CN113290245B - A process for preparing metal matrix ceramic composites by applying secondary pressure - Google Patents
A process for preparing metal matrix ceramic composites by applying secondary pressure Download PDFInfo
- Publication number
- CN113290245B CN113290245B CN202110570451.9A CN202110570451A CN113290245B CN 113290245 B CN113290245 B CN 113290245B CN 202110570451 A CN202110570451 A CN 202110570451A CN 113290245 B CN113290245 B CN 113290245B
- Authority
- CN
- China
- Prior art keywords
- bottom plate
- press
- product forming
- molten metal
- sleeve
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 124
- 239000002184 metal Substances 0.000 title claims abstract description 124
- 239000000919 ceramic Substances 0.000 title claims abstract description 44
- 239000002131 composite material Substances 0.000 title claims abstract description 36
- 239000011159 matrix material Substances 0.000 title claims abstract description 27
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 22
- 239000000843 powder Substances 0.000 claims abstract description 37
- 238000000034 method Methods 0.000 claims abstract description 27
- 239000000047 product Substances 0.000 claims description 85
- 238000003825 pressing Methods 0.000 claims description 16
- 239000002245 particle Substances 0.000 claims description 15
- 230000002787 reinforcement Effects 0.000 claims description 14
- 239000003795 chemical substances by application Substances 0.000 claims description 13
- 239000007788 liquid Substances 0.000 claims description 8
- 239000000463 material Substances 0.000 claims description 7
- 238000002844 melting Methods 0.000 claims description 6
- 230000008018 melting Effects 0.000 claims description 6
- 229910003460 diamond Inorganic materials 0.000 claims description 5
- 239000010432 diamond Substances 0.000 claims description 5
- 238000003756 stirring Methods 0.000 claims description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 4
- 239000012467 final product Substances 0.000 claims description 4
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 4
- 239000011863 silicon-based powder Substances 0.000 claims description 4
- 238000011049 filling Methods 0.000 claims description 3
- 238000002156 mixing Methods 0.000 claims description 2
- 238000005520 cutting process Methods 0.000 claims 1
- 238000003754 machining Methods 0.000 claims 1
- 238000005507 spraying Methods 0.000 claims 1
- 238000004512 die casting Methods 0.000 abstract description 19
- 230000008595 infiltration Effects 0.000 abstract description 11
- 238000001764 infiltration Methods 0.000 abstract description 11
- 238000002360 preparation method Methods 0.000 abstract description 6
- 238000000605 extraction Methods 0.000 description 11
- 238000010586 diagram Methods 0.000 description 10
- 238000005516 engineering process Methods 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 7
- 239000011156 metal matrix composite Substances 0.000 description 6
- 239000007921 spray Substances 0.000 description 6
- 239000011230 binding agent Substances 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 230000035515 penetration Effects 0.000 description 3
- 206010067484 Adverse reaction Diseases 0.000 description 2
- 230000006838 adverse reaction Effects 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 230000017525 heat dissipation Effects 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 239000007790 solid phase Substances 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 238000007711 solidification Methods 0.000 description 2
- 230000008023 solidification Effects 0.000 description 2
- 238000006424 Flood reaction Methods 0.000 description 1
- 239000011157 advanced composite material Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 238000001513 hot isostatic pressing Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910052755 nonmetal Inorganic materials 0.000 description 1
- 150000002843 nonmetals Chemical class 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000004663 powder metallurgy Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000002490 spark plasma sintering Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/24—After-treatment of workpieces or articles
- B22F3/26—Impregnating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D18/00—Pressure casting; Vacuum casting
- B22D18/02—Pressure casting making use of mechanical pressure devices, e.g. cast-forging
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D18/00—Pressure casting; Vacuum casting
- B22D18/06—Vacuum casting, i.e. making use of vacuum to fill the mould
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D23/00—Casting processes not provided for in groups B22D1/00 - B22D21/00
- B22D23/04—Casting by dipping
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Manufacture Of Alloys Or Alloy Compounds (AREA)
Abstract
Description
技术领域technical field
本发明涉及复合材料制备工艺技术领域,尤其是一种二次施压制备金属基陶瓷复合材料的工艺。The invention relates to the technical field of composite material preparation technology, in particular to a technology for preparing a metal matrix ceramic composite material by applying secondary pressure.
背景技术Background technique
近年来,随着科技与经济的快速发展,对轻量化、高导热、低膨胀材料的大量需求,促使金属基复合材料地飞速发展。金属基复合材料既具有金属本身性能也具有非金属的综合性能,无论是在强韧性、耐磨性、耐热性、散热性、以及硬度强度方面都远远优于基体金属。In recent years, with the rapid development of science and technology and economy, the large demand for lightweight, high thermal conductivity and low expansion materials has prompted the rapid development of metal matrix composite materials. Metal matrix composites have both the properties of metal itself and the comprehensive properties of non-metals, and are far superior to matrix metals in terms of strength and toughness, wear resistance, heat resistance, heat dissipation, and hardness.
制备金属基复合材料的主要原因是要提高金属基复合材料的导热性能和低膨胀性能,同时改善金属基复合材料的抗拉强度,弹性极限应力,弹性模量和耐热强度。这些性能可以通过多种途径加以调整,依据添加的材质和强化成分的含量,以及使用的基体/强化成分的化合物。金属基复合材料因此具有良好的综合性能。The main reason for preparing metal matrix composites is to improve the thermal conductivity and low expansion properties of metal matrix composites, and at the same time improve the tensile strength, proof stress, elastic modulus and heat resistance of metal matrix composites. These properties can be adjusted in a number of ways, depending on the material and reinforcement levels added, and the matrix/reinforcement compound used. Metal matrix composites therefore have good comprehensive properties.
颗粒增强金属基陶瓷复合材料具有良好的导热性,较低的热膨胀性能和较小的密度特性,能满足现代电子元器件散热、封装焊接、轻量化等要求。颗粒增强金属基陶瓷复合材料被认为是21世纪最具有发展前途的新一代先进复合材料,现已广泛应用于航空航天、电子工业、军事雷达、轨道交通等领域。Particle-reinforced metal matrix ceramic composites have good thermal conductivity, low thermal expansion performance and small density characteristics, which can meet the requirements of modern electronic components for heat dissipation, packaging and welding, and lightweight. Particle-reinforced metal matrix ceramic composites are considered to be the most promising new generation of advanced composite materials in the 21st century, and have been widely used in aerospace, electronics industry, military radar, rail transit and other fields.
目前,金属基陶瓷复合材料的制备工艺主要分为固相工艺和液相工艺两大类,其中固相工艺包括粉末冶金法、热等静压法、放电等离子烧结法等,液相工艺包括搅拌熔铸法、无压浸渗法、压力铸造法等。上述方法各有利弊,但如需考虑批量化生产,压铸成型技术则是最佳选择,其生产效率高,且适用于结构复杂、尺寸精度高的零件成型,能够实现大批量、低成本的制造。At present, the preparation process of metal matrix ceramic composites is mainly divided into two categories: solid phase process and liquid phase process. The solid phase process includes powder metallurgy, hot isostatic pressing, spark plasma sintering, etc., and the liquid phase process includes stirring. Fusion casting method, pressureless infiltration method, pressure casting method, etc. The above methods have their own advantages and disadvantages, but if you need to consider mass production, die-casting technology is the best choice. It has high production efficiency, and is suitable for forming parts with complex structures and high dimensional accuracy, enabling large-scale, low-cost manufacturing. .
传统的金属基陶瓷复合材料压铸技术是通过先制备出增强体颗粒的预制件,再将预制件与模具一起预热后,在压机作用下将金属液压入预制件中,后经保压、冷却、脱模等步骤得到金属基陶瓷复合材料的坯件。虽然该工艺高效简便,但在实际生产中仍存在一些问题,一方面制备的预制件需要加入粘结剂或造孔剂,无论是湿法制备(烘干水分后烧结)还是干法制备(模压成型后烧结),预制件中粘结剂的残留都会在一定程度上影响复合材料的性能,而且极易发生粘结剂混合不均、干燥时开裂、渗金属时受力变形等问题。另一方面传统的压铸技术,通常在金属液较高熔化温度状态下进行压铸,高温的金属液在与陶瓷颗粒接触时,会产生化学反应,生成影响复合材料性能质量的不良化合物。若采用较低的金属液熔化温度,可大大减少不良化合物的产生,但在渗金属过程中,由于模具与压头接触高温的金属液时,会大量吸收金属液的热量,造成与模具相接触的金属液迅速凝固,凝固的金属对压头产生一定的支撑力,大大降低了压头对金属液施加的压强。由于在金属液降温过程中,模具芯部的温度比外部的要高,持续降低的压强阻碍金属液对芯部增强体颗粒间隙中的浸渗效果,造成复合材料各部分的致密度存在较大差异,特别是芯部复合材料,由于金属液渗透的压力不足,降温过程中极易产生缩松、气孔等缺陷,严重影响产品的性能质量。The traditional die-casting technology of metal matrix ceramic composites is to prepare preforms of reinforcement particles first, and then preheat the preforms together with the mold, and then press the metal into the preforms under the action of the press, and then press and hold the pressure. Steps such as cooling and demolding are performed to obtain a blank of the metal matrix ceramic composite material. Although the process is efficient and simple, there are still some problems in actual production. On the one hand, the prepared preform needs to add a binder or a pore-forming agent, whether it is wet preparation (drying moisture and then sintering) or dry preparation (molding After forming and sintering), the residual binder in the preform will affect the performance of the composite material to a certain extent, and problems such as uneven mixing of the binder, cracking during drying, and stress deformation during metal infiltration are very likely to occur. On the other hand, the traditional die-casting technology usually performs die-casting at a higher melting temperature of the molten metal. When the molten metal at high temperature contacts the ceramic particles, a chemical reaction will occur, resulting in undesirable compounds that affect the performance and quality of the composite material. If a lower molten metal melting temperature is used, the generation of undesirable compounds can be greatly reduced, but during the metal infiltration process, when the mold and the indenter contact the high-temperature molten metal, a large amount of heat from the molten metal will be absorbed, resulting in contact with the mold. The molten metal rapidly solidifies, and the solidified metal has a certain supporting force on the indenter, which greatly reduces the pressure exerted by the indenter on the molten metal. During the cooling process of the molten metal, the temperature of the core of the mold is higher than that of the outside, and the continuously decreasing pressure hinders the infiltration effect of the molten metal in the gaps of the core reinforcement particles, resulting in a higher density of each part of the composite material. Differences, especially for core composite materials, due to insufficient pressure of molten metal penetration, defects such as shrinkage porosity and pores are easily generated during the cooling process, which seriously affects the performance and quality of the product.
发明内容SUMMARY OF THE INVENTION
本申请人针对上述现有生产技术中的缺点,提供一种二次施压制备金属基陶瓷复合材料的工艺,从而严格控制金属液浇入套模的温度,使金属液在熔融或半固溶状态下渗入陶瓷颗粒,避免了金属液与陶瓷颗粒物在高温下产生不良反应物,有效提高了复合材料的品质,同时在套模底部增加了抽真空通道,这样可以在压铸过程中使陶瓷颗粒的缝隙产生负压,除此之外,在第一次保压后,为避免成形模具中心铝液保压不足导致浸渗率不高的问题,采用垫二次加压板二次施压的方式更大的提高了铝液的浸渗率,更利于金属液充分渗入陶瓷颗粒的缝隙。由此制备的复合材料致密性高,气孔率低,产品的质量和性能大大提高。Aiming at the shortcomings of the above-mentioned existing production technology, the applicant provides a process for preparing metal matrix ceramic composite materials by applying secondary pressure, so as to strictly control the temperature at which the molten metal is poured into the sleeve, so that the molten metal can be melted or semi-solid solution. Infiltrating the ceramic particles in the state, avoiding the occurrence of adverse reactions between the molten metal and the ceramic particles at high temperature, and effectively improving the quality of the composite material. The gap generates negative pressure. In addition, after the first pressure holding, in order to avoid the problem of low infiltration rate caused by insufficient pressure holding of the aluminum liquid in the center of the forming die, the method of applying secondary pressure with a secondary pressure plate is adopted. It greatly improves the infiltration rate of molten aluminum, which is more conducive to the full infiltration of molten metal into the gaps of ceramic particles. The composite material thus prepared has high density and low porosity, and the quality and performance of the product are greatly improved.
本发明所采用的技术方案如下:The technical scheme adopted in the present invention is as follows:
一种二次施压制备金属基陶瓷复合材料的工艺,包括产品成形模具组件、套模、底板、压机顶杆和工作台,A process for preparing a metal matrix ceramic composite material by applying secondary pressure, comprising a product forming die assembly, a sleeve die, a bottom plate, a press ejector and a worktable,
所述工作台安装在压机上,所述工作台的上表面配合安装有套模,所述套模的中部配合有底板,底板的上方放置产品成形模具组件,所述底板的底面抵接有压机顶杆,所述压机顶杆穿过工作台,并通过压机顶杆的升降控制底板及产品成形模具组件在套模的腔体内作上下运动;The worktable is installed on the press, the upper surface of the worktable is fitted with a set of molds, the middle of the set of molds is equipped with a bottom plate, the product forming mold assembly is placed above the bottom plate, and the bottom surface of the bottom plate is abutted with a bottom plate. Press ejector rod, which passes through the worktable, and moves up and down in the cavity of the sleeve mold through the lifting of the press ejector rod to control the bottom plate and the product forming die assembly;
具体工艺步骤如下:The specific process steps are as follows:
第一步:对套模的内壁、底板及压机顶杆上表面均匀地喷涂脱模剂;The first step: evenly spray the release agent on the inner wall, bottom plate and upper surface of the ejector pin of the sleeve mold;
第二步:将若干粒径不同的陶瓷增强体粉末混合并充分搅拌,配制出待装填的粉料;The second step: Mix and fully stir several ceramic reinforcement powders with different particle sizes to prepare the powder to be filled;
第三步:将构成产品成形模具组件的所有零件拆分,各零件表面均匀地喷涂上脱模剂;The third step: disassemble all the parts that constitute the product forming mold assembly, and spray the release agent evenly on the surface of each part;
第四步:将第三步中表面已经均匀涂有脱模剂的零件组装成产品成形模具组件;Step 4: Assemble the parts whose surfaces have been evenly coated with release agent in the third step into a product forming die assembly;
第五步:将第二步中已经搅拌均匀的粉料灌装入组装好的产品成形模具组件的腔内,振动并压实;Step 5: Fill the powder that has been stirred evenly in the second step into the cavity of the assembled product forming die assembly, vibrate and compact;
第六步:将产品成形模具组件放入预热炉内,预热到500-700℃,并保温3-5h,均匀加热产品成形模具组件和粉料;Step 6: Put the product forming mold components into the preheating furnace, preheat to 500-700 ° C, and keep the temperature for 3-5 hours, uniformly heat the product forming mold components and powder;
第七步:套模中段外装有高频加热器,启动高频加热器,对套模中段进行加热,加热温度约在200℃-500℃左右;Step 7: The middle section of the sleeve mold is equipped with a high-frequency heater, and the high-frequency heater is activated to heat the middle section of the sleeve mold, and the heating temperature is about 200°C-500°C;
第八步:将压机顶杆和安放在顶杆顶面的底板升起,底板的上表面升至高于套模的上表面,将预热好的产品成形模具组件放到底板的上表面;Step 8: Raise the ejector pin of the press and the bottom plate placed on the top surface of the ejector pin, the upper surface of the bottom plate is raised to be higher than the upper surface of the sleeve mold, and the preheated product forming mold assembly is placed on the upper surface of the bottom plate;
第九步:降下压机顶杆,使底板连同产品成形模具组件沿套模的内壁缓缓放入套模内,并使底板与工作台上表面接触;The ninth step: lower the top rod of the press, so that the bottom plate and the product forming mold components are slowly put into the sleeve mold along the inner wall of the sleeve mold, and the bottom plate is in contact with the upper surface of the worktable;
第十步:将预处理过的金属液注入套模的内腔,金属液的浇注温度控制在金属液熔点以上100-200℃,金属液淹没产品成形模具组件;The tenth step: inject the pretreated molten metal into the inner cavity of the sleeve mold, the pouring temperature of the molten metal is controlled at 100-200°C above the melting point of the molten metal, and the molten metal floods the product forming mold components;
第十一步:底板中部设置有中心孔,与压机顶杆的抽气通道连通,注入金属液时,开启外连的真空泵,从底部气道对产品成形模具组件内部进行抽真空处理,使产品成形模具组件内部产生负压;Step 11: There is a center hole in the middle of the bottom plate, which is connected with the air extraction channel of the press ejector. When the molten metal is injected, the external vacuum pump is turned on, and the interior of the product forming mold assembly is vacuumized from the bottom air channel to make the Negative pressure is generated inside the product forming die assembly;
第十二步:启动压机,压头下降压入套模,对金属液施压使金属液浸渗到粉料的空隙中,保压3-7分钟,并关闭外连的真空泵;The twelfth step: start the press, press down the pressure head into the sleeve mold, apply pressure to the metal liquid to infiltrate the metal liquid into the gap of the powder, maintain the pressure for 3-7 minutes, and close the external vacuum pump;
第十三步:保压后,温度下降,与套模内壁接触的金属液最先变成一层凝固层,该凝固层呈环形状,对压机压头形成反向支撑力,降低了压头对中心未凝固金属液的压强;The thirteenth step: After the pressure is maintained, the temperature drops, and the molten metal in contact with the inner wall of the sleeve first becomes a solidified layer. The pressure of the head to the center of the unsolidified metal liquid;
第十四步:按下压机上升按钮,抬起压头,立刻将二次加压板置于金属液中心表面之上,随即按下压机下降按钮,下降压头,通过压头对二次加压板加压,从而对金属液中心部位二次施加以更大压强使金属液更充分地浸渗到粉料的空隙中,二次保压5-12分钟;Step 14: Press the press up button, lift the indenter, immediately place the secondary pressure plate on the center surface of the molten metal, then press down the press down button to lower the indenter. The secondary pressure plate is pressurized, so that a higher pressure is applied to the center of the molten metal for the second time, so that the molten metal can be more fully infiltrated into the gaps of the powder, and the secondary pressure is maintained for 5-12 minutes;
第十五步:待金属液凝固后,关闭高频加热器,压头退出套模,上抬至原先高度;Step 15: After the molten metal solidifies, turn off the high-frequency heater, withdraw the indenter from the die, and lift it up to the original height;
第十六步:压机顶杆升起,带动底板将包含产品成形模具组件的金属锭顶出套模的腔体外;The sixteenth step: the ejector rod of the press is raised, and the bottom plate is driven to push the metal ingot containing the product forming mold component out of the cavity of the sleeve mold;
第十七步:对产品成形模具组件进行锯切、脱模操作,取出金属基陶瓷复合材料产品的坯料,再对坯料按产品要求进行机加工,可得最终产品。Step 17: Perform sawing and demoulding operations on the product forming mold components, take out the blank of the metal matrix ceramic composite product, and then machine the blank according to the product requirements to obtain the final product.
其进一步技术方案在于:Its further technical solution is:
所述二次加压板呈扁状结构。The secondary pressing plate has a flat structure.
所述二次加压板为长方体结构。The secondary pressure plate has a rectangular parallelepiped structure.
压头的头部外径与套模的内径匹配。The outer diameter of the head of the indenter matches the inner diameter of the die.
第七步中,高频加热器的加热温度为200℃-500℃。In the seventh step, the heating temperature of the high-frequency heater is 200°C-500°C.
所述套模为底盘直径大于筒体直径的圆形套筒结构。The sleeve mold is a circular sleeve structure with the diameter of the chassis larger than the diameter of the cylinder.
底板的底部设置有第一台阶,套模的底部开有直径小于顶部开口直径,底部开口处设置有第二台阶,所述第一台阶和第二台阶配合,将底板卡住。The bottom of the bottom plate is provided with a first step, the bottom of the sleeve mold is opened with a diameter smaller than that of the top opening, and the bottom opening is provided with a second step, the first step and the second step cooperate to clamp the bottom plate.
陶瓷增强体粉末采用金刚石粉末、碳化硅粉末或硅粉末。The ceramic reinforcement powder adopts diamond powder, silicon carbide powder or silicon powder.
中心孔和抽气通道连通,所述中心孔与产品成形模具组件的空隙连通,抽气通道通过管路与真空泵连接。The central hole is communicated with the air extraction channel, the central hole is communicated with the gap of the product forming die assembly, and the air extraction channel is connected with the vacuum pump through a pipeline.
抽气通道为直角形结构。The air extraction channel is a right-angle structure.
本发明的有益效果如下:The beneficial effects of the present invention are as follows:
本发明结构紧凑、合理,操作方便,通过将粉料直接灌装到产品成形模具组件,省去预制件的制备过程;压铸时套模外部中段采用持续高频加热,以调控套模的温度场;将产品成形模具加温预热,压铸时熔融的金属液浇入套模,使金属液在压铸过程中产品成形模具组件内外的金属液不仅温度基本保持一致,而且模具内外的压强基本相等,压头对套模中的金属液二次施加压力,这样既避免了在压铸过程中产品成形模具组件的变形和影响压铸产品的尺寸精度,也避免了压铸时产品成形模的各部分温度差异太大,造成金属液渗透压强的不均匀,从而造成产品各部位的性能质量不一致。The invention has compact and reasonable structure and convenient operation. The preparation process of the prefabricated part is omitted by directly filling the powder material into the product forming mold assembly; during die casting, the outer middle section of the sleeve mold adopts continuous high-frequency heating to control the temperature field of the sleeve mold. ;The product forming mold is heated and preheated, and the molten metal is poured into the sleeve mold during die-casting, so that the temperature of the molten metal inside and outside the product forming mold assembly is basically the same during the die-casting process, and the pressure inside and outside the mold is basically equal. The indenter exerts secondary pressure on the molten metal in the sleeve die, which not only avoids the deformation of the product forming die components during the die casting process and affects the dimensional accuracy of the die casting product, but also avoids the temperature difference of each part of the product forming die during die casting. Large, resulting in uneven metal penetration pressure, resulting in inconsistent performance and quality of various parts of the product.
本发明针对压铸金属过程中,由于套模与压头接触高温的金属液时,会大量吸收金属液的热量,造成与模具相接触的金属液迅速凝固,凝固的金属对压头产生一定的支撑力,大大降低了压头对金属液的压强施加效果的关键问题。In the process of die-casting metal, when the sleeve die and the indenter are in contact with the high-temperature molten metal, they will absorb a large amount of heat from the molten metal, causing the molten metal in contact with the die to rapidly solidify, and the solidified metal will provide a certain support for the indenter. The key problem is that the pressure exerted by the pressure head on the molten metal is greatly reduced.
发明采用第一次施压后加入二次加压板进行二次保压凝固的方式,很好的解决了上述问题。The invention adopts the method of adding a second pressure plate after the first pressure application to carry out the second pressure holding and solidification, which solves the above problem well.
本发明严格控制金属液浇入套模的温度,使金属液在熔融或半固溶状态下渗入陶瓷颗粒,避免了金属液与陶瓷颗粒物(如金刚石)在高温下产生不良反应物,有效提高了复合材料的品质,同时在套模底部增加了抽真空通道,这样可以在压铸过程中使陶瓷颗粒的缝隙产生负压,除此之外,在第一次保压后,为避免成形模具中心铝液保压不足导致浸渗率不高的问题,采用垫二次加压板二次施压的方式更大的提高了金属液的浸渗率,更利于金属液充分渗入陶瓷颗粒的缝隙。由此制备的复合材料致密性高,气孔率低,产品的质量和性能大大提高。The invention strictly controls the temperature at which the molten metal is poured into the sleeve mold, so that the molten metal penetrates into the ceramic particles in a molten or semi-solid solution state, thereby avoiding the occurrence of adverse reactions between the molten metal and the ceramic particles (such as diamond) at high temperature, and effectively improving the At the same time, a vacuum channel is added at the bottom of the sleeve mold, which can generate negative pressure in the gap of the ceramic particles during the die-casting process. Insufficient liquid holding pressure leads to the problem of low infiltration rate. The method of using a secondary pressure pad with a secondary pressure pad can greatly improve the infiltration rate of the molten metal, which is more conducive to the full infiltration of the molten metal into the gaps of the ceramic particles. The composite material thus prepared has high density and low porosity, and the quality and performance of the product are greatly improved.
本发明不仅简化了需要制备预制件的工艺过程,避免了模具变形、预制件开裂、粘结剂残留等问题,还通过压铸前对成形模具组件的预热及压铸时对套模的加热,调控了金属液的温度场及其凝固时间,保证了金属液能在熔融状态下均匀渗入陶瓷颗粒的缝隙中,高压压铸的同时从模具底部抽真空,使金属液能较通畅地向下渗透,大大提高了金属液的渗透率,一次保压后为避免凝固金属抵消压力以致保压不足,进行二次加压实现了真正意义上的等静压压铸。The invention not only simplifies the process of preparing the preform, avoids the problems of mold deformation, cracking of the preform, binder residue, etc., but also regulates the control by preheating the forming mold assembly before die casting and heating the sleeve during die casting. The temperature field of the molten metal and its solidification time are ensured to ensure that the molten metal can evenly penetrate into the gaps of the ceramic particles in the molten state, and the vacuum is drawn from the bottom of the mold during high-pressure die casting, so that the molten metal can penetrate downwards more smoothly. The penetration rate of the molten metal is improved. After the first pressure holding, in order to avoid the solidified metal offsetting the pressure and the pressure holding is insufficient, the second pressure is carried out to realize the true isostatic die casting.
本发明有效实现了对材料压铸中缺陷的控制和有效的排气,复合材料的致密度,质量和性能得到大大提高,且模具能够重复利用,为金属基陶瓷复合材料批量化生产提供了新思路。The invention effectively realizes the control of defects in the material die casting and effective exhaust, the density, quality and performance of the composite material are greatly improved, and the mold can be reused, which provides a new idea for the mass production of metal matrix ceramic composite materials. .
附图说明Description of drawings
图1为本发明套模及压机顶杆配合结构示意图。FIG. 1 is a schematic diagram of the matching structure of a sleeve die and a press ejector pin according to the present invention.
图2为本发明粉料灌装后的成形模具结构示意图。Figure 2 is a schematic structural diagram of the forming die after powder filling of the present invention.
图3为本发明第七步操作示意图。FIG. 3 is a schematic diagram of the seventh step of the present invention.
图4为本发明第八步操作示意图。FIG. 4 is a schematic diagram of the operation of the eighth step of the present invention.
图5为本发明第九步操作示意图。FIG. 5 is a schematic diagram of the ninth step of the present invention.
图6为本发明第十步操作示意图。FIG. 6 is a schematic diagram of the tenth step of the present invention.
图7为本发明第十一步操作示意图。FIG. 7 is a schematic diagram of the eleventh step of the present invention.
图8为本发明第十二步操作示意图。FIG. 8 is a schematic diagram of the operation of the twelfth step of the present invention.
图9为本发明第十四步操作示意图。FIG. 9 is a schematic diagram of the operation of the fourteenth step of the present invention.
图10为本发明第十六步操作示意图。FIG. 10 is a schematic diagram of the operation of the sixteenth step of the present invention.
其中:1、粉料;2、产品成形模具组件;3、底板;4、套模;5、压机顶杆;6、工作台;7、金属液;8、抽气通道;9、压头;10、二次加压板;11、高频加热器;12、真空泵;Among them: 1. Powder; 2. Product forming mold components; 3. Bottom plate; 4. Set of molds; 5. Press ejector; 6. Workbench; ; 10. Secondary pressure plate; 11. High frequency heater; 12. Vacuum pump;
301、中心孔;302、第一台阶;301, the center hole; 302, the first step;
401、第二台阶。401. The second step.
具体实施方式Detailed ways
下面结合附图,说明本发明的具体实施方式。The specific embodiments of the present invention will be described below with reference to the accompanying drawings.
如图1-图10所示,本实施例的二次施压制备金属基陶瓷复合材料的工艺,包括产品成形模具组件2、套模4、底板3、压机顶杆5和工作台6,As shown in Fig. 1-Fig. 10, the process for preparing metal matrix ceramic composite material by applying secondary pressure in this embodiment includes a product forming
工作台6安装在压机上,工作台6的上表面配合安装有套模4,套模4的中部配合有底板3,底板3的上方放置产品成形模具组件2,底板3的底面抵接有压机顶杆5,压机顶杆5穿过工作台6,并通过压机顶杆5的升降控制底板3及产品成形模具组件2在套模4的腔体内作上下运动;The worktable 6 is installed on the press, the upper surface of the worktable 6 is fitted with a
具体工艺步骤如下:The specific process steps are as follows:
第一步:对套模4的内壁、底板3及压机顶杆5上表面均匀地喷涂脱模剂;The first step: evenly spray the release agent on the inner wall of the
第二步:将若干粒径不同的陶瓷增强体粉末混合并充分搅拌,配制出待装填的粉料1;Step 2: Mix and fully stir several ceramic reinforcement powders with different particle sizes to prepare
第三步:将构成产品成形模具组件2的所有零件拆分,各零件表面均匀地喷涂上脱模剂;The third step: disassemble all the parts that constitute the product forming
第四步:将第三步中表面已经均匀涂有脱模剂的零件组装成产品成形模具组件2;Step 4: Assemble the parts whose surfaces have been evenly coated with release agent in the third step into a product forming
第五步:将第二步中已经搅拌均匀的粉料1灌装入组装好的产品成形模具组件2的腔内,振动并压实;Step 5: Fill the
第六步:将产品成形模具组件2放入预热炉内,预热到500-700℃,并保温3-5h,均匀加热产品成形模具组件2和粉料1;Step 6: Put the product forming
第七步:套模4中段外装有高频加热器11,启动高频加热器11,对套模4中段进行加热,加热温度约在200℃-500℃左右;The seventh step: the high-
第八步:将压机顶杆5和安放在顶杆5顶面的底板3升起,底板3的上表面升至高于套模4的上表面,将预热好的产品成形模具组件2放到底板3的上表面;The eighth step: lift up the
第九步:降下压机顶杆5,使底板3连同产品成形模具组件2沿套模4的内壁缓缓放入套模4内,并使底板3与工作台6上表面接触;The ninth step: lower the
第十步:将预处理过的金属液7注入套模4的内腔,金属液7的浇注温度控制在金属液熔点以上100-200℃,金属液7淹没产品成形模具组件2;The tenth step: inject the pretreated molten metal 7 into the inner cavity of the
第十一步:底板3中部设置有中心孔301,与压机顶杆5的抽气通道8连通,注入金属液7时,开启外连的真空泵12,从底部气道对产品成形模具组件2内部进行抽真空处理,使产品成形模具组件2内部产生负压;The eleventh step: a
第十二步:启动压机,压头9下降压入套模4,对金属液7施压使金属液7浸渗到粉料1的空隙中,保压3-7分钟,并关闭外连的真空泵12;The twelfth step: start the press, press the pressure head 9 down into the
第十三步:保压后,温度下降,与套模4内壁接触的金属液最先变成一层凝固层,该凝固层呈环形状,对压机压头9形成反向支撑力,降低了压头9对中心未凝固金属液7的压强;The thirteenth step: After the pressure is maintained, the temperature drops, and the molten metal in contact with the inner wall of the sleeve die 4 first becomes a solidified layer. The pressure of the pressure head 9 to the central unsolidified metal liquid 7;
第十四步:按下压机上升按钮,抬起压头9,立刻将二次加压板10置于金属液7中心表面之上,随即按下压机下降按钮,下降压头9,通过压头9对二次加压板10加压,从而对金属液7中心部位二次施加以更大压强使金属液7更充分地浸渗到粉料1的空隙中,二次保压5-12分钟;The fourteenth step: press the press up button, lift the press head 9, immediately place the
第十五步:待金属液7凝固后,关闭高频加热器11,压头9退出套模4,上抬至原先高度;The fifteenth step: after the molten metal 7 is solidified, turn off the high-
第十六步:压机顶杆5升起,带动底板3将包含产品成形模具组件2的金属锭顶出套模4的腔体外;The sixteenth step: the
第十七步:对产品成形模具组件2进行锯切、脱模操作,取出金属基陶瓷复合材料产品的坯料,再对坯料按产品要求进行机加工,可得最终产品。Step 17: Perform sawing and demoulding operations on the product forming
二次加压板10呈扁状结构。The secondary
二次加压板10为长方体结构。The
压头9的头部外径与套模4的内径匹配。The outer diameter of the head of the indenter 9 matches the inner diameter of the
第七步中,高频加热器11的加热温度为200℃-500℃。In the seventh step, the heating temperature of the high-
套模4为底盘直径大于筒体直径的圆形套筒结构。The
底板3的底部设置有第一台阶302,套模4的底部开有直径小于顶部开口直径,底部开口处设置有第二台阶401,第一台阶302和第二台阶401配合,将底板3卡住。The bottom of the
陶瓷增强体粉末采用金刚石粉末、碳化硅粉末或硅粉末。The ceramic reinforcement powder adopts diamond powder, silicon carbide powder or silicon powder.
中心孔301和抽气通道8连通,中心孔301与产品成形模具组件2的空隙连通,抽气通道8通过管路与真空泵12连接。The
抽气通道8为直角形结构。The
二次加压板10的面积及厚度根据热仿真计算确定。The area and thickness of the secondary
具体实施方式一:Specific implementation one:
本发明在制造过程中,需要使用制造工具,其具体结构如下:In the manufacturing process of the present invention, a manufacturing tool needs to be used, and its specific structure is as follows:
主要包括产品成形模具组件2、套模4、底板3,压头9、二次加压板10等。It mainly includes product forming
经预热后的产品成形模具组件2放置在套模4腔体内的底板3上,带有产品成形模具组件2的底板3放置在套模4腔体内的工作台6上,套模4与工作台6之间、压机顶杆5与工作台6之间有密封槽并放置密封圈密封,压机顶杆5内留有抽气通道8,底板3中间设置有与抽气通道8连通的中心孔301,压机顶杆5可通过顶压底板3带动产品成形模具组件2在套模4的腔体内升降。The preheated product forming
套模4的腔体内浇注金属液7。The molten metal 7 is poured into the cavity of the
底板3及产品成形模具组件2可以通过压机顶杆5的升降,使它们在套模4的腔体内作上下运动。The
套模4为底盘直径大于筒体直径的圆形套筒结构,底部开口直径略小于腔体内壁直径。The
套模4为圆形筒体,底部开口直径小于顶部开口直径,且底部开口处设置有第二台阶401,底板3的底部设置有第一台阶302,第一台阶302和第二台阶401配合,底板3不会向下滑落。The
套模4腔体内壁在放置产品成形模具组件的底部高度至产品成形模具组件以上一定高度内具有下小上大拔摸斜度,在此高度以上一直到开口上端面的为竖直无斜度内壁。The inner wall of the cavity of the
本发明的工艺步骤为:Process steps of the present invention are:
第一步:对套模4的内壁、底板3及压机顶杆5上表面均匀地喷涂脱模剂;The first step: evenly spray the release agent on the inner wall of the
第二步:将若干粒径不同的陶瓷增强体粉末混合并充分搅拌,配制出待装填的粉料1;Step 2: Mix and fully stir several ceramic reinforcement powders with different particle sizes to prepare
第三步:将构成产品成形模具组件2的所有零件拆分,各零件表面均匀地喷涂上脱模剂;The third step: disassemble all the parts that constitute the product forming
第四步:将第三步中表面已经均匀涂有脱模剂的零件组装成产品成形模具组件2;Step 4: Assemble the parts whose surfaces have been evenly coated with release agent in the third step into a product forming
第五步:将第二步中已经搅拌均匀的粉料1灌装入组装好的产品成形模具组件2的腔内,振动并压实;Step 5: Fill the
第六步:将产品成形模具组件2放入预热炉内,预热到500-700℃,并保温3-5h,均匀加热产品成形模具组件2和粉料1;The sixth step: put the product forming
第七步:套模4中段外装有高频加热器11,启动高频加热器11,对套模4中段进行加热,加热温度约在200℃-500℃左右,;The seventh step: the middle section of the
第八步:将压机顶杆5和安放在顶杆顶面的底板3升起,底板3的上表面升至高于套模4的上表面,将预热好的产品成形模具组件2放到底板3的上表面;Step 8: Raise the
第九步:降下压机顶杆5,使底板3连同产品成形模具组件2沿套模4的内壁缓缓放入套模4内,并使底板3与工作台6上表面接触;The ninth step: lower the
第十步:将预处理过的金属液7注入套模4的内腔,金属液7的浇注温度控制在金属液熔点以上100-200℃,金属液7淹没产品成形模具组件2;The tenth step: inject the pretreated molten metal 7 into the inner cavity of the
第十一步:底板3中部设置有中心孔301,与压机顶杆5的抽气通道8连通,注入金属液7时,开启外连的真空泵12,从底部气道对产品成形模具组件2内部进行抽真空处理,使产品成形模具组件2内部产生负压;The eleventh step: a
第十二步:启动压机,压头9下降压入套模4,对金属液7施压使金属液7浸渗到粉料1的空隙中,保压3-7分钟,并关闭外连的真空泵12;The twelfth step: start the press, press the pressure head 9 down into the
第十三步:保压后,温度下降,与套模4内壁接触的金属液最先变成一层凝固层,该凝固层呈环形状,对压机压头形成反向支撑力,降低了压头9对中心未凝固金属液7的压强;The thirteenth step: After the pressure is maintained, the temperature drops, and the molten metal in contact with the inner wall of the
第十四步:按下压机上升按钮,抬起压头9,立刻将二次加压板10置于金属液7中心表面之上,随即按下压机下降按钮,下降压头9,通过压头9对二次加压板10加压,从而对金属液7中心部位二次施加以更大压强使金属液7更充分地浸渗到粉料1的空隙中,二次保压5-12分钟;The fourteenth step: press the press up button, lift the press head 9, immediately place the
第十五步:待金属液7凝固后,关闭高频加热器11,压头9退出套模4,上抬至原先高度;The fifteenth step: after the molten metal 7 is solidified, turn off the high-
第十六步:压机顶杆5升起,带动底板3将包含产品成形模具组件2的金属锭7顶出套模4的腔体外;The sixteenth step: the
第十七步:对产品成形模具组件2进行锯切、脱模操作,取出金属基陶瓷复合材料产品的坯料,再对坯料按产品要求进行机加工,可得最终产品。Step 17: Perform sawing and demoulding operations on the product forming
具体实施方式二:本实施方式与具体实施方式一不同的是:第二步所述陶瓷增强体粉末为金刚石粉末,第六步中预热温度为500-600℃,保温时间为3h,其它与具体实施方式一相同。Embodiment 2: The difference between this embodiment and
具体实施方式三:本实施方式与具体实施方式一不同的是:第二步述陶瓷增强体粉末为碳化硅粉末,第六步中预热温度为600-700℃,保温时间为4h,按照其它与具体实施方式一相同。Embodiment 3: The difference between this embodiment and
具体实施方式四:本实施方式与具体实施方式一不同的是:第二步所述陶瓷增强体粉末为硅粉末,第六步中预热温度为500-700℃,保温时间为5h,按照其它与具体实施方式一相同。Embodiment 4: The difference between this embodiment and
本发明操作简单,通过两次加压的方式有效实现了对材料压铸中缺陷的控制和有效的排气,复合材料的致密度,质量和性能得到大大提高。The invention is simple to operate, effectively realizes the control of defects in the material die-casting and the effective exhaust by means of twice pressurization, and greatly improves the density, quality and performance of the composite material.
以上描述是对本发明的解释,不是对发明的限定,本发明所限定的范围参见权利要求,在本发明的保护范围之内,可以作任何形式的修改。The above description is an explanation of the present invention, not a limitation of the present invention. For the limited scope of the present invention, refer to the claims, and any form of modification can be made within the protection scope of the present invention.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110570451.9A CN113290245B (en) | 2021-05-25 | 2021-05-25 | A process for preparing metal matrix ceramic composites by applying secondary pressure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110570451.9A CN113290245B (en) | 2021-05-25 | 2021-05-25 | A process for preparing metal matrix ceramic composites by applying secondary pressure |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113290245A CN113290245A (en) | 2021-08-24 |
CN113290245B true CN113290245B (en) | 2022-04-19 |
Family
ID=77324725
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110570451.9A Active CN113290245B (en) | 2021-05-25 | 2021-05-25 | A process for preparing metal matrix ceramic composites by applying secondary pressure |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113290245B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113814377B (en) * | 2021-09-16 | 2023-11-07 | 安徽鑫宏机械有限公司 | Production method of high-strength guide plate |
CN114582730B (en) * | 2022-02-28 | 2022-11-04 | 江南大学 | A method for preparing high-performance aluminum-based composite material heat-dissipating substrate |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5076341A (en) * | 1990-02-06 | 1991-12-31 | Mazda Motor Corporation | Compression casting method and apparatus therefor |
CN102154573A (en) * | 2011-03-25 | 2011-08-17 | 江南大学 | Accurate die-casting molding process for aluminum silicon carbide |
CN103143695A (en) * | 2013-03-13 | 2013-06-12 | 江苏时代华宜电子科技有限公司 | Technology and die-casting device for aluminium silicon carbide accurate die-casting forming |
CN105215327A (en) * | 2015-10-31 | 2016-01-06 | 重庆鼎汉机械有限公司 | The extruding manufacturing process of wheel hub outer ring |
CN108237212A (en) * | 2018-03-13 | 2018-07-03 | 中信戴卡股份有限公司 | A kind of aluminum vehicle wheel Extrution casting technique and its device |
CN111266554A (en) * | 2020-03-31 | 2020-06-12 | 太仓耀展金属制品有限公司 | Extrusion casting method of high-strength shrinkage-hole-free aluminum alloy automobile accessory |
CN211304735U (en) * | 2019-11-26 | 2020-08-21 | 广州浩通智能科技有限公司 | Tandem cylinder vertical extrusion casting machine |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10009008C1 (en) * | 2000-02-25 | 2001-09-13 | Bayern Freistaat | Process for producing a composite structure with a metal foam core |
-
2021
- 2021-05-25 CN CN202110570451.9A patent/CN113290245B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5076341A (en) * | 1990-02-06 | 1991-12-31 | Mazda Motor Corporation | Compression casting method and apparatus therefor |
CN102154573A (en) * | 2011-03-25 | 2011-08-17 | 江南大学 | Accurate die-casting molding process for aluminum silicon carbide |
CN103143695A (en) * | 2013-03-13 | 2013-06-12 | 江苏时代华宜电子科技有限公司 | Technology and die-casting device for aluminium silicon carbide accurate die-casting forming |
CN105215327A (en) * | 2015-10-31 | 2016-01-06 | 重庆鼎汉机械有限公司 | The extruding manufacturing process of wheel hub outer ring |
CN108237212A (en) * | 2018-03-13 | 2018-07-03 | 中信戴卡股份有限公司 | A kind of aluminum vehicle wheel Extrution casting technique and its device |
CN211304735U (en) * | 2019-11-26 | 2020-08-21 | 广州浩通智能科技有限公司 | Tandem cylinder vertical extrusion casting machine |
CN111266554A (en) * | 2020-03-31 | 2020-06-12 | 太仓耀展金属制品有限公司 | Extrusion casting method of high-strength shrinkage-hole-free aluminum alloy automobile accessory |
Non-Patent Citations (1)
Title |
---|
新型熔融高压铸造法制备铝/金刚石复合材料的研究;龚慧宇等;《热加工工艺》;20200922;第1-4页 * |
Also Published As
Publication number | Publication date |
---|---|
CN113290245A (en) | 2021-08-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1067926C (en) | Solidifying method for forming and completely compacting powder material | |
CN113278843B (en) | A manufacturing process for preparing metal matrix ceramic composites by hot isostatic pressing | |
CN102294434B (en) | Composite molding casting process | |
JP6336519B2 (en) | Compound press casting method of a kind of magnesium alloy deformed parts | |
CN113290245B (en) | A process for preparing metal matrix ceramic composites by applying secondary pressure | |
CN103223689B (en) | Preparation method for functionally-graded mold core and mold shell integrated ceramic casting mold | |
CN109468549B (en) | Near-net forming method of 3D woven fiber reinforced metal matrix composite | |
CN101225502A (en) | Fiber-reinforced intermetallic compound composite material and its preparation method | |
CN106735186A (en) | A kind of method that 3D printing isostatic cool pressing prepares titanium alloy multi-stage gear | |
CN104532045B (en) | A kind of preparation method of high volume fraction grain enhanced aluminum-base compound material | |
CN102691021B (en) | Device and method for preparing aluminum-base composite material by using vacuum impregnation andsolid-liquid direct extrusion | |
CN104801695A (en) | Method for preparing grey cast iron-based wear-resistant surface layer composite by utilizing normal-pressure cast-infiltration | |
CN114180945A (en) | Additive manufacturing method for ceramic core-type shell integrated piece | |
CN101670433A (en) | Method for manufacturing metal mold by laser indirect forming | |
CN109822077B (en) | A method for preparing SiC3D/Al composite material by extrusion infiltration method | |
CN110386823A (en) | Preparation method based on selective laser sintering ceramic-based complex structural member | |
CN103143695B (en) | Technology and die-casting device for aluminium silicon carbide accurate die-casting forming | |
CN113275535B (en) | Forming die-casting process for improving performance of metal-based composite material | |
CN114012070A (en) | Preparation method of hollow ceramic ball reinforced metal matrix composite material and composite material | |
CN1273152A (en) | Casting-sinter process for preparing Fe-base surface compound material | |
Chen et al. | Research progress on preparation of SiC/Al for electronic packaging by liquid infiltration | |
CN110153375A (en) | A manufacturing device and method for sand-coated transmission sleeve iron mold | |
CN116251941A (en) | Manufacturing method of high-wear-resistance composite throwing hammer head | |
CN115740449A (en) | Multi-energy-field auxiliary sintering method and device for material difficult to deform | |
CN109848363B (en) | Application of Soluble Ceramic Moulds in the Preparation of Composite Materials |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |