm的双胶合透镜。单光子计数器54的作用是根据收集到的荧光光子数,将荧光信号线性转换为电信号;本实施例的光子计数器选择雪崩式发光二极管或光电倍增管。由单光子计数器54产生的电信号,最终经由计算机读取,并将其还原成荧光图像。For fluorescent samples, the fluorescent signal emitted by the
本发明提供的具有大视场的多色三维超分辨膨胀显微镜系统能够通过样品台、扫描组件和自适应像差校正组件实现三维空间大视场显微成像。具体来说,样品台具有三维移动能力,扫描组件为三振镜系统,包括沿光路依次布置的第一扫描镜、第二扫描镜和第三扫描镜,通过改变混合光束在显微物镜入瞳处的偏转角,使混合光束焦点在显微物镜焦平面上实现二维高速扫描,两者结合实现三维快速扫描;自适应像差校正组件能够解决深层成像所带来的像差问题,在保证分辨能力的前提下实现深层成像,从而增大了成像深度,进而实现三维空间大视场显微成像。The multi-color three-dimensional super-resolution expansion microscope system with a large field of view provided by the invention can realize three-dimensional space large field of view microscopic imaging through a sample stage, a scanning component and an adaptive aberration correction component. Specifically, the sample stage has the ability to move in three dimensions, and the scanning component is a three-galvo mirror system, including a first scanning mirror, a second scanning mirror and a third scanning mirror arranged in sequence along the optical path. By changing the mixed beam at the entrance pupil of the microscope objective The deflection angle of the hybrid beam can achieve two-dimensional high-speed scanning on the focal plane of the microscope objective lens, and the combination of the two can achieve three-dimensional fast scanning; the adaptive aberration correction component can solve the aberration problem caused by deep imaging, while ensuring the resolution Under the premise of the ability to achieve deep imaging, the imaging depth is increased, and the three-dimensional space large field of view microscopic imaging is realized.
上述实施例用来解释说明本发明,而不是对本发明进行限制,在本发明的精神和权利要求的保护范围内,对本发明作出的任何修改和改变,都落入本发明的保护范围。The above-mentioned embodiments are used to explain the present invention, rather than limit the present invention. Within the spirit of the present invention and the protection scope of the claims, any modifications and changes made to the present invention all fall into the protection scope of the present invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110431378.7A CN113325563B (en) | 2021-04-21 | 2021-04-21 | A multicolor 3D super-resolution expansion microscope system with a large field of view |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110431378.7A CN113325563B (en) | 2021-04-21 | 2021-04-21 | A multicolor 3D super-resolution expansion microscope system with a large field of view |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113325563A CN113325563A (en) | 2021-08-31 |
CN113325563B true CN113325563B (en) | 2022-06-10 |
Family
ID=77413420
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110431378.7A Active CN113325563B (en) | 2021-04-21 | 2021-04-21 | A multicolor 3D super-resolution expansion microscope system with a large field of view |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113325563B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114967089B (en) * | 2022-05-17 | 2023-04-07 | 浙江大学 | Three-dimensional super-resolution microscopic imaging system with automatic beam collimation |
CN117870574B (en) * | 2024-03-13 | 2024-05-14 | 广东普洛宇飞生物科技有限公司 | Laser optical device capable of correcting in real time and correction method thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3081974A1 (en) * | 2013-12-09 | 2016-10-19 | Nikon Corporation | Optical apparatus, measuring apparatus, measuring method, screening apparatus, and screening method |
CN109358030A (en) * | 2018-11-26 | 2019-02-19 | 浙江大学 | A multicolor super-resolution microscope system with automatic alignment |
WO2020048022A1 (en) * | 2018-09-07 | 2020-03-12 | 中国科学院苏州生物医学工程技术研究所 | Two-photon stimulated emission depletion composite microscope using continuous light loss |
CN111521608A (en) * | 2020-04-27 | 2020-08-11 | 中国科学院广州生物医药与健康研究院 | A super-resolution microscopic imaging method and microscope |
CN111562665A (en) * | 2020-05-21 | 2020-08-21 | 浙江大学 | Adaptive optical aberration correction system and method in STED super-resolution technology |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6394850B2 (en) * | 2013-09-20 | 2018-09-26 | 大学共同利用機関法人自然科学研究機構 | Compensating optical system and optical apparatus |
-
2021
- 2021-04-21 CN CN202110431378.7A patent/CN113325563B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3081974A1 (en) * | 2013-12-09 | 2016-10-19 | Nikon Corporation | Optical apparatus, measuring apparatus, measuring method, screening apparatus, and screening method |
WO2020048022A1 (en) * | 2018-09-07 | 2020-03-12 | 中国科学院苏州生物医学工程技术研究所 | Two-photon stimulated emission depletion composite microscope using continuous light loss |
CN109358030A (en) * | 2018-11-26 | 2019-02-19 | 浙江大学 | A multicolor super-resolution microscope system with automatic alignment |
CN111521608A (en) * | 2020-04-27 | 2020-08-11 | 中国科学院广州生物医药与健康研究院 | A super-resolution microscopic imaging method and microscope |
CN111562665A (en) * | 2020-05-21 | 2020-08-21 | 浙江大学 | Adaptive optical aberration correction system and method in STED super-resolution technology |
Non-Patent Citations (1)
Title |
---|
光学移频超分辨成像技术进展;郝翔等;《光学学报》;20210131;全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN113325563A (en) | 2021-08-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Castello et al. | A robust and versatile platform for image scanning microscopy enabling super-resolution FLIM | |
CN107941763B (en) | A coaxial three-dimensional stimulated emission depletion super-resolution microscopy imaging method and device | |
CN108303806B (en) | Depth imaging super-resolution microscopic imaging system | |
US11726309B2 (en) | Illumination system for STED optical microscope and STED optical microscope | |
CN106970055B (en) | A three-dimensional fluorescent differential super-resolution microscopy method and device | |
CN110632045B (en) | A method and apparatus for generating parallel super-resolution focal spots | |
US20200150446A1 (en) | Method and System for Improving Lateral Resolution in Optical Scanning Microscopy | |
CN109358030B (en) | Multicolor super-resolution microscope system with automatic alignment function | |
US20130135717A1 (en) | Microscope Illumination System and Method | |
JP2012093757A (en) | Spim microscope with sted light sheet | |
CN205003084U (en) | Super -resolution imaging system | |
CN113325563B (en) | A multicolor 3D super-resolution expansion microscope system with a large field of view | |
JP2006243731A (en) | Spot scanning laser scanning microscope and method for adjusting the same | |
WO2023221400A1 (en) | Super-resolution single-objective light-sheet optical microscopy system and imaging system comprising same | |
CN103954598B (en) | A kind of axial high-precision locating method based on evanescent wave illumination and device | |
CN114527102A (en) | Near-infrared two-zone microscopic imaging system and method based on laser scanning | |
CN116559126B (en) | Complementary Bessel light drop two-photon microscopic imaging system | |
CN110823372A (en) | A structured light illumination multi-focal plane 3D super-resolution imaging system | |
JP2019537748A (en) | Microscope and imaging method capable of three-dimensional imaging | |
CN108802988A (en) | Super-resolution optical micro imaging system and its adjusting method | |
CN101813822B (en) | Fluorescent three-dimensional nano-resolution imaging method with axial selectivity excitation and device thereof | |
CN112114422A (en) | Three-dimensional super-resolution microscopic imaging method and device based on parallel STED and 4Pi | |
CN115598820A (en) | A dual-objective lens three-dimensional structured light illumination super-resolution microscopic imaging device and method | |
CN112326609B (en) | Real-time 3D fluorescence differential super-resolution imaging method and device based on polarization multiplexing | |
CN108593620B (en) | Multicolor super-resolution imaging system applied to 4pi microscopic framework |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |