CN113314667B - A Magnetic Thin Film Material Structure Based on SOT Effect to Generate Bias - Google Patents
A Magnetic Thin Film Material Structure Based on SOT Effect to Generate Bias Download PDFInfo
- Publication number
- CN113314667B CN113314667B CN202110402104.5A CN202110402104A CN113314667B CN 113314667 B CN113314667 B CN 113314667B CN 202110402104 A CN202110402104 A CN 202110402104A CN 113314667 B CN113314667 B CN 113314667B
- Authority
- CN
- China
- Prior art keywords
- layer
- thin film
- film material
- magnetic
- spin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N50/00—Galvanomagnetic devices
- H10N50/80—Constructional details
- H10N50/85—Materials of the active region
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N50/00—Galvanomagnetic devices
- H10N50/10—Magnetoresistive devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N52/00—Hall-effect devices
Landscapes
- Hall/Mr Elements (AREA)
- Magnetic Heads (AREA)
Abstract
本发明涉及一种基于SOT效应产生偏置的磁性薄膜材料结构,所述磁性薄膜材料结构采用顶钉扎结构或底钉扎结构,所述磁性薄膜材料结构包括基底、种子层、自旋产生层、反铁磁钉扎层、铁磁被钉扎层、非磁性间层、软磁自由层和覆盖层,所述的自旋产生层的制作材料为重金属、非磁金属、晶体薄膜或外耳半金属中的一种。本发明的磁性薄膜材料结构,自旋产生层的制作材料为重金属、非磁金属、晶体薄膜或外耳半金属中的一种,由于自旋产生层的特定材料可以使邻近反铁磁的铁磁层发生偏置,通过改变电流的方向会使偏置的方向改变,并且通过改变电流密度的大小可以改变偏置的大小。
The invention relates to a magnetic thin film material structure biased based on the SOT effect, the magnetic thin film material structure adopts a top pinning structure or a bottom pinning structure, and the magnetic thin film material structure includes a base, a seed layer, and a spin generation layer , antiferromagnetic pinned layer, ferromagnetic pinned layer, nonmagnetic interlayer, soft magnetic free layer and cover layer, the material of the spin generation layer is heavy metal, nonmagnetic metal, crystal thin film or concha A kind of metal. In the magnetic thin film material structure of the present invention, the material for the spin generation layer is one of heavy metal, non-magnetic metal, crystal thin film or semimetal of the outer ear. Due to the specific material of the spin generation layer, the adjacent antiferromagnetic ferromagnetic The layer is biased, and the direction of the bias will be changed by changing the direction of the current, and the magnitude of the bias can be changed by changing the magnitude of the current density.
Description
技术领域technical field
本发明涉及一种基于SOT效应产生偏置的磁性薄膜材料结构,属于磁性材料领域。The invention relates to a magnetic thin film material structure that generates bias based on the SOT effect, and belongs to the field of magnetic materials.
背景技术Background technique
磁电阻是指在外磁场作用下材料的电阻发生变化的现象,磁电阻器件已被广泛应用在传感器、存储等领域。巨磁阻GMR、隧道磁阻TMR结构主要由两层磁性金属层和夹在其间的间隔层组成,常见的结构有多层膜体系、伪自旋阀体系、自旋阀体系以及人工合成反铁磁自旋阀体系等。由于多层膜体系需要在零磁场时通过反铁磁层间耦合使相邻铁磁层的磁矩反平行排列,尽管其可以产生很高的MR值,但同时也需要很高的饱和场。伪自旋阀体系中硬磁层与自由层之间存在耦合,导致自由层矫顽力增大,降低了灵敏度。而自旋阀体系以及人工合成反铁磁自旋阀体系可以在两软磁层不存在交换耦合的条件下,用反铁磁层通过交换作用钉扎一软磁层,使其磁化强度固定在某一方向,在较小的磁场下仅未被钉扎的软磁层可以自由翻转,在小磁场下便可以产生大的MR值,利于实际应用。Magnetoresistance refers to the phenomenon that the resistance of materials changes under the action of an external magnetic field. Magnetoresistance devices have been widely used in sensors, storage and other fields. The giant magnetoresistance GMR and tunnel magnetoresistance TMR structures are mainly composed of two magnetic metal layers and a spacer layer sandwiched between them. Common structures include multilayer film systems, pseudo spin valve systems, spin valve systems, and artificially synthesized antiferroic materials. Magnetic spin valve system, etc. Since the multilayer film system needs to align the magnetic moments of adjacent ferromagnetic layers antiparallel through antiferromagnetic interlayer coupling at zero magnetic field, although it can produce high MR values, it also requires a high saturation field. There is coupling between the hard magnetic layer and the free layer in the pseudo-spin valve system, which leads to an increase in the coercive force of the free layer and reduces the sensitivity. The spin valve system and the artificially synthesized antiferromagnetic spin valve system can use the antiferromagnetic layer to pin a soft magnetic layer through exchange under the condition that there is no exchange coupling between the two soft magnetic layers, so that the magnetization is fixed at In a certain direction, only the unpinned soft magnetic layer can be flipped freely under a small magnetic field, and a large MR value can be generated under a small magnetic field, which is beneficial to practical applications.
自旋阀与人工合成反铁磁自旋阀主要由四层构成:铁磁自由层、非磁性层、铁磁钉扎层、反铁磁层构成。当反铁磁层的交换耦合作用会导致邻近铁磁层磁化强度钉扎在某一特定方向后,此后在小场下钉扎一直维持在此方向不易改变,只有在外界场足够大时,钉扎层的磁矩才会翻转,而自由层的磁矩也会随之翻转,表现出无MR效应。因此SOT(自旋轨道力矩)效应在小场范围下通过改变电流的方向就可以产生不同方向的钉扎。Spin valves and synthetic antiferromagnetic spin valves are mainly composed of four layers: ferromagnetic free layer, nonmagnetic layer, ferromagnetic pinning layer, and antiferromagnetic layer. When the exchange coupling effect of the antiferromagnetic layer causes the magnetization of the adjacent ferromagnetic layer to be pinned in a certain direction, the pinning has been maintained in this direction under a small field and is not easy to change. Only when the external field is large enough, the pinning The magnetic moment of the pinned layer will be reversed, and the magnetic moment of the free layer will be reversed accordingly, showing no MR effect. Therefore, the SOT (spin-orbit torque) effect can produce pinning in different directions by changing the direction of the current in a small field range.
目前,自旋阀结构以及人工合成反铁磁自旋阀结构占主导地,这两种结构通过高温加磁场退火使反铁磁层产生特定方向的钉扎,导致邻近铁磁层产生特定方向的偏置。但是,该偏置方向是固定的,不可能再其他方向产生偏置。而实际应用时(如用惠斯通全桥结构感应磁场),则需要每个桥臂产生相反方向的钉扎,显然,特定方向钉扎的自旋阀结构以及人工合成反铁磁自旋阀结构限制了其应用范围。使每个桥臂产生相反方向的钉扎,具有复杂和难以控制的磁化技术和额外的复杂工艺现有技术中由于难以在一个芯片上制备得到两个相反的钉扎方向,通常采用多芯片拼接的方式得到磁场传感器,而多芯片在拼接时很难避免机械误差,导致成品灵敏度低、成品率低,难以满足大规模生产的需求。因此,需要研发一个改进的磁性膜堆结构,可以形成不同方向的偏置。At present, the spin valve structure and the artificial antiferromagnetic spin valve structure are dominant. These two structures can pin the antiferromagnetic layer in a specific direction through high temperature and magnetic field annealing, resulting in the pinning of the adjacent ferromagnetic layer in a specific direction. bias. However, this bias direction is fixed, and it is impossible to generate bias in other directions. In practical applications (such as using a Wheatstone full-bridge structure to induce a magnetic field), each bridge arm needs to be pinned in opposite directions. Obviously, the spin valve structure pinned in a specific direction and the artificially synthesized antiferromagnetic spin valve The structure limits its scope of application. Make each bridge arm pin in the opposite direction, with complex and difficult-to-control magnetization technology and additional complex process In the prior art, it is difficult to prepare two opposite pinning directions on one chip, and multi-chip splicing is usually used However, it is difficult to avoid mechanical errors when splicing multiple chips, resulting in low sensitivity and low yield of finished products, which is difficult to meet the needs of mass production. Therefore, it is necessary to develop an improved magnetic film stack structure that can form biases in different directions.
CN109300495A公开了一种基于人工反铁磁自由层的磁性结构及自旋轨道矩-磁性随机存储装置,其包含一个电场调控的基于人工反铁磁装置的自由层的磁性隧道结和一个自旋轨道矩材料层;其中基于人工反铁磁装置的自由层可以通过电场调控,实现反铁磁态到铁磁态的转变。所述装置可以在电场和电流的共同作用下实现数据的稳定写入,结构简单,具有功耗低、速度快、抗辐射、非易失性的优点。但是该磁性结构需要特定的结构来实现存储器的功能,并且在产生SOT的同时需施加一个辅助电流来帮助确定偏置的方向,对于器件的耐受程度以及加工程度具有重大的挑战。CN109300495A discloses a magnetic structure based on an artificial antiferromagnetic free layer and a spin-orbit moment-magnetic random storage device, which includes a magnetic tunnel junction based on an artificial antiferromagnetic free layer controlled by an electric field and a spin-orbit Moment material layer; the free layer based on the artificial antiferromagnetic device can be controlled by an electric field to realize the transition from the antiferromagnetic state to the ferromagnetic state. The device can realize stable writing of data under the joint action of electric field and current, and has the advantages of simple structure, low power consumption, high speed, radiation resistance and non-volatility. However, this magnetic structure requires a specific structure to realize the function of the memory, and an auxiliary current needs to be applied to help determine the direction of the bias when generating the SOT, which poses a major challenge to the tolerance and processing of the device.
发明内容Contents of the invention
针对现有技术的不足,本发明提供一种基于SOT效应产生偏置的磁性薄膜材料结构。本发明的磁性薄膜材料结构可以使邻近反铁磁的铁磁层发生偏置,通过改变电流的方向会使偏置的方向改变,并且通过改变电流密度的大小可以改变偏置的大小。Aiming at the deficiencies of the prior art, the present invention provides a magnetic thin film material structure that generates bias based on the SOT effect. The magnetic thin film material structure of the present invention can bias the adjacent antiferromagnetic ferromagnetic layer, change the direction of the bias by changing the direction of the current, and change the magnitude of the bias by changing the magnitude of the current density.
自旋轨道力矩(SOT)效应:当电流通过强的自旋轨道耦合的体系时,产生的自旋流或者界面处的自旋积累,会对近邻的磁性层产生一个力矩的作用,该力矩会对磁性层的磁动力学过程产生影响,甚至在一定的条件下会使磁性材料的磁矩发生翻转。Spin-orbit torque (SOT) effect: When the current passes through a system with strong spin-orbit coupling, the generated spin current or spin accumulation at the interface will generate a torque on the adjacent magnetic layer, and the torque will be It can affect the magnetodynamic process of the magnetic layer, and even cause the magnetic moment of the magnetic material to flip under certain conditions.
为达到以上目的,本发明是通过如下技术方案实现的:To achieve the above object, the present invention is achieved through the following technical solutions:
一种基于SOT效应产生偏置的磁性薄膜材料结构,所述磁性薄膜材料结构采用顶钉扎结构或底钉扎结构,所述磁性薄膜材料结构包括基底、种子层、自旋产生层、反铁磁钉扎层、铁磁被钉扎层、非磁性间层、软磁自由层和覆盖层,所述的自旋产生层的制作材料为重金属、非磁金属、晶体薄膜或外耳半金属中的一种。A magnetic thin film material structure biased based on the SOT effect, the magnetic thin film material structure adopts a top pinning structure or a bottom pinning structure, and the magnetic thin film material structure includes a substrate, a seed layer, a spin generation layer, an antiferro Magnetic pinning layer, ferromagnetic pinned layer, non-magnetic interlayer, soft magnetic free layer and cover layer, the production material of described spin generation layer is heavy metal, non-magnetic metal, crystal thin film or outer ear semimetal A sort of.
根据本发明优选的,重金属为Ta、W、Pt、Au、Hf或Mo中的一种。Preferably according to the present invention, the heavy metal is one of Ta, W, Pt, Au, Hf or Mo.
根据本发明优选的,非磁金属为Ti。Preferably according to the invention, the non-magnetic metal is Ti.
根据本发明优选的,晶体薄膜为Bi2Se3薄膜、Bi2Te3薄膜、Sb2Te3薄膜、BixSe1-x薄膜或(BixSb1-x)2Te3薄膜,x<1。Preferably according to the present invention, the crystal thin film is Bi 2 Se 3 thin film, Bi 2 Te 3 thin film, Sb 2 Te 3 thin film, Bi x Se 1-x thin film or (Bi x Sb 1-x ) 2 Te 3 thin film, x< 1.
晶体薄膜为现有技术材料。Crystal thin films are prior art materials.
根据本发明优选的,外尔半金属为单晶、多晶或非晶外尔半金属,外尔半金属选自WTe2、MoTe2或MoxW1-xTe2,x<1。Preferably according to the present invention, the Weyl semimetal is single crystal, polycrystalline or amorphous Weyl semimetal, and the Weyl semimetal is selected from WTe2, MoTe 2 or Mo x W 1-x Te 2 , where x<1.
根据本发明优选的,种子层的制作材料为Ta,Ru,W,Mo,Ir,Pt,NiFe,NiFeCr,NiCr中的一种或两种以上组合。Preferably according to the present invention, the seed layer is made of one or a combination of two or more of Ta, Ru, W, Mo, Ir, Pt, NiFe, NiFeCr, and NiCr.
根据本发明优选的,反铁磁钉扎层的制作材料为IrMn,PtMn,FeMn,NiMn,PdMn铁磁金属的一种或两种以上组合,或者NiO,CoO,α-Fe2O3氧化物反铁磁材料中的一种。Preferably according to the present invention, the antiferromagnetic pinning layer is made of one or more combinations of IrMn, PtMn, FeMn, NiMn, PdMn ferromagnetic metals, or NiO, CoO, α-Fe2O3 oxide antiferromagnetic one of the materials.
根据本发明优选的,软磁自由层、铁磁被钉扎层的制作材料为CoFeB,CoFe,Co,Fe,Ni,CoCrPt,NiFe,CoFeSiB,(Co/Pt)m,(Co/Ni)n,(Co/Pd)p或半金属材料,其中m,n,p指多层堆叠的重复次数。Preferably according to the present invention, the soft magnetic free layer and the ferromagnetic pinned layer are made of CoFeB, CoFe, Co, Fe, Ni, CoCrPt, NiFe, CoFeSiB, (Co/Pt)m, (Co/Ni)n , (Co/Pd)p or semi-metallic materials, where m, n, p refer to the number of repetitions of the multilayer stack.
进一步优选的,半金属材料为XXZ型Heusler合金或X2YZ型Heusler合金,其中X选自Mn,Co,Fe,Ni,Pd,Cu中的一种或两种以上组合,Y选自Ti,V,Cr,Mn,Fe,Co或Ni的一种或两种以上组合,Z选自Al,Ga,In,Si,Ge,Sn或Sb中的一种或两种以上组合。Further preferably, the semi-metallic material is an XXZ type Heusler alloy or an X 2 YZ type Heusler alloy, wherein X is selected from one or more combinations of Mn, Co, Fe, Ni, Pd, Cu, and Y is selected from Ti, V, one or more combinations of Cr, Mn, Fe, Co or Ni, and Z selected from one or more combinations of Al, Ga, In, Si, Ge, Sn or Sb.
根据本发明优选的,非磁性间层的制作材料为氧化物、氮化物、氮氧化物、金属或合金。Preferably according to the present invention, the material for making the non-magnetic interlayer is oxide, nitride, oxynitride, metal or alloy.
进一步优选的,氧化物、氮化物、氮氧化物的组成元素选自Mg,Al,Ti,Hf,Cu,Si,In,La,Ca,Sr,V,Zn或Eu的一种或两种以上组合。Further preferably, the constituent elements of oxides, nitrides and oxynitrides are selected from one or more of Mg, Al, Ti, Hf, Cu, Si, In, La, Ca, Sr, V, Zn or Eu combination.
进一步优选的,金属或合金的其组成元素为Cu,Ru,Ag,Au,Ti,Mo,W,Cr,Rh,Ta,Al,Nb,Os,Mg,V中的一种或两种以上组合。Further preferably, the constituent elements of the metal or alloy are one or a combination of two or more of Cu, Ru, Ag, Au, Ti, Mo, W, Cr, Rh, Ta, Al, Nb, Os, Mg, V .
根据本发明优选的,铁磁被钉扎层为合成反铁磁结构(SAF)或自旋阀结构,自旋阀结构包括铁磁被钉扎层,合成反铁磁结构(SAF)包括铁磁被钉扎层1、铁磁被钉扎层2以及位于铁磁被钉扎层1、铁磁被钉扎层2之间的间隔层。Preferably according to the present invention, the ferromagnetic pinned layer is a synthetic antiferromagnetic structure (SAF) or a spin valve structure, the spin valve structure comprises a ferromagnetic pinned layer, and the synthetic antiferromagnetic structure (SAF) comprises a ferromagnetic The pinned layer 1 , the ferromagnetic pinned layer 2 and the spacer layer between the ferromagnetic pinned layer 1 and the ferromagnetic pinned layer 2 .
进一步优选的,间隔层材料的制作材料为Ru,Ta,W,Mo,Nb,Cr,Re,Os,Ir,Au,Ag或Cu的一种或两种以上组合。Further preferably, the material for the spacer layer is one or a combination of two or more of Ru, Ta, W, Mo, Nb, Cr, Re, Os, Ir, Au, Ag or Cu.
一种基于SOT效应产生偏置的磁性薄膜材料结构,所述磁性薄膜材料结构采用底钉扎结构,为合成反铁磁结构(SAF)或自旋阀结构;A magnetic thin film material structure biased based on the SOT effect, the magnetic thin film material structure adopts a bottom pinning structure, which is a synthetic antiferromagnetic structure (SAF) or a spin valve structure;
当为自旋阀结构时,所述磁性薄膜材料结构自下而上依次包括包括基底、种子层、自旋产生层、反铁磁钉扎层、铁磁被钉扎层、非磁性间层、软磁自由层和覆盖层;When it is a spin valve structure, the magnetic thin film material structure sequentially includes a substrate, a seed layer, a spin generation layer, an antiferromagnetic pinning layer, a ferromagnetic pinned layer, a nonmagnetic interlayer, Soft magnetic free layer and cover layer;
当为合成反铁磁结构(SAF)时,所述磁性薄膜材料结构自下而上依次包括包括基底、种子层、自旋产生层、反铁磁钉扎层、铁磁被钉扎层1、间隔层、铁磁被钉扎层2、非磁性间层、软磁自由层和覆盖层。When it is a synthetic antiferromagnetic structure (SAF), the magnetic thin film material structure includes, from bottom to top, a substrate, a seed layer, a spin generation layer, an antiferromagnetic pinning layer, a ferromagnetic pinned layer 1, Spacer layer, ferromagnetic pinned layer 2, non-magnetic interlayer, soft magnetic free layer and cover layer.
一种基于SOT效应产生偏置的磁性薄膜材料结构,所述磁性薄膜材料结构采用顶钉扎结构,为合成反铁磁结构(SAF)或自旋阀结构;A magnetic thin film material structure biased based on the SOT effect, the magnetic thin film material structure adopts a top pinning structure, which is a synthetic antiferromagnetic structure (SAF) or a spin valve structure;
当为自旋阀结构时,所述磁性薄膜材料结构自下而上依次包括基底、种子层、软磁自由层、非磁性间层、铁磁被钉扎层、反铁磁钉扎层、自旋产生层、和覆盖层;When it is a spin valve structure, the magnetic thin film material structure includes a substrate, a seed layer, a soft magnetic free layer, a nonmagnetic interlayer, a ferromagnetic pinned layer, an antiferromagnetic pinned layer, a self- spin generation layer, and covering layer;
当为合成反铁磁结构(SAF)时,所述磁性薄膜材料结构自下而上依次包括基底、种子层、软磁自由层、非磁性间层、铁磁被钉扎层2、间隔层、铁磁被钉扎层1、反铁磁钉扎层、自旋产生层、和覆盖层。When it is a synthetic antiferromagnetic structure (SAF), the magnetic thin film material structure sequentially includes a substrate, a seed layer, a soft magnetic free layer, a nonmagnetic interlayer, a ferromagnetic pinned layer 2, a spacer layer, Ferromagnetic pinned layer 1, antiferromagnetic pinned layer, spin generation layer, and capping layer.
其中,软磁自由层和铁磁被钉扎层磁化方向可以是面内也可以是面外。Wherein, the magnetization directions of the soft magnetic free layer and the ferromagnetic pinned layer can be in-plane or out-of-plane.
本发明基于SOT效应产生偏置的磁性薄膜材料结构,每个层可以通过合适的成膜方法,包括物理气相沉积(PVD),分子束外延(MBE),激光脉冲沉积(PLD),原子层沉积(ALD),化学气相沉积(CVD),电镀或其组合。The present invention generates a biased magnetic film material structure based on the SOT effect, and each layer can be formed by a suitable film-forming method, including physical vapor deposition (PVD), molecular beam epitaxy (MBE), laser pulse deposition (PLD), and atomic layer deposition. (ALD), chemical vapor deposition (CVD), electroplating or a combination thereof.
对于自旋产生层电流流向与反铁磁钉扎层钉扎方向呈90度,并且电流反向后,反铁磁钉扎层的钉扎方向也随之改变180度。如图5,自旋产生层Pt,反铁磁钉扎层IrMn,在Pt中通入电流,会对IrMn产生力矩的作用(τ∝m×(m×p),m为IrMn磁矩方向,p为自旋方向),使IrMn表面磁矩沿此排列,形成此方向的钉扎方向。对于通入的电流密度为106~107A/cm2,且电流需横向流入,所述的电流均为直流。For the spin generation layer, the current flow direction is 90 degrees to the pinning direction of the antiferromagnetic pinning layer, and after the current is reversed, the pinning direction of the antiferromagnetic pinning layer also changes by 180 degrees. As shown in Figure 5, the spin generation layer Pt and the antiferromagnetic pinning layer IrMn, passing current through Pt will generate torque on IrMn (τ∝m×(m×p), m is the direction of the magnetic moment of IrMn, p is the spin direction), so that the IrMn surface magnetic moments are arranged along this direction to form the pinning direction of this direction. For the current density of 106-107 A/cm2, and the current needs to flow in laterally, the currents mentioned above are all direct currents.
本发明的技术特点及优点:Technical characteristics and advantages of the present invention:
1、本发明的磁性薄膜材料结构,自旋产生层的制作材料为重金属、非磁金属、晶体薄膜或外耳半金属中的一种,由于自旋产生层的特定材料可以使邻近反铁磁的铁磁层发生偏置,通过改变电流的方向会使偏置的方向改变,并且通过改变电流密度的大小可以改变偏置的大小。1, the magnetic thin film material structure of the present invention, the making material of spin generation layer is a kind of in heavy metal, non-magnetic metal, crystal thin film or concha semimetal, because the specific material of spin generation layer can make adjacent antiferromagnetic The ferromagnetic layer is biased, and the direction of the bias will be changed by changing the direction of the current, and the magnitude of the bias can be changed by changing the magnitude of the current density.
2、本发明的磁性薄膜材料结构,在单一膜堆上可以形成钉扎反向的全桥结构,对于传感器的设计具有灵活性,根据不同应用,可以调节灵敏度和测量范围,与CMOS兼容性强,可直接制备在ASIC电路上,并且结构简单、芯片面积小。2. The structure of the magnetic thin film material of the present invention can form a pinned reverse full-bridge structure on a single membrane stack, which has flexibility in the design of the sensor. According to different applications, the sensitivity and measurement range can be adjusted, and it has strong compatibility with CMOS , can be directly prepared on the ASIC circuit, and has a simple structure and a small chip area.
附图说明Description of drawings
图1为实施例1的底钉扎结构的自旋阀磁性薄膜材料结构示意图;Fig. 1 is the schematic structural diagram of the spin valve magnetic film material structure of the bottom pinning structure of embodiment 1;
图2为实施例2的底钉扎结构的人工合成反铁磁磁性薄膜材料结构示意图;Fig. 2 is the structural representation of the artificially synthesized antiferromagnetic thin film material of the bottom pinning structure of embodiment 2;
图3为实施例3的顶钉扎结构的自旋阀磁性薄膜材料结构示意图;3 is a schematic structural view of a spin valve magnetic thin film material with a top pinning structure in Example 3;
图4为实施例4的顶钉扎结构的人工合成反铁磁磁性薄膜材料结构示意图;Fig. 4 is the structural representation of the artificially synthesized antiferromagnetic thin film material of the top pinning structure of embodiment 4;
图5自旋产生层的电流流向与反铁磁钉扎层钉扎方向;Figure 5 The current flow direction of the spin generation layer and the pinning direction of the antiferromagnetic pinning layer;
图6为实施例1中未加电流时,薄膜材料结构的原始磁化曲线图;Fig. 6 is when not adding electric current among the embodiment 1, the original magnetization curve figure of film material structure;
图7为实施例1中在施加电流密度为2.5x107A/cm2,薄膜材料结构的磁化曲线,产生正向的偏置场Hex;Fig. 7 is the magnetization curve of the thin film material structure at an applied current density of 2.5x10 7 A/cm 2 in Example 1, generating a positive bias field H ex ;
图8为实施例1中在施加电流密度为-2.5x107A/cm2,薄膜材料结构的磁化曲线,产生负向的偏置场Hex。Fig. 8 is the magnetization curve of the thin film material structure in Example 1 when the applied current density is -2.5x10 7 A/cm 2 , and a negative bias field He ex is generated.
具体实施方式Detailed ways
下面结合说明书附图和实施例对本发明作进一步限定,但不限于此。The present invention will be further limited below in conjunction with the accompanying drawings and embodiments, but not limited thereto.
实施例1Example 1
基于SOT效应产生偏置的磁性薄膜材料结构,具体为底钉扎结构的自旋阀磁性薄膜材料,结构如图1所示,自下而上依次包括Si/SiO2基底、2nm Ta种子层、8nm Pt自旋产生层、8nm IrMn反铁磁钉扎层、5nm CoFe铁磁被钉扎层、1.8nm Cu非磁性间层、CoFe 1nm/NiFe2nm软磁自由层和2nm Ta覆盖层。The structure of the magnetic thin film material biased based on the SOT effect, specifically the spin valve magnetic thin film material with the bottom pinning structure, is shown in Figure 1, including Si/SiO 2 substrate, 2nm Ta seed layer, 8nm Pt spin generation layer, 8nm IrMn antiferromagnetic pinning layer, 5nm CoFe ferromagnetic pinned layer, 1.8nm Cu nonmagnetic interlayer, CoFe 1nm/NiFe2nm soft magnetic free layer and 2nm Ta capping layer.
通过微加工制成长80μm,宽10μm的长条状。在长条两端未加电流时,测得原始磁化曲线,如图6所示,没有偏置效应的出现。在长条两端通入电流密度为2.5x107 A/cm2的电流时,测得磁化曲线如图7,产生正方向的偏置磁场(+Hex),当反方向通入电流密度为2.5x107A/cm2(-2.5x107 A/cm2)的电流时,测得磁化曲线如图8,产生负方向的偏置磁场(-Hex)。特此说明,此处电流方向的说明:我们将产生正偏置的电流方向成为正,负偏置的电流方向称为负。Made into strips with a length of 80 μm and a width of 10 μm by micromachining. When no current is applied to both ends of the strip, the original magnetization curve is measured, as shown in Figure 6, and there is no bias effect. When a current with a current density of 2.5x10 7 A/cm 2 is applied to both ends of the strip, the measured magnetization curve is shown in Figure 7, and a bias magnetic field (+H ex ) in the positive direction is generated. When the current density is applied in the opposite direction When the current is 2.5x10 7 A/cm 2 (-2.5x10 7 A/cm 2 ), the measured magnetization curve is shown in Fig. 8, and a bias magnetic field (-H ex ) in the negative direction is generated. Hereby explain, the description of the current direction here: we call the current direction of positive bias as positive, and the current direction of negative bias as negative.
实施例2Example 2
基于SOT效应产生偏置的磁性薄膜材料结构,具体为底钉扎结构的人工合成反铁磁磁性薄膜材料,结构如图2所示,自下而上依次包括Si/SiO2基底、2nm Ta种子层、8nm Pt自旋产生层、8nm IrMn反铁磁钉扎层、5nm CoFe铁磁被钉扎层1、2nm Ta间隔层、5nm CoFeB铁磁被钉扎层2、1.8nm Cu非磁性间层、CoFe 1nm/NiFe 2nm软磁自由层和2nm Ta覆盖层。The magnetic thin film material structure biased based on the SOT effect, specifically the artificially synthesized antiferromagnetic magnetic thin film material with a bottom pinning structure, the structure is shown in Figure 2, including Si/SiO 2 substrate, 2nm Ta seed from bottom to top layer, 8nm Pt spin generation layer, 8nm IrMn antiferromagnetic pinning layer, 5nm CoFe ferromagnetic pinned layer 1, 2nm Ta spacer layer, 5nm CoFeB ferromagnetic pinned layer 2, 1.8nm Cu nonmagnetic interlayer , CoFe 1nm/NiFe 2nm soft magnetic free layer and 2nm Ta capping layer.
实施例3Example 3
基于SOT效应产生偏置的磁性薄膜材料结构,具体为顶钉扎结构的自旋阀磁性薄膜材料;结构如图3所示,自下而上依次包括Si/SiO2基底、2nm Ta种子层、CoFe 1nm/NiFe2nm软磁自由层、1.8nm Cu非磁性间层、5nm CoFe铁磁被钉扎层、8nm IrMn反铁磁钉扎层、8nm Pt自旋产生层、和2nm Ta覆盖层。The magnetic thin film material structure biased based on the SOT effect, specifically the spin valve magnetic thin film material with a top pinning structure; the structure is shown in Figure 3, including Si/SiO 2 substrate, 2nm Ta seed layer, CoFe 1nm/NiFe2nm soft magnetic free layer, 1.8nm Cu nonmagnetic interlayer, 5nm CoFe ferromagnetic pinned layer, 8nm IrMn antiferromagnetic pinned layer, 8nm Pt spin generation layer, and 2nm Ta capping layer.
实施例4Example 4
基于SOT效应产生偏置的磁性薄膜材料结构,具体为顶钉扎结构的人工合成反铁磁磁性薄膜材料,结构如图4所示,自下而上依次包括Si/SiO2基底、2nm Ta种子层、CoFe1nm/NiFe2nm软磁自由层、1.8nm Cu非磁性间层、5nm CoFeB铁磁被钉扎层2、2nm Ta间隔层、5nm CoFe铁磁被钉扎层1、8nm IrMn反铁磁钉扎层、8nm Pt自旋产生层、和2nm Ta覆盖层。The structure of the magnetic thin film material biased based on the SOT effect, specifically the artificially synthesized antiferromagnetic magnetic thin film material with the top pinning structure, the structure is shown in Figure 4, including Si/SiO 2 substrate, 2nm Ta seed layer, CoFe1nm/NiFe2nm soft magnetic free layer, 1.8nm Cu nonmagnetic interlayer, 5nm CoFeB ferromagnetic pinned layer 2, 2nm Ta spacer layer, 5nm CoFe ferromagnetic pinned layer 1, 8nm IrMn antiferromagnetic pinned layer layer, 8nm Pt spin generation layer, and 2nm Ta capping layer.
实施例5Example 5
同实施例1所述的基于SOT效应产生偏置的磁性薄膜材料结构,不同之处在于,自旋产生层的制作材料为Ta。It is the same as the magnetic thin film material structure based on the SOT effect described in Embodiment 1, except that the spin generation layer is made of Ta.
实施例6Example 6
同实施例1所述的基于SOT效应产生偏置的磁性薄膜材料结构,不同之处在于,自旋产生层的制作材料为Hf。It is the same as the magnetic thin film material structure based on the SOT effect described in Embodiment 1, except that the spin generation layer is made of Hf.
实施例7Example 7
同实施例1所述的基于SOT效应产生偏置的磁性薄膜材料结构,不同之处在于,自旋产生层的制作材料为Ti。It is the same as the magnetic thin film material structure based on the SOT effect described in Embodiment 1, except that the spin generation layer is made of Ti.
实施例8Example 8
同实施例1所述的基于SOT效应产生偏置的磁性薄膜材料结构,不同之处在于,自旋产生层的制作材料为Bi2Se3薄膜。It is the same as the magnetic thin film material structure based on the SOT effect described in Embodiment 1, except that the spin generation layer is made of Bi 2 Se 3 thin film.
实施例9Example 9
同实施例1所述的基于SOT效应产生偏置的磁性薄膜材料结构,不同之处在于,自旋产生层的制作材料为WTe2。It is the same as the magnetic thin film material structure based on the SOT effect described in Embodiment 1, except that the spin generation layer is made of WTe2.
实施例10Example 10
同实施例1所述的基于SOT效应产生偏置的磁性薄膜材料结构,不同之处在于,自旋产生层的制作材料为MoTe2。It is the same as the magnetic thin film material structure based on the SOT effect described in Embodiment 1, except that the spin generation layer is made of MoTe 2 .
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110402104.5A CN113314667B (en) | 2021-04-14 | 2021-04-14 | A Magnetic Thin Film Material Structure Based on SOT Effect to Generate Bias |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110402104.5A CN113314667B (en) | 2021-04-14 | 2021-04-14 | A Magnetic Thin Film Material Structure Based on SOT Effect to Generate Bias |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113314667A CN113314667A (en) | 2021-08-27 |
CN113314667B true CN113314667B (en) | 2023-05-30 |
Family
ID=77372175
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110402104.5A Active CN113314667B (en) | 2021-04-14 | 2021-04-14 | A Magnetic Thin Film Material Structure Based on SOT Effect to Generate Bias |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113314667B (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109638151A (en) * | 2018-12-04 | 2019-04-16 | 中国科学院上海微系统与信息技术研究所 | Storage unit, cryogenic memory and its reading/writing method |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101996734B (en) * | 2009-08-25 | 2012-12-12 | 中国科学院物理研究所 | Linear response giant magnetoresistance effect multilayer film |
CN102148327A (en) * | 2010-12-31 | 2011-08-10 | 钱正洪 | Minor hysteresis spin valve magnetic resistor |
CN102288927A (en) * | 2011-06-28 | 2011-12-21 | 钱正洪 | Giant magnetoresistance (GMR) spin valve magnetic sensor and manufacturing method thereof |
CN102706954B (en) * | 2012-06-05 | 2016-06-29 | 清华大学 | Spin Valve GMR membrane structure, the biosensor with it and manufacture method |
CN104600193B (en) * | 2015-02-02 | 2017-07-04 | 于广华 | Superelevation abnormality hall sensitivity thin-film material, preparation method, Magnetic Sensor and element |
US20180106873A1 (en) * | 2016-10-19 | 2018-04-19 | National University Of Singapore | Method for providing a magnetic sensor with a biasing spin-orbit effective field |
US20180301266A1 (en) * | 2017-04-17 | 2018-10-18 | Cornell University | Magnetic structures having dusting layer |
CN108010549B (en) * | 2017-12-04 | 2021-03-16 | 西安交通大学 | A spin-polarized current generator and its magnetic device |
CN108387852B (en) * | 2018-04-23 | 2024-07-19 | 北京航空航天大学青岛研究院 | Single-shaft and double-shaft magnetic field sensor and preparation method thereof |
CN109300495B (en) * | 2018-09-18 | 2020-11-06 | 西安交通大学 | Magnetic structure based on artificial antiferromagnetic free layer and SOT-MRAM |
CN109507617B (en) * | 2018-10-29 | 2020-02-14 | 华中科技大学 | Detection method of unknown magnetic field |
CN110927636A (en) * | 2019-11-27 | 2020-03-27 | 北京航空航天大学青岛研究院 | Sensor for measuring vertical magnetic field and method thereof |
-
2021
- 2021-04-14 CN CN202110402104.5A patent/CN113314667B/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109638151A (en) * | 2018-12-04 | 2019-04-16 | 中国科学院上海微系统与信息技术研究所 | Storage unit, cryogenic memory and its reading/writing method |
Also Published As
Publication number | Publication date |
---|---|
CN113314667A (en) | 2021-08-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2073285B1 (en) | A high performance MTJ element for STT-RAM and method for making the same | |
US9484527B2 (en) | Nanometer magnetic multilayer film for temperature sensor and manufacturing method therefor | |
CN107923956B (en) | Magnetoresistive sensor | |
CN103503067B (en) | Magnetic stacks with perpendicular magnetic anisotropy for spin momentum transfer magnetoresistive random access memory | |
KR100663857B1 (en) | Spin injection devices and magnetic devices using them, and magnetic thin films used in them | |
US9373780B2 (en) | Co/X and CoX multilayers with improved out-of-plane anisotropy for magnetic device applications | |
US8404367B2 (en) | Low switching current dual spin filter (DSF) element for STT-RAM and a method for making the same | |
CN101901867B (en) | Magnetoresistive memory device, integrated circuit and method for forming a spin-torque structure | |
US10937951B2 (en) | Magnetoresistance effect element | |
JP2000307171A (en) | Pinning layer of magnetic device | |
WO2021212780A1 (en) | Magnetic tunnel junction and manufacturing method therefor | |
CN113314667B (en) | A Magnetic Thin Film Material Structure Based on SOT Effect to Generate Bias | |
CN112993149B (en) | Storage unit | |
CN103424131B (en) | A kind of preparation method of vertical off setting magnetic sensing unit | |
Samal et al. | Giant magnetoresistance: Nobel Prize in Physics 2007 | |
US11922986B2 (en) | Magnetic heterojunction structure and method for controlling and achieving logic and multiple-state storage functions | |
CN113466759B (en) | Single-axis and double-axis magnetoresistive magnetic field sensor and manufacturing method | |
KR20220152530A (en) | Magnetoresistive sensor element for detecting a two-dimensional magnetic field with low error in a high magnetic field | |
CN119522030A (en) | Rail electronics and magnetic memory device based on rail hall effect | |
Yuasa | Magnetic Properties of Materials for MRAM |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |