CN113281367B - Method for detecting hydrogen peroxide or glucose - Google Patents
Method for detecting hydrogen peroxide or glucose Download PDFInfo
- Publication number
- CN113281367B CN113281367B CN202110507010.4A CN202110507010A CN113281367B CN 113281367 B CN113281367 B CN 113281367B CN 202110507010 A CN202110507010 A CN 202110507010A CN 113281367 B CN113281367 B CN 113281367B
- Authority
- CN
- China
- Prior art keywords
- nanozyme
- spio
- glucose
- hydrogen peroxide
- solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 title claims abstract description 294
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 title claims abstract description 98
- 239000008103 glucose Substances 0.000 title claims abstract description 98
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 title claims abstract description 31
- 238000000034 method Methods 0.000 title claims abstract description 23
- 238000001514 detection method Methods 0.000 claims abstract description 112
- 230000000694 effects Effects 0.000 claims abstract description 14
- 102000003992 Peroxidases Human genes 0.000 claims abstract description 12
- 108040007629 peroxidase activity proteins Proteins 0.000 claims abstract description 12
- 239000000243 solution Substances 0.000 claims description 62
- 238000006243 chemical reaction Methods 0.000 claims description 38
- 238000002360 preparation method Methods 0.000 claims description 36
- 239000011259 mixed solution Substances 0.000 claims description 32
- NDLPOXTZKUMGOV-UHFFFAOYSA-N oxo(oxoferriooxy)iron hydrate Chemical class O.O=[Fe]O[Fe]=O NDLPOXTZKUMGOV-UHFFFAOYSA-N 0.000 claims description 31
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 claims description 29
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 29
- 239000007975 buffered saline Substances 0.000 claims description 29
- 229940088598 enzyme Drugs 0.000 claims description 27
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 claims description 24
- 239000004366 Glucose oxidase Substances 0.000 claims description 21
- 108010015776 Glucose oxidase Proteins 0.000 claims description 21
- 229940116332 glucose oxidase Drugs 0.000 claims description 21
- 235000019420 glucose oxidase Nutrition 0.000 claims description 21
- -1 polyethylene Polymers 0.000 claims description 17
- 150000002505 iron Chemical class 0.000 claims description 13
- 229920000642 polymer Polymers 0.000 claims description 11
- 238000006555 catalytic reaction Methods 0.000 claims description 10
- 239000004698 Polyethylene Substances 0.000 claims description 7
- 229920000573 polyethylene Polymers 0.000 claims description 7
- 230000035484 reaction time Effects 0.000 claims description 7
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 6
- 239000008363 phosphate buffer Substances 0.000 claims description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 4
- 239000004743 Polypropylene Substances 0.000 claims description 3
- 229920001400 block copolymer Polymers 0.000 claims description 3
- 238000001646 magnetic resonance method Methods 0.000 claims description 3
- 229920000747 poly(lactic acid) Polymers 0.000 claims description 3
- 239000004626 polylactic acid Substances 0.000 claims description 3
- 229920002503 polyoxyethylene-polyoxypropylene Polymers 0.000 claims description 3
- 229920001155 polypropylene Polymers 0.000 claims description 3
- 229920000428 triblock copolymer Polymers 0.000 claims description 3
- 229920002873 Polyethylenimine Polymers 0.000 claims description 2
- GZCGUPFRVQAUEE-VANKVMQKSA-N aldehydo-L-glucose Chemical compound OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)C=O GZCGUPFRVQAUEE-VANKVMQKSA-N 0.000 claims description 2
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 claims 1
- 150000001875 compounds Chemical class 0.000 claims 1
- 238000012986 modification Methods 0.000 claims 1
- 230000004048 modification Effects 0.000 claims 1
- 241000399119 Spio Species 0.000 abstract description 91
- 238000004737 colorimetric analysis Methods 0.000 abstract description 5
- 239000003593 chromogenic compound Substances 0.000 abstract description 3
- 230000007547 defect Effects 0.000 abstract 1
- SZVJSHCCFOBDDC-UHFFFAOYSA-N ferrosoferric oxide Chemical class O=[Fe]O[Fe]O[Fe]=O SZVJSHCCFOBDDC-UHFFFAOYSA-N 0.000 abstract 1
- 230000003197 catalytic effect Effects 0.000 description 51
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 26
- 238000012360 testing method Methods 0.000 description 18
- 239000001509 sodium citrate Substances 0.000 description 14
- 108010001336 Horseradish Peroxidase Proteins 0.000 description 12
- 238000010586 diagram Methods 0.000 description 12
- 229910052742 iron Inorganic materials 0.000 description 12
- 239000002105 nanoparticle Substances 0.000 description 11
- 102000004190 Enzymes Human genes 0.000 description 9
- 108090000790 Enzymes Proteins 0.000 description 9
- 239000002245 particle Substances 0.000 description 9
- 239000000725 suspension Substances 0.000 description 9
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 8
- 238000009826 distribution Methods 0.000 description 8
- LZKLAOYSENRNKR-LNTINUHCSA-N iron;(z)-4-oxoniumylidenepent-2-en-2-olate Chemical compound [Fe].C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O LZKLAOYSENRNKR-LNTINUHCSA-N 0.000 description 7
- 239000000758 substrate Substances 0.000 description 7
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 6
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N iron oxide Inorganic materials [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 239000007974 sodium acetate buffer Substances 0.000 description 6
- BHZOKUMUHVTPBX-UHFFFAOYSA-M sodium acetic acid acetate Chemical compound [Na+].CC(O)=O.CC([O-])=O BHZOKUMUHVTPBX-UHFFFAOYSA-M 0.000 description 6
- 239000000872 buffer Substances 0.000 description 5
- 239000002244 precipitate Substances 0.000 description 5
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 4
- QGLWBTPVKHMVHM-KTKRTIGZSA-N (z)-octadec-9-en-1-amine Chemical compound CCCCCCCC\C=C/CCCCCCCCN QGLWBTPVKHMVHM-KTKRTIGZSA-N 0.000 description 4
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 4
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 4
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 4
- 239000005642 Oleic acid Substances 0.000 description 4
- 238000002835 absorbance Methods 0.000 description 4
- 229910052786 argon Inorganic materials 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- ZITKDVFRMRXIJQ-UHFFFAOYSA-N dodecane-1,2-diol Chemical compound CCCCCCCCCCC(O)CO ZITKDVFRMRXIJQ-UHFFFAOYSA-N 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 4
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 4
- 238000002390 rotary evaporation Methods 0.000 description 4
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 229910021642 ultra pure water Inorganic materials 0.000 description 4
- 239000012498 ultrapure water Substances 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 3
- 239000007853 buffer solution Substances 0.000 description 3
- MHDVGSVTJDSBDK-UHFFFAOYSA-N dibenzyl ether Chemical compound C=1C=CC=CC=1COCC1=CC=CC=C1 MHDVGSVTJDSBDK-UHFFFAOYSA-N 0.000 description 3
- 238000001027 hydrothermal synthesis Methods 0.000 description 3
- WTFXARWRTYJXII-UHFFFAOYSA-N iron(2+);iron(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[Fe+2].[Fe+3].[Fe+3] WTFXARWRTYJXII-UHFFFAOYSA-N 0.000 description 3
- 238000001000 micrograph Methods 0.000 description 3
- 239000013076 target substance Substances 0.000 description 3
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 3
- UAIUNKRWKOVEES-UHFFFAOYSA-N 3,3',5,5'-tetramethylbenzidine Chemical compound CC1=C(N)C(C)=CC(C=2C=C(C)C(N)=C(C)C=2)=C1 UAIUNKRWKOVEES-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 230000004060 metabolic process Effects 0.000 description 2
- 230000003278 mimic effect Effects 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 239000002086 nanomaterial Substances 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- CDVAIHNNWWJFJW-UHFFFAOYSA-N 3,5-diethoxycarbonyl-1,4-dihydrocollidine Chemical compound CCOC(=O)C1=C(C)NC(C)=C(C(=O)OCC)C1C CDVAIHNNWWJFJW-UHFFFAOYSA-N 0.000 description 1
- 239000008351 acetate buffer Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000012496 blank sample Substances 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 238000003421 catalytic decomposition reaction Methods 0.000 description 1
- 206010012601 diabetes mellitus Diseases 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 230000000081 effect on glucose Effects 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 230000004153 glucose metabolism Effects 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 150000002466 imines Chemical class 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000008055 phosphate buffer solution Substances 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- XPFJYKARVSSRHE-UHFFFAOYSA-K trisodium;2-hydroxypropane-1,2,3-tricarboxylate;2-hydroxypropane-1,2,3-tricarboxylic acid Chemical compound [Na+].[Na+].[Na+].OC(=O)CC(O)(C(O)=O)CC(O)=O.[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O XPFJYKARVSSRHE-UHFFFAOYSA-K 0.000 description 1
- 238000007039 two-step reaction Methods 0.000 description 1
- 238000002371 ultraviolet--visible spectrum Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N24/00—Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects
- G01N24/08—Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects by using nuclear magnetic resonance
Landscapes
- Physics & Mathematics (AREA)
- High Energy & Nuclear Physics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
Description
技术领域technical field
本发明属于检测技术领域,具体涉及一种过氧化氢或葡萄糖的检测方法。The invention belongs to the technical field of detection, in particular to a detection method of hydrogen peroxide or glucose.
背景技术Background technique
过氧化氢(H2O2)作为生物代谢活性产物,参与多种生物氧化酶催化反应。通过检测H2O2浓度可以实现对生命活动的监测。葡萄糖氧化酶的催化代谢可以生产出有效的H2O2分子。如生物体内的一分子葡萄糖经葡萄糖氧化酶代谢,能够产出一分子H2O2,进而检测H2O2含量可反映出人体内糖代谢情况,获取血糖浓度。因此,开发出一种迅速、灵敏度高且选择性高的H2O2检测方法对于糖尿病的预防、诊断和监控具有重要意义。Hydrogen peroxide (H 2 O 2 ), as an active product of biological metabolism, participates in various biological oxidase-catalyzed reactions. The monitoring of life activities can be realized by detecting the concentration of H 2 O 2 . The catalytic metabolism of glucose oxidase can produce efficient H2O2 molecules. For example, a molecule of glucose in the organism can be metabolized by glucose oxidase to produce a molecule of H 2 O 2 , and then detecting the content of H 2 O 2 can reflect the glucose metabolism in the human body and obtain the blood glucose concentration. Therefore, the development of a rapid, sensitive and selective H2O2 detection method is of great significance for the prevention, diagnosis and monitoring of diabetes.
目前针对H2O2的临床检测方法主要为比色法、电化学传感器和化学发光传感器等。在诸多方法中,辣根过氧化物酶(HRP)是主要用料,其对H2O2具有高特异性和灵敏度,通过与H2O2结合进而将H2O2分解产生·OH;这类羟基活性自由基具有较高的化学活性,能够进一步参与后续反应产生光学吸收信号或电化学信号。但由于HRP这类天然酶固有的局限性,如热稳定性差、成本高和存储条件苛刻等缺点,阻碍了其广泛应用。与天然酶相比,近些年备受瞩目的纳米材料,被发现具有天然酶活性,因此被称为纳米酶;由于其化学性质稳定,因此表现出稳定的催化性能,并且制备成本低,可重复使用,也易于存储。现阶段,人们已经合成出了各种各样可以模拟天然酶功能的纳米材料,如2007年首次发现超顺磁性氧化铁能够模拟过氧化物酶活性,其催化机理与HRP类似,可以催化H2O2与3,3’,5,5’-四甲基联苯胺(TMB)底物产生颜色变化,通过测定颜色变化来检测H2O2浓度。后续中,研究者将超顺磁性氧化铁纳米酶与葡萄糖氧化酶(GOD)相混合,通过GOD催化葡萄糖生成H2O2,进而该H2O2进一步被超顺磁性氧化铁纳米酶催化并且同TMB显色,从而实现葡萄糖浓度的测定。At present, the clinical detection methods for H 2 O 2 are mainly colorimetric method, electrochemical sensor and chemiluminescence sensor. In many methods, horseradish peroxidase (HRP) is the main material, which has high specificity and sensitivity to H 2 O 2 , and then decomposes H 2 O 2 to generate OH by combining with H 2 O 2 ; Such hydroxyl reactive radicals have high chemical activity and can further participate in subsequent reactions to generate optical absorption signals or electrochemical signals. However, the inherent limitations of natural enzymes such as HRP, such as poor thermal stability, high cost, and harsh storage conditions, hinder their wide application. Compared with natural enzymes, nanomaterials that have attracted much attention in recent years have been found to have natural enzymatic activity, so they are called nanozymes; due to their stable chemical properties, they exhibit stable catalytic performance and low preparation costs. Reusable and easy to store. At this stage, people have synthesized a variety of nanomaterials that can mimic the function of natural enzymes. For example, in 2007, it was first discovered that superparamagnetic iron oxide can mimic the activity of peroxidase. Its catalytic mechanism is similar to that of HRP, which can catalyze H 2 O 2 produces a color change with 3,3',5,5'-tetramethylbenzidine (TMB) substrate, and the H 2 O 2 concentration is detected by measuring the color change. In the follow-up, the researchers mixed the superparamagnetic iron oxide nanozyme with glucose oxidase (GOD) to catalyze the production of H 2 O 2 from glucose through GOD, and then the H 2 O 2 was further catalyzed by the superparamagnetic iron oxide nanozyme and The same color with TMB, so as to achieve the determination of glucose concentration.
目前报道的四氧化三铁纳米酶(SPIO纳米酶)测定H2O2浓度都是采用比色法,利用SPIO纳米酶的过氧化物酶活性,催化H2O2氧化底物3,3’,5,5’-四甲基联苯胺(TMB)显色,根据显色产物吸光度与过氧化氢浓度之间正比关系实现对H2O2的测定。该检测过程需要首先将H2O2催化分解产生·OH,·OH再将底物TMB氧化成oxTMB;该方法需要两步反应,极易对检测结果造成影响。同时,TMB存储条件苛刻,需要低温避光,进一步限制了其实际应用。The currently reported ferric oxide nanozymes (SPIO nanozymes) for the determination of H 2 O 2 concentration all use colorimetric methods, which utilize the peroxidase activity of SPIO nano enzymes to catalyze H 2 O 2 to oxidize the
发明内容SUMMARY OF THE INVENTION
针对上述现有技术的缺点,本发明提供一种过氧化氢或葡萄糖的检测方法。In view of the above-mentioned shortcomings of the prior art, the present invention provides a method for detecting hydrogen peroxide or glucose.
为实现上述目的,本发明采取的技术方案为:一种过氧化氢或葡萄糖的检测方法,包括如下步骤:利用改性的四氧化三铁纳米酶的过氧化物酶活性催化目标物,通过磁共振技术检测目标物的浓度;所述目标物为过氧化氢或葡萄糖。In order to achieve the above object, the technical scheme adopted in the present invention is: a method for detecting hydrogen peroxide or glucose, comprising the steps of: utilizing the peroxidase activity of the modified iron tetroxide nanozyme to catalyze the target substance, The resonance technique detects the concentration of the target; the target is hydrogen peroxide or glucose.
本发明利用改性的四氧化三铁纳米酶的过氧化物酶活性催化过氧化氢或葡萄糖产生羟基自由基(·OH),从而影响周围H2O分子的质子核自旋弛豫过程。根据其T2弛豫时间的变化与过氧化氢或葡萄糖浓度之间的线性关系可以实现对过氧化氢的测定。本发明采用磁共振技术检测的方法克服了现有技术比色法的繁杂步骤影响检测结果以及底物TMB的不易保存的缺点。The invention utilizes the peroxidase activity of the modified iron tetroxide nanozyme to catalyze hydrogen peroxide or glucose to generate hydroxyl radicals (·OH), thereby affecting the proton nuclear spin relaxation process of surrounding H 2 O molecules. The determination of hydrogen peroxide can be achieved according to the linear relationship between the change in its T2 relaxation time and the concentration of hydrogen peroxide or glucose. The detection method using the magnetic resonance technology in the present invention overcomes the disadvantages of the complicated steps of the colorimetric method in the prior art that affect the detection result and the difficult preservation of the substrate TMB.
作为本发明的优选实施方式,所述过氧化氢或葡萄糖的检测方法具体为:所述过氧化氢的检测方法,包括如下步骤:使用改性的四氧化三铁纳米酶催化过氧化氢,通过磁共振技术检测过氧化氢的浓度;As a preferred embodiment of the present invention, the method for detecting hydrogen peroxide or glucose is specifically: the method for detecting hydrogen peroxide includes the following steps: using a modified iron tetroxide nanozyme to catalyze hydrogen peroxide, Magnetic resonance technology to detect the concentration of hydrogen peroxide;
所述葡萄糖的检测方法,包括如下步骤:将改性的四氧化三铁纳米酶与葡萄糖氧化酶联合使用催化葡萄糖,通过磁共振技术检测葡萄糖的浓度。The method for detecting glucose includes the following steps: combining the modified iron tetroxide nanozyme and glucose oxidase to catalyze glucose, and detecting the concentration of glucose by magnetic resonance technology.
作为本发明的优选实施方式,所述改性的四氧化三铁纳米酶为柠檬酸钠修饰的四氧化三铁纳米酶或聚合物修饰的四氧化三铁纳米酶;所述聚合物为聚乙烯亚胺、聚环氧乙烷-聚环氧丙烷-聚环氧乙烷三嵌段共聚物、聚氧乙烯-聚氧丙烯醚嵌段共聚物、聚乙二醇-聚乳酸共聚物中的一种。As a preferred embodiment of the present invention, the modified ferric oxide nanozyme is a sodium citrate modified ferric oxide nanozyme or a polymer-modified ferric oxide nanozyme; the polymer is polyethylene One of imine, polyethylene oxide-polypropylene oxide-polyethylene oxide triblock copolymer, polyoxyethylene-polyoxypropylene ether block copolymer, polyethylene glycol-polylactic acid copolymer kind.
本发明所述柠檬酸钠修饰的四氧化三铁纳米酶计为C-SPIO纳米酶;聚合物所述修饰的四氧化三铁纳米酶计为SPIO纳米酶团簇体。The sodium citrate modified ferric oxide nanozyme of the present invention is regarded as C-SPIO nanozyme; the modified ferric oxide nanozyme of the polymer is regarded as SPIO nanozyme cluster.
本发明所述C-SPIO纳米酶和SPIO纳米酶团簇体在过氧化氢存在的条件下可以将无色TMB氧化成蓝色oxTMB,并在紫外可见分光光谱上的652nm处具有明显的吸收峰,证明两种纳米酶都具有过氧化物酶样活性,且C-SPIO纳米酶的催化活性强于SPIO纳米酶团簇体。The C-SPIO nanozyme and the SPIO nanozyme cluster of the present invention can oxidize colorless TMB to blue oxTMB in the presence of hydrogen peroxide, and have an obvious absorption peak at 652 nm on the ultraviolet-visible spectrum , it is proved that both nanozymes have peroxidase-like activity, and the catalytic activity of C-SPIO nanozyme is stronger than that of SPIO nanozyme cluster.
作为本发明的优选实施方式,所述的改性的四氧化三铁纳米酶用于过氧化氢的检测方法,其特征在于,包括如下具体步骤:As a preferred embodiment of the present invention, the described modified iron tetroxide nanozyme is used for the detection method of hydrogen peroxide, which is characterized in that it includes the following specific steps:
S1:将改性的四氧化三铁纳米酶分散在醋酸缓冲盐溶液中得到改性的四氧化三铁纳米酶悬浮液;S1: Disperse the modified ferric oxide nanozyme in an acetate buffered saline solution to obtain a modified ferric oxide nanozyme suspension;
S2:将S1得到的改性的四氧化三铁纳米酶悬浮液中添加不同浓度的过氧化氢溶液反应得到混合溶液;S2: adding hydrogen peroxide solutions of different concentrations to the modified ferric tetroxide nanozyme suspension obtained in S1 to react to obtain a mixed solution;
S3:使用磁共振方法测定S2得到的混合溶液的T2弛豫时间,建立过氧化氢浓度-T2弛豫时间的标准曲线;S3: use the magnetic resonance method to measure the T 2 relaxation time of the mixed solution obtained in S2, and establish a standard curve of hydrogen peroxide concentration-T 2 relaxation time;
S4:按照S1~S2中的方法,配制未知过氧化氢浓度溶液,测定未知过氧化氢浓度溶液的T2弛豫时间,将该T2弛豫时间代入S3得到的过氧化氢浓度-T2弛豫时间的标准曲线,从而计算未知溶液中过氧化氢的浓度。S4: Prepare an unknown hydrogen peroxide concentration solution according to the method in S1-S2, measure the T2 relaxation time of the unknown hydrogen peroxide concentration solution, and substitute the T2 relaxation time into the hydrogen peroxide concentration - T2 obtained by S3 A standard curve of relaxation times to calculate the concentration of hydrogen peroxide in an unknown solution.
作为本发明的优选实施方式,所述S1中,改性的四氧化三铁纳米酶为柠檬酸钠修饰的四氧化三铁纳米酶时,醋酸缓冲盐溶液的pH值为2.0-5.0;改性的四氧化三铁纳米酶为聚合物修饰的四氧化三铁纳米酶时,醋酸缓冲盐溶液的pH值为2.5-4.5。As a preferred embodiment of the present invention, in the S1, when the modified ferric oxide nanozyme is a sodium citrate modified ferric oxide nanozyme, the pH value of the acetate buffered saline solution is 2.0-5.0; When the ferric oxide nanozyme is a polymer-modified ferric oxide nanozyme, the pH value of the acetate buffer salt solution is 2.5-4.5.
本发明C-SPIO纳米酶在较宽的pH范围(pH=2.0-5.0)中对过氧化氢具有较好的催化活性,SPIO纳米酶团簇体在pH=2.5-4.5中对过氧化氢具有较好的催化活性。说明C-SPIO纳米酶在pH=2.0-5.0,SPIO纳米酶团簇体在pH=2.5-4.5范围内均可以与H2O2反应,并形成·OH。且C-SPIO纳米酶在pH=2.0-5.0,对过氧化氢的检出限为3.32μM以下;SPIO纳米酶团簇体在pH=2.5-4.5对过氧化氢的检出限为8.78μM以下,两者均远远低于美国FDA规定的过氧化氢许可水平15μM。The C-SPIO nanozyme of the present invention has good catalytic activity for hydrogen peroxide in a wide pH range (pH=2.0-5.0), and the SPIO nanozyme cluster has a good catalytic activity for hydrogen peroxide in pH=2.5-4.5 better catalytic activity. It shows that C-SPIO nanozyme can react with H 2
更优选地,所述S1中,改性的四氧化三铁纳米酶为柠檬酸钠修饰的四氧化三铁纳米酶时,醋酸缓冲盐溶液的pH值为4.0;改性的四氧化三铁纳米酶为聚合物修饰的四氧化三铁纳米酶时,醋酸缓冲盐溶液的pH值为3.5。More preferably, in the S1, when the modified ferric oxide nanozyme is a sodium citrate modified ferric oxide nanozyme, the pH value of the acetate buffered saline solution is 4.0; When the enzyme is a polymer-modified iron tetroxide nanozyme, the pH value of the acetate buffered saline solution is 3.5.
本发明C-SPIO纳米酶并在pH=4.0时,对过氧化氢具有较好的催化活性最大,且对过氧化氢的检出限最低;SPIO纳米酶团簇体在pH=3.5时对过氧化氢具有较好的催化活性最大,且对过氧化氢的检出限最低。The C-SPIO nanozyme of the present invention has the best catalytic activity for hydrogen peroxide at pH=4.0, and the detection limit for hydrogen peroxide is the lowest; the SPIO nanozyme cluster is at pH=3.5. Hydrogen oxide has the best catalytic activity and the lowest detection limit for hydrogen peroxide.
作为本发明的优选实施方式,所述S1中,改性的四氧化三铁纳米酶悬浮液中改性的四氧化三铁纳米酶的浓度为0.01-0.025mM。As a preferred embodiment of the present invention, in the S1, the concentration of the modified ferric oxide nanozyme in the modified ferric oxide nanozyme suspension is 0.01-0.025mM.
作为本发明的优选实施方式,所述S2中,不同浓度的过氧化氢溶液为浓度梯度的过氧化氢溶液。As a preferred embodiment of the present invention, in the S2, the hydrogen peroxide solutions with different concentrations are hydrogen peroxide solutions with a concentration gradient.
更优选地,所述S2中,混合液中不同浓度的过氧化氢浓度梯度选自5-300μM。过氧化氢浓度梯度选自5-300μM范围内,过氧化氢浓度与T2弛豫时间呈线性关系。More preferably, in the S2, the concentration gradient of hydrogen peroxide with different concentrations in the mixed solution is selected from 5-300 μM. The hydrogen peroxide concentration gradient was selected in the range of 5–300 μM, and the hydrogen peroxide concentration was linearly related to the T relaxation time.
作为本发明的优选实施方式,所述S2中,改性的四氧化三铁纳米酶为柠檬酸钠修饰的四氧化三铁纳米酶时,反应温度为30-70℃,反应时间为10min;改性的四氧化三铁纳米酶为聚合物修饰的四氧化三铁纳米酶时,反应温度为40-50℃,反应时间为10min。As a preferred embodiment of the present invention, in the S2, when the modified ferric oxide nanozyme is a sodium citrate modified ferric oxide nanozyme, the reaction temperature is 30-70 °C, and the reaction time is 10 min; When the functional ferric oxide nanozyme is a polymer-modified ferric oxide nanozyme, the reaction temperature is 40-50° C. and the reaction time is 10 min.
本发明C-SPIO纳米酶在较宽的催化温度范围(30-70℃)中对过氧化氢具有较好的催化活性;SPIO纳米酶团簇体在催化温度为40-50℃时,对过氧化氢具有较好的催化活性;说明C-SPIO纳米酶在催化温度范围为30-70℃,SPIO纳米酶团簇体在催化温度范围为40-50℃范围内均可以与H2O2反应,并形成·OH,且C-SPIO纳米酶在催化温度为30-70℃,对过氧化氢的检出限为3.32μM以下;SPIO纳米酶团簇体在催化温度范围为40-50℃对过氧化氢的检出限为8.78μM以下,两者均远远低于美国FDA规定的过氧化氢许可水平15μM。The C-SPIO nanozyme of the present invention has good catalytic activity for hydrogen peroxide in a wide catalytic temperature range (30-70° C.); when the SPIO nano-enzyme cluster is at a catalytic temperature of 40-50° C., it can catalyze hydrogen peroxide. Hydrogen oxide has good catalytic activity; it shows that the C-SPIO nanozyme can react with H 2
更优选地,所述S2中,反应温度为50℃,反应时间为10min。More preferably, in the S2, the reaction temperature is 50°C and the reaction time is 10min.
本发明C-SPIO纳米酶和SPIO纳米酶团簇体并在催化温度为50℃时,对过氧化氢具有较好的催化活性最大,且对过氧化氢的检出限最低。The C-SPIO nano-enzyme and the SPIO nano-enzyme cluster of the present invention have the best catalytic activity for hydrogen peroxide and the lowest detection limit for hydrogen peroxide when the catalytic temperature is 50°C.
作为本发明的优选实施方式,所述改性的四氧化三铁纳米酶用于葡萄糖的检测方法,其特征在于,包括如下具体步骤:As a preferred embodiment of the present invention, the modified iron tetroxide nanozyme is used for the detection method of glucose, which is characterized in that it includes the following specific steps:
(1)将葡萄糖氧化酶与不同浓度葡萄糖溶液在磷酸盐缓冲液反应,得到混合溶液A;(1) Glucose oxidase is reacted with glucose solutions of different concentrations in phosphate buffer to obtain mixed solution A;
(2)将改性的四氧化三铁纳米酶和步骤(1)得到的混合溶液A,添加醋酸缓冲盐溶液中反应,得到混合溶液B;(2) adding the modified ferric oxide nanozyme and the mixed solution A obtained in step (1) to an acetate buffered saline solution to react to obtain a mixed solution B;
(3)使用磁共振方法测定步骤(2)得到的混合溶液B的T2弛豫时间,建立葡萄糖溶液浓度-T2弛豫时间的标准曲线;(3) use the magnetic resonance method to measure the T2 relaxation time of the mixed solution B obtained in step ( 2 ), and establish a standard curve of glucose solution concentration - T2 relaxation time;
(4)按照步骤(1)~(2)中的方法,配制未知葡萄糖浓度溶液,测定未知葡萄糖溶液的T2弛豫时间,将该T2弛豫时间代入步骤(3)得到的葡萄糖浓度-T2弛豫时间的标准曲线,从而计算未知溶液中葡萄糖的浓度。(4) According to the method in steps (1) to ( 2 ), prepare an unknown glucose concentration solution, measure the T2 relaxation time of the unknown glucose solution, and substitute the T2 relaxation time into the glucose concentration obtained in step ( 3 ) − Standard curve of T2 relaxation time to calculate the concentration of glucose in the unknown solution.
作为本发明的优选实施方式,所述步骤(2)中,改性的四氧化三铁纳米酶为柠檬酸钠修饰的四氧化三铁纳米酶时,醋酸缓冲盐溶液的pH值为2.0-5.0,改性的四氧化三铁纳米酶为聚合物修饰的四氧化三铁纳米酶时,醋酸缓冲盐溶液的pH值为2.5-4.5。As a preferred embodiment of the present invention, in the step (2), when the modified ferric oxide nanozyme is a sodium citrate modified ferric oxide nanozyme, the pH value of the acetate buffered saline solution is 2.0-5.0 , when the modified ferric oxide nano-enzyme is a polymer-modified ferric tetroxide nano-enzyme, the pH value of the acetate buffered saline solution is 2.5-4.5.
本发明C-SPIO纳米酶与葡萄糖氧化酶联合在较宽的pH范围(pH=2.0-5.0)中对葡萄糖具有较好的催化活性,SPIO纳米酶团簇体与葡萄糖氧化酶联合在pH=2.5-4.5中对葡萄糖具有较好的催化活性。该结果表明,C-SPIO纳米酶在pH=2.0-5.0,SPIO纳米酶团簇体在pH=2.5-4.5范围内与葡萄糖氧化酶联合后,均可以与H2O2反应,并形成·OH。The combination of C-SPIO nanozyme and glucose oxidase of the present invention has good catalytic activity for glucose in a wide pH range (pH=2.0-5.0), and the combination of SPIO nanozyme cluster and glucose oxidase has a pH=2.5 -4.5 has good catalytic activity for glucose. The results show that C-SPIO nanozymes can react with H 2 O 2 at pH=2.0-5.0, and the SPIO nanozyme clusters can react with glucose oxidase in the range of pH=2.5-4.5, and form ·OH .
作为本发明的优选实施方式,所述步骤(2)中,改性的四氧化三铁纳米酶为柠檬酸钠修饰的四氧化三铁纳米酶时,醋酸缓冲盐溶液的pH值为4.0;改性的四氧化三铁纳米酶为聚合物修饰的四氧化三铁纳米酶时,醋酸缓冲盐溶液的pH值为3.5。As a preferred embodiment of the present invention, in the step (2), when the modified ferric oxide nanozyme is a sodium citrate modified ferric oxide nanozyme, the pH value of the acetate buffered saline solution is 4.0; When the functional ferric oxide nanozyme is a polymer-modified ferric oxide nanozyme, the pH value of the acetate buffered saline solution is 3.5.
本发明C-SPIO纳米酶与葡萄糖氧化酶联合并在pH=4.0时,对葡萄糖具有较好的催化活性最大,且对葡萄糖的检出限最低;SPIO纳米酶团簇体与葡萄糖氧化酶联合在pH=3.5时对葡萄糖具有较好的催化活性最大,且对葡萄糖的检出限最低。The C-SPIO nanozyme of the present invention is combined with glucose oxidase and has the best catalytic activity for glucose at pH=4.0, and the detection limit of glucose is the lowest; the SPIO nanozyme cluster is combined with glucose oxidase in When pH=3.5, the catalytic activity for glucose is the highest, and the detection limit for glucose is the lowest.
作为本发明的优选实施方式,所述步骤(2)中,改性的四氧化三铁纳米酶为柠檬酸钠修饰的四氧化三铁纳米酶时,反应温度为30-70℃,反应时间为10min;改性的四氧化三铁纳米酶为聚合物修饰的四氧化三铁纳米酶时,反应温度为40-50℃,反应时间为10min。As a preferred embodiment of the present invention, in the step (2), when the modified ferric oxide nanozyme is a sodium citrate modified ferric oxide nanozyme, the reaction temperature is 30-70° C., and the reaction time is 10 min; when the modified ferric oxide nanozyme is a polymer-modified ferric oxide nanozyme, the reaction temperature is 40-50° C. and the reaction time is 10 min.
所述C-SPIO纳米酶与葡萄糖氧化酶联合在较宽的催化温度范围(30-70℃)中对葡萄糖具有较好的催化活性;SPIO纳米酶团簇体与葡萄糖氧化酶联合在催化温度为40-50℃时,对葡萄糖具有较好的催化活性;说明C-SPIO纳米酶与葡萄糖氧化酶联合在催化温度范围为30-70℃,SPIO纳米酶团簇体与葡萄糖氧化酶联合在催化温度范围为40-50℃范围内均可以与H2O2反应,并形成·OH。The C-SPIO nanozyme combined with glucose oxidase has good catalytic activity for glucose in a wide catalytic temperature range (30-70 °C); the combined SPIO nanozyme cluster and glucose oxidase have a catalytic temperature of At 40-50 °C, it has good catalytic activity for glucose; it shows that the combined C-SPIO nanozyme and glucose oxidase have a catalytic temperature range of 30-70 °C, and the combined SPIO nanozyme cluster and glucose oxidase have a catalytic temperature range of 30-70 °C. It can react with H 2 O 2 in the range of 40-50 °C and form ·OH.
作为本发明的优选实施方式,所述步骤(2)中,反应温度为50℃,反应时间为10min。As a preferred embodiment of the present invention, in the step (2), the reaction temperature is 50° C. and the reaction time is 10 min.
本发明C-SPIO纳米酶和SPIO纳米酶团簇体并在催化温度为50℃时,对本发明C-SPIO纳米酶和SPIO纳米酶团簇体并在催化温度为50℃时,对葡萄糖具有较好的催化活性最大,且对葡萄糖的检出限最低。The C-SPIO nanozyme of the present invention and the cluster of SPIO nanozymes have a better effect on glucose when the catalytic temperature is 50°C. Good catalytic activity is the largest, and the detection limit for glucose is the lowest.
作为本发明的优选实施方式,所述混合溶液A中葡萄糖氧化酶的浓度为0.4mg/mL。As a preferred embodiment of the present invention, the concentration of glucose oxidase in the mixed solution A is 0.4 mg/mL.
作为本发明的优选实施方式,所述混合溶液B中改性的四氧化三铁纳米酶的浓度为0.01-0.025mM。As a preferred embodiment of the present invention, the concentration of the modified iron tetroxide nanozyme in the mixed solution B is 0.01-0.025mM.
作为本发明的优选实施方式,所述步骤(1)中,磷酸盐缓冲液的pH值为7.0,反应温度为37℃,时间为30min。As a preferred embodiment of the present invention, in the step (1), the pH value of the phosphate buffer is 7.0, the reaction temperature is 37° C., and the time is 30 min.
作为本发明的优选实施方式,所述步骤(2)中,不同浓度的葡萄糖溶液为浓度梯度的葡萄糖溶液。As a preferred embodiment of the present invention, in the step (2), the glucose solutions with different concentrations are glucose solutions with a concentration gradient.
更优选地,所述步骤(2)中,混合液中不同浓度的葡萄糖浓度梯度选自5-300μM。葡萄糖浓度梯度选自5-300μM范围内,葡萄糖浓度与T2弛豫时间呈线性关系。More preferably, in the step (2), the glucose concentration gradient of different concentrations in the mixed solution is selected from 5-300 μM. The glucose concentration gradient was selected in the range of 5-300 μM, and the glucose concentration was linearly related to the T relaxation time.
作为本发明的优选实施方式,所述柠檬酸钠修饰的四氧化三铁纳米酶的制备方法,包括如下步骤:As a preferred embodiment of the present invention, the preparation method of the sodium citrate modified iron tetroxide nanozyme comprises the following steps:
第一步:在氩气保护下,将乙酰丙酮铁和三乙二醇充分溶解混合后加热,得到溶液A;The first step: under the protection of argon, fully dissolve and mix iron acetylacetonate and triethylene glycol and heat to obtain solution A;
第二步:将溶液A添加乙酸乙酯,形成沉淀,将沉淀分散在无水乙醇中后,与柠檬酸钠水溶液混合反应,得到柠檬酸钠修饰的四氧化三铁纳米酶。The second step: adding ethyl acetate to the solution A to form a precipitate, after dispersing the precipitate in anhydrous ethanol, it is mixed and reacted with an aqueous sodium citrate solution to obtain a sodium citrate modified iron tetroxide nanozyme.
作为本发明的优选实施方式,所述乙酰丙酮铁物质的量和三乙二醇体积的配比为1:30mmol/L;柠檬酸钠与乙酰丙酮铁的物质的量浓度比为1:10xx。As a preferred embodiment of the present invention, the ratio of the amount of the iron acetylacetonate substance to the volume of triethylene glycol is 1:30 mmol/L; the substance concentration ratio of sodium citrate to iron acetylacetonate is 1:10xx.
作为本发明的优选实施方式,所述第一步中,加热温度为280℃,加热时间为30min;所述第二步中,反应温度为100℃,加热时间为30min。As a preferred embodiment of the present invention, in the first step, the heating temperature is 280°C and the heating time is 30min; in the second step, the reaction temperature is 100°C and the heating time is 30min.
作为本发明的优选实施方式,所述聚合物所述修饰的四氧化三铁纳米酶的制备方法,包括如下步骤:将聚合物与四氧化三铁纳米酶在氯仿中混合,得到混合溶液,将混合溶液加入水中震荡,去除混合溶液中的氯仿,得到所述聚合物所述修饰的四氧化三铁纳米酶;所述聚合物与四氧化三铁纳米酶的重量比为1:1-2。As a preferred embodiment of the present invention, the preparation method of the modified iron tetroxide nanozyme of the polymer includes the following steps: mixing the polymer and the iron tetroxide nanozyme in chloroform to obtain a mixed solution; The mixed solution is added to water and shaken, and the chloroform in the mixed solution is removed to obtain the modified iron tetroxide nanozyme of the polymer; the weight ratio of the polymer to the iron tetroxide nanozyme is 1:1-2.
作为本发明的优选实施方式,所述四氧化三铁纳米酶的制备方法,包括如下步骤:As a preferred embodiment of the present invention, the preparation method of the ferric oxide nanozyme comprises the following steps:
在氩气保护下,将乙酰丙酮铁、1,2-十二烷二醇、油酸、油胺、苄醚和N-甲基吡咯烷酮溶解并混合后,进行加热反应;反应结束后,冷却,离心得到所述四氧化三铁纳米酶。Under the protection of argon, iron acetylacetonate, 1,2-dodecanediol, oleic acid, oleylamine, benzyl ether and N-methylpyrrolidone were dissolved and mixed, and then heated and reacted; Centrifuge to obtain the ferric oxide nanozyme.
作为本发明的优选实施方式,所述加热反应为微波水热反应,具体为:在140℃下微波水热反应30min,再在180℃下微波水热反应120min。As a preferred embodiment of the present invention, the heating reaction is a microwave hydrothermal reaction, specifically: microwave hydrothermal reaction at 140° C. for 30 min, and microwave hydrothermal reaction at 180° C. for 120 min.
作为本发明的优选实施方式,所述乙酰丙酮铁、1,2-十二烷二醇、油酸、油胺的摩尔浓度比为乙酰丙酮铁:1,2-十二烷二醇:油酸:油胺=2:10:6:6;所述苄醚和N-甲基吡咯烷酮的体积比为20:3。As a preferred embodiment of the present invention, the molar concentration ratio of the iron acetylacetonate, 1,2-dodecanediol, oleic acid, and oleylamine is iron acetylacetonate: 1,2-dodecanediol: oleic acid : oleylamine=2:10:6:6; the volume ratio of the benzyl ether and N-methylpyrrolidone is 20:3.
与现有技术相比,本发明的有益效果为:Compared with the prior art, the beneficial effects of the present invention are:
(1)本发明采用磁共振技术检测的方法克服了现有技术比色法的繁杂步骤影响检测结果以及显色底物TMB的不易保存的缺点。(1) The method for detection by magnetic resonance technology in the present invention overcomes the disadvantages that the complicated steps of the colorimetric method in the prior art affect the detection result and the chromogenic substrate TMB is not easy to store.
(2)本发明通过磁共振技术检测过氧化氢的浓度,C-SPIO纳米酶对过氧化氢检出限低至3.32μM;SPIO纳米酶团簇体对过氧化氢检出限低至8.78μM,两者的检测限均远远低于美国FDA规定的过氧化氢许可水平15μM。(2) The present invention detects the concentration of hydrogen peroxide by magnetic resonance technology, the detection limit of C-SPIO nanozyme for hydrogen peroxide is as low as 3.32 μM; the detection limit of SPIO nanozyme cluster for hydrogen peroxide is as low as 8.78 μM , the detection limits of both are well below the FDA-regulated hydrogen peroxide permit level of 15 μM.
(3)本发明通过磁共振技术检测葡萄糖的浓度,将C-SPIO纳米酶与葡萄糖氧化酶联合使用,对葡萄糖的检出限低至2.81μM;SPIO纳米酶团簇体与葡萄糖氧化酶联合使用,对葡萄糖检出限低至13.25μM。(3) In the present invention, the concentration of glucose is detected by magnetic resonance technology, and the C-SPIO nanozyme is used in combination with glucose oxidase, and the detection limit of glucose is as low as 2.81 μM; the SPIO nanozyme cluster is used in combination with glucose oxidase , the detection limit for glucose was as low as 13.25 μM.
附图说明Description of drawings
图1为实施例1所制备的C-SPIO纳米酶的透射电镜图;Fig. 1 is the transmission electron microscope picture of the C-SPIO nanozyme prepared in Example 1;
图2为实施例1所制备的C-SPIO纳米酶的粒径分布图;Fig. 2 is the particle size distribution diagram of the C-SPIO nanozyme prepared in Example 1;
图3为实施例9所制备的SPIO纳米酶团簇体的透射电镜图;Fig. 3 is the transmission electron microscope image of the SPIO nanozyme cluster prepared in Example 9;
图4为实施例9所制备的SPIO纳米酶团簇体的粒径分布图;4 is a particle size distribution diagram of the SPIO nanozyme clusters prepared in Example 9;
图5为C-SPIO纳米酶、SPIO纳米酶团簇体在不同pH条件下的对过氧化氢的催化活性图;Figure 5 is a graph showing the catalytic activity of C-SPIO nanozyme and SPIO nanozyme cluster to hydrogen peroxide under different pH conditions;
图6为C-SPIO纳米酶、SPIO纳米酶团簇体在不同催化反应温度下的对过氧化氢的催化活性图;Figure 6 is a graph showing the catalytic activity of C-SPIO nanozyme and SPIO nanozyme cluster to hydrogen peroxide at different catalytic reaction temperatures;
图7为C-SPIO纳米酶在不同过氧化氢浓度或不同TMB浓度下模拟过氧化物酶的稳态动力学;Figure 7 shows the steady-state kinetics of C-SPIO nanozyme simulating peroxidase at different hydrogen peroxide concentrations or different TMB concentrations;
图8为SPIO纳米酶团簇体在不同过氧化氢浓度或不同TMB浓度下模拟过氧化物酶的稳态动力学;Figure 8 shows the steady-state kinetics of SPIO nanozyme clusters simulating peroxidase at different hydrogen peroxide concentrations or different TMB concentrations;
图9为本发明C-SPIO纳米酶在加入过氧化氢前和与过氧化氢催化反应后,铁浓度与1/T1或1/T2的线性拟合图;Fig. 9 is the linear fitting diagram of iron concentration and 1/T 1 or 1/T 2 of C-SPIO nanozyme of the present invention before adding hydrogen peroxide and after catalyzing reaction with hydrogen peroxide;
图10为SPIO纳米酶团簇体在加入过氧化氢前和与过氧化氢催化反应后,铁浓度与1/T1或1/T2的线性拟合图;Figure 10 is a linear fitting diagram of iron concentration and 1/T 1 or 1/T 2 of SPIO nanozyme clusters before adding hydrogen peroxide and after catalytic reaction with hydrogen peroxide;
图11为本发明实施例1的过氧化氢浓度与C-SPIO纳米酶或SPIO纳米酶团簇体在缓冲液中催化反应的T2弛豫时间的线性拟合图;Figure 11 is a linear fitting diagram of the hydrogen peroxide concentration and the T2 relaxation time of the catalytic reaction of C-SPIO nanozyme or SPIO nanozyme cluster in buffer solution in Example 1 of the present invention;
图12为本发明实施例9的葡萄糖浓度与C-SPIO纳米酶或SPIO纳米酶团簇体在缓冲液中催化反应的T2弛豫时间的线性拟合图。FIG. 12 is a linear fitting diagram of glucose concentration and T 2 relaxation time of the reaction catalyzed by C-SPIO nanozyme or SPIO nanozyme cluster in buffer solution in Example 9 of the present invention.
具体实施方式Detailed ways
为更好地说明本发明的目的、技术方案和优点,下面将结合具体实施例对本发明作进一步说明。In order to better illustrate the purpose, technical solutions and advantages of the present invention, the present invention will be further described below with reference to specific embodiments.
试验例1-4所述SPIO纳米酶团簇体为实施例9所制备的SPIO纳米酶团簇体。The SPIO nanozyme clusters described in Test Examples 1-4 are the SPIO nanozyme clusters prepared in Example 9.
实施例1Example 1
本发明所述过氧化氢或葡萄糖的检测方法的实施例,具体如下:The embodiment of the detection method of hydrogen peroxide or glucose of the present invention is as follows:
C-SPIO纳米酶的制备方法,包括如下步骤:The preparation method of C-SPIO nanozyme comprises the following steps:
(1)在氩气保护下,将1mmol乙酰丙酮铁和30mL三乙二醇充分溶解混合后加热,得到溶液A;(1) under argon protection, 1mmol of ferric acetylacetonate and 30mL of triethylene glycol are fully dissolved and mixed and heated to obtain solution A;
(2)将溶液A在280℃下回流30min,得到溶液B;(2) reflux solution A at 280 ° C for 30 min to obtain solution B;
(3)将溶液B中添加乙酸乙酯形成沉淀,将沉淀分散于无水乙醇后,与柠檬酸钠水溶液混合,在微波反应器中100℃下反应30min,得到柠檬酸钠修饰的四氧化三铁纳米酶,计为C-SPIO纳米酶。(3) adding ethyl acetate to the solution B to form a precipitate, after dispersing the precipitate in absolute ethanol, mixing with an aqueous sodium citrate solution, and reacting at 100° C. for 30 min in a microwave reactor to obtain sodium citrate modified trioxide Iron nanozyme, counted as C-SPIO nanozyme.
所述过氧化氢的检测方法,包括如下步骤:The detection method of described hydrogen peroxide, comprises the steps:
(1)将25μl、0.5mM C-SPIO纳米酶分散在450μl、pH值为4.0的醋酸缓冲盐溶液中得到C-SPIO纳米酶悬浮液;(1) Disperse 25 μl of 0.5 mM C-SPIO nanozyme in 450 μl of acetate buffered saline solution with a pH value of 4.0 to obtain a C-SPIO nanozyme suspension;
(2)将步骤(1)得到的C-SPIO纳米酶悬浮液中添加25μl不同浓度的过氧化氢溶液在50℃下反应10min,得到混合溶液;所述混合液中过氧化氢的浓度分别为5、10、25、50、75、100、150、200、300μM;(2) adding 25 μl of hydrogen peroxide solutions of different concentrations to the C-SPIO nanozyme suspension obtained in step (1) and reacting at 50° C. for 10 min to obtain a mixed solution; the concentrations of hydrogen peroxide in the mixed solution are respectively 5, 10, 25, 50, 75, 100, 150, 200, 300 μM;
(3)使用磁共振扫描仪测定S2得到的混合溶液的T2弛豫时间,建立过氧化氢浓度-T2弛豫时间的标准曲线。(3) Use a magnetic resonance scanner to measure the T2 relaxation time of the mixed solution obtained by S2, and establish a standard curve of hydrogen peroxide concentration-T2 relaxation time.
所述葡萄糖的检测方法,包括如下步骤:The detection method of described glucose, comprises the steps:
(1)将10μl、10mg/mL的葡萄糖氧化酶与40μl不同浓度葡萄糖溶液加入200μL、pH7.0磷酸盐缓冲液在37℃下反应30min,得到混合溶液A;(1) Add 10 μl, 10 mg/mL glucose oxidase and 40 μl glucose solutions of different concentrations to 200 μL, pH7.0 phosphate buffer solution and react at 37° C. for 30 min to obtain mixed solution A;
(2)将50μL、0.5mM的C-SPIO纳米酶和步骤(1)得到的混合溶液A,添加到740μL、pH=4.0的醋酸缓冲盐溶液中,在50℃下反应10min反应,得到混合溶液B;(2) Add 50 μL, 0.5 mM C-SPIO nanozyme and the mixed solution A obtained in step (1) to 740 μL, pH=4.0 acetate buffered saline solution, and react at 50°C for 10 min to obtain a mixed solution B;
(3)使用磁共振扫描仪测定步骤(2)得到的混合溶液B的T2弛豫时间,建立葡萄糖溶液浓度-T2弛豫时间的标准曲线。(3) Use a magnetic resonance scanner to measure the T2 relaxation time of the mixed solution B obtained in step (2), and establish a standard curve of glucose solution concentration-T2 relaxation time.
图1为实施例1所制备的C-SPIO纳米酶的透射电镜图,图2为实施例1所制备的C-SPIO纳米酶的粒径分布图,从图1和图2可以看出,C-SPIO纳米酶分散性较好,且粒径分布均匀,粒径分布于10-100nm之间。Figure 1 is a transmission electron microscope image of the C-SPIO nanozyme prepared in Example 1, and Figure 2 is a particle size distribution diagram of the C-SPIO nanozyme prepared in Example 1. It can be seen from Figures 1 and 2 that C -SPIO nano-enzyme has good dispersibility, and the particle size distribution is uniform, and the particle size distribution is between 10-100nm.
实施例2Example 2
本发明所述过氧化氢或葡萄糖的检测方法的实施例,具体如下:The embodiment of the detection method of hydrogen peroxide or glucose of the present invention is as follows:
本实施C-SPIO纳米酶的制备方法与实施例1所述C-SPIO纳米酶的制备方法相同。The preparation method of the C-SPIO nanozyme in this embodiment is the same as the preparation method of the C-SPIO nanozyme described in Example 1.
本实施例所述过氧化氢的检测方法,与实施例1的唯一区别为:步骤(1)中,所述醋酸缓冲盐溶液的pH值为2.0。The only difference between the hydrogen peroxide detection method described in this embodiment and
本实施例所述葡萄糖的检测方法,与实施例1的唯一区别为:步骤(2)中,所述醋酸缓冲盐溶液的pH值为2.0。The only difference between the method for detecting glucose in this example and Example 1 is that in step (2), the pH value of the acetate buffered saline solution is 2.0.
实施例3Example 3
本发明所述过氧化氢或葡萄糖的检测方法的实施例,具体如下:The embodiment of the detection method of hydrogen peroxide or glucose of the present invention is as follows:
本实施例所述C-SPIO纳米酶的制备方法与实施例1所述C-SPIO纳米酶的制备方法相同。The preparation method of the C-SPIO nanozyme described in this example is the same as the preparation method of the C-SPIO nanozyme described in Example 1.
本实施例所述过氧化氢的检测方法,与实施例1的唯一区别为:步骤(1)中,所述醋酸缓冲盐溶液的pH值为3.0。The only difference between the hydrogen peroxide detection method described in this embodiment and
本实施例所述葡萄糖的检测方法,与实施例1的唯一区别为:步骤(2)中,所述醋酸缓冲盐溶液的pH值为3.0。The only difference between the method for detecting glucose in this example and Example 1 is that in step (2), the pH value of the acetate buffered saline solution is 3.0.
实施例4Example 4
本发明所述过氧化氢或葡萄糖的检测方法的实施例,具体如下:The embodiment of the detection method of hydrogen peroxide or glucose of the present invention is as follows:
本实施例C-SPIO纳米酶的制备方法与实施例1所述C-SPIO纳米酶的制备方法相同。The preparation method of the C-SPIO nanozyme in this example is the same as the preparation method of the C-SPIO nanozyme described in Example 1.
本实施例所述过氧化氢的检测方法,与实施例1的唯一区别为:步骤(1)中,所述醋酸缓冲盐溶液的pH值为5.0。The only difference between the hydrogen peroxide detection method described in this embodiment and
本实施例所述葡萄糖的检测方法,与实施例1的唯一区别为:步骤(2)中,所述醋酸缓冲盐溶液的pH值为5.0。The only difference between the method for detecting glucose in this example and Example 1 is that in step (2), the pH value of the acetate buffered saline solution is 5.0.
实施例5Example 5
本发明所述过氧化氢或葡萄糖的检测方法的实施例,具体如下:The embodiment of the detection method of hydrogen peroxide or glucose of the present invention is as follows:
本实施例C-SPIO纳米酶的制备方法与实施例1所述C-SPIO纳米酶的制备方法相同。The preparation method of the C-SPIO nanozyme in this example is the same as the preparation method of the C-SPIO nanozyme described in Example 1.
本实施例所述过氧化氢的检测方法,与实施例1的唯一区别为:步骤(2)中,将步骤(2)得到的C-SPIO纳米酶悬浮液与过氧化氢溶液反应温度为30℃。The only difference between the hydrogen peroxide detection method described in this example and Example 1 is: in step (2), the reaction temperature of the C-SPIO nanozyme suspension obtained in step (2) and the hydrogen peroxide solution is 30 °C.
本实施例所述葡萄糖的检测方法,与实施例1的唯一区别为:步骤(2)中,将C-SPIO纳米酶和步骤(1)得到的混合溶液A,添加到醋酸缓冲盐溶液中,反应温度为30℃。The only difference between the glucose detection method described in this example and Example 1 is: in step (2), the C-SPIO nanozyme and the mixed solution A obtained in step (1) are added to the acetate buffered saline solution, The reaction temperature was 30°C.
实施例6Example 6
本发明所述过氧化氢或葡萄糖的检测方法的实施例,具体如下:The embodiment of the detection method of hydrogen peroxide or glucose of the present invention is as follows:
本实施例C-SPIO纳米酶的制备方法与实施例1所述C-SPIO纳米酶的制备方法相同。The preparation method of the C-SPIO nanozyme in this example is the same as the preparation method of the C-SPIO nanozyme described in Example 1.
本实施例所述过氧化氢的检测方法,与实施例1的唯一区别为:步骤(2)中,将步骤(2)得到的C-SPIO纳米酶悬浮液与过氧化氢溶液反应温度为40℃。The only difference between the hydrogen peroxide detection method described in this example and Example 1 is: in step (2), the reaction temperature of the C-SPIO nanozyme suspension obtained in step (2) and the hydrogen peroxide solution is 40 ℃ °C.
本实施例所述葡萄糖的检测方法,与实施例1的唯一区别为:步骤(2)中,将C-SPIO纳米酶和步骤(1)得到的混合溶液A,添加到醋酸缓冲盐溶液中,反应温度为40℃。The only difference between the glucose detection method described in this example and Example 1 is: in step (2), the C-SPIO nanozyme and the mixed solution A obtained in step (1) are added to the acetate buffered saline solution, The reaction temperature was 40°C.
实施例7Example 7
本发明所述过氧化氢或葡萄糖的检测方法的实施例,具体如下:The embodiment of the detection method of hydrogen peroxide or glucose of the present invention is as follows:
本实施例C-SPIO纳米酶的制备方法与实施例1所述C-SPIO纳米酶的制备方法相同。The preparation method of the C-SPIO nanozyme in this example is the same as the preparation method of the C-SPIO nanozyme described in Example 1.
本实施例所述过氧化氢的检测方法,与实施例1的唯一区别为:步骤(2)中,将步骤(1)得到的C-SPIO纳米酶悬浮液与过氧化氢溶液反应温度为60℃。The only difference between the hydrogen peroxide detection method described in this example and Example 1 is: in step (2), the reaction temperature of the C-SPIO nanozyme suspension obtained in step (1) and the hydrogen peroxide solution is 60 °C °C.
本实施例所述葡萄糖的检测方法,与实施例1的唯一区别为:步骤(2)中,将C-SPIO纳米酶和步骤(1)得到的混合溶液A,添加到醋酸缓冲盐溶液中,反应温度为60℃。The only difference between the glucose detection method described in this example and Example 1 is: in step (2), the C-SPIO nanozyme and the mixed solution A obtained in step (1) are added to the acetate buffered saline solution, The reaction temperature was 60°C.
实施例8Example 8
本发明所述过氧化氢或葡萄糖的检测方法的实施例,具体如下:The embodiment of the detection method of hydrogen peroxide or glucose of the present invention is as follows:
本实施例C-SPIO纳米酶的制备方法与实施例1所述C-SPIO纳米酶的制备方法相同。The preparation method of the C-SPIO nanozyme in this example is the same as the preparation method of the C-SPIO nanozyme described in Example 1.
本实施例所述过氧化氢的检测方法,与实施例1的唯一区别为:步骤(2)中,将步骤(1)得到的C-SPIO纳米酶悬浮液与过氧化氢溶液反应温度为70℃。The only difference between the hydrogen peroxide detection method described in this example and Example 1 is: in step (2), the reaction temperature of the C-SPIO nanozyme suspension obtained in step (1) and the hydrogen peroxide solution is 70 °C °C.
本实施例所述葡萄糖的检测方法,与实施例1的唯一区别为:步骤(2)中,将C-SPIO纳米酶和步骤(1)得到的混合溶液A,添加到醋酸缓冲盐溶液中,反应温度为70℃。The only difference between the glucose detection method described in this example and Example 1 is: in step (2), the C-SPIO nanozyme and the mixed solution A obtained in step (1) are added to the acetate buffered saline solution, The reaction temperature was 70°C.
实施例9Example 9
本发明所述过氧化氢或葡萄糖的检测方法的实施例,具体如下:The embodiment of the detection method of hydrogen peroxide or glucose of the present invention is as follows:
SPIO纳米酶团簇体的制备方法,包括如下步骤:The preparation method of SPIO nanozyme cluster includes the following steps:
(1)在氩气保护下,在微波反应罐中加入2mmol乙酰丙酮铁、10mmol 1,2-十二烷二醇、6mmol油酸、6mmol油胺、20mL苄醚、3mLN-甲基吡咯烷酮,充分溶解并混合,得到混合物;(1) under argon protection, add 2mmol iron acetylacetonate,
(2)将步骤(1)中的混合物于微波水热合成仪中设置程序,先在140℃下反应30min,再在180℃下反应120min;(2) program the mixture in step (1) in a microwave hydrothermal synthesizer, first react at 140°C for 30min, and then react at 180°C for 120min;
(3)反应结束后,冷却至室温,加入80mL无水乙醇,8000rpm离心10min,收集沉淀,得到SPIO纳米颗粒;(3) after the reaction finishes, cool to room temperature, add 80 mL of absolute ethanol, centrifuge at 8000 rpm for 10 min, collect the precipitate, and obtain SPIO nanoparticles;
(4)取2.0mg聚乙烯亚胺、4.0mg SPIO纳米颗粒溶于400μL氯仿中,制得溶液a;(4) Dissolve 2.0 mg of polyethyleneimine and 4.0 mg of SPIO nanoparticles in 400 μL of chloroform to obtain solution a;
(5)在超声条件下将溶液a逐滴加入6mL超纯水中,超声时间30s,制得溶液b;(5) Add solution a dropwise to 6 mL of ultrapure water under ultrasonic conditions for 30s of ultrasonic time to prepare solution b;
(6)将溶液b以100rpm转速摇动24h,并用旋转蒸发除去氯仿,制得PEI-SPIO纳米酶团簇体;(6) shake solution b at 100rpm for 24h, and remove chloroform by rotary evaporation to obtain PEI-SPIO nanozyme clusters;
本实施例所述过氧化氢的检测方法,与实施例1的唯一区别为:将C-SPIO纳米酶替换为PEI-SPIO纳米酶团簇体。The only difference between the hydrogen peroxide detection method described in this example and Example 1 is that the C-SPIO nanozyme is replaced by a PEI-SPIO nanozyme cluster.
本实施例所述葡萄糖的检测方法,与实施例1的唯一区别为:将C-SPIO纳米酶替换为PEI-SPIO纳米酶团簇体。The only difference between the glucose detection method described in this example and Example 1 is that the C-SPIO nanozyme is replaced with a PEI-SPIO nanozyme cluster.
图3为实施例9所制备的SPIO纳米酶团簇体的透射电镜图,图4为实施例9所制备的SPIO纳米酶团簇体的粒径分布图,从图3和图4可以看出,SPIO纳米酶团簇体分散性较好,且粒径分布均匀,粒径分布于50-80之间。Figure 3 is a transmission electron microscope image of the SPIO nanozyme cluster prepared in Example 9, and Figure 4 is a particle size distribution diagram of the SPIO nanozyme cluster prepared in Example 9. It can be seen from Figures 3 and 4 , SPIO nano-enzyme clusters have good dispersibility, and the particle size distribution is uniform, and the particle size distribution is between 50-80.
实施例10Example 10
本发明所述过氧化氢或葡萄糖的检测方法的实施例,具体如下:The embodiment of the detection method of hydrogen peroxide or glucose of the present invention is as follows:
SPIO纳米酶团簇体的制备方法,包括如下步骤:The preparation method of SPIO nanozyme cluster includes the following steps:
(1)SPIO纳米颗粒的制备方法与实施例9中SPIO纳米颗粒的制备方法相同;(1) the preparation method of SPIO nanoparticles is identical with the preparation method of SPIO nanoparticles in Example 9;
(2)取2.0mg聚环氧乙烷-聚环氧丙烷-聚环氧乙烷三嵌段共聚物(P123)、4.0mgSPIO纳米颗粒溶于400μL氯仿中,制得溶液a;(2) Dissolve 2.0 mg of polyethylene oxide-polypropylene oxide-polyethylene oxide triblock copolymer (P123) and 4.0 mg of SPIO nanoparticles in 400 μL of chloroform to obtain solution a;
(3)在超声条件下将溶液a逐滴加入6mL超纯水中,超声时间2min,制得溶液b;(3) Under ultrasonic conditions, solution a was added dropwise to 6 mL of ultrapure water, and the ultrasonic time was 2 min to obtain solution b;
(4)将溶液b以100rpm转速摇动24h,并用旋转蒸发除去氯仿,制得P123-SPIO纳米酶团簇体。(4) The solution b was shaken at 100 rpm for 24 h, and the chloroform was removed by rotary evaporation to obtain the P123-SPIO nanozyme cluster.
本实施例所述过氧化氢的检测方法,与实施例1的唯一区别为:将C-SPIO纳米酶替换为P123-SPIO纳米酶团簇体。The only difference between the hydrogen peroxide detection method described in this example and Example 1 is that the C-SPIO nanozyme is replaced by a P123-SPIO nanozyme cluster.
本实施例所述葡萄糖的检测方法,与实施例1的唯一区别为:将C-SPIO纳米酶替换为P123-SPIO纳米酶团簇体。The only difference between the glucose detection method described in this example and Example 1 is that the C-SPIO nanozyme is replaced by a P123-SPIO nanozyme cluster.
实施例11Example 11
本发明所述过氧化氢或葡萄糖的检测方法的实施例,具体如下:The embodiment of the detection method of hydrogen peroxide or glucose of the present invention is as follows:
SPIO纳米酶团簇体的制备方法,包括如下步骤:The preparation method of SPIO nanozyme cluster includes the following steps:
(1)SPIO纳米颗粒的制备方法与实施例9中SPIO纳米颗粒的制备方法相同;(1) the preparation method of SPIO nanoparticles is identical with the preparation method of SPIO nanoparticles in Example 9;
(2)取2.0mg聚氧乙烯-聚氧丙烯醚嵌段共聚物(F127)、4.0mg SPIO纳米颗粒溶于400μL氯仿中,制得溶液a;(2) Dissolve 2.0 mg of polyoxyethylene-polyoxypropylene ether block copolymer (F127) and 4.0 mg of SPIO nanoparticles in 400 μL of chloroform to obtain solution a;
(3)在超声条件下将溶液a逐滴加入6mL超纯水中,超声时间2min,制得溶液b;(3) Under ultrasonic conditions, solution a was added dropwise to 6 mL of ultrapure water, and the ultrasonic time was 2 min to obtain solution b;
(4)将溶液b以100rpm转速摇动24h,并用旋转蒸发除去氯仿,制得F127-SPIO纳米酶团簇体。(4) The solution b was shaken at 100 rpm for 24 h, and the chloroform was removed by rotary evaporation to obtain F127-SPIO nanozyme clusters.
本实施例所述过氧化氢的检测方法,与实施例1的唯一区别为:将C-SPIO纳米酶替换为F127-SPIO纳米酶团簇体。The only difference between the hydrogen peroxide detection method described in this example and Example 1 is that the C-SPIO nanozyme is replaced by the F127-SPIO nanozyme cluster.
本实施例所述葡萄糖的检测方法,与实施例1的唯一区别为:将C-SPIO纳米酶替换为F127-SPIO纳米酶团簇体。The only difference between the glucose detection method described in this example and Example 1 is that the C-SPIO nanozyme is replaced by the F127-SPIO nanozyme cluster.
实施例12Example 12
本发明所述过氧化氢或葡萄糖的检测方法的实施例,具体如下:The embodiment of the detection method of hydrogen peroxide or glucose of the present invention is as follows:
SPIO纳米酶团簇体的制备方法,包括如下步骤:The preparation method of SPIO nanozyme cluster includes the following steps:
(1)SPIO纳米颗粒的制备方法与实施例9中SPIO纳米颗粒的制备方法相同;(1) the preparation method of SPIO nanoparticles is identical with the preparation method of SPIO nanoparticles in Example 9;
(2)取2.0mg聚乙二醇-聚乳酸共聚物(PEG-PLA)、4.0mg SPIO纳米颗粒溶于400μL氯仿中,制得溶液a;(2) Dissolve 2.0 mg of polyethylene glycol-polylactic acid copolymer (PEG-PLA) and 4.0 mg of SPIO nanoparticles in 400 μL of chloroform to prepare solution a;
(3)在超声条件下将溶液a逐滴加入6mL超纯水中,超声时间2min,制得溶液b;(3) Under ultrasonic conditions, solution a was added dropwise to 6 mL of ultrapure water, and the ultrasonic time was 2 min to obtain solution b;
(4)将溶液b以100rpm转速摇动24h,并用旋转蒸发除去氯仿,制得PEG-PLA纳米酶团簇体。(4) The solution b was shaken at 100 rpm for 24 h, and chloroform was removed by rotary evaporation to prepare PEG-PLA nanozyme clusters.
本实施例所述过氧化氢的检测方法,与实施例1的唯一区别为:将C-SPIO纳米酶替换为PEG-PLA纳米酶团簇体。The only difference between the hydrogen peroxide detection method described in this example and Example 1 is that the C-SPIO nanozyme is replaced by a PEG-PLA nanozyme cluster.
本实施例所述葡萄糖的检测方法,与实施例1的唯一区别为:将C-SPIO纳米酶替换为PEG-PLA纳米酶团簇体。The only difference between the glucose detection method described in this example and Example 1 is that the C-SPIO nanozyme is replaced with a PEG-PLA nanozyme cluster.
实施例13Example 13
本发明所述过氧化氢或葡萄糖的检测方法的实施例,具体如下:The embodiment of the detection method of hydrogen peroxide or glucose of the present invention is as follows:
本实施PEI-SPIO纳米酶团簇体的制备方法与实施例9所述PEI-SPIO纳米酶团簇体的制备方法相同。The preparation method of the PEI-SPIO nanozyme cluster in this embodiment is the same as the preparation method of the PEI-SPIO nanozyme cluster described in Example 9.
本实施例所述过氧化氢的检测方法,与实施例9的唯一区别为:步骤(1)中,所述醋酸缓冲盐溶液的pH值为2.5。The only difference between the hydrogen peroxide detection method described in this embodiment and Embodiment 9 is that in step (1), the pH value of the acetate buffered saline solution is 2.5.
本实施例所述葡萄糖的检测方法,与实施例9的唯一区别为:步骤(2)中,所述醋酸缓冲盐溶液的pH值为2.5。The only difference between the method for detecting glucose in this example and Example 9 is that in step (2), the pH value of the acetate buffered saline solution is 2.5.
实施例14Example 14
本发明所述过氧化氢或葡萄糖的检测方法的实施例,具体如下:The embodiment of the detection method of hydrogen peroxide or glucose of the present invention is as follows:
本实施例所述PEI-SPIO纳米酶团簇体的制备方法与实施例9所述PEI-SPIO纳米酶团簇体的制备方法相同。The preparation method of the PEI-SPIO nanozyme cluster described in this example is the same as the preparation method of the PEI-SPIO nanozyme cluster described in Example 9.
本实施例所述过氧化氢的检测方法,与实施例9的唯一区别为:步骤(1)中,所述醋酸缓冲盐溶液的pH值为3.5。The only difference between the hydrogen peroxide detection method described in this example and Example 9 is that in step (1), the pH value of the acetate buffered saline solution is 3.5.
本实施例所述葡萄糖的检测方法,与实施例9的唯一区别为:步骤(2)中,所述醋酸缓冲盐溶液的pH值为3.5。The only difference between the method for detecting glucose in this example and Example 9 is that in step (2), the pH value of the acetate buffered saline solution is 3.5.
实施例15Example 15
本发明所述过氧化氢或葡萄糖的检测方法的实施例,具体如下:The embodiment of the detection method of hydrogen peroxide or glucose of the present invention is as follows:
本实施例PEI-SPIO纳米酶团簇体的制备方法与实施例9所述PEI-SPIO纳米酶团簇体的制备方法相同。The preparation method of the PEI-SPIO nanozyme cluster in this example is the same as the preparation method of the PEI-SPIO nanozyme cluster described in Example 9.
本实施例所述过氧化氢的检测方法,与实施例9的唯一区别为:步骤(1)中,所述醋酸缓冲盐溶液的pH值为4.5。The only difference between the hydrogen peroxide detection method described in this embodiment and Embodiment 9 is that in step (1), the pH value of the acetate buffered saline solution is 4.5.
本实施例所述葡萄糖的检测方法,与实施例9的唯一区别为:步骤(2)中,所述醋酸缓冲盐溶液的pH值为4.5。The only difference between the method for detecting glucose in this example and Example 9 is that in step (2), the pH value of the acetate buffered saline solution is 4.5.
试验例1Test Example 1
本试验例为测试所述C-SPIO纳米酶、SPIO纳米酶团簇体用于检测过氧化氢的方法的最适催化pH值,使用紫外-可见分光光度计分别检测pH值为2.5~8.0范围内检测系统内,C-SPIO纳米酶、SPIO纳米酶团簇体对过氧化氢的催化效果。This test example is to test the optimal catalytic pH value of the C-SPIO nanozyme and the SPIO nanozyme cluster for the detection of hydrogen peroxide. The UV-Vis spectrophotometer is used to detect the pH value in the range of 2.5 to 8.0. In the internal detection system, the catalytic effect of C-SPIO nanozyme and SPIO nanozyme cluster on hydrogen peroxide.
测试方法:将25μL、100mM的过氧化氢溶液,10μL、1.0mM TMB溶液和25μL铁浓度为0.5mM的C-SPIO纳米酶溶液或SPIO纳米酶团簇体混合,通过添加0.1M不同pH值的醋酸-醋酸钠缓冲液反应在40℃下10min;通过添加缓冲液将反应总体积控制在500μL;使用紫外-可见分光光度计分别监测柠檬酸-柠檬酸钠缓冲液的pH值为2、3、4、5、6、7、8和9下对过氧化氢的催化效果。Test method: Mix 25μL, 100mM hydrogen peroxide solution, 10μL, 1.0mM TMB solution and 25μL C-SPIO nanozyme solution or SPIO nanozyme cluster with iron concentration of 0.5mM, by adding 0.1M of different pH values. Acetic acid-sodium acetate buffer was reacted at 40°C for 10 min; the total volume of the reaction was controlled at 500 μL by adding buffer; the pH values of citric acid-sodium citrate buffer were monitored by UV-Vis spectrophotometer respectively at 2, 3, Catalytic effect on hydrogen peroxide at 4, 5, 6, 7, 8 and 9.
图5(A)为C-SPIO纳米酶在不同pH条件下的对过氧化氢的催化活性图、图5(B)为SPIO纳米酶团簇体在不同pH条件下的对过氧化氢的催化活性图;从图中可以看出,C-SPIO纳米酶在较宽的pH范围(pH=2-5)中对过氧化氢具有较好的催化活性,并在pH=4.0时具有最大活性。SPIO纳米酶团簇体在pH=2.5-4中对过氧化氢具有较好的催化活性,并在pH=3.5时具有最大活性。该结果表明,C-SPIO纳米酶在pH=2-5,SPIO纳米酶团簇体在pH=2.5-4范围内均可以与H2O2反应,并形成·OH。Figure 5(A) shows the catalytic activity of C-SPIO nanozymes for hydrogen peroxide under different pH conditions, and Figure 5(B) shows the catalysis of SPIO nanozyme clusters for hydrogen peroxide under different pH conditions Activity graph; it can be seen from the graph that the C-SPIO nanozyme has good catalytic activity towards hydrogen peroxide in a wide pH range (pH=2-5), and has the maximum activity at pH=4.0. The SPIO nanozyme clusters have good catalytic activity for hydrogen peroxide at pH=2.5-4, and have the maximum activity at pH=3.5. The results show that the C-SPIO nanozyme can react with H 2
试验例2Test Example 2
本试验例为测试所述C-SPIO纳米酶、SPIO纳米酶团簇体用于检测过氧化氢的方法的最适催化温度,使用紫外-可见分光光度计分别检测pH值为2.5~8.0范围内检测系统内,C-SPIO纳米酶、SPIO纳米酶团簇体对过氧化氢的催化效果。This test example is to test the optimal catalytic temperature of the C-SPIO nanozyme and the SPIO nanozyme cluster for the detection of hydrogen peroxide, using a UV-Vis spectrophotometer to detect pH values in the range of 2.5 to 8.0. In the detection system, the catalytic effect of C-SPIO nanozyme and SPIO nanozyme cluster on hydrogen peroxide.
测试方法:将25μL、100mM的过氧化氢溶液,10μL、1.0mM TMB溶液和25μL铁浓度为0.5mM的C-SPIO纳米酶溶液或SPIO纳米酶团簇体溶液混合,通过添加0.1M、pH值为4的缓冲液反应在不同温度下催化反应10min;通过添加缓冲液将反应总体积控制在500μL;使用紫外-可见分光光度计分别监测温度分别为20℃、30℃、40℃、50℃、60℃和70℃下对过氧化氢的催化效果。Test method: Mix 25μL, 100mM hydrogen peroxide solution, 10μL, 1.0mM TMB solution and 25μL C-SPIO nanozyme solution or SPIO nanozyme cluster solution with iron concentration of 0.5mM, by adding 0.1M, pH value The buffer reaction of 4 was catalyzed for 10 min at different temperatures; the total volume of the reaction was controlled at 500 μL by adding buffer; the temperature was monitored by a UV-Vis spectrophotometer at 20 °C, 30 °C, 40 °C, 50 °C, Catalytic effect on hydrogen peroxide at 60°C and 70°C.
图6(A)为C-SPIO纳米酶在不同催化反应温度下的对过氧化氢的催化活性图、图6(B)为SPIO纳米酶团簇体在不同催化反应下的对过氧化氢的催化活性图;从图中可以看出,C-SPIO纳米酶在较宽的催化温度范围(30-70℃)中对过氧化氢具有较好的催化活性,并在50℃时具有最大活性。SPIO纳米酶团簇体在催化温度为40-50℃时,对过氧化氢具有较好的催化活性,并在50℃时具有最大活性。该结果表明,C-SPIO纳米酶在催化温度范围为30-70℃,SPIO纳米酶团簇体在催化温度范围为40-50℃范围内均可以与H2O2反应,并形成·OH。Figure 6(A) shows the catalytic activity of C-SPIO nanozymes for hydrogen peroxide at different catalytic reaction temperatures, and Figure 6(B) shows the catalytic activity of SPIO nanozyme clusters for hydrogen peroxide under different catalytic reactions. Catalytic activity graph; it can be seen from the graph that the C-SPIO nanozyme has good catalytic activity for hydrogen peroxide in a wide catalytic temperature range (30-70 °C), and has the maximum activity at 50 °C. The SPIO nanozyme clusters have good catalytic activity for hydrogen peroxide when the catalytic temperature is 40-50 °C, and the maximum activity is at 50 °C. The results show that C-SPIO nanozymes can react with H 2 O 2 and form OH in the catalytic temperature range of 30-70 °C, and the SPIO nano-enzyme clusters can react with H 2
试验例3Test Example 3
本试验例为测试C-SPIO纳米酶及SPIO纳米酶团簇体对显色底物和过氧化氢的亲和力。This test example is to test the affinity of C-SPIO nanozyme and SPIO nanozyme cluster to chromogenic substrate and hydrogen peroxide.
测试方法:testing method:
(1)在比色皿中加入pH为4.0的醋酸-醋酸钠缓冲溶液,10μL、1mM TMB,25μL不同浓度的过氧化氢溶液,25μL、0.5mMC-SPIO纳米酶溶液或SPIO纳米酶团簇体溶液,通过醋酸-醋酸钠缓冲溶液将总体积控制在500μL,其中,C-SPIO纳米酶反应体系中过氧化氢溶液的浓度分别为0.5、3、5、10、15、20和30mM;SPIO纳米酶团簇体反应体系中过氧化氢溶液的浓度分别为1、2、3、5、10、15、30mM;使用时间扫描模式,每隔15秒读取一次波长652nm处下吸光度值。(1) Add acetic acid-sodium acetate buffer solution with pH 4.0, 10 μL, 1 mM TMB, 25 μL hydrogen peroxide solution of different concentrations, 25 μL, 0.5 mMC-SPIO nanozyme solution or SPIO nanozyme cluster into the cuvette The total volume was controlled at 500 μL by acetic acid-sodium acetate buffer solution, wherein the concentration of hydrogen peroxide solution in the C-SPIO nanozyme reaction system was 0.5, 3, 5, 10, 15, 20 and 30 mM, respectively; The concentrations of the hydrogen peroxide solution in the enzyme cluster reaction system were 1, 2, 3, 5, 10, 15, and 30 mM, respectively; using the time scan mode, the absorbance at a wavelength of 652 nm was read every 15 seconds.
(2)在比色皿中加入含10μL不同浓度的TMB,25μL、10mM的过氧化氢,25μL、0.5mMC-SPIO纳米酶溶液或SPIO纳米酶团簇体溶液,通过添加浓度为0.1M,pH为4.0的醋酸-醋酸钠缓冲溶液将控制总体积在500μL;其中,C-SPIO纳米酶反应体系中TMB的浓度分别为0.25、0.5、1.2、2.4、3.2、5mM;SPIO纳米酶团簇体反应体系中TMB的浓度分别为0.4、0.8、1.2、1.6、2.4、3.2、4mM;使用时间扫描模式,每隔15秒读取一次波长652nm处下吸光度值。(2) Add 10 μL of different concentrations of TMB, 25 μL, 10 mM hydrogen peroxide, 25 μL, 0.5 mMC-SPIO nanozyme solution or SPIO nanozyme cluster solution into the cuvette, by adding a concentration of 0.1 M, pH The acetic acid-sodium acetate buffer solution of 4.0 will control the total volume at 500 μL; among them, the concentrations of TMB in the C-SPIO nanozyme reaction system are 0.25, 0.5, 1.2, 2.4, 3.2, and 5 mM, respectively; the SPIO nanozyme cluster reaction The concentrations of TMB in the system were 0.4, 0.8, 1.2, 1.6, 2.4, 3.2, and 4 mM, respectively; the time scanning mode was used, and the absorbance value at a wavelength of 652 nm was read every 15 seconds.
使用UV-2600紫外-可见分光光度计监测吸光度的变化。利用Lineweaver-Burk曲线计算Michaelis-Menten常数:1/v=Km/Vmax(1/[S]+1/Km)。其中v是初始浓度,Vmax是最大反应速率,[S]是底物浓度。Km是Michelis-Menten常数,是酶对其底物亲和力的指示,Km值越小,说明酶对底物越亲和。Changes in absorbance were monitored using a UV-2600 UV-Vis spectrophotometer. The Michaelis-Menten constant was calculated using the Lineweaver-Burk curve: 1/v= Km / Vmax (1/[S]+1/ Km ). where v is the initial concentration, Vmax is the maximum reaction rate, and [S] is the substrate concentration. K m is the Michelis-Menten constant, which is an indicator of the affinity of the enzyme to its substrate. The smaller the K m value, the more affinity the enzyme has for the substrate.
图7(A)为C-SPIO纳米酶在不同过氧化氢浓度下模拟过氧化物酶的稳态动力学;图7(B)为C-SPIO纳米酶在不同TMB浓度下模拟过氧化物酶的稳态动力学;从图中可以看出,C-SPIO纳米酶对过氧化氢的Vmax=0.716,C-SPIO纳米酶对TMB的Vmax=0.029;利用Lineweaver-Burk曲线计算Michaelis-Menten常数,分别得到C-SPIO纳米酶对过氧化氢的Km为3.70mM,与天然的辣根过氧化物酶(HRP)对过氧化氢的Km=3.70mM相同,对TMB的Km为0.67mM,高于天然的辣根过氧化物酶(HRP)对TMB的Km=0.43mM。Figure 7(A) shows the steady-state kinetics of C-SPIO nanozyme simulating peroxidase at different hydrogen peroxide concentrations; Figure 7(B) shows C-SPIO nanozyme simulating peroxidase at different TMB concentrations It can be seen from the figure that the Vmax of C-SPIO nanozyme to hydrogen peroxide is 0.716, and the Vmax of C-SPIO nanozyme to TMB is 0.029; Michaelis-Menten was calculated using Lineweaver-Burk curve constant, respectively, the Km of C-SPIO nanozyme to hydrogen peroxide is 3.70mM, which is the same as the Km=3.70mM of natural horseradish peroxidase (HRP) to hydrogen peroxide, and the Km of TMB is 0.67mM, Km = 0.43 mM higher than native horseradish peroxidase (HRP) for TMB.
图8(A)为SPIO纳米酶团簇体在不同过氧化氢浓度下模拟过氧化物酶的稳态动力学;图8(B)为SPIO纳米酶团簇体在不同TMB浓度下模拟过氧化物酶的稳态动力学;从图中可以看出,SPIO纳米酶团簇体对过氧化氢的Vmax=1.9565,SPIO纳米酶团簇体对TMB的Vmax=1.1285;利用Lineweaver-Burk曲线计算Michaelis-Menten常数,分别得到SPIO纳米酶团簇体对过氧化氢的Km为2.97mM,低于天然的辣根过氧化物酶(HRP)的Km=3.70mM,对TMB的Km为2.86mM,高于天然的辣根过氧化物酶(HRP)的Km=0.43mM。Figure 8(A) shows the steady-state kinetics of SPIO nanozyme clusters simulating peroxidase at different hydrogen peroxide concentrations; Figure 8(B) shows SPIO nanozyme clusters simulating peroxidase at different TMB concentrations The steady-state kinetics of the enzyme; it can be seen from the figure that the SPIO nanozyme cluster has Vmax = 1.9565 for hydrogen peroxide, and the SPIO nanozyme cluster has a Vmax = 1.1285 for TMB; using Lineweaver-Burk curve The Michaelis-Menten constant was calculated, and the Km of the SPIO nanozyme cluster for hydrogen peroxide was 2.97 mM, which was lower than the Km of natural horseradish peroxidase (HRP) = 3.70 mM, and the Km of TMB was 2.86 mM. , higher than the natural horseradish peroxidase (HRP) Km=0.43mM.
试验例4Test Example 4
本试验例为测试C-SPIO纳米酶、SPIO纳米酶团簇体分别与过氧化氢催化反应前后铁浓度与磁共振信号的关系。This test example is to test the relationship between the iron concentration and the magnetic resonance signal before and after the catalytic reaction of C-SPIO nanozyme and SPIO nanozyme cluster with hydrogen peroxide, respectively.
测试方法:testing method:
(1)将不同浓度的C-SPIO纳米酶与SPIO纳米酶团簇体分别加入到pH为4的醋酸-醋酸钠缓冲溶液中,使用磁共振扫描仪测量其T1和T2弛豫时间;所述C-SPIO纳米酶或SPIO纳米酶团簇体中铁的浓度为0.1mM、0.2mM、0.3mM、0.4mM、0.5mM、0.6mM。(1) Different concentrations of C-SPIO nanozyme and SPIO nanozyme cluster were added to acetic acid-sodium acetate buffer solution with
(2)将不同浓度的C-SPIO纳米酶与SPIO纳米酶团簇体分别加入到pH为4的醋酸-醋酸钠缓冲溶液中,并加入100μM的过氧化氢,使反应总体积为500μL,在50℃下反应10min,使用磁共振扫描仪分别测量其T1和T2弛豫时间;所述C-SPIO纳米酶或SPIO纳米酶团簇体中铁的浓度为0.1mM、0.2mM、0.3mM、0.4mM、0.5mM、0.6mM。(2) Different concentrations of C-SPIO nanozyme and SPIO nanozyme cluster were added to acetic acid-sodium acetate buffer solution with
图9为本发明C-SPIO纳米酶在加入过氧化氢前和与过氧化氢催化反应后,铁浓度与1/T1或1/T2的线性拟合图。从图中可以看出,1/T2与Fe浓度的斜率为弛豫率r2,检测体系中加入过氧化氢后,弛豫率r2降低,说明C-SPIO纳米酶与过氧化氢反应后产生的羟基自由基会对周围水分子中氢原子核质子的弛豫时间产生影响,导致弛豫率降低。9 is a linear fitting diagram of iron concentration and 1/T 1 or 1/T 2 of the C-SPIO nanozyme of the present invention before adding hydrogen peroxide and after catalyzing the reaction with hydrogen peroxide. It can be seen from the figure that the slope of 1/T 2 and Fe concentration is the relaxation rate r 2 . After adding hydrogen peroxide to the detection system, the relaxation rate r 2 decreases, indicating that the C-SPIO nanozyme reacts with hydrogen peroxide The resulting hydroxyl radicals will affect the relaxation time of the protons of hydrogen nuclei in the surrounding water molecules, resulting in a decrease in the relaxation rate.
图10为本发明SPIO纳米酶团簇体在加入过氧化氢前和与过氧化氢催化反应后,铁浓度与1/T1或1/T2的线性拟合图。从图中可以看出,1/T2与Fe浓度的斜率为弛豫率r2,检测体系中加入过氧化氢后,弛豫率r2降低,说明SPIO纳米酶团簇体与过氧化氢反应后产生的羟基自由基会对周围水分子中氢原子核质子的弛豫时间产生影响,导致弛豫率降低。Figure 10 is a linear fitting diagram of iron concentration and 1/T 1 or 1/T 2 of the SPIO nanozyme cluster of the present invention before adding hydrogen peroxide and after the catalytic reaction with hydrogen peroxide. It can be seen from the figure that the slope of 1/T 2 and Fe concentration is the relaxation rate r 2 . After adding hydrogen peroxide to the detection system, the relaxation rate r 2 decreases, indicating that the SPIO nanoenzyme clusters are closely related to hydrogen peroxide. The hydroxyl radicals generated after the reaction will affect the relaxation time of hydrogen nuclei protons in the surrounding water molecules, resulting in a decrease in the relaxation rate.
试验例5Test Example 5
本试验例为测试C-SPIO纳米酶、SPIO纳米酶团簇体检测过氧化氢、葡萄糖的检出限。This test example is to test the detection limit of C-SPIO nanozyme and SPIO nanozyme cluster to detect hydrogen peroxide and glucose.
根据检出限公式LOD=3S/M计算得到C-SPIO纳米酶或SPIO纳米酶团簇体对目标物的检出限。According to the detection limit formula LOD=3S/M, the detection limit of C-SPIO nanozyme or SPIO nanozyme cluster to the target was calculated.
其中S是空白样品的标准偏差,M是T2弛豫时间与目标物浓度线性曲线的斜率;所述目标物为过氧化氢或葡萄糖;本发明中C-SPIO纳米酶检测体系检测过氧化氢的S=0.2811;C-SPIO纳米酶检测体系检测葡萄糖的S=0.1471;SPIO纳米酶团簇体检测体系检测过氧化氢的S=0.5821;C-SPIO纳米酶检测体系检测葡萄糖的S=0.5940。Wherein S is the standard deviation of the blank sample, M is the slope of the linear curve of the T2 relaxation time and the concentration of the target substance ; the target substance is hydrogen peroxide or glucose; the C-SPIO nano-enzyme detection system in the present invention detects hydrogen peroxide The S=0.2811 of the C-SPIO nano-enzyme detection system for glucose detection; the S=0.5821 for the detection of hydrogen peroxide by the SPIO nano-enzyme cluster detection system; the S=0.5940 for the C-SPIO nano-enzyme detection system to detect glucose.
表1实施例1-8 C-SPIO纳米酶检测体系检测过氧化氢的检出限Table 1 Embodiment 1-8 Detection limit of hydrogen peroxide detected by C-SPIO nano-enzyme detection system
表2实施例1-8 C-SPIO纳米酶检测体系检测葡萄糖的检出限Table 2 Embodiment 1-8 The detection limit of glucose detected by C-SPIO nano-enzyme detection system
表3实施例9-15 SPIO纳米酶团簇体检测体系检测过氧化氢的检出限Table 3 Embodiment 9-15 Detection limit of hydrogen peroxide detected by SPIO nanozyme cluster detection system
表4实施例9-15 SPIO纳米酶团簇体检测体系检测葡萄糖的检出限Table 4 Embodiment 9-15 Detection limit of glucose detected by SPIO nanozyme cluster detection system
图11为本发明实施例1的过氧化氢浓度与C-SPIO纳米酶或SPIO纳米酶团簇体在缓冲液中催化反应的T2弛豫时间的线性拟合图。FIG. 11 is a linear fitting diagram of the hydrogen peroxide concentration and the T 2 relaxation time of the reaction catalyzed by C-SPIO nanozyme or SPIO nanozyme cluster in buffer in Example 1 of the present invention.
图12为本发明实施例9的葡萄糖浓度与C-SPIO纳米酶或SPIO纳米酶团簇体在缓冲液中催化反应的T2弛豫时间的线性拟合图。FIG. 12 is a linear fitting diagram of glucose concentration and T 2 relaxation time of the reaction catalyzed by C-SPIO nanozyme or SPIO nanozyme cluster in buffer solution in Example 9 of the present invention.
从表1-4和图11、图12中可以看出,C-SPIO纳米酶在pH范围为pH=2-5,C-SPIO纳米酶对过氧化氢的检出限低至3.32μM,远远低于美国FDA规定的过氧化氢许可水平15μM;而且C-SPIO纳米酶在pH=2-5时,对葡萄糖的检出限也较低为2.81μM。SPIO纳米酶团簇体在pH范围为pH=2.5-4.5,SPIO纳米酶团簇体对过氧化氢的检出限低至8.78μM,远远低于美国FDA规定的过氧化氢许可水平15μM;而且SPIO纳米酶团簇体在pH=2.5-4.5时,对葡萄糖的检出限也较低为13.25μM。从上述结果可以看出,C-SPIO纳米酶对过氧化氢或葡萄糖的检出限明显低于SPIO纳米酶团簇体,是因为C-SPIO纳米酶粒径较小,其酶催化活性较高,所以其对过氧化氢与葡萄糖的检出限更低。It can be seen from Tables 1-4 and Figures 11 and 12 that the C-SPIO nanozyme has a pH range of pH=2-5, and the detection limit of C-SPIO nanozyme for hydrogen peroxide is as low as 3.32 μM. It is far lower than the permitted level of hydrogen peroxide regulated by the US FDA of 15 μM; and the detection limit of C-SPIO nanozyme for glucose is also lower at 2.81 μM at pH=2-5. The pH range of SPIO nanozyme clusters is pH=2.5-4.5, and the detection limit of SPIO nanozyme clusters for hydrogen peroxide is as low as 8.78μM, which is far lower than the permitted level of hydrogen peroxide 15μM stipulated by the US FDA; Moreover, the detection limit of SPIO nanozyme cluster for glucose was also lower at 13.25μM when pH=2.5-4.5. From the above results, it can be seen that the detection limit of C-SPIO nanozyme for hydrogen peroxide or glucose is significantly lower than that of the SPIO nanozyme cluster, because the particle size of C-SPIO nanozyme is smaller and its catalytic activity is higher. , so its detection limit for hydrogen peroxide and glucose is lower.
最后所应当说明的是,以上实施例仅用以说明本发明的技术方案而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。Finally, it should be noted that the above embodiments are only used to illustrate the technical solutions of the present invention and not to limit the protection scope of the present invention. Although the present invention is described in detail with reference to the preferred embodiments, those of ordinary skill in the art should understand that, The technical solutions of the present invention may be modified or equivalently replaced without departing from the spirit and scope of the technical solutions of the present invention.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110507010.4A CN113281367B (en) | 2021-05-10 | 2021-05-10 | Method for detecting hydrogen peroxide or glucose |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110507010.4A CN113281367B (en) | 2021-05-10 | 2021-05-10 | Method for detecting hydrogen peroxide or glucose |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113281367A CN113281367A (en) | 2021-08-20 |
CN113281367B true CN113281367B (en) | 2022-05-06 |
Family
ID=77278524
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110507010.4A Active CN113281367B (en) | 2021-05-10 | 2021-05-10 | Method for detecting hydrogen peroxide or glucose |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113281367B (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101387606A (en) * | 2008-08-01 | 2009-03-18 | 中国科学院长春应用化学研究所 | Method for detecting hydrogen peroxide or glucose based on ferroferric oxide magnetic nanoparticle mimic enzyme |
CN104297279A (en) * | 2014-10-15 | 2015-01-21 | 东华大学 | Method for detecting trivalent chromic ions by using gamma-polyglutamic acid stabilized triiron tetraoxide nano grains |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CZ301067B6 (en) * | 2006-02-24 | 2009-10-29 | Ústav makromolekulární chemie AV CR | Iron oxide-based superparamagnetic nanoparticles with modified surface, process of their preparation and use |
EP2561072A4 (en) * | 2010-04-20 | 2016-04-06 | Univ Florida | NANOZYMES, PROCESSES FOR PRODUCING NANOZYMES, AND METHODS OF USING NANOZYMES |
-
2021
- 2021-05-10 CN CN202110507010.4A patent/CN113281367B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101387606A (en) * | 2008-08-01 | 2009-03-18 | 中国科学院长春应用化学研究所 | Method for detecting hydrogen peroxide or glucose based on ferroferric oxide magnetic nanoparticle mimic enzyme |
CN104297279A (en) * | 2014-10-15 | 2015-01-21 | 东华大学 | Method for detecting trivalent chromic ions by using gamma-polyglutamic acid stabilized triiron tetraoxide nano grains |
Non-Patent Citations (1)
Title |
---|
Facile Synthesis of Iron Oxide Nanozymes forSynergistically Colorimetric and MagneticResonance Detection Strategy;Shihui Huang et al.;《Journal of Biomedical Nanotechnology》;20210401;第17卷(第4期);582-594 * |
Also Published As
Publication number | Publication date |
---|---|
CN113281367A (en) | 2021-08-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Hassanzadeh et al. | On paper synthesis of multifunctional CeO2 nanoparticles@ Fe-MOF composite as a multi-enzyme cascade platform for multiplex colorimetric detection of glucose, fructose, sucrose, and maltose | |
Wang et al. | A ratiometric fluorescence and colorimetric dual-mode assay for H2O2 and xanthine based on Fe, N co-doped carbon dots | |
Zhao et al. | An enzyme cascade-triggered fluorogenic and chromogenic reaction applied in enzyme activity assay and immunoassay | |
Wu et al. | Bifunctional gold nanoclusters enable ratiometric fluorescence nanosensing of hydrogen peroxide and glucose | |
Humphreys et al. | Galactose oxidase as a model for reactivity at a copper superoxide center | |
Shi et al. | Iron‐based nanozymes in disease diagnosis and treatment | |
CN108872217A (en) | The synthesis and application of iridium dioxide nano enzyme | |
Wang et al. | A ratiometric fluorescent biosensor for the sensitive determination of α-glucosidase activity and acarbose based on N-doped carbon dots | |
CN111203221A (en) | Cobalt ferrite nanocluster mimic enzyme, preparation method thereof and method for detecting sulfite by using cobalt ferrite nanocluster mimic enzyme | |
Sun et al. | Enhancing the Long‐Term Stability of a Polymer Dot Glucose Transducer by Using an Enzymatic Cascade Reaction System | |
CN112362646B (en) | A nanozyme-based glutathione sensor and its preparation method and application | |
CN108375573B (en) | A method for detecting glucose with polyethyleneimine-stabilized nano-platinum particles | |
Zeng et al. | Active nanozyme derived from biomineralized metal-organic frameworks for cholesterol detection | |
CN113281330B (en) | Method for detecting hydrogen peroxide or glucose | |
CN113281367B (en) | Method for detecting hydrogen peroxide or glucose | |
Suo et al. | β-Lactoglobulin amyloid fibril-templated gold nanoclusters for cellular multicolor fluorescence imaging and colorimetric blood glucose assay | |
Zhang et al. | Reactive oxygen species independent oxidase like nanozyme for dual-mode analysis of α-glucosidase | |
CN114989813B (en) | Preparation method of zeolite imidazole metal organic framework coated electrochemiluminescence probe, product and application thereof | |
Hu et al. | MOFs supported nanonetworks hybrid flower-like catalysts via supramolecular-mediated cascade self-assembly for sensitive sensing of H2O2 | |
CN112763484A (en) | Method for detecting glutathione and/or hydrogen peroxide based on colorimetric biosensor | |
CN109897884B (en) | A kind of bifunctional enzyme complex based on glucose oxidase/hollow manganese dioxide and preparation method | |
CN113304748B (en) | Copper nanocluster with multiple enzyme-like activities and preparation method and application thereof | |
CN113218941B (en) | An enzyme-based metal-polyphenol nanoscale cascade catalyzed microbial activity detection probe and its preparation method and application | |
Zhao et al. | Colorimetric determination of cholesterol based on the peroxidase-like activity of Cu-Salt-Fe nanozyme with multiple active sites | |
CN116237536A (en) | Hybrid osmium nanocluster with glucose oxidase and peroxidase activities |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |