CN113307627B - 一种Nb2SB陶瓷块体的制备方法 - Google Patents
一种Nb2SB陶瓷块体的制备方法 Download PDFInfo
- Publication number
- CN113307627B CN113307627B CN202110616062.5A CN202110616062A CN113307627B CN 113307627 B CN113307627 B CN 113307627B CN 202110616062 A CN202110616062 A CN 202110616062A CN 113307627 B CN113307627 B CN 113307627B
- Authority
- CN
- China
- Prior art keywords
- powder
- mixed
- temperature
- ceramic block
- pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/547—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on sulfides or selenides or tellurides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
- C04B35/65—Reaction sintering of free metal- or free silicon-containing compositions
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/40—Metallic constituents or additives not added as binding phase
- C04B2235/404—Refractory metals
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/42—Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
- C04B2235/421—Boron
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6562—Heating rate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6565—Cooling rate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6567—Treatment time
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Ceramic Products (AREA)
- Powder Metallurgy (AREA)
Abstract
本发明公开了一种Nb2SB陶瓷块体的制备方法,具体为:将Nb粉、S粉和B粉按照2:1~1.3:1的比例混合均匀;将混合粉末置于放电等离子烧结炉中,从室温升温到700℃,烧结环境为真空;从700℃升温1250~1650℃,并保温5~20min;待保温程序结束后,将温降温至900℃,然后随炉冷却至室温;去除表面渗碳层,得到高纯的块体Nb2SB。本发明制备工艺简单、耗时少、纯度高、成本低,环保节能,易于工业化推广。
Description
技术领域
本发明属于新型陶瓷块体制备技术领域,尤其涉及一种Nb2SB陶瓷块体的制备方法。
背景技术
Nb2SB陶瓷是纳米层状结构的三元过渡金属硼化物,该硼化物是由过渡金属硼化物八面体层Nb-B与S元素层的交替堆叠所形成。2019年,有人通过微波反应炉合成了MAX相硼化物Nb2SB粉末,但合成Nb2SB陶瓷所需时间长,合成一次需要超过140小时的时间,且工艺复杂,不利于批量生产。目前还未合成出块状的Nb2SB陶瓷,未对其一些物理性能、力学性能等进行研究;此外,放电等离子烧结具有升温速度快、烧结时间短、节能环保等鲜明特点。
发明内容
针对上述问题,本发明提供一种Nb2SB陶瓷块体的制备方法。
本发明的一种Nb2SB陶瓷块体的制备方法,包括以下步骤:
步骤1:将Nb粉、S粉和B粉按照2:1~1.3:1的比例混合均匀。
步骤2:将步骤1得到的混合粉末置于放电等离子烧结炉中,从室温升温到700℃,升温速率为40~60℃/min,压力为20~40MPa,烧结环境为真空。
步骤3:从700℃升温到1250~1650℃,升温速率为5~20℃/min,压力为20~40MPa,并在1250~1650℃处保温5~20min。
步骤4:待保温程序结束后,将温度按50℃/min的降温速率降温至900℃,压力为20~ 40MPa,然后随炉冷却至室温。
步骤5:去除表面渗碳层,得到高纯的块体Nb2SB。
进一步的,步骤1中Nb粉、S粉和B粉的粒径大小分别为200~400目、4~6μm和4~6μm,经人工称量混合,在滚筒式混料机上混合均匀,混料5~20小时。
优选的,步骤1中Nb粉、S粉和B粉的粒径大小分别为300目、5μm和5μm,经人工称量混合,在滚筒式混料机上混合均匀,混料12小时。
进一步的,步骤1中使用NbS和NbB的混合粉末,或者使用NbS2和NbB的混合粉末,但需保持三种元素比例不变。
采用上述的制备方法制备而成的Nb2SB陶瓷块体,由过渡金属硼化物八面体层Nb-B与 S元素层的交替堆叠所形成。Nb2SB陶瓷块体由于具有特殊的三元层状结构,使得它具有较好的导电导热性能,以及具有较好的高温稳定性、高硬度等性能。
本发明的有益技术效果为:
(1)本发明采用Nb、S、B粉的混合粉末,通过高温反应后,可以得到高纯度的Nb2SB陶瓷块体,制备工艺简单、成本低,且节能环保。
(2)本发明制备高纯Nb2SB陶瓷块体,性能优异,高温稳定性好,强度硬度高,热导率较高,潜在应用为陶瓷增强相、热控制材料等方面。
附图说明
图1为制备的Nb2SB陶瓷块体的X射线衍射图谱。
图2为Nb2SB陶瓷块体腐蚀表面的SEM图。
图3为Nb2SB陶瓷的晶体结构图。
具体实施方式
下面结合附图和具体实施例对本发明做进一步详细说明。
实施例1
(1)将Nb粉、S粉和B粉按照摩尔配比为2:1:1混合,在滚筒式球磨机中混粉12小时。
(2)将步骤(1)得到的混合粉末置于放电等离子烧结炉中,从室温升温到700℃,升温速率为50℃/min,压力为20MPa,烧结环境为真空。
(3)从700℃升温到1350℃,升温速率为10℃/min,压力为30MPa,并在1350℃处保温10min。
(4)待保温程序结束后,将温度按50℃/min的降温速率降温至900℃,压力为30MPa,然后随炉冷却至室温。
(5)去除表面渗碳层,得到高纯的块体Nb2SB。测试得到Nb2SB陶瓷在24-1100℃范围内的热膨胀系数为7.1×10-6K-1。随着温度的升高,Nb2SB陶瓷的热扩散系数从25℃时的5.58mm2/s增加到800℃时的7.07mm2/s。
实施例2
(1)将Nb粉、S粉和B粉按照摩尔配比为2:1.1:1混合,在滚筒式球磨机中混粉12 小时。
(2)将步骤(1)得到的混合粉末置于放电等离子烧结炉中,从室温升温到700℃,升温速率为50℃/min,压力为20MPa,烧结环境为真空。
(3)从700℃升温到1350℃,升温速率为10℃/min,压力为30MPa,并在1350℃处保温10min。
(4)待保温程序结束后,将温度按50℃/min的降温速率降温至900℃,压力为30MPa,然后随炉冷却至室温。
(5)去除表面渗碳层,得到高纯的块体Nb2SB。Nb2SB陶瓷的弯曲强度和断裂韧性分别为249±17MPa和4.76±0.36MPa·m1/2;Nb2SB的压缩强度为1157±73MPa,硬度为11.89±0.37GPa。
实施例3
(1)将Nb粉、S粉和B粉按照摩尔配比为2:1.2:1混合,在滚筒式球磨机中混粉12 小时。
(2)将步骤(1)得到的混合粉末置于放电等离子烧结炉中,从室温升温到700℃,升温速率为50℃/min,压力为20MPa,烧结环境为真空。
(3)从700℃升温到1350℃,升温速率为10℃/min,压力为30MPa,并在1350℃处保温10min。
(4)待保温程序结束后,将温度按50℃/min的降温速率降温至900℃,压力为30MPa,然后随炉冷却至室温。
(5)去除表面渗碳层,得到高纯的块体Nb2SB。测试得到25℃时的热容和导热系数分别为0.36J·g-1·K-1和13.79W·m-1·K-1,在25℃时电导率为1.17×106Ω-1·m-1。
图1为所制备高纯度Nb2SB陶瓷的X射线衍射图,可以看出仅有少量的NbB杂质相存在。图2为Nb2SB陶瓷的显微结构图,可以明显观察到纳米层状结构。图3为Nb2SB陶瓷块体的晶体结构图。Nb2SB陶瓷是纳米层状结构的三元过渡金属硼化物,该硼化物是由过渡金属硼化物八面体层Nb-B与S元素层交替堆叠形成。
本发明将Nb粉、S粉和B粉按照不同的摩尔配比进行混合,在高温条件下反应处理后得到Nb2SB陶瓷块体,纯度可达到96%以上,潜在应用于陶瓷增强相、热控制材料等方面。
Claims (5)
1.一种Nb2SB陶瓷块体的制备方法,其特征在于,包括以下步骤:
步骤1:将Nb粉、S粉和B粉按照2:1~1.3:1的比例混合均匀;
步骤2:将步骤1得到的混合粉末置于放电等离子烧结炉中,从室温升温到700℃,升温速率为40~60℃/min,压力为20~40MPa,烧结环境为真空;
步骤3:从700℃升温到1250~1650℃,升温速率为5~20℃/min,压力为20~40MPa,并在1250~1650℃处保温5~20min;
步骤4:待保温程序结束后,将温度按50℃/min的降温速率降温至900℃,压力为20~40MPa,然后随炉冷却至室温;
步骤5:去除表面渗碳层,得到高纯的块体Nb2SB。
2.根据权利要求1所述的一种Nb2SB陶瓷块体的制备方法,其特征在于,所述步骤1中Nb粉、S粉和B粉的粒径大小分别为200~400目、4~6μm和4~6μm,经人工称量混合,在滚筒式混料机上混合均匀,混料5~20小时。
3.根据权利要求2所述的一种Nb2SB陶瓷块体的制备方法,其特征在于,所述步骤1中Nb粉、S粉和B粉的粒径大小分别为300目、5μm和5μm,经人工称量混合,在滚筒式混料机上混合均匀,混料12小时。
4.根据权利要求1所述的一种Nb2SB陶瓷块体的制备方法,其特征在于,所述步骤1中使用NbS和NbB的混合粉末,或者使用NbS2和NbB的混合粉末,但需保持三种元素比例不变。
5.一种Nb2SB陶瓷块体,采用如权利要求1-4任一所述的制备方法制备而成,其特征在于,由过渡金属硼化物八面体层Nb-B与S元素层的交替堆叠所形成。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110616062.5A CN113307627B (zh) | 2021-06-02 | 2021-06-02 | 一种Nb2SB陶瓷块体的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110616062.5A CN113307627B (zh) | 2021-06-02 | 2021-06-02 | 一种Nb2SB陶瓷块体的制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113307627A CN113307627A (zh) | 2021-08-27 |
CN113307627B true CN113307627B (zh) | 2022-04-29 |
Family
ID=77377287
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110616062.5A Active CN113307627B (zh) | 2021-06-02 | 2021-06-02 | 一种Nb2SB陶瓷块体的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113307627B (zh) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06228712A (ja) * | 1993-02-03 | 1994-08-16 | Hitachi Metals Ltd | 高温強度および被削性の優れたオーステナイト系耐熱鋳鋼およびそれからなる排気系部品 |
CN110105069A (zh) * | 2019-04-25 | 2019-08-09 | 西南交通大学 | 一种新的max相层状化合物及其制备方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7619735B2 (en) * | 2002-01-15 | 2009-11-17 | Applied Materials, Israel, Ltd. | Optical inspection using variable apodization |
-
2021
- 2021-06-02 CN CN202110616062.5A patent/CN113307627B/zh active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06228712A (ja) * | 1993-02-03 | 1994-08-16 | Hitachi Metals Ltd | 高温強度および被削性の優れたオーステナイト系耐熱鋳鋼およびそれからなる排気系部品 |
CN110105069A (zh) * | 2019-04-25 | 2019-08-09 | 西南交通大学 | 一种新的max相层状化合物及其制备方法 |
Non-Patent Citations (1)
Title |
---|
Syntheses and physical properties of the MAX phase boride Nb2SB and the solid solutions Nb2SBxC1-x(x=0-1);Tobias Rackl等;《PHYSICAL REVIEW MATERIALS》;20190503;全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN113307627A (zh) | 2021-08-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2022531868A (ja) | ハイエントロピー希土類高靭性タンタル酸塩セラミックス及びその製造方法 | |
WO2020042949A1 (zh) | 高度取向纳米max相陶瓷和max相原位自生氧化物纳米复相陶瓷的制备方法 | |
CN114804878B (zh) | 一种基于燃烧合成石墨烯的高强碳基材料及制备方法 | |
CN112028635A (zh) | 一种超高温陶瓷复合材料及制备方法 | |
CN110128146A (zh) | 一种具有多功能的碳化硼基复相陶瓷及其反应热压烧结制备方法 | |
CN108794013A (zh) | 一种b4c陶瓷块体及其快速制备方法 | |
CN110776323A (zh) | 一种高纯度超细高熵陶瓷粉末及其制备方法 | |
CN112592188A (zh) | 一种石墨烯复合碳化硅陶瓷材料的制备方法 | |
CN109251033A (zh) | 一种微波合成Ti2AlC块体材料的方法 | |
CN101734925B (zh) | 可控气孔率的氮化硅多孔陶瓷及制备方法 | |
CN101152979A (zh) | 一种原位热压/固液相反应制备Ti2AlN块体材料的方法 | |
CN102826856B (zh) | 一种高纯低密度ito靶材及其制备方法 | |
CN105884358A (zh) | 一种以单质粉体为起始原料的碳化硼-碳化硅复合陶瓷及其制备方法 | |
CN100519477C (zh) | 一种原位热压/固液相反应制备钽铝碳陶瓷的方法 | |
CN111410539A (zh) | 一种Y-Al-Si-O多元玻璃相增强六方氮化硼基复相陶瓷及其制备方法 | |
CN110436898A (zh) | 一种原位合成钛铝氮和氮化钛强化氧化铝陶瓷力学性能的制备方法 | |
CN114669747A (zh) | 以Cr、Zr或Nb为基的MnAlCn-1相粉末的制备方法 | |
CN112592183B (zh) | 一种Zr-Al-C系MAX相陶瓷粉体制品的制备方法 | |
CN113307627B (zh) | 一种Nb2SB陶瓷块体的制备方法 | |
CN116178019B (zh) | 一种无压包裹煅烧制备多孔max相陶瓷材料的方法 | |
CN108341670B (zh) | 单相Ti3SiC2金属陶瓷的制备方法 | |
CN117865684A (zh) | 一种硼化铌-碳化铌复相陶瓷及其制备方法和应用 | |
CN104628386A (zh) | 一种Ta2AlC块体陶瓷的制备方法 | |
CN114349516A (zh) | 一种低温合成高致密SiC陶瓷的方法 | |
CN117550610B (zh) | 一种高熵二硅化物及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |