[go: up one dir, main page]

CN113321821A - 一种透明离子导电水凝胶及其制备方法与应用 - Google Patents

一种透明离子导电水凝胶及其制备方法与应用 Download PDF

Info

Publication number
CN113321821A
CN113321821A CN202110599959.1A CN202110599959A CN113321821A CN 113321821 A CN113321821 A CN 113321821A CN 202110599959 A CN202110599959 A CN 202110599959A CN 113321821 A CN113321821 A CN 113321821A
Authority
CN
China
Prior art keywords
conductive hydrogel
hydrogel
ion
preparation
ascidian
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110599959.1A
Other languages
English (en)
Inventor
王乐禹
邱小忠
宋晨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southern Medical University
Original Assignee
Southern Medical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southern Medical University filed Critical Southern Medical University
Priority to CN202110599959.1A priority Critical patent/CN113321821A/zh
Publication of CN113321821A publication Critical patent/CN113321821A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Measuring devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor or mobility of a limb
    • A61B5/1113Local tracking of patients, e.g. in a hospital or private home
    • A61B5/1114Tracking parts of the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/683Means for maintaining contact with the body
    • A61B5/6832Means for maintaining contact with the body using adhesives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • C08J3/246Intercrosslinking of at least two polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2329/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2329/02Homopolymers or copolymers of unsaturated alcohols
    • C08J2329/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2401/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2401/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/16Halogen-containing compounds
    • C08K2003/162Calcium, strontium or barium halides, e.g. calcium, strontium or barium chloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/16Halogen-containing compounds
    • C08K2003/168Zinc halides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • C08K2003/387Borates

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Dispersion Chemistry (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Physiology (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Materials For Medical Uses (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

本发明属于医用材料技术领域,公开了一种透明离子导电水凝胶及其制备方法与应用。该离子导电水凝胶,由海鞘纳米纤维素、聚乙烯醇、无机盐、交联剂制得。该离子导电水凝胶具有良好的导电性、粘附性、自恢复性能以及生物相容性:导电率达到0.035S/m;能够紧密地贴合皮肤,用于可穿戴人体传感器时可以提高传感器的灵敏度;不会对细胞产生毒性;同时,离子导电水凝胶是透明的,用于可穿戴人体传感器时可以直观地观察到所监测运动的变化;离子导电水凝胶是离子导电,用于可穿戴人体传感器时无需金属导电。

Description

一种透明离子导电水凝胶及其制备方法与应用
技术领域
本发明属于医用材料技术领域,具体涉及一种透明离子导电水凝胶及其制备方法与应用。
背景技术
目前,可穿戴传感器已经应用于我们的日常生活中。智能手环、智能手表、健康穿戴、智能眼镜等都成为了一种主流发展趋势。但是大多数可穿戴设备难以适应复杂的环境,例如弯曲,折叠和扭曲等。为了更好的贴合人体的肢体,精确地监测人体运动、人体健康等信号,可穿戴柔性传感器逐渐呈现出广阔的应用前景。随着不断发展,人们对可穿戴柔性传感器提出了一些新的要求:具有透明、柔韧、延展、可自由弯曲、折叠、便于携带等特点。
水凝胶是由三维交联网络和大量水组成的具有高分子网络的聚合物,具有良好的生物相容性和可塑性,非常适用于可穿戴传感。导电水凝胶以其优异的导电性、柔韧性以及检测灵敏度,被认为是理想的柔性传感器材料之一,它能够有效地对外部刺激做出响应,并转化为电信号。然而,现有的导电水凝胶传感器存在着机械强度差、延展性差、不透明、组织黏附性差等缺点,这些缺点的存在严重影响了导电水凝胶传感器的进一步发展。
发明内容
为了克服现有技术存在的问题,本发明的第一方面的目的,在于提供一种离子导电水凝胶。
本发明的第二方面的目的,在于提供上述离子导电水凝胶的制备方法。
本发明的第三方面的目的,在于提供上述离子导电水凝胶在可穿戴人体传感器中的应用。
本发明的第四方面的目的,在于提供一种可穿戴人体传感器。
为了实现上述目的,本发明所采取的技术方案是:
本发明的第一个方面,提供一种离子导电水凝胶,由海鞘纳米纤维素、聚乙烯醇、无机盐、交联剂制得。
所述海鞘纳米纤维素与无机盐的质量比优选为1:(40~70);更优选为1:(50~60)。
所述海鞘纳米纤维素与聚乙烯醇的质量比优选为1:(2~50);更优选为1:(2~10);最优选为1:(4~6)。
所述无机盐由ZnCl2和CaCl2组成,无机盐离子能够使海鞘纳米纤维素交联成导电网络(离子导电网络),均匀地分布在聚乙烯醇水凝胶中。
所述ZnCl2与CaCl2的质量比优选为(30~100):1;更优选为(40~60):1。
所述无机盐优选为无机盐溶液。
所述聚乙烯醇与交联剂的质量比优选为(3~6):1;更优选为(4~6):1。
所述交联剂优选为四硼酸钠、环氧氯丙烷和戊二醛中的至少一种;更优选为四硼酸钠。
所述离子导电水凝胶的导电率优选为0.03~0.05S/m。
本发明的第二个方面,提供本发明第一方面的离子导电水凝胶的制备方法,包括如下步骤:将无机盐与海鞘纳米纤维素混合,然后加入聚乙烯醇、交联剂,反应,得到离子导电水凝胶。
所述反应的条件优选为60℃~90℃下反应15~45min。
所述海鞘纳米纤维素与聚乙烯醇的质量比优选为1:(2~50);更优选为1:(2~10);最优选为1:(4~6)。
所述海鞘纳米纤维素与无机盐的质量比优选为1:(40~70);更优选为1:(50~60)。
所述无机盐由ZnCl2和CaCl2组成,无机盐离子能够使海鞘纳米纤维素交联成导电网络(离子导电网络),均匀地分布在聚乙烯醇水凝胶中。
所述ZnCl2与CaCl2的质量比优选为(30~100):1;更优选为(40~60):1。
所述无机盐优选为无机盐溶液。
所述海鞘纳米纤维素的制备方法如下:将海鞘纤维素与酸混合,反应。
所述海鞘纤维素与酸的质量体积比优选为1:(15~25);更优选为1:(18~22)。
所述酸优选为硫酸、盐酸、硝酸、磷酸和溴酸中的至少一种;更优选为硫酸;最优选为55~75wt%的硫酸。
所述反应的条件优选为30~70℃反应10~26h;更优选为45~55℃反应16~24h。
所述反应后还包括清洗、重悬、透析、冻干等步骤。
所述海鞘纤维素的制备方法如下:将海鞘被囊与碱溶液混合,在25~60℃下反应10~24h;然后将碱处理后的海鞘被囊与漂白液混合,在50~80℃下反应6~12h;重复进行3~5次。
所述碱优选为KOH和NaOH中的至少一种;更优选为KOH。
所述漂白液优选由冰醋酸和次氯酸钠制成。
所述聚乙烯醇与交联剂的质量比优选为(3~6):1;更优选为(4~6):1。
所述交联剂优选为四硼酸钠、环氧氯丙烷和戊二醛中的至少一种;更优选为四硼酸钠。
所述聚乙烯醇的浓度按质量体积比优选为1~15%;更优选为4~8%;最优选为4~6%。
本发明的第三方面,提供第一方面的离子导电水凝胶在可穿戴人体传感器中的应用。
本发明的第四方面,提供一种包含第一方面的离子导电水凝胶的可穿戴人体传感器。
本发明的有益效果是:
本发明提供的离子导电水凝胶具有良好的导电性、粘附性、自恢复性能以及生物相容性:导电率达到0.035S/m;能够紧密地贴合皮肤,用于可穿戴人体传感器时可以提高传感器的灵敏度;不会对细胞产生毒性;同时,离子导电水凝胶是透明的,用于可穿戴人体传感器时可以直观地观察到所监测运动的变化;离子导电水凝胶是离子导电,用于可穿戴人体传感器时无需金属导电;
本发明提供的离子导电水凝胶采用的海鞘纳米纤维素,是迄今为止被发现的唯一一种来自于动物的纳米纤维素;与其他纳米纤维素相比,具有高的机械强度、大的比表面积、高的弹性模量、较强的亲水性等特性,因此,提高了聚乙烯醇水凝胶的稳定性和力学性能;同时,在日常生活中海鞘来源广,产量多,通常会被作为垃圾处理掉;这样处理不仅污染了环境,也浪费了宝贵的自然资源;而发明从海鞘被囊中提取纳米纤维素,能够使其变废为宝,实现海洋资源的高值化利用;
本发明使用无机盐离子交联的海鞘纳米纤维素形成导电的纤维网络,赋予了水凝胶导电性,形成离子导电的水凝胶;目前大多数现有导电水凝胶是通过引入聚吡咯、石墨烯、碳纳米管等导电材料来增加导电性;但是,像聚吡咯、石墨烯和碳纳米管,这种导电成分由于其毒性、难分散、难降解等缺点,严重限制了导电复合水凝胶的发展,同时基于这些导电材料制备的水凝胶大多是黑色的;而本发明利用海鞘纳米纤维素和聚乙烯醇在交联剂的作用下能够形成透明的离子导电水凝胶。
附图说明
图1是实施例1制备的透明离子导电水凝胶的实体图。
图2是实施例1制备的透明离子导电水凝胶的导电性测试图:其中,A为当LED灯与透明离子导电水凝胶断开时的导电性测试图;B为当LED灯同透明离子导电水凝胶连接成回路时的导电性测试图。
图3是实施例1制备的透明离子导电水凝胶的粘附性测试图。
图4是实施例1制备的透明离子导电水凝胶的自恢复性能测试图。
图5是实施例1制备的透明离子导电水凝胶的生物相容性图。
图6是实施例1制备的透明离子导电水凝胶用于监测人体手指运动时电压变化曲线图。
图7是实施例1制备的透明离子导电水凝胶用于监测人体肘关节运动时电压变化曲线图。
具体实施方式
以下通过具体的实施例对本发明的内容作进一步详细的说明。
本实施例中所使用的材料、试剂等,如无特别说明,为从商业途径得到的试剂和材料。
实施例1透明离子导电水凝胶的制备
(1)将海鞘解剖,保留其被囊部分,加入10wt%的KOH溶液进行碱处理,60℃搅拌12h,用去离子水清洗至中性;加入漂白液(由冰醋酸(0.5%(v/v))、次氯酸钠(1%(v/v))、去离子水按体积比为1:2:100组成)清洗后的海鞘被囊中进行漂白处理,60℃搅拌12h,重复碱处理和漂白处理四次,直到被囊成白色为止,然后烤干,研磨成粉,得到粉末纤维素;取粉末纤维素与65wt%的硫酸溶液混合(粉末纤维素与硫酸溶液的质量体积比为5.71%),45℃反应16h,加入去离子水终止反应,将得到的混合液进行离心(12000rad/min下离心10min)清洗除酸,弃去上层清液,重复进行3次,最后用去离子水重悬、透析、冻干,即可得到海鞘纳米纤维素;
(2)将5g ZnCl2和0.1g CaCl2溶解在2g的去离子水中,在75℃水浴锅中搅拌充分,得到ZnCl2和CaCl2混合液;加入0.1g步骤(1)所得海鞘纳米纤维素,搅拌30min,得到无机盐离子交联的海鞘纳米纤维素;取0.5g聚乙烯醇加入10mL水中,90℃下搅拌2h至完全溶解,得到浓度为5%(质量体积比)的聚乙烯醇溶液。将无机盐离子交联的海鞘纳米纤维素和5%的聚乙烯醇溶液混合,搅拌均匀后,加入0.125g交联剂四硼酸钠,90℃下搅拌30min,然后移至常温,即可形成透明的离子导电水凝胶。
实施例2透明离子导电水凝胶的制备
(1)将海鞘解剖,保留其被囊部分,加入10wt%的KOH溶液进行碱处理,室温搅拌24h,用去离子水清洗至中性;加入漂白液(由0.5%(v/v)冰醋酸、1%(v/v)次氯酸钠、去离子水)清洗后的海鞘被囊中进行漂白处理,60℃搅拌12h,重复碱处理和漂白处理五次,直到被囊成白色为止,然后烤干,研磨成粉,得到粉末纤维素;取粉末纤维素与60wt%的硫酸溶液混合(粉末纤维素与硫酸溶液的质量体积比为5.71%),50℃反应16h,加入去离子水终止反应,将得到的混合液进行离心(12000rad/min下离心10min)清洗除酸,弃去上层清液,重复进行3次,最后用去离子水重悬、透析、冻干,即可得到海鞘纳米纤维素;
(2)将5g ZnCl2和0.1g CaCl2溶解在2g的去离子水中,在75℃水浴锅中搅拌充分,得到ZnCl2和CaCl2混合液;加入0.1g步骤(1)所得海鞘纳米纤维素,搅拌30min,得到无机盐离子交联的海鞘纳米纤维素;取0.4g聚乙烯醇加入10mL水中,90℃下搅拌2h至完全溶解,得到浓度为4%(质量体积比)的聚乙烯醇溶液。将无机盐离子交联的海鞘纳米纤维素和4%的聚乙烯醇溶液混合,搅拌均匀后,加入0.1g交联剂四硼酸钠,90℃下搅拌30min,然后移至常温,即可形成透明的离子导电水凝胶。
实施例3透明离子导电水凝胶的制备
(1)将海鞘解剖,保留其被囊部分,加入5wt%的KOH溶液进行碱处理,80℃搅拌12h,常温浸泡12h,用去离子水清洗至中性;加入漂白液(由0.5%(v/v)冰醋酸、1%(v/v)次氯酸钠、去离子水)清洗后的海鞘被囊中进行漂白处理,60℃搅拌6h,重复碱处理和漂白处理五次,直到被囊成白色为止,然后烤干,研磨成粉,得到粉末纤维素;取粉末纤维素与65wt%的硫酸溶液混合(粉末纤维素与硫酸溶液的质量体积比为5.71%),50℃反应16h,加入去离子水终止反应,将得到的混合液进行离心(10000rad/min下离心15min)清洗除酸,弃去上层清液,重复进行3次,最后用去离子水重悬、透析、冻干,即可得到海鞘纳米纤维素;
(2)将5g ZnCl2和0.1g CaCl2溶解在2g的去离子水中,在75℃水浴锅中搅拌充分,得到ZnCl2和CaCl2混合液;加入0.1g步骤(1)所得海鞘纳米纤维素,搅拌30min,得到无机盐离子交联的海鞘纳米纤维素;取0.6g聚乙烯醇加入10mL水中,90℃下搅拌2h至完全溶解,得到浓度为6%(质量体积比)的聚乙烯醇溶液。将无机盐离子交联的海鞘纳米纤维素和6%的聚乙烯醇溶液混合,搅拌均匀后,加入0.1g交联剂四硼酸钠,90℃下搅拌30min,然后移至常温,即可形成透明的离子导电水凝胶。
效果实施例
1.透明离子导电水凝胶的表征
实施例1制备的透明离子导电水凝胶照片如图1所示:可见实施例制备得到的离子导电水凝胶呈透明状。
2.透明离子导电水凝胶的导电性
采用电化学工作站对实施例1制备的透明离子导电水凝胶进行检测,离子导电水凝胶的导电率为0.035S/m,具有良好的导电性。
同时,将透明离子导电水凝胶与LED灯形成一个串联电路,如图2所示:当LED灯同透明离子导电水凝胶连接成回路时,LED灯会亮,当LED灯与透明离子导电水凝胶断开时,LED灯会熄灭:表明透明离子导电水凝胶具有良好的导电性。
3.透明离子导电水凝胶的粘附性与自恢复性能
将实施例1制备的透明离子导电水凝胶(hydrogel)分别粘附到不同材质(金属metal、玻璃glass、塑料plastic)表面,检测透明离子导电水凝胶在不同材质表面的粘附性能,结果如图3所示:透明离子导电水凝胶可以很好的粘附在不同基底材质上,具有良好的粘附性。
将实施例1制备的透明离子导电水凝胶制备成长条矩形,进行拉伸恢复(拉伸前:before,拉伸:stretch;拉伸后:after)结果如图4所示:水凝胶拉伸到一定长度后,可以恢复到原始长度,表明透明离子导电水凝胶具有良好的自恢复性能。
4.透明离子导电水凝胶的生物相容性
首先制备原代心肌细胞,购买1~3天的SD乳鼠,用异氟烷麻醉,断头,在无菌条件下开胸,迅速取出心脏,在解剖显微镜下去除静脉血管,心外膜组织。PBS洗三次,然后加入0.25%胰酶4℃过夜。用含血清的培养基终止消化,加入0.1%的Ⅱ型胶原蛋白酶继续消化30min,消化过程中磁力搅拌,200目滤网过滤,收集细胞液,1000rpm离心5min弃上清。用含15%血清的高糖培养基重悬细胞,然后接种到培养皿中,差贴1h去除成纤维细胞,未贴壁即为心肌细胞。将原代心肌细胞以5×106个/cm2的密度种植实施例1制备得到的透明离子导电水凝胶中,形成共培养体系,在37℃,5%CO2条件下培养,分别在原代心肌细胞与水凝胶共培养1天、3天和7天时,使用活/死细胞染色试剂盒(Molecular Probes)检测细胞生长情况,结果如图5所示:透明离子导电水凝胶上的心肌细胞生长状态良好,说明透明离子导电水凝胶不会对细胞产生毒性,具有极高的生物相容性和安全性。
5.透明离子导电水凝胶在可穿戴人体运动传感器中的应用
将实施例1制备的透明离子导电水凝胶分别黏附在手指、肘关节等部位,使用无线设备实时记录传感信号,结果如图6、图7所示:通过无线万用表(FLUKE F3000FC)记录信号变化,离子导电水凝胶分别随着手指的伸直弯曲、和肘关节的伸直弯曲呈现规律性的变化;可见,透明离子导电水凝胶可有效的监测人体运动。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

1.一种离子导电水凝胶,由海鞘纳米纤维素、聚乙烯醇、无机盐、交联剂制得。
2.根据权利要求1所述的离子导电水凝胶,其特征在于:
所述无机盐由ZnCl2和CaCl2组成;
所述交联剂优选为四硼酸钠、环氧氯丙烷和戊二醛中的至少一种。
3.根据权利要求1所述的离子导电水凝胶,其特征在于:
所述海鞘纳米纤维素与聚乙烯醇的质量比为1:(2~50)。
4.根据权利要求1~3任一项所述的离子导电水凝胶,其特征在于:
所述离子导电水凝胶的导电率为0.03~0.05S/m。
5.权利要求1~4中任一项所述的离子导电水凝胶的制备方法,其特征在于:
将无机盐与海鞘纳米纤维素混合,然后,加入聚乙烯醇、交联剂,反应,得到离子导电水凝胶。
6.根据权利要求5所述的制备方法,其特征在于:
所述反应的条件为60℃~90℃下反应15~45min。
7.根据权利要求5所述的制备方法,其特征在于,所述海鞘纳米纤维素的制备方法如下:
将海鞘纤维素与酸混合,反应;
所述海鞘纤维素与酸的质量体积比优选为1:(15~25);
所述反应的条件优选为30~70℃反应10~26h。
8.根据权利要求7所述的制备方法,其特征在于,所述海鞘纤维素的制备方法如下:将海鞘被囊与碱溶液混合,在25~60℃下反应10~24h;然后将碱处理后的海鞘被囊与漂白液混合,在50~80℃下反应6~12h;重复进行3~5次。
9.权利要求1~4中任一项所述的离子导电水凝胶在可穿戴人体传感器中的应用。
10.一种可穿戴人体传感器,包含权利要求1~4中任一项所述的离子导电水凝胶。
CN202110599959.1A 2021-05-31 2021-05-31 一种透明离子导电水凝胶及其制备方法与应用 Pending CN113321821A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110599959.1A CN113321821A (zh) 2021-05-31 2021-05-31 一种透明离子导电水凝胶及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110599959.1A CN113321821A (zh) 2021-05-31 2021-05-31 一种透明离子导电水凝胶及其制备方法与应用

Publications (1)

Publication Number Publication Date
CN113321821A true CN113321821A (zh) 2021-08-31

Family

ID=77422666

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110599959.1A Pending CN113321821A (zh) 2021-05-31 2021-05-31 一种透明离子导电水凝胶及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN113321821A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240062038A (ko) * 2022-11-01 2024-05-08 한남대학교 산학협력단 멍게껍질에서 추출한 나노셀룰로오스를 함유한 고강도 투명 pva 나노섬유시트의 제조방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103143058A (zh) * 2013-04-01 2013-06-12 钟春燕 具有生物活性的复合水凝胶组织工程软骨修复支架的制备
CN107043441A (zh) * 2017-04-24 2017-08-15 武汉大学 海鞘纤维素纳米晶体/聚合物水凝胶及其制备方法和应用
CN109749097A (zh) * 2019-01-17 2019-05-14 中南林业科技大学 环境友好型快速自修复水凝胶的制备方法
CN112321978A (zh) * 2020-11-13 2021-02-05 四川大学 一种各向异性的高强高韧有机水凝胶及其制备方法和应用
CN112646206A (zh) * 2020-12-21 2021-04-13 青岛大学 一种高透明聚乙烯醇水凝胶及其制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103143058A (zh) * 2013-04-01 2013-06-12 钟春燕 具有生物活性的复合水凝胶组织工程软骨修复支架的制备
CN107043441A (zh) * 2017-04-24 2017-08-15 武汉大学 海鞘纤维素纳米晶体/聚合物水凝胶及其制备方法和应用
CN109749097A (zh) * 2019-01-17 2019-05-14 中南林业科技大学 环境友好型快速自修复水凝胶的制备方法
CN112321978A (zh) * 2020-11-13 2021-02-05 四川大学 一种各向异性的高强高韧有机水凝胶及其制备方法和应用
CN112646206A (zh) * 2020-12-21 2021-04-13 青岛大学 一种高透明聚乙烯醇水凝胶及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MINFENG CHEN ET.AL.: "High-performance flexible and self-healable quasi-solid-state zinc-ion hybrid supercapacitor based on borax-crosslinked polyvinyl alcohol/nanocellulose hydrogel electrolyte", 《JOURNAL OF MATERIALS CHEMISTRY A》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240062038A (ko) * 2022-11-01 2024-05-08 한남대학교 산학협력단 멍게껍질에서 추출한 나노셀룰로오스를 함유한 고강도 투명 pva 나노섬유시트의 제조방법
KR102746621B1 (ko) 2022-11-01 2024-12-24 한남대학교 산학협력단 멍게껍질에서 추출한 나노셀룰로오스를 함유한 고강도 투명 pva 나노섬유시트의 제조방법

Similar Documents

Publication Publication Date Title
Xia et al. Intrinsically electron conductive, antibacterial, and anti‐swelling hydrogels as implantable sensors for bioelectronics
Wang et al. Tannic acid-Fe3+ activated rapid polymerization of ionic conductive hydrogels with high mechanical properties, self-healing, and self-adhesion for flexible wearable sensors
Wang et al. Facile fabrication of self-healing, injectable and antimicrobial cationic guar gum hydrogel dressings driven by hydrogen bonds
CN108264611A (zh) 一种自粘附超强水凝胶的制备方法
CN103469351B (zh) 负载维生素c的丝素蛋白/透明质酸复合纳米纤维的制备方法
CN112679755B (zh) 一种MXene增强的双网络自愈合导电水凝胶的制备方法
CN111944167B (zh) 一种导电水凝胶及其制备方法和应用
CN111320768A (zh) 一种水凝胶应变传感器的制备方法
CN106866996A (zh) 一种蚕丝丝素蛋白质凝胶的快速制备方法
Li et al. Highly stretchable, fast self-healing, self-adhesive, and strain-sensitive wearable sensor based on ionic conductive hydrogels
CN113321821A (zh) 一种透明离子导电水凝胶及其制备方法与应用
Zhou et al. Hydrogen-bonding topological remodeling modulated ultra-fine bacterial cellulose nanofibril-reinforced hydrogels for sustainable bioelectronics
CN107681047A (zh) 一种有机可降解阻变神经仿生器件及其制备方法和应用
Chen et al. Tissue-like electrophysiological electrode interface construction by multiple crosslinked polysaccharide-based hydrogel
Zheng et al. Chemically modified silk fibroin hydrogel for environment-stable electronic skin
CN114605712B (zh) 预聚液、生物相容性导电水凝胶及其制备方法
Wang et al. Zirconium ion ligand cross-linked carbon nanotubes and leather collagen fibers for flexible, stable, and highly efficient underwater sensors
CN104548201B (zh) 一种角膜组织修复材料及其制备方法
Niu et al. Ionic hydrogels-based electronic skins for electrophysiological monitoring
CN112853623A (zh) 一种静电纺高岭石强化天然聚多糖多孔纤维膜的制备方法
CN114306652A (zh) 一种可注射压电水凝胶及其制备与应用
CN118258522A (zh) 一种基于细菌纤维素和纺织品的柔性压力传感器及其制备方法
Zhang et al. Naturally derived double-network hydrogels with application as flexible adhesive sensors
CN115339135B (zh) 一种丝素蛋白彩色隐形眼镜制备方法
CN114835943B (zh) 一种抗冻导电可拉伸硫辛酸有机凝胶的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20210831