CN113311580B - Method for preparing differential array beam wavefront corrector based on aberration measurement - Google Patents
Method for preparing differential array beam wavefront corrector based on aberration measurement Download PDFInfo
- Publication number
- CN113311580B CN113311580B CN202110559282.9A CN202110559282A CN113311580B CN 113311580 B CN113311580 B CN 113311580B CN 202110559282 A CN202110559282 A CN 202110559282A CN 113311580 B CN113311580 B CN 113311580B
- Authority
- CN
- China
- Prior art keywords
- sub
- wavefront
- array
- correction
- corrector
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000004075 alteration Effects 0.000 title claims abstract description 37
- 238000005259 measurement Methods 0.000 title claims abstract description 21
- 238000000034 method Methods 0.000 title claims abstract description 18
- 238000012937 correction Methods 0.000 claims abstract description 91
- 238000013461 design Methods 0.000 claims abstract description 38
- 238000004088 simulation Methods 0.000 claims abstract description 10
- 239000000758 substrate Substances 0.000 claims description 20
- 239000000463 material Substances 0.000 claims description 12
- 238000009826 distribution Methods 0.000 claims description 7
- 230000000694 effects Effects 0.000 claims description 7
- 230000000712 assembly Effects 0.000 claims description 3
- 238000000429 assembly Methods 0.000 claims description 3
- 238000004364 calculation method Methods 0.000 claims description 3
- 238000001514 detection method Methods 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 claims description 2
- 238000012545 processing Methods 0.000 claims description 2
- 230000004069 differentiation Effects 0.000 claims 3
- 238000005457 optimization Methods 0.000 abstract description 4
- 230000003287 optical effect Effects 0.000 description 12
- 238000010586 diagram Methods 0.000 description 11
- 230000003044 adaptive effect Effects 0.000 description 10
- 239000010410 layer Substances 0.000 description 10
- 239000000919 ceramic Substances 0.000 description 9
- 210000004027 cell Anatomy 0.000 description 8
- 238000005516 engineering process Methods 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 5
- 230000001427 coherent effect Effects 0.000 description 5
- 238000003786 synthesis reaction Methods 0.000 description 5
- 238000004422 calculation algorithm Methods 0.000 description 4
- 230000010287 polarization Effects 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 239000012790 adhesive layer Substances 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 230000008676 import Effects 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 238000003491 array Methods 0.000 description 2
- 230000007812 deficiency Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 206010033799 Paralysis Diseases 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 210000003850 cellular structure Anatomy 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 150000001879 copper Chemical class 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/0025—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/0012—Optical design, e.g. procedures, algorithms, optimisation routines
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B2207/00—Coding scheme for general features or characteristics of optical elements and systems of subclass G02B, but not including elements and systems which would be classified in G02B6/00 and subgroups
- G02B2207/125—Wavefront coding
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Mechanical Light Control Or Optical Switches (AREA)
Abstract
Description
技术领域technical field
本发明涉及非相干阵列激光合成、自适应光学领域,尤其涉及一种基于单光束像差测量的差异化阵列光束波前校正器制备方法。The invention relates to the fields of incoherent array laser synthesis and adaptive optics, in particular to a method for preparing a differential array beam wavefront corrector based on single-beam aberration measurement.
背景技术Background technique
传统高能激光系统一般采用单台高功率激光器作为激光光源,其热管理复杂,光束质量较差,机动性欠佳。当前,将多台功率较低的激光器发出的光束进行阵列合成,是实现高功率激光输出的有效途径之一。Traditional high-energy laser systems generally use a single high-power laser as the laser light source, which has complex thermal management, poor beam quality, and poor mobility. At present, the array synthesis of the beams emitted by multiple low-power lasers is one of the effective ways to achieve high-power laser output.
阵列光束合成是指将多个单路光束按照一定的空间位置排布,形成阵列光束后进行合成输出。阵列光束合成分为相干合成和非相干合成两种方式。Array beam synthesis refers to arranging multiple single beams according to a certain spatial position to form an array beam and then synthesize and output it. Array beam combining can be divided into coherent combining and non-coherent combining.
根据物理光学基本原理,要实现稳定的干涉,各路光束频率和偏振态需相同,且各路激光的相位差需恒定。实际上,相干合成光强与单路激光的空间位置、激光功率、偏振态、线宽、光程差、倾斜波前、高阶波前畸变和相位噪声等因素都有关。因此,相干合成系统需要对各个参量(偏振态、相位、光程差、光轴、倾斜)进行优化控制,在性能评价函数极值寻优过程中实现最优的相干合成效果。而非相干合成在数学上可以简单的理解为各子光束光强的直接叠加。非相干合成光强仅与单路激光的空间位置、激光功率、倾斜波前和高阶波前畸变有关,非相干合成系统不需要控制各路光束的光程差、偏振等,实现起来系统结构相对简单。According to the basic principles of physical optics, to achieve stable interference, the frequency and polarization state of each beam must be the same, and the phase difference of each beam must be constant. In fact, the intensity of coherent combined light is related to factors such as the spatial position, laser power, polarization state, line width, optical path difference, inclined wavefront, high-order wavefront distortion, and phase noise of the single laser. Therefore, the coherent combination system needs to optimize the control of various parameters (polarization state, phase, optical path difference, optical axis, and tilt) to achieve the optimal coherent combination effect in the process of optimizing the extreme value of the performance evaluation function. Mathematically, incoherent combination can be simply understood as the direct superposition of the light intensity of each sub-beam. The light intensity of incoherent combination is only related to the spatial position, laser power, inclined wavefront and high-order wavefront distortion of a single laser. The incoherent combination system does not need to control the optical path difference and polarization of each beam, and the system structure is relatively simple to implement. .
相对于单光束,阵列光束非相干合成的各子光束之间互不相干,可有效抑制大气湍流引起的接收端光强起伏以及目标成像的闪烁,更易获得良好的照明效果,因此阵列光束非相干合成广泛用于激光主动照明成像系统中。对此,日本、美国海军实验室,以及国内的中科院长春光机所等国内外机构进行了大量的实验研究。Compared with a single beam, the sub-beams incoherently combined by the array beam are incoherent, which can effectively suppress the light intensity fluctuation at the receiving end and the flicker of the target image caused by atmospheric turbulence, and it is easier to obtain a good lighting effect, so the array beam is incoherent Synthesis is widely used in laser active illumination imaging systems. In this regard, domestic and foreign institutions such as Japan, the US Naval Laboratory, and the Changchun Institute of Optics and Mechanics of the Chinese Academy of Sciences have conducted a large number of experimental studies.
对于非相干阵列光束,经湍流大气和自由空间传输也会因光强闪烁、起伏、扩展等诸多因素产生光束质量退化、能量密度下降,采用自适应光学技术实现非相干阵列光束的波前调控,对各路光束波前畸变进行补偿,进一步提升非相干阵列光束接收端的光束质量和能量密度,具有重要应用价值。For incoherent array beams, transmission through turbulent atmosphere and free space will also cause beam quality degradation and energy density decline due to many factors such as light intensity flickering, fluctuations, and expansion. Adaptive optics technology is used to realize wavefront regulation of incoherent array beams. Compensating the wavefront distortion of each beam can further improve the beam quality and energy density at the receiving end of the incoherent array beam, which has important application value.
自适应光学(AO)是一门集科学性和工程性为一体的综合学科,它研究实时自动改善光波波前质量的理论、系统、技术和工程。从技术实现上来讲它是把光学波前作为控制对象,使用波前传感器,并由一套控制算法和硬件作为控制器,波前校正器作为执行器的一类自动控制系统。Adaptive optics (AO) is a comprehensive discipline integrating science and engineering. It studies the theory, system, technology and engineering of real-time automatic improvement of the quality of optical wavefronts. In terms of technical realization, it is a kind of automatic control system that takes the optical wavefront as the control object, uses the wavefront sensor, and uses a set of control algorithms and hardware as the controller, and the wavefront corrector as the actuator.
自适应光学系统包含三个基本组成部分:波前传感器5、波前控制器6、波前校正器7、分光镜8和高分辨率相机10等,如图1所示。其中,变形镜是波前校正器7的重要部件,如图2所示。变形镜对入射畸变波前进行主动调控,使出射波前满足系统要求。The adaptive optics system consists of three basic components: a
在非相干阵列光束自适应波前调控方面,现有方法是通过使用多个波前校正器对非相干阵列光束各路子光束单独进行倾斜或高阶像差调控,即采用N套自适应光学系统,对N路非相干阵列光束各子光束进行独立调控。这种技术方案使得光学系统非常庞大,对于N个波前传感器、N个波前校正器,由于要满足与非相干阵列光束各子光束之间严格的空间对准关系,对系统装配提出了更加严苛的要求。在公开的技术中,利用传统自适应光学系统开展阵列光束波前调控尚未报道过。基于传统AO思想对阵列光束进行波前校正,一种思想是将多个波前校正器按照一定排布方式组合使用,另一种思想是寻找与阵列光束相匹配单个波前校正器。多个波前校正器组合排布使得光学系统结构更加庞大,对于各个器件的装配以及各器件的位置关系要求更加严苛,同时也增大了器件支撑难度,使控制使用更加困难,所要求的技术水平更高,容易因为一个波前校正器件的损坏,而导致多个波前校正器件的瘫痪,进而导致整个系统的崩溃。In terms of adaptive wavefront control of incoherent array beams, the existing method is to use multiple wavefront correctors to individually adjust the tilt or high-order aberration of each sub-beam of the incoherent array beam, that is, to use N sets of adaptive optics systems , each sub-beam of the N-way incoherent array beam is independently regulated. This technical solution makes the optical system very large. For N wavefront sensors and N wavefront correctors, due to the strict spatial alignment relationship with the sub-beams of the incoherent array beam, more requirements are put forward for system assembly. Stringent requirements. In the disclosed technology, the use of traditional adaptive optics system to carry out wavefront manipulation of arrayed beams has not been reported. Based on the traditional AO idea to correct the wavefront of the array beam, one idea is to combine multiple wavefront correctors in a certain arrangement, and the other idea is to find a single wavefront corrector that matches the array beam. The combined arrangement of multiple wavefront correctors makes the structure of the optical system larger, and the requirements for the assembly of each device and the positional relationship of each device are more stringent. At the same time, it also increases the difficulty of device support and makes it more difficult to control and use. With a higher technical level, it is easy to cause the paralysis of multiple wavefront correction devices due to the damage of one wavefront correction device, which in turn leads to the collapse of the entire system.
对于采用现有单个波前校正器校正阵列光束波前像差的思路,分立驱动连续镜面变形镜(Deformable mirror,DM)电极多为正方形排布方式与阵列光束圆形分布不匹配;微机电变形镜(MEMS)、液晶空间光调制器(LC DM)口径一般较小,不适于阵列光束的波前校正;拼接子镜变形镜每个子镜只校正倾斜像差,且子镜间有缝隙,光能利用率低,调整难度大;薄膜变形镜(MMDM)薄膜材料较脆、谐振频率较低,不适宜用在阵列光束合成系统中;双压电片变形镜(Bimorph DM)口径一般较小,驱动器之间的变形交连值较大,不利于各个子区域独立控制。考虑上述情况,目前尚没有成熟的变形镜制备技术适用于阵列光束像差校正。For the idea of using the existing single wavefront corrector to correct the wavefront aberration of the array beam, the discretely driven continuous mirror deformable mirror (Deformable mirror, DM) electrodes are mostly arranged in a square pattern that does not match the circular distribution of the array beam; Mirrors (MEMS) and liquid crystal spatial light modulators (LC DM) are generally small in diameter, which are not suitable for wavefront correction of array beams; each sub-mirror of spliced sub-mirror deformable mirrors only corrects tilt aberration, and there are gaps between sub-mirrors. The energy utilization rate is low and the adjustment is difficult; the film material of the thin film deformable mirror (MMDM) is brittle and the resonance frequency is low, so it is not suitable for use in the array beam combining system; the diameter of the bimorph deformable mirror (Bimor p h DM) is generally larger If the value is small, the deformation cross-connection value between the drivers is large, which is not conducive to the independent control of each sub-region. Considering the above situation, there is no mature deformable mirror fabrication technology suitable for array beam aberration correction.
在蜂窝变形镜研究发展的十几年里,主要是作为光学望远镜的主镜,即作为一块多单元变形镜来校正一束入射波前的像差。采用蜂窝结构设计主要目的是实现大口径主镜的轻质支撑。另一种是用在单路激光传输系统进行波前校正,也是作为单变形镜校正单路波前畸变。对于将该类变形镜用于阵列光束波前校正的应用,目前未见报道。In the more than ten years of research and development of the honeycomb deformable mirror, it is mainly used as the main mirror of the optical telescope, that is, as a multi-unit deformable mirror to correct the aberration of an incident wavefront. The main purpose of adopting the honeycomb structure design is to realize the lightweight support of the large-aperture primary mirror. The other is used in a single-channel laser transmission system for wavefront correction, and is also used as a single deformable mirror to correct single-channel wavefront distortion. There is no report on the application of such deformable mirrors for wavefront correction of arrayed beams.
目前技术的缺点或不足:各个蜂窝内驱动器电极排布一致,波前像差校正能力相同,没有根据各蜂窝所对应的入射光束像差特性进行针对性设计,缺乏设计灵活度。由于阵列光束合成时,各个光束来自独立的激光器和光学传输链路,所含有的像差成分也各不相同,因此各个光束的波前校正能力需求是有差异性的,因此无差异化的驱动器设计蜂窝式变形镜不能直接应用于解决阵列光束波前校正问题。Disadvantages or deficiencies of the current technology: the arrangement of the driver electrodes in each cell is the same, the wavefront aberration correction capability is the same, there is no targeted design according to the aberration characteristics of the incident beam corresponding to each cell, and the design flexibility is lacking. Since each beam comes from an independent laser and optical transmission link during array beam synthesis, the aberration components contained in it are also different, so the wavefront correction capability requirements of each beam are different, so there is no differentiated driver The design of honeycomb deformable mirror cannot be directly applied to solve the problem of wavefront correction of arrayed beams.
发明内容Contents of the invention
本发明要解决的技术问题是克服现有技术的不足,提供一种低成本、校正效率高的基于单光束像差测量的差异化阵列光束波前校正器制备方法。The technical problem to be solved by the present invention is to overcome the deficiencies of the prior art and provide a low-cost, high-correction-efficiency differential array beam wavefront corrector preparation method based on single-beam aberration measurement.
为解决上述技术问题,本发明采用以下技术方案:In order to solve the problems of the technologies described above, the present invention adopts the following technical solutions:
一种基于像差测量的差异化阵列光束波前校正器,包括正面带有镜面的镜体,所述镜体的背面设有多个子光束校正组件,所述多个子光束校正组件之间的结构部分或全部不同,当包含多个子光束的阵列光束照射在镜体的镜面上时各个子光束校正组件分别对所在区域的子光束进行差异化的波前像素校正使得各个子光束校正组件的波前像素校正量均等于对应子光束的畸变波前偏差。A differential array beam wavefront corrector based on aberration measurement, including a mirror body with a mirror surface on the front, and a plurality of sub-beam correction components on the back of the mirror body, and the structure between the multiple sub-beam correction components Some or all of them are different. When the array beam containing multiple sub-beams is irradiated on the mirror surface of the mirror body, each sub-beam correction component performs differential wavefront pixel correction on the sub-beams in the area, so that the wavefront of each sub-beam correction component The pixel correction amount is equal to the distortion wavefront deviation of the corresponding sub-beam.
作为对上述技术方案的进一步改进:As a further improvement to the above technical solution:
所述子光束校正组件包括相互连接的基底和压电组件,所述压电组件朝向基底的一侧设有一整块地极电极、远离基底且朝向镜体的一侧设有分立电极,且所述多个子光束校正组件之间的分立电极部分或全部不同。The sub-beam correction component includes a substrate and a piezoelectric component connected to each other, and the piezoelectric component is provided with a whole ground electrode on the side facing the substrate, and a discrete electrode is provided on the side away from the substrate and facing the mirror body, and the Some or all of the discrete electrodes are different among the plurality of sub-beam correction components.
所述压电组件为压电材料层。The piezoelectric component is a piezoelectric material layer.
所述镜体的背面设有多个凹槽,每一个凹槽的底部设有凸出的固定支架,每一个固定支架上安装有一个子光束校正组件。The back of the mirror body is provided with a plurality of grooves, and the bottom of each groove is provided with a protruding fixing bracket, and a sub-beam correction component is installed on each fixing bracket.
所述镜体为一体式的结构;或者所述镜体为由多个分块拼接形成的分体式结构,且每一个分块上设有一个子光束校正组件,所述分块为多边形结构,且所述多个分块分别可拆卸地插接安装在同一个固定夹具上。The mirror body has an integrated structure; or the mirror body is a split structure formed by splicing multiple blocks, and each block is provided with a sub-beam correction component, and the block is a polygonal structure, And the plurality of blocks are detachably plugged and mounted on the same fixing fixture.
所述多边形结构为蜂窝结构或四方结构或长条形结构。The polygonal structure is a honeycomb structure or a square structure or a strip structure.
所述基底为玻璃或硅基底。The substrate is glass or silicon substrate.
作为一个总的发明构思,本发明还提供一种前述的基于像差测量的差异化阵列光束波前校正器的设计方法,包括以下步骤:As a general inventive concept, the present invention also provides a design method of the aforementioned differential array beam wavefront corrector based on aberration measurement, comprising the following steps:
1)测量包含多个子光束的阵列光束中各个子光束的畸变波前偏差;1) measuring the distortion wavefront deviation of each sub-beam in an array beam comprising a plurality of sub-beams;
2)建立差异化阵列光束波前校正器的三维模型,将差异化阵列光束波前校正器的三维模型导入有限元分析软件中;2) Establish a three-dimensional model of the differential array beam wavefront corrector, and import the three-dimensional model of the differential array beam wavefront corrector into the finite element analysis software;
3)在有限元分析软件中,针对差异化阵列光束波前校正器的结构参数,调整各个子光束校正组件的结构参数并进行仿真计算各个子光束校正组件对照射在镜面上的对应子光束的波前像素校正效果,若各个子光束校正组件分别对所在区域的子光束进行差异化的波前像素校正使得各个子光束校正组件的波前像素校正量均等于对应子光束的畸变波前偏差,则判定检测仿真结果满足设计要求,将最终得到的差异化阵列光束波前校正器的结构参数作为得到的设计结果输出,结束并退出;否则,跳转执行步骤3)以继续调整各个子光束校正组件的结构参数。3) In the finite element analysis software, according to the structural parameters of the differential array beam wavefront corrector, adjust the structural parameters of each sub-beam correction component and perform simulation calculations for each sub-beam correction component to the corresponding sub-beam irradiated on the mirror surface Wavefront pixel correction effect, if each sub-beam correction component performs differential wavefront pixel correction on the sub-beams in the area, so that the wavefront pixel correction amount of each sub-beam correction component is equal to the distortion wavefront deviation of the corresponding sub-beam, Then it is judged that the detection simulation results meet the design requirements, and the final structural parameters of the differential array beam wavefront corrector are output as the obtained design results, and the end and exit; otherwise, skip to step 3) to continue to adjust the correction of each sub-beam The structural parameters of the component.
作为对上述技术方案的进一步改进:As a further improvement to the above technical solution:
步骤1)包括:Step 1) includes:
S1-1、根据阵列光束的子光束空间位置,将波前传感器的微透镜阵列的子孔径分割成多个子区域,每一个子区域包含多个子孔径,阵列光束的子光束分别通过对应区域的微透镜子孔径聚焦到相机靶面上形成光斑;S1-1. According to the spatial position of the sub-beams of the array beam, the sub-apertures of the microlens array of the wavefront sensor are divided into multiple sub-areas, each sub-area contains multiple sub-apertures, and the sub-beams of the array beam pass through the micro-lens arrays of the corresponding areas respectively. The lens sub-aperture is focused on the camera target surface to form a spot;
S1-2、以参考波前在对应靶面区域的光斑所在位置为参考,求出阵列光束的子光束畸变波前与参考波前质心位置的偏差Δx和Δy;S1-2. Taking the position of the light spot of the reference wavefront in the corresponding target area as a reference, calculate the deviations Δx and Δy between the sub-beam distortion wavefront of the array beam and the centroid position of the reference wavefront;
S1-3、根据所述偏差Δx和Δy求出阵列光束的子光束入射波前的相位畸变信息,得到包含多个子光束的阵列光束中各个子光束的畸变波前偏差;S1-3, calculating the phase distortion information of the incident wavefront of the sub-beams of the array beam according to the deviation Δx and Δy, and obtaining the distorted wavefront deviation of each sub-beam in the array beam comprising a plurality of sub-beams;
步骤3)中调整各个子光束校正组件的结构参数包括调整各个子光束校正组件的分立电极的单元分布,以及子光束校正组件与镜体之间的口径比。Adjusting the structural parameters of each sub-beam correction component in step 3) includes adjusting the unit distribution of the discrete electrodes of each sub-beam correction component and the aperture ratio between the sub-beam correction component and the mirror body.
步骤2)之后、步骤3)之前还包括针对差异化阵列光束波前校正器的结构参数,重复迭代调整其中的各个子光束校正组件的厚度、镜体的厚度、子光束校正组件与镜体粘接层的厚度以使得差异化阵列光束波前校正器的变形量、共振频率满足设计要求的步骤。After step 2) and before step 3), it also includes repeatedly iteratively adjusting the thickness of each sub-beam correction component, the thickness of the mirror body, and the adhesion between the sub-beam correction component and the mirror body for the structural parameters of the differential array beam wavefront corrector. The thickness of the bonding layer is such that the deformation and resonance frequency of the differential array beam wavefront corrector meet the design requirements.
作为一个总的发明构思,本发明还提供一种基于像差测量的差异化阵列光束波前校正器的制备方法,首先采用前述所述的基于像差测量的差异化阵列光束波前校正器的设计方法得到差异化阵列光束波前校正器的结构参数;然后根据得到的差异化阵列光束波前校正器进行加工制备所述差异化阵列光束波前校正器。As a general inventive concept, the present invention also provides a method for preparing a differential array beam wavefront corrector based on aberration measurement. The design method obtains the structural parameters of the differentiated array beam wavefront corrector; and then processes and prepares the differentiated array beam wavefront corrector according to the obtained differentiated array beam wavefront corrector.
与现有技术相比,本发明的优点在于:Compared with the prior art, the present invention has the advantages of:
本发明所针对的是入射光束为阵列光束而不是单光束,不同于测量单光束波面的传统传感器,本发明突破了现有阵列光束波前校正必须采用多套自适应光学系统(N个变形镜+N个波前传感器)并行工作的复杂模式,缩减自适应光学系统规模,提升波前校正效率,采用一体化波前校正系统,即采用一个传感器和一个波前校正器(一体化变形镜)同时对N路阵列光束的波前像差进行测量和闭环校正,该方案能够大大缩减阵列光束像差校正系统的体积规模,降低系统成本,简化系统调校流程,推动阵列光束波前像差校正系统真正走向工程实用。What the present invention is aimed at is that the incident beam is an array beam rather than a single beam, which is different from the traditional sensor for measuring the wavefront of a single beam. +N wavefront sensors) work in parallel in a complex mode, reduce the scale of the adaptive optics system, improve the efficiency of wavefront correction, and adopt an integrated wavefront correction system, that is, use a sensor and a wavefront corrector (integrated deformable mirror) At the same time, the wavefront aberration of N-way array beams is measured and closed-loop corrected. This solution can greatly reduce the volume and scale of the array beam aberration correction system, reduce system cost, simplify the system adjustment process, and promote the array beam wavefront aberration correction. The system is really moving towards engineering practicality.
本发明基于一体化设计思想,校正器上设计制作一体化多区域独立控制变形镜,使各独立控制区域与阵列光束子光束的空间排布相匹配,同时各区域具有校正入射波前像差畸变的能力,从而以最低成本和最高效率解决阵列光束波前校正问题。需要强调的是,该波前校正器(一体化变形镜)实现独立控制的区域数量和区域排布形式可以根据阵列光束的束数规模和空间排布形式而定,某一区域子光束校正组件的压电组件(驱动器)的具体排布方式也可以根据该区域所对应的入射光束像差量身定制,具有非常大的设计灵活性和可拓展性。The present invention is based on the idea of integrated design. An integrated multi-area independent control deformable mirror is designed and manufactured on the corrector, so that each independent control area matches the spatial arrangement of the sub-beams of the array beam, and each area has the ability to correct the incident wavefront aberration distortion. The ability to solve the array beam wavefront correction problem at the lowest cost and highest efficiency. It should be emphasized that the independent control of the wavefront corrector (integrated deformable mirror) can be determined according to the number of beams and the spatial arrangement of the array beam. The specific arrangement of the piezoelectric components (drivers) can also be tailored according to the incident beam aberration corresponding to the area, which has great design flexibility and scalability.
附图说明Description of drawings
图1是自适应光学系统结构框图。Figure 1 is a block diagram of the adaptive optics system.
图2是波前校正器变形镜在自适应光学中的作用示意图。Fig. 2 is a schematic diagram of the function of the wavefront corrector deformable mirror in adaptive optics.
图3是本发明的流程图。Fig. 3 is a flow chart of the present invention.
图4是一体化波前传感器波前测量原理图。Figure 4 is a schematic diagram of the integrated wavefront sensor wavefront measurement.
图5是本实施例中7×1一体化波前校正器结构模型。FIG. 5 is a structural model of the 7×1 integrated wavefront corrector in this embodiment.
图6是本实施例中7×1一体化波前校正器网格划分结果图。FIG. 6 is a grid division result diagram of the 7×1 integrated wavefront corrector in this embodiment.
图7是本实施例中7×1一体化波前校正器结构尺寸图。FIG. 7 is a structural dimension diagram of the 7×1 integrated wavefront corrector in this embodiment.
图8是本实施例中7×1一体化波前校正器具体设计流程图。Fig. 8 is a specific design flow chart of the 7×1 integrated wavefront corrector in this embodiment.
图9是本实施例中7×1差异化阵列光束波前校正器各蜂窝内电极排布示意图。Fig. 9 is a schematic diagram of the arrangement of electrodes in each honeycomb of the 7×1 differential array beam wavefront corrector in this embodiment.
图10是单蜂窝内校正器层结构示意图。Fig. 10 is a schematic diagram of the structure of a corrector layer in a single cell.
图11是本发明差异化波前校正器装配立体结构图(背面)。Fig. 11 is an assembled three-dimensional structure diagram (back side) of the differentiated wavefront corrector of the present invention.
图12是本发明差异化波前校正器装配主视结构图。Fig. 12 is an assembly front structural view of the differential wavefront corrector of the present invention.
图13是本发明差异化波前校正器装配结构图。Fig. 13 is an assembly structure diagram of the differential wavefront corrector of the present invention.
图例说明:illustration:
1、镜体;11、凹槽;12、固定支架;2、子光束校正组件;21、基底;22、压电组件;221、地极电极;222、分立电极;23、支撑结构;3、固定夹具;4、底座;5、波前传感器;6、波前控制器;7、波前校正器;8、分光镜;9、高分辨率相机。1. Mirror body; 11. Groove; 12. Fixing bracket; 2. Sub-beam correction component; 21. Base; 22. Piezoelectric component; 221. Ground electrode; 222. Discrete electrode; 23. Support structure; 3. Fixing fixture; 4. Base; 5. Wavefront sensor; 6. Wavefront controller; 7. Wavefront corrector; 8. Spectroscope; 9. High-resolution camera.
具体实施方式detailed description
以下将结合说明书附图和具体实施例对本发明做进一步详细说明。除非特殊说明,本发明采用的仪器或材料为市售。The present invention will be further described in detail below in conjunction with the accompanying drawings and specific embodiments. Unless otherwise specified, the instruments or materials used in the present invention are commercially available.
本发明的一种基于像差测量的差异化阵列光束波前校正器,包括正面带有镜面的镜体1,镜体1的背面设有多个子光束校正组件2,多个子光束校正组件2之间的结构部分或全部不同,当包含多个子光束的阵列光束照射在镜体1的镜面上时各个子光束校正组件2分别对所在区域的子光束进行差异化的波前像素校正使得各个子光束校正组件2的波前像素校正量均等于对应子光束的畸变波前偏差。A differential array beam wavefront corrector based on aberration measurement of the present invention includes a
子光束校正组件2包括相互连接的基底21和压电组件22,压电组件22朝向基底21的一侧设有一整块地极电极221、远离基底21且朝向镜体1的一侧设有分立电极222,且多个子光束校正组件2之间的分立电极222部分或全部不同。The
压电组件22为压电材料层。The
子光束校正组件2还包括支撑结构23,基底21支撑于支撑结构23上,且支撑结构23位于压电组件22一侧设置。The
镜体1的背面设有多个凹槽11,每一个凹槽11的底部设有凸出的固定支架12,每一个固定支架12上安装有一个子光束校正组件2。The back of the
本实施例1中,镜体1为一体式的结构;在其他实施例中,镜体1为由多个分块拼接形成的分体式结构,且每一个分块上设有一个子光束校正组件2,分块为多边形结构,且多个分块分别可拆卸地插接安装在同一个固定夹具3上。In
本发明中一种基于像差测量的差异化阵列光束波前校正器的设计方法,包括以下步骤:A method for designing a differential array beam wavefront corrector based on aberration measurement in the present invention comprises the following steps:
1)测量包含多个子光束的阵列光束中各个子光束的畸变波前偏差;1) measuring the distortion wavefront deviation of each sub-beam in an array beam comprising a plurality of sub-beams;
2)建立差异化阵列光束波前校正器的三维模型,将差异化阵列光束波前校正器的三维模型导入有限元分析软件中;2) Establish a three-dimensional model of the differential array beam wavefront corrector, and import the three-dimensional model of the differential array beam wavefront corrector into the finite element analysis software;
3)在有限元分析软件中,针对差异化阵列光束波前校正器的结构参数,调整各个子光束校正组件2的结构参数并进行仿真计算各个子光束校正组件2对照射在镜面上的对应子光束的波前像素校正效果,若各个子光束校正组件2分别对所在区域的子光束进行差异化的波前像素校正使得各个子光束校正组件2的波前像素校正量均等于对应子光束的畸变波前偏差,则判定检测仿真结果满足设计要求,将最终得到的差异化阵列光束波前校正器的结构参数作为得到的设计结果输出,结束并退出;否则,跳转执行步骤3)以继续调整各个子光束校正组件2的结构参数。3) In the finite element analysis software, according to the structural parameters of the differential array beam wavefront corrector, adjust the structural parameters of each
步骤1)包括:Step 1) includes:
S1-1、根据阵列光束的子光束空间位置,将波前传感器的微透镜阵列的子孔径分割成多个子区域,每一个子区域包含多个子孔径,阵列光束的子光束分别通过对应区域的微透镜子孔径聚焦到相机靶面上形成光斑;S1-1. According to the spatial position of the sub-beams of the array beam, the sub-apertures of the microlens array of the wavefront sensor are divided into multiple sub-areas, each sub-area contains multiple sub-apertures, and the sub-beams of the array beam pass through the micro-lens arrays of the corresponding areas respectively. The lens sub-aperture is focused on the camera target surface to form a spot;
S1-2、以参考波前在对应靶面区域的光斑所在位置为参考,求出阵列光束的子光束畸变波前与参考波前质心位置的偏差Δx和Δy;S1-2. Taking the position of the light spot of the reference wavefront in the corresponding target area as a reference, calculate the deviations Δx and Δy between the sub-beam distortion wavefront of the array beam and the centroid position of the reference wavefront;
S1-3、根据所述偏差Δx和Δy求出阵列光束的子光束入射波前的相位畸变信息,得到包含多个子光束的阵列光束中各个子光束的畸变波前偏差;S1-3, calculating the phase distortion information of the incident wavefront of the sub-beams of the array beam according to the deviation Δx and Δy, and obtaining the distorted wavefront deviation of each sub-beam in the array beam comprising a plurality of sub-beams;
步骤3)中调整各个子光束校正组件2的结构参数包括调整各个子光束校正组件2的分立电极的单元分布,以及子光束校正组件2与镜体1之间的口径比。Adjusting the structural parameters of each
步骤2)之后、步骤3)之前还包括针对差异化阵列光束波前校正器的结构参数,重复迭代调整其中的各个子光束校正组件2的厚度、镜体1的厚度、子光束校正组件2与镜体1粘接层的厚度以使得差异化阵列光束波前校正器的变形量、共振频率满足设计要求的步骤。After step 2) and before step 3), it also includes repeatedly iteratively adjusting the thickness of each
实施例1:Example 1:
名词解释:Glossary:
校正器:能够根据控制信号产生表面面形变化,用于校正入射至其表面的光束的波前相位畸变。分为用于校正整体倾斜像差的倾斜镜和校正高阶像差的变形镜。Corrector: It can produce surface shape changes according to the control signal, which is used to correct the wavefront phase distortion of the beam incident on its surface. Divided into tilting mirrors for correcting global oblique aberrations and deformable mirrors for correcting higher-order aberrations.
变形镜:校正器的一种,用于校正高阶像差。Deformable Mirror: A type of corrector used to correct higher order aberrations.
驱动器:校正器中执行变形的能动单元,通常由压电陶瓷、磁致伸缩材料等构成。Driver: The active unit that performs deformation in the corrector, usually composed of piezoelectric ceramics, magnetostrictive materials, etc.
电极:与驱动器相连接,并将电压加载到驱动器上的金属元件,通常为铜质薄片或其他金属掩膜形态。Electrode: A metal element that is connected to the driver and applies a voltage to the driver, usually in the form of a copper sheet or other metal mask.
如图3所示,本发明的基于像差测量的差异化阵列光束波前校正器制备方法,将N路阵列光束经分光镜入射到待处理的差异化阵列光束波前校正器(本发明以一体化波前校正器为例),再经分光镜入射至一体化波前传感器,通过测量各子光束在波前传感器靶面上的子光斑位置信息,分析得到各子光束所携带的波前相位畸变,然后根据畸变信息反馈控制一体化波前控制器,实现各子光束入射波前畸变的一体化校正,包括以下步骤:As shown in Figure 3, the preparation method of the differential array beam wavefront corrector based on aberration measurement of the present invention, the N-way array beam is incident on the differential array beam wavefront corrector to be processed through the beam splitter (the present invention uses integrated wavefront corrector as an example), and then enter the integrated wavefront sensor through the spectroscope, by measuring the sub-spot position information of each sub-beam on the target surface of the wavefront sensor, the wavefront carried by each sub-beam is obtained by analysis Phase distortion, and then control the integrated wavefront controller according to the feedback of the distortion information to realize the integrated correction of the incident wavefront distortion of each sub-beam, including the following steps:
(1)阵列光束波前像差测量分析:采用一体化波前传感器进行阵列光束波前像差测量分析。一体化波前传感器的测量基本原理和结构与哈特曼波前传感器类似,简称类哈特曼传感器,其由微透镜阵列和大靶面相机组成,工作原理如图4所示。(1) Measurement and analysis of array beam wavefront aberration: the integrated wavefront sensor is used to measure and analyze the array beam wavefront aberration. The basic measurement principle and structure of the integrated wavefront sensor are similar to those of the Hartmann wavefront sensor, referred to as the Hartmann-like sensor for short. It consists of a microlens array and a large target surface camera. The working principle is shown in Figure 4.
传统哈特曼传感器针对单光束入射波前设计,类哈特曼也采用微透镜阵列结构,但是针对阵列光束多波前设计,传感器区域划分和波前复原采用的算法都有差别。Traditional Hartmann sensors are designed for single-beam incident wavefronts, and Hartmann-like sensors also use microlens array structures, but for multi-wavefront design of array beams, the algorithms used for sensor area division and wavefront restoration are different.
具体步骤如下:Specific steps are as follows:
A、先根据入射的阵列光束各子光束空间位置,对微透镜阵列的子孔径进行区域分割(图4中虚线表示),每一个子区域包含多个子孔径,入射子光束通过对应区域的微透镜子孔径聚焦到相机靶面上,子区域内相机靶面的光斑信息即包含了该子光束的波前畸变信息。A. First, according to the spatial position of each sub-beam of the incident array beam, the sub-apertures of the microlens array are divided into regions (indicated by dotted lines in Figure 4), each sub-region contains a plurality of sub-apertures, and the incident sub-beams pass through the microlenses of the corresponding regions The sub-aperture is focused on the camera target surface, and the spot information on the camera target surface in the sub-area includes the wavefront distortion information of the sub-beam.
B、选取参考波前在对应靶面区域的光斑位置作为参考,通过质心算法求出子光束畸变波前与参考波前质心位置的偏差Δx和Δy。B. Select the spot position of the reference wavefront in the corresponding target area as a reference, and calculate the deviations Δx and Δy between the distorted wavefront of the sub-beam and the centroid position of the reference wavefront through the centroid algorithm.
C、基于该偏差数据,即偏差Δx和Δy,复原出入射子波前的相位畸变信息,或通过直接斜率控制算法,驱动对应的驱动器(子光束校正组件2的压电组件22)对该子光束的像差进行校正。C. Based on the deviation data, that is, the deviation Δx and Δy, restore the phase distortion information of the incident sub-wavefront, or drive the corresponding driver (the
(2)驱动器布局有限元设计(2) Finite element design of drive layout
利用COMSOL软件对基底材料和压电材料的相关特性进行限定,在固体力学、静电学和压电效应等多物理场的基础上展开驱动器布局有限元设计,对比不同结构参数下单个蜂窝凹槽11对应镜面的面形PV值、应力以及动态频响的变化。Use COMSOL software to limit the relevant characteristics of the substrate material and piezoelectric material, and carry out the finite element design of the driver layout on the basis of multiple physical fields such as solid mechanics, electrostatics, and piezoelectric effects, and compare a single honeycomb groove under different structural parameters11 Corresponding to changes in the surface PV value, stress and dynamic frequency response of the mirror surface.
本实施例中,以7×1一体化波前校正器为例,基于光学加工经验,直径厚度比大于20的光学件属于超薄件,超过这个范围传统光学加工难以保证面形,故在考虑此条件的基础上优化蜂窝结构,确保单个蜂窝凹槽11对应镜面在大的面形PV值下不会超过材料的许用应力,动态频响达到应用要求。In this embodiment, taking the 7×1 integrated wavefront corrector as an example, based on optical processing experience, optical parts with a diameter-thickness ratio greater than 20 are ultra-thin parts. Based on this condition, the honeycomb structure is optimized to ensure that the mirror surface corresponding to a
通过Solidworks软件对7×1一体化波前校正器进行三维建模,其结构模型如图5所示,其中图5(a)为模型的立体结构图,图5(b)为模型的底面电极排布示意图,之后将三维模型导入到COMSOL软件进行仿真优化。The 7×1 integrated wavefront corrector is modeled three-dimensionally by Solidworks software, and its structural model is shown in Figure 5, where Figure 5(a) is the three-dimensional structure diagram of the model, and Figure 5(b) is the bottom electrode of the model Arrange the schematic diagram, and then import the 3D model into COMSOL software for simulation optimization.
在COMSOL中进行仿真分析的7×1一体化波前校正器结构模型如图6所示,该模型采用石英玻璃或硅作为基底21,如图6(a)所示,正面进行抛光镀膜,用于反射到达镜面的光束,如图6(b)所示,按照中心圆对称排布方式,在基底21背后挖七个一定深度的六边形蜂窝凹槽11,并在七个蜂窝凹槽11底部分别留有小于凹槽口径、具有一定高度的圆形基底凸台为固定支架12,将两面分别镀有银电极的7片压电陶瓷分别粘接在7个蜂窝凹槽11内的圆形基底凸台上,与凸台粘接的镀银压电陶瓷的正面作为接地电极,7个压电陶瓷背面镀银作为7个完整电极,以此对压电陶瓷施加静态电压。The structural model of the 7×1 integrated wavefront corrector for simulation analysis in COMSOL is shown in Figure 6. This model uses quartz glass or silicon as the
通过COMSOL软件仿真优化,确定镜体结构参数,如图8所示.变形镜的结构设计需要根据设计要求进行,能够拟合的Zernike项数及每一项的拟合精度标志着变形镜的校正能力,因此将Zernike项数和对应拟合精度要求作为设计入口参数,由此设计电极的空间分布(如单元分布、有效口径比),判断变形量和共振频率是否满足设计要求,如果不满足设计要求,重新设计电极的空间分布,如果满足设计要求,记录变形镜构型参数。变形量与驱动器、粘结层(粘结层:是指将驱动器和变形镜镜面粘结在一起的胶质层,通常只有厚薄和种类差别,会轻微影响变形量的大小)、镜片厚度有关,当变形量不符合设计要求时,优化驱动器或粘结层或镜片厚度,共振频率与驱动器和镜片的厚度有关,当共振频率不符合设计要求时,优化驱动器和/或镜片厚度,如图7所示,本发明得到的7×1一体化波前校正器整体口径为50mm,厚度15mm,每个蜂窝凹槽11内切圆直径为15mm,周边六个凹槽11与中心凹槽11内切圆圆心之间间距16mm,每个蜂窝凹槽11对应镜面的厚度为0.6mm,每个蜂窝凹槽11内凸台直径8mm,等效镜面厚度1mm,压电陶瓷直径为12mm,厚度为0.2mm。Through COMSOL software simulation optimization, determine the structural parameters of the mirror body, as shown in Figure 8. The structural design of the deformable mirror needs to be carried out according to the design requirements, and the number of Zernike items that can be fitted and the fitting accuracy of each item mark the correction of the deformable mirror Therefore, the number of Zernike items and the corresponding fitting accuracy requirements are used as the design entry parameters, so as to design the spatial distribution of electrodes (such as cell distribution, effective aperture ratio), and judge whether the deformation and resonance frequency meet the design requirements. Redesign the spatial distribution of the electrodes, and record the configuration parameters of the deformable mirror if the design requirements are met. The amount of deformation is related to the driver, the adhesive layer (adhesive layer: refers to the colloidal layer that bonds the driver and the mirror surface of the deformable mirror, usually only the thickness and type are different, which will slightly affect the amount of deformation), and the thickness of the lens. When the amount of deformation does not meet the design requirements, optimize the thickness of the driver or the bonding layer or the lens. The resonance frequency is related to the thickness of the driver and the lens. When the resonance frequency does not meet the design requirements, optimize the thickness of the driver and/or the lens, as shown in Figure 7 It shows that the 7×1 integrated wavefront corrector obtained by the present invention has an overall diameter of 50mm and a thickness of 15mm, the diameter of the inscribed circle of each
(3)驱动器设计结果示例(3) Example of drive design results
以校正7路子光束波前像差的7×1一体化波前校正器设计为例,校正器可设计成蜂窝状排布。蜂窝结构采用石英玻璃或硅作为基底21,正面进行抛光镀膜,用于反射到达镜面的各个子光束,按照中心圆对称排布方式,在基底21背后挖七个一定深度的六边形蜂窝凹槽11,并在七个蜂窝凹槽11底部分别留有小于凹槽口径、具有一定高度的圆形基底凸台为固定支架12,将两面分别镀有银电极的7片压电陶瓷分别粘接在7个蜂窝凹槽11内的圆形基底凸台上,与凸台粘接的镀银压电陶瓷的正面作为接地电极,7个压电陶瓷背面镀银作为7个完整电极,以此对压电陶瓷施加静态电压。Taking the design of a 7×1 integrated wavefront corrector for correcting wavefront aberrations of 7 sub-beams as an example, the correctors can be designed in a honeycomb arrangement. The honeycomb structure uses quartz glass or silicon as the
根据各个子光束的波前测量结果,可对各个蜂窝内的电极驱动器排布进行定制化设计,以达到所有子光束波前像差校正效果达到最优。7光束差异化阵列光束波前校正器各蜂窝内电极排布示意如图9所示,图9中单个蜂窝内线条(黑色箭头所指线条)是电极(白色区域)的分隔线,黑色区域对应细条或环状区域内,没有电极覆盖,工作时不会加载电压。According to the wavefront measurement results of each sub-beam, the electrode driver arrangement in each cell can be customized to achieve the optimal correction effect of wavefront aberrations of all sub-beams. The arrangement of electrodes in each cell of the 7-beam differential array beam wavefront corrector is shown in Figure 9. The lines in a single cell in Figure 9 (the lines indicated by the black arrows) are the separation lines of the electrodes (white areas), and the black areas correspond to In the thin strip or ring area, there is no electrode coverage, and no voltage is applied during operation.
单蜂窝内校正器(单个蜂窝内一个可独立工作的校正器,而整个蜂窝结构是一个可以同时工作、协同控制的阵列校正器)的层结构如图10所示,本实施例中,通常一层玻璃基底为基底21,一层或两层材料、尺寸完全相同的压电材料构成压电组件22,基底21边缘与蜂窝支撑结构23连接支撑固定。在压电组件22(压电材料层)与基底21(玻璃基底)之间有一整块地极电极221,在压电组件22(压电材料层)的背面分布着多个分立电极222,各分立电极222的排布对应于图9中所示的蜂窝内电极排布设计结果。本发明针对不同子光束的入射波前像差,开展各子区域电极的排布设计,最终获得的波前校正器(变形镜)其各子区域的子光束校正组件2的压电组件22(驱动器)排布有差异。The layer structure of a single-cell internal calibrator (a calibrator that can work independently in a single cell, and the entire cellular structure is an array calibrator that can work at the same time and be controlled cooperatively) is shown in Figure 10. In this embodiment, usually a The glass substrate is the
差异化波前校正器分为镜体1、子光束校正组件2(包括压电驱动器等)、接电组件、固定夹具4和底座4几个部分,装配结果如图11、12、13所示。在图11中,镜体1为反射镜面一侧,采用固定夹具4夹持并固定在底座4上,在图12中,波前传感器5指的是接电组件,为驱动电极控制线接出组件,在图13中,子光束校正组件2安装在接电组件上,得到差异化阵列光束波前校正器。The differential wavefront corrector is divided into
虽然本发明已以较佳实施例揭示如上,然而并非用以限定本发明。任何熟悉本领域的技术人员,在不脱离本发明技术方案范围的情况下,都可利用上述揭示的技术内容对本发明技术方案做出许多可能的变动和修饰,或修改为等同变化的等效实施例。因此,凡是未脱离本发明技术方案的内容,依据本发明技术实质对以上实施例所做的任何简单修改、等同变化及修饰,均应落在本发明技术方案保护的范围内。Although the present invention has been disclosed above with preferred embodiments, it is not intended to limit the present invention. Any person familiar with the art, without departing from the scope of the technical solution of the present invention, can use the technical content disclosed above to make many possible changes and modifications to the technical solution of the present invention, or modify it into an equivalent implementation of equivalent changes example. Therefore, any simple modifications, equivalent changes and modifications made to the above embodiments according to the technical essence of the present invention shall fall within the protection scope of the technical solution of the present invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110559282.9A CN113311580B (en) | 2021-05-21 | 2021-05-21 | Method for preparing differential array beam wavefront corrector based on aberration measurement |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110559282.9A CN113311580B (en) | 2021-05-21 | 2021-05-21 | Method for preparing differential array beam wavefront corrector based on aberration measurement |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113311580A CN113311580A (en) | 2021-08-27 |
CN113311580B true CN113311580B (en) | 2022-12-30 |
Family
ID=77374122
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110559282.9A Active CN113311580B (en) | 2021-05-21 | 2021-05-21 | Method for preparing differential array beam wavefront corrector based on aberration measurement |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113311580B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113900250B (en) * | 2021-10-19 | 2023-07-18 | 中国科学院光电技术研究所 | Alignment method between adaptive optics system deformable mirror and Hartmann wavefront sensor |
CN113985539B (en) * | 2021-11-04 | 2022-09-23 | 中国人民解放军国防科技大学 | Array beam tilt aberration correction system |
CN114924410B (en) * | 2022-05-20 | 2023-06-30 | 西南科技大学 | Focusing method and device based on small phase modulation and phase compensation |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2042160C1 (en) * | 1992-07-06 | 1995-08-20 | Безуглов Дмитрий Анатольевич | Wavefront mirror corrector |
CN102494785A (en) * | 2011-10-21 | 2012-06-13 | 中国科学院光电技术研究所 | Adaptive optical system transfer matrix measuring device and method based on Hadamard matrix multi-channel method |
CN102623882A (en) * | 2012-03-29 | 2012-08-01 | 中国科学院光电技术研究所 | Lath laser beam purification system based on double piezoelectric plate deformable mirrors |
CN102650734A (en) * | 2011-02-25 | 2012-08-29 | 中国科学技术大学 | Single-piezoelectric patch deformable mirror and manufacturing method thereof |
CN202661714U (en) * | 2012-06-25 | 2013-01-09 | 中国工程物理研究院应用电子学研究所 | Bimorph deformable mirror |
CN110579874A (en) * | 2019-09-09 | 2019-12-17 | 重庆连芯光电技术研究院有限公司 | compact structure's self-adaptation laser defense system |
CN112817145A (en) * | 2021-01-05 | 2021-05-18 | 宁波大学 | Multilayer actuator array driven deformable mirror |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3923400A (en) * | 1974-01-03 | 1975-12-02 | Itek Corp | Real-time wavefront correction system |
US20060050419A1 (en) * | 2004-09-08 | 2006-03-09 | Ealey Mark A | Integrated wavefront correction module |
JP2008220771A (en) * | 2007-03-14 | 2008-09-25 | Topcon Corp | Wavefront aberration correction device |
JP4920461B2 (en) * | 2007-03-14 | 2012-04-18 | 株式会社トプコン | Wavefront aberration correction device |
US7967456B2 (en) * | 2007-11-02 | 2011-06-28 | The United States Of America As Represented By The Secretary Of The Army | Scalable size deformable pocket mirror with on-pocket bimorph actuator |
JP5464891B2 (en) * | 2009-04-13 | 2014-04-09 | キヤノン株式会社 | Optical image acquisition apparatus provided with adaptive optical system, and control method thereof |
CN109725415B (en) * | 2019-03-11 | 2023-07-28 | 中国人民解放军国防科技大学 | Piezoelectric driving deformable mirror for multi-beam incoherent space synthesis and assembly method thereof |
CN110579873B (en) * | 2019-09-06 | 2024-04-02 | 中国人民解放军国防科技大学 | Array beam wavefront correction system and method based on integrated corrector |
-
2021
- 2021-05-21 CN CN202110559282.9A patent/CN113311580B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2042160C1 (en) * | 1992-07-06 | 1995-08-20 | Безуглов Дмитрий Анатольевич | Wavefront mirror corrector |
CN102650734A (en) * | 2011-02-25 | 2012-08-29 | 中国科学技术大学 | Single-piezoelectric patch deformable mirror and manufacturing method thereof |
CN102494785A (en) * | 2011-10-21 | 2012-06-13 | 中国科学院光电技术研究所 | Adaptive optical system transfer matrix measuring device and method based on Hadamard matrix multi-channel method |
CN102623882A (en) * | 2012-03-29 | 2012-08-01 | 中国科学院光电技术研究所 | Lath laser beam purification system based on double piezoelectric plate deformable mirrors |
CN202661714U (en) * | 2012-06-25 | 2013-01-09 | 中国工程物理研究院应用电子学研究所 | Bimorph deformable mirror |
CN110579874A (en) * | 2019-09-09 | 2019-12-17 | 重庆连芯光电技术研究院有限公司 | compact structure's self-adaptation laser defense system |
CN112817145A (en) * | 2021-01-05 | 2021-05-18 | 宁波大学 | Multilayer actuator array driven deformable mirror |
Also Published As
Publication number | Publication date |
---|---|
CN113311580A (en) | 2021-08-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113311580B (en) | Method for preparing differential array beam wavefront corrector based on aberration measurement | |
CN104037606B (en) | Distributed self-adaptive optical system based on optical fiber | |
CN106441084B (en) | Wavefront sensor, wavefront sensing methods and system based on micro- hologram array | |
US20030010889A1 (en) | Laser condensing apparatus and laser machining apparatus | |
TW200931061A (en) | Spatial light modulation unit, illumination optical apparatus, exposure apparatus, and device manufacturing method | |
CN114283093B (en) | A distortion image correction method based on wavefront control | |
JP7507235B2 (en) | A hybrid spectrally and coherently combined fiber laser amplifier system including a coherent optical monolithic phased array with miniature tiles. | |
CN102879110B (en) | Adaptive optical system based on modulation and non-modulation combined pyramid wave-front sensor | |
CN111006851B (en) | A wavefront detection device and method for edge sub-mirrors in a splicing mirror | |
CN104330172A (en) | Wavefront measuring chip based on electrically-controlled liquid crystal converging micro lens | |
JP2022550475A (en) | Method for high fill factor optical array fabrication | |
EP4038704A1 (en) | Spectrally combined fiber laser amplifier system including optically monolithic beam shaper array with compact tiles | |
Samarkin et al. | Large-aperture adaptive optical system for correcting wavefront distortions of a petawatt Ti: sapphire laser beam | |
CN110133845A (en) | A Design Method of Freeform Surface Wavefront Compensation Element Used in Laser System | |
CN111397506B (en) | Full-automatic phase error correction method and system for holographic interferometer | |
CN110579873A (en) | Array Beam Wavefront Correction System and Method Based on Integrated Corrector | |
CN112987321B (en) | A method and apparatus for generating a high-power vortex laser | |
CN113670456B (en) | A Wavefront Restoration Method Using a Hartmann Wavefront Sensor with Adjustable Spatial Resolution | |
CN210690939U (en) | Array beam wavefront correction system based on integrated corrector | |
CN114859565B (en) | Coaxial reflection type laser beam shaping method and device | |
Dong et al. | Stochastic parallel gradient descent based adaptive optics used for a high contrast imaging coronagraph | |
CN113325593B (en) | A laser beam splitting system based on free-form surface lens | |
CN112162379B (en) | Active blocking reflector, laser spectrum synthesis system and synthesis method | |
CN113410653A (en) | Large single-caliber radio telescope and method for improving pointing error thereof | |
CN118584654A (en) | A wavefront control method and system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |