CN113268853B - Antenna directional pattern optimization method and device and readable storage medium - Google Patents
Antenna directional pattern optimization method and device and readable storage medium Download PDFInfo
- Publication number
- CN113268853B CN113268853B CN202110401827.3A CN202110401827A CN113268853B CN 113268853 B CN113268853 B CN 113268853B CN 202110401827 A CN202110401827 A CN 202110401827A CN 113268853 B CN113268853 B CN 113268853B
- Authority
- CN
- China
- Prior art keywords
- array
- optimized
- initial
- excitation
- compressed sensing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 50
- 238000005457 optimization Methods 0.000 title claims abstract description 33
- 230000005284 excitation Effects 0.000 claims abstract description 58
- 238000010586 diagram Methods 0.000 claims abstract description 21
- 230000000694 effects Effects 0.000 claims abstract description 11
- 238000005070 sampling Methods 0.000 claims description 18
- 239000011159 matrix material Substances 0.000 claims description 10
- 238000004364 calculation method Methods 0.000 claims description 9
- 238000004590 computer program Methods 0.000 claims description 6
- 238000005259 measurement Methods 0.000 claims description 6
- 230000003190 augmentative effect Effects 0.000 claims description 4
- 238000012545 processing Methods 0.000 claims description 3
- 238000004422 calculation algorithm Methods 0.000 description 10
- 230000002068 genetic effect Effects 0.000 description 5
- 238000003491 array Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 1
- 230000003631 expected effect Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000002922 simulated annealing Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2111/00—Details relating to CAD techniques
- G06F2111/04—Constraint-based CAD
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computer Hardware Design (AREA)
- Evolutionary Computation (AREA)
- Geometry (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
Abstract
Description
技术领域technical field
本发明涉及领域,尤其涉及一种天线方向图优化方法、装置及可读存储介质。The present invention relates to the field, in particular to an antenna pattern optimization method, device and readable storage medium.
背景技术Background technique
天线阵列方向图综合优化是从天线方向图技术指标出发,在给定的约束条件下,通过一系列的优化方法,调整天线阵列的分布形状和其中的阵元空间分布情况和调整天线阵元的激励,来产生满足期望性能指标的波束方向图。阵列天线的应用范围广泛,对阵列方向图的指标要求也多种多样,例如峰值旁瓣电平,主瓣宽度,主瓣增益,平均旁瓣电平等等。为了解决这些需求,人们提出了多种优化方法,用于方向图综合优化。从调整阵元空间分布方面出发,对于非周期阵列的研究与应用距今已有五十余年的历史,早在上世纪六十年代,就有人提出了非均匀布阵的思想,早期的研究基本停留在数值公式求解,穷举法等简单方法上,此后随着计算机技术的发展,逐渐诞生了动态规划法,模拟退火算法和遗传算法等。其中,遗传算法运用到线阵和面阵的优化布阵中,通过将含有位置信息的变量编码为二进制串,来进行遗传操作,经过有限次迭代优化后,获得了两种阵列场景下具有最低的峰值旁瓣电平的阵列分布,但整个过程存在收敛速度慢的问题。近十几年来,提出了大量改进的遗传算法以及多种算法配合使用的混合算法来提高优化性能。而从调整阵元激励方面出发,有凸优化方法,精确响应控制法等等。但一般来说这些方法对于阵元位置和阵元激励均是独立优化的,如先利用遗传算法等对阵元位置进行优化,在优化效果不足的情况下再尝试使用激励优化的方法,导致虽然是针对同一个方向图指标进行优化却并没有在这些优化过程中同时建立与阵元位置、阵元激励之间的联系,因而优化效果不能达到最优。The comprehensive optimization of the antenna array pattern is based on the technical indicators of the antenna pattern. Under the given constraints, through a series of optimization methods, the distribution shape of the antenna array and the spatial distribution of the array elements and the adjustment of the antenna array elements are adjusted. excitation to produce a beam pattern that satisfies desired performance metrics. The array antenna has a wide range of applications, and the requirements for the array pattern are also various, such as peak side lobe level, main lobe width, main lobe gain, average side lobe level, and so on. To address these requirements, various optimization methods have been proposed for pattern synthesis optimization. From the perspective of adjusting the spatial distribution of array elements, the research and application of non-periodic arrays has a history of more than 50 years. As early as the 1960s, some people proposed the idea of non-uniform arrays. Early research Basically stay on simple methods such as numerical formula solution and exhaustive method. Since then, with the development of computer technology, dynamic programming method, simulated annealing algorithm and genetic algorithm have gradually been born. Among them, the genetic algorithm is applied to the optimized layout of the linear array and the area array, and the variable containing the position information is coded into a binary string to perform the genetic operation. After a limited number of iterative optimizations, the lowest Array distribution of the peak sidelobe level, but the whole process has the problem of slow convergence. In the past ten years, a large number of improved genetic algorithms and hybrid algorithms used in conjunction with multiple algorithms have been proposed to improve optimization performance. From the aspect of adjusting the array element excitation, there are convex optimization methods, precise response control methods and so on. But generally speaking, these methods are independently optimized for the array element position and array element excitation. For example, first use the genetic algorithm to optimize the array element position, and then try to use the excitation optimization method when the optimization effect is insufficient. Optimizing for the same pattern index does not establish the connection with the position of the array element and the excitation of the array element at the same time during these optimization processes, so the optimization effect cannot be optimal.
发明内容Contents of the invention
本发明实施例提供一种天线方向图优化方法、装置及可读存储介质,用以快速重建目标方向图,节约阵元数目,提高稀疏效果。Embodiments of the present invention provide an antenna pattern optimization method, device, and readable storage medium, which are used to quickly reconstruct a target pattern, save the number of array elements, and improve the sparse effect.
本发明实施例提供一种天线方向图优化方法,包括:An embodiment of the present invention provides a method for optimizing an antenna pattern, including:
根据目标天线方向图确定初始阵列参数;Determine the initial array parameters according to the target antenna pattern;
根据所述初始阵列参数以及预设约束条件建立阵列方向图优化的压缩感知模型;Establishing a compressed sensing model optimized for the array pattern according to the initial array parameters and preset constraints;
求解所述压缩感知模型获得优化阵列分布和优化激励。Solving the compressed sensing model obtains an optimized array distribution and an optimized excitation.
在一示例中,所述根据目标天线方向图确定初始阵列参数包括:In an example, the determining the initial array parameters according to the target antenna pattern includes:
按照预设采样点数对所述目标天线方向图进行采样,确定所述压缩感知模型的测量矢量。Sampling the target antenna pattern according to a preset number of sampling points to determine a measurement vector of the compressed sensing model.
在一示例中,所述根据目标天线方向图确定初始阵列参数还包括:In an example, the determining the initial array parameters according to the target antenna pattern further includes:
确定所述目标天线方向图的孔径;determining an aperture of the target antenna pattern;
根据所述孔径确定初始空间分布以及初始激励。An initial spatial distribution and an initial excitation are determined from the aperture.
在一示例中,所述根据所述孔径确定初始空间分布以及初始激励包括:In an example, the determining the initial spatial distribution and the initial excitation according to the aperture includes:
根据所述孔径,确定天线阵列的初始阵元间距以及阵元数量;According to the aperture, determine the initial array element spacing and the number of array elements of the antenna array;
根据所述初始阵元间距以及阵元数量确定初始激励。The initial excitation is determined according to the initial inter-array spacing and the number of inter-array elements.
在一示例中,所述根据所述初始阵列参数以及预设约束条件建立阵列方向图优化的压缩感知模型包括:In an example, the establishment of a compressed sensing model optimized for an array pattern according to the initial array parameters and preset constraints includes:
以优化后的激励最稀疏为目标并以重建所述目标方向图为约束,根据所述初始阵列参数建立阵列方向图优化的压缩感知模型。Taking the sparsest optimized excitation as the target and the reconstruction of the target pattern as the constraint, a compressed sensing model optimized for the array pattern is established according to the initial array parameters.
在一示例中,所述求解所述压缩感知模型获得优化阵列分布和优化激励包括:In an example, the solving the compressed sensing model to obtain an optimized array distribution and an optimized excitation includes:
在预设误差范围内,将所述压缩感知模型进行转换,获得中间模型;Converting the compressed sensing model within a preset error range to obtain an intermediate model;
将所述中间模型转换成交替方向乘子法ADMM形式;Converting the intermediate model into an Alternating Direction Multiplier Method ADMM form;
对所述ADMM形式进行迭代求解,获得优化阵列分布和优化激励。The ADMM form is solved iteratively to obtain an optimized array distribution and an optimized excitation.
本发明实施例还提供一种天线方向图优化装置,包括:An embodiment of the present invention also provides an antenna pattern optimization device, including:
参数计算单元,用于根据目标天线方向图确定初始阵列参数;a parameter calculation unit, configured to determine initial array parameters according to the target antenna pattern;
建模单元,用于根据所述初始阵列参数以及预设约束条件建立阵列方向图优化的压缩感知模型;A modeling unit, configured to establish a compressed sensing model optimized for an array pattern according to the initial array parameters and preset constraints;
数据处理单元,用于求解所述压缩感知模型获得优化阵列分布和优化激励。The data processing unit is used to solve the compressed sensing model to obtain optimized array distribution and optimized excitation.
本发明实施例还提供一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现前述的天线方向图优化方法的步骤。An embodiment of the present invention also provides a computer-readable storage medium, where a computer program is stored on the computer-readable storage medium, and when the computer program is executed by a processor, the steps of the foregoing antenna pattern optimization method are implemented.
本发明实施例通过根据目标天线方向图确定初始阵列参数;根据所述初始阵列参数以及预设约束条件建立阵列方向图优化的压缩感知模型;求解所述压缩感知模型获得优化阵列分布和优化激励,由此所获得的优化阵列分布和优化激励能够以更少的阵元数量,高精度重建目标方向图,由此有效节约阵元数量,提高稀疏效果。In the embodiment of the present invention, the initial array parameters are determined according to the target antenna pattern; the compressed sensing model optimized for the array pattern is established according to the initial array parameters and preset constraints; the optimized array distribution and the optimized excitation are obtained by solving the compressed sensing model, The optimized array distribution and optimized excitation thus obtained can reconstruct the target pattern with high precision with fewer array elements, thereby effectively saving the number of array elements and improving the sparse effect.
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,而可依照说明书的内容予以实施,并且为了让本发明的上述和其它目的、特征和优点能够更明显易懂,以下特举本发明的具体实施方式。The above description is only an overview of the technical solution of the present invention. In order to better understand the technical means of the present invention, it can be implemented according to the contents of the description, and in order to make the above and other purposes, features and advantages of the present invention more obvious and understandable , the specific embodiments of the present invention are enumerated below.
附图说明Description of drawings
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本发明的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:Various other advantages and benefits will become apparent to those of ordinary skill in the art upon reading the following detailed description of the preferred embodiment. The drawings are only for the purpose of illustrating a preferred embodiment and are not to be considered as limiting the invention. Also throughout the drawings, the same reference numerals are used to designate the same parts. In the attached picture:
图1为本发明第一实施例基本流程图;Fig. 1 is the basic flowchart of the first embodiment of the present invention;
图2为本发明第二实施例流程图;Fig. 2 is the flowchart of the second embodiment of the present invention;
图3为切比雪夫等旁瓣期望方向图与本发明方法重建方向图的对比图;Fig. 3 is the comparison diagram of Chebyshev etc. side lobe expected pattern and the reconstruction pattern of the present invention;
图4为利用本发明方法的优化阵列与原阵列的对比结果;Fig. 4 is the comparison result of the optimized array utilizing the method of the present invention and the original array;
图5为余割平方期望方向图与本发明方法重建方向图的对比;Fig. 5 is the contrast of cosecant square expected direction diagram and reconstruction direction diagram of the present invention method;
图6为利用本发明方法的优化阵列与原阵列的对比。Fig. 6 is a comparison between the optimized array and the original array using the method of the present invention.
具体实施方式detailed description
下面将参照附图更详细地描述本公开的示例性实施例。虽然附图中显示了本公开的示例性实施例,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。Exemplary embodiments of the present disclosure will be described in more detail below with reference to the accompanying drawings. Although exemplary embodiments of the present disclosure are shown in the drawings, it should be understood that the present disclosure may be embodied in various forms and should not be limited by the embodiments set forth herein. Rather, these embodiments are provided for more thorough understanding of the present disclosure and to fully convey the scope of the present disclosure to those skilled in the art.
实施例一Embodiment one
本发明第一实施例提供一种天线方向图优化方法,如图1所示,包括:The first embodiment of the present invention provides a method for optimizing an antenna pattern, as shown in FIG. 1 , including:
S101、根据目标天线方向图确定初始阵列参数;S101. Determine initial array parameters according to the target antenna pattern;
S102、根据所述初始阵列参数以及预设约束条件建立阵列方向图优化的压缩感知模型;S102. Establish a compressed sensing model optimized for an array pattern according to the initial array parameters and preset constraints;
S103、求解所述压缩感知模型获得优化阵列分布和优化激励。S103. Solve the compressed sensing model to obtain an optimized array distribution and an optimized excitation.
本实施例中首先可以根据所需的目标天线方向图确定初始的阵列参数,其中初始的阵列参数包括阵元间距,阵元数目以及初始激励。然后根据所述初始阵列参数以及预设约束条件建立阵列方向图优化的压缩感知模型。例如需要以精确重建方向图为约束,并且使得激励矢量最稀疏为目标,以此来建立压缩感知模型。最后通过求解压缩感知模型即可获得优化后的阵列分布和优化后的激励。根据优化后的阵列分布布置天线阵元以及产生相应的优化激励即可。通过本发明方法获得的优化阵列分布和优化激励能够以更少的阵元数量,高精度重建目标方向图,由此有效节约阵元数量,提高稀疏效果。In this embodiment, initial array parameters may first be determined according to the required target antenna pattern, where the initial array parameters include the array element spacing, the number of array elements, and the initial excitation. Then, according to the initial array parameters and preset constraints, a compressed sensing model optimized for the array pattern is established. For example, it is necessary to accurately reconstruct the direction map as the constraint and make the excitation vector the sparsest as the goal, so as to establish the compressed sensing model. Finally, the optimized array distribution and optimized excitation can be obtained by solving the compressed sensing model. Arrange the antenna elements according to the optimized array distribution and generate the corresponding optimized excitation. The optimized array distribution and optimized excitation obtained by the method of the invention can reconstruct the target pattern with high precision with fewer array elements, thereby effectively saving the array elements and improving the sparse effect.
在一示例中,所述根据目标天线方向图确定初始阵列参数包括:In an example, the determining the initial array parameters according to the target antenna pattern includes:
按照预设采样点数对所述目标天线方向图进行采样,确定所述压缩感知模型的测量矢量。Sampling the target antenna pattern according to a preset number of sampling points to determine a measurement vector of the compressed sensing model.
在本示例中,可以对输入目标方向图的均匀采样数据,例如设置采样点数为J,将采样获得的目标方向图采样作为后续压缩感知模型的测量矢量。In this example, the uniform sampling data of the input target pattern can be set, for example, the number of sampling points is set to J, and the sampled target pattern is used as the measurement vector of the subsequent compressed sensing model.
在一示例中,所述根据目标天线方向图确定初始阵列参数还包括:In an example, the determining the initial array parameters according to the target antenna pattern further includes:
确定所述目标天线方向图的孔径;determining an aperture of the target antenna pattern;
根据所述孔径确定初始空间分布以及初始激励。An initial spatial distribution and an initial excitation are determined from the aperture.
在一示例中,所述根据所述孔径确定初始空间分布以及初始激励包括:In an example, the determining the initial spatial distribution and the initial excitation according to the aperture includes:
根据所述孔径,确定天线阵列的初始阵元间距以及阵元数量;According to the aperture, determine the initial array element spacing and the number of array elements of the antenna array;
根据所述初始阵元间距以及阵元数量确定初始激励。The initial excitation is determined according to the initial inter-array spacing and the number of inter-array elements.
本示例中,对于初始阵列的设置可以是虚拟阵列,也即初始阵列的参数是可以预定的,例如设置天线的阵列孔径为L,虚拟阵列的阵元间距df和阵元个数N,得到初始阵列的空间分布其对应的初始激励矢量w。由此获得作为最终阵元分布的解空间,形成虚拟阵列的初始空间分布矢量D=[d1,d2,…,dN],其中dn=(n-1)df。一般来说,虚拟阵列阵元个数越密集,重建效果越好,计算量也越大,需要综合考量。In this example, the setting for the initial array can be a virtual array, that is, the parameters of the initial array can be predetermined, for example, if the array aperture of the antenna is set to L, the array element spacing d f of the virtual array and the number of array elements N, get The spatial distribution of the initial array corresponds to the initial excitation vector w. Thus, the solution space as the final array element distribution is obtained, forming the initial space distribution vector D=[d 1 ,d 2 , . . . ,d N ] of the virtual array, where d n =(n-1)d f . Generally speaking, the denser the number of elements in the virtual array, the better the reconstruction effect and the greater the amount of calculation, which needs to be considered comprehensively.
在一示例中,所述根据所述初始阵列参数以及预设约束条件建立阵列方向图优化的压缩感知模型包括:In an example, the establishment of a compressed sensing model optimized for an array pattern according to the initial array parameters and preset constraints includes:
以优化后的激励最稀疏为目标并以精确重建所述目标方向图为约束,根据所述初始阵列参数建立阵列方向图优化的压缩感知模型。Taking the sparsest optimized excitation as the target and accurately reconstructing the target pattern as the constraint, a compressed sensing model optimized for the array pattern is established according to the initial array parameters.
本发明方法的目的是以优化后的激励最稀疏为目标,并且能够精确重建目标方向图为约束,由此来构建阵列方向图优化的压缩感知模型。例如在前述初始阵列参数的基础上,压缩感知模型满足:The purpose of the method of the invention is to aim at the sparsest excitation after optimization and to be able to accurately reconstruct the target pattern as a constraint, thereby constructing a compressed sensing model optimized for the array pattern. For example, based on the aforementioned initial array parameters, the compressed sensing model satisfies:
s.t.F=fs.t.F = f
其中,w为待优化的虚拟阵列激励矢量,优化目标为最激励矢量最稀疏化,也即是阵元数量最少,F为虚拟阵列在采样角度上生成的方向图,其具体的计算方法为F=Aw,A为J×N的复数矩阵,其第(j,n)个元素为 Among them, w is the excitation vector of the virtual array to be optimized, the optimization goal is the most sparse excitation vector, that is, the minimum number of array elements, F is the direction diagram generated by the virtual array at the sampling angle, and its specific calculation method is F =Aw, A is a complex matrix of J×N, and its (j,n)th element is
在一示例中,所述求解所述压缩感知模型获得优化阵列分布和优化激励包括:In an example, the solving the compressed sensing model to obtain an optimized array distribution and an optimized excitation includes:
在预设误差范围内,将所述压缩感知模型进行转换,获得中间模型;Converting the compressed sensing model within a preset error range to obtain an intermediate model;
将所述中间模型转转写成交替方向乘子法ADMM形式;The intermediate model is transcribed into the ADMM form of the alternating direction multiplier method;
对所述ADMM形式进行迭代求解,获得优化阵列分布和优化激励。The ADMM form is solved iteratively to obtain an optimized array distribution and an optimized excitation.
本示例中,可以在一定误差下,矩阵的l0范数可替换为l1范数,所以模型转换为:In this example, under a certain error, the l 0 norm of the matrix can be replaced by the l 1 norm, so the model conversion is:
s.t.F=fs.t.F = f
再应用基追踪降噪,上述模型可以转化为二次规划问题:Then apply base tracking denoising, the above model can be transformed into a quadratic programming problem:
其中,λ为参数。Among them, λ is a parameter.
然后上述模型转写成ADMM形式:Then the above model is transcribed into ADMM form:
min f(w)+g(z)min f(w)+g(z)
s.t.w-z=0s.t.w-z=0
其中,g(z)=λ||z||1,w与z均为变量。则可以写出其增广拉格朗日函数:in, g(z)=λ||z|| 1 , both w and z are variables. Then you can write its augmented Lagrangian function:
ADMM的思路为固定其余两个变量,更新其中一个变量,则其迭代解的一般形式为:The idea of ADMM is to fix the remaining two variables and update one of the variables, then the general form of its iterative solution is:
对上述公式进行迭代求解激励矢量w,即可得到满足需求的w,根据w中的非零元素的位置,可以得到实际生效的虚拟阵元,这些实际生效的虚拟阵元即构成优化后的最稀疏阵列的位置分布。By iteratively solving the above formula for the excitation vector w, w that meets the requirements can be obtained. According to the position of the non-zero elements in w, the virtual array elements that are actually effective can be obtained. These virtual array elements that are actually effective constitute the optimized final Location distribution of sparse arrays.
综上本发明方法具有如下优点In sum, the inventive method has the following advantages
本发明方法对于天线阵列方向图综合优化的压缩感知模型进行修订转换,应用基追踪降噪理论将其转换为二次规划模型。The method of the invention revises and converts the compressed sensing model comprehensively optimized for the antenna array pattern, and converts it into a quadratic programming model by applying the basis tracking noise reduction theory.
本发明方法利用ADMM算法的高效快速计算性能对上述模型进行求解,加快算法的重建速度,提高稀疏性能。The method of the invention uses the high-efficiency and fast calculation performance of the ADMM algorithm to solve the above-mentioned model, accelerates the rebuilding speed of the algorithm, and improves the sparse performance.
本发明采用天线阵列阵元位置与阵元激励联合优化的方法,通过统一的优化模型实现了重建方向图的效果,显著地降低了方向图综合优化的复杂程度。The invention adopts the joint optimization method of antenna array array element position and array element excitation, realizes the effect of reconstructing the pattern through a unified optimization model, and significantly reduces the complexity of the comprehensive optimization of the pattern.
实施例二Embodiment two
本发明第二实施例提供一种天线方向图优化方法的实施案例,如图2所示,包括如下步骤:The second embodiment of the present invention provides an implementation case of an antenna pattern optimization method, as shown in FIG. 2 , including the following steps:
步骤一.参数初始化
首先设需要重建的目标方向图为Fgoal,对其在空域角度范围(-90°,90°)之间进行均匀采样,采样点数为J,得到的目标方向图采样作为测量矢量f=[Fgoal(θ1),Fgoal(θ2),...,Fgoal(θJ)]。First, set the target pattern to be reconstructed as F goal , uniformly sample it in the airspace angle range (-90°, 90°), the number of sampling points is J, and the obtained target pattern sampling is used as the measurement vector f=[F goal (θ 1 ), F goal (θ 2 ),...,F goal (θ J )].
设置虚拟阵列的阵元间距df和阵元个数N,一般来说,虚拟阵列阵元个数越密集,重建效果越好,计算量也越大,需要综合考量。可以将其设置为df=0.05λ,则此时的虚拟阵列阵元分布D=[d1,d2,…,dN]。设这一虚拟阵列对应的激励矢量为w,将其值初始化为1。Set the array element spacing df and the number of array elements N of the virtual array. Generally speaking, the denser the number of array elements in the virtual array, the better the reconstruction effect and the greater the calculation amount, which requires comprehensive consideration. It can be set as d f =0.05λ, then the virtual array element distribution D=[d 1 , d 2 , . . . , d N ] at this time. Let the excitation vector corresponding to this virtual array be w, and initialize its value to 1.
步骤二.建立稀疏重建模型
根据压缩感知理论设置观测矩阵A,A为J×N的复数矩阵,其第(j,n)个元素为则虚拟阵列在采样角度上生成的方向图为F=Aw,以w最稀疏为目标,以重建期望方向图为约束建立稀疏重建模型:Set the observation matrix A according to the compressive sensing theory, A is a J×N complex matrix, and its (j, n)th element is Then the pattern generated by the virtual array at the sampling angle is F=Aw, with the sparsest w as the goal and the reconstruction of the expected pattern as the constraint to establish a sparse reconstruction model:
s.t.F=fs.t.F = f
步骤3.模型转换
由于上述关于矩阵l0范数的问题是NP困难问题,文献中已证明,在一定的误差下,可以将矩阵的l0范数替换为l1范数并且转换后两者等价,故得到如下模型:Since the above-mentioned problem about the l 0 norm of the matrix is an NP-hard problem, it has been proved in the literature that under a certain error, the l 0 norm of the matrix can be replaced by the l 1 norm and the two are equivalent after conversion, so we get The following model:
s.t.F=fs.t.F = f
再对其应用基追踪降噪理论,将其转化为二次规划问题:Then apply the basis tracking noise reduction theory to it, and transform it into a quadratic programming problem:
其中,λ为参数。Among them, λ is a parameter.
步骤4.ADMM求解
将上述模型写成ADMM形式:Write the above model in ADMM form:
min f(w)+g(z)min f(w)+g(z)
s.t.w-z=0s.t.w-z=0
其中,g(z)=λ||z||1,w与z均为变量。则可以写出其增广拉格朗日函数:in, g(z)=λ||z|| 1 , both w and z are variables. Then you can write its augmented Lagrangian function:
ADMM的思路为固定其余两个变量,更新其中一个变量,则其迭代解的一般形式为:The idea of ADMM is to fix the remaining two variables and update one of the variables, then the general form of its iterative solution is:
首先求解根据KKT条件,对w求偏导并置零:solve first According to the KKT condition, Take the partial derivative with respect to w and set to zero:
解得:Solutions have to:
wk+1=(ATA+ρI)-1(ATf+ρzk-μk)w k+1 =(A T A+ρI) -1 (A T f+ρz k -μ k )
对于这类问题,可以利用次微分计算出其闭式解,如下:for For this type of problem, the closed-form solution can be calculated by sub-differentiation, as follows:
对于易得到其迭代表达式为:for It is easy to get its iterative expression as:
μk+1=μk+wk+1-zk+1 μ k+1 =μ k +w k+1 -z k+1
可设置上述ADMM算法的迭代终止为方向图重建误差小于10-5,最终通过迭代求解得到优化激励矢量w。The iteration termination of the above ADMM algorithm can be set to be that the pattern reconstruction error is less than 10 -5 , and finally the optimal excitation vector w is obtained through iterative solution.
步骤5根据结果求解最优阵列
根据压缩感知理论可知,求解上述模型得到的w具有稀疏性,即其中含有大量的零元素,又由于在建立模型时,虚拟阵元的空间分布和激励矢量是一一对应的,也就是只有非零元素对应的阵元得到了激励,故最终得到的最优阵元分布,可以根据w的非零元素位置所确定,至此,通过本发明的技术方法,最终同时得到了重建期望方向图的稀疏阵列的阵元分布和激励矢量。According to the compressed sensing theory, the w obtained by solving the above model is sparse, that is, it contains a large number of zero elements, and because the spatial distribution of the virtual array element and the excitation vector are in one-to-one correspondence when the model is established, that is, only non- The array element corresponding to the zero element is excited, so the final optimal array element distribution can be determined according to the position of the non-zero element of w. So far, through the technical method of the present invention, the sparseness of the reconstructed expected pattern is finally obtained at the same time Array element distribution and excitation vector.
步骤6.仿真测试Step 6. Simulation Test
目标方向图的生成,设波长为0.3m,采用初始阵元数为20,阵元间距为半波长的均匀阵列,对其加切比雪夫窗生成等旁瓣的标准方向图,设置平均旁瓣电平为-20dB。对期望方向图进行均匀采样,采样点数J=37,虚拟阵列阵元间距设为0.05λ,采用本发明方法对其进行方向图综合优化,得到重建方向图和阵元分布分别如图3和图4所示。For the generation of the target pattern, set the wavelength to 0.3m, use a uniform array with an initial number of array elements of 20 and an element spacing of half a wavelength, add a Chebyshev window to generate a standard pattern of equal sidelobes, and set the average sidelobe The level is -20dB. Uniform sampling is carried out to the expected pattern, the number of sampling points J=37, the distance between the elements of the virtual array is set to 0.05λ, the method of the present invention is used to comprehensively optimize the pattern, and the reconstructed pattern and the distribution of elements are obtained as shown in Fig. 3 and Fig. 4.
为验证本发明方法能够满足多种不同形式的方向图综合的要求,再采用余割平方期望方向图进行仿真验证,得到的结果如图5和图6所示,可见均可实现重建期望方向图和减少阵元个数的期望效果。In order to verify that the method of the present invention can meet the requirements of multiple different forms of pattern synthesis, the cosecant squared expected pattern is used for simulation verification. The results obtained are shown in Figures 5 and 6, and it can be seen that the reconstruction of the expected pattern can be realized. And the expected effect of reducing the number of array elements.
本发明实施例还提供一种天线方向图优化装置,包括:An embodiment of the present invention also provides an antenna pattern optimization device, including:
参数计算单元,用于根据目标天线方向图确定初始阵列参数;a parameter calculation unit, configured to determine initial array parameters according to the target antenna pattern;
建模单元,用于根据所述初始阵列参数以及预设约束条件建立阵列方向图优化的压缩感知模型;A modeling unit, configured to establish a compressed sensing model optimized for an array pattern according to the initial array parameters and preset constraints;
数据处理单元,用于求解所述压缩感知模型获得优化阵列分布和优化激励。The data processing unit is used to solve the compressed sensing model to obtain optimized array distribution and optimized excitation.
本发明实施例还提供一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现前述的天线方向图优化方法的步骤。An embodiment of the present invention also provides a computer-readable storage medium, where a computer program is stored on the computer-readable storage medium, and when the computer program is executed by a processor, the steps of the foregoing antenna pattern optimization method are implemented.
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。It should be noted that, in this document, the term "comprising", "comprising" or any other variation thereof is intended to cover a non-exclusive inclusion such that a process, method, article or apparatus comprising a set of elements includes not only those elements, It also includes other elements not expressly listed, or elements inherent in the process, method, article, or device. Without further limitations, an element defined by the phrase "comprising a ..." does not preclude the presence of additional identical elements in the process, method, article, or apparatus comprising that element.
上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。The serial numbers of the above embodiments of the present invention are for description only, and do not represent the advantages and disadvantages of the embodiments.
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本发明各个实施例所述的方法。Through the description of the above embodiments, those skilled in the art can clearly understand that the methods of the above embodiments can be implemented by means of software plus a necessary general-purpose hardware platform, and of course also by hardware, but in many cases the former is better implementation. Based on such an understanding, the essence of the technical solution of the present invention or the part that contributes to the prior art can be embodied in the form of software products, and the computer software products are stored in a storage medium (such as ROM/RAM, disk, CD) contains several instructions to make a terminal (which may be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) execute the methods described in various embodiments of the present invention.
上面结合附图对本发明的实施例进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可做出很多形式,这些均属于本发明的保护之内。Embodiments of the present invention have been described above in conjunction with the accompanying drawings, but the present invention is not limited to the above-mentioned specific implementations, and the above-mentioned specific implementations are only illustrative, rather than restrictive, and those of ordinary skill in the art will Under the enlightenment of the present invention, many forms can also be made without departing from the gist of the present invention and the protection scope of the claims, and these all belong to the protection of the present invention.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110401827.3A CN113268853B (en) | 2021-04-14 | 2021-04-14 | Antenna directional pattern optimization method and device and readable storage medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110401827.3A CN113268853B (en) | 2021-04-14 | 2021-04-14 | Antenna directional pattern optimization method and device and readable storage medium |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113268853A CN113268853A (en) | 2021-08-17 |
CN113268853B true CN113268853B (en) | 2022-12-16 |
Family
ID=77228883
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110401827.3A Active CN113268853B (en) | 2021-04-14 | 2021-04-14 | Antenna directional pattern optimization method and device and readable storage medium |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113268853B (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107942295A (en) * | 2017-10-23 | 2018-04-20 | 中国人民解放军西安通信学院 | A kind of sparse antenna of forward sight array SAR system |
CN110364829A (en) * | 2019-06-03 | 2019-10-22 | 中国科学院国家空间科学中心 | A Sparse Linear Array Antenna |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018076072A1 (en) * | 2016-10-28 | 2018-05-03 | Macquarie University | Direction of arrival estimation |
US10677915B2 (en) * | 2018-02-07 | 2020-06-09 | Mitsubishi Electric Research Laboratories, Inc. | System and method for fused radar imaging under position ambiguity of antennas |
KR102455635B1 (en) * | 2018-05-25 | 2022-10-17 | 삼성전자주식회사 | Method and apparatus for determining object direction |
US10823845B2 (en) * | 2018-06-24 | 2020-11-03 | Mitsubishi Electric Research Laboratories, Inc. | System and method for robust sensor localization based on euclidean distance matrix |
CN109033647B (en) * | 2018-07-31 | 2022-09-09 | 电子科技大学 | A near-field sparse antenna array optimization method based on L1 norm constraint |
US11300676B2 (en) * | 2019-03-07 | 2022-04-12 | Mitsubishi Electric Research Laboratories, Inc. | Radar imaging for antennas with clock ambiguities |
CN111352078B (en) * | 2019-12-20 | 2020-11-10 | 湖北工业大学 | Design method of low intercept frequency controlled array MIMO radar system based on ADMM under clutter |
CN111551923B (en) * | 2020-05-27 | 2022-11-04 | 电子科技大学 | A low-sidelobe beamforming optimization method for uniform linear arrays under multiple constraints |
-
2021
- 2021-04-14 CN CN202110401827.3A patent/CN113268853B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107942295A (en) * | 2017-10-23 | 2018-04-20 | 中国人民解放军西安通信学院 | A kind of sparse antenna of forward sight array SAR system |
CN110364829A (en) * | 2019-06-03 | 2019-10-22 | 中国科学院国家空间科学中心 | A Sparse Linear Array Antenna |
Non-Patent Citations (2)
Title |
---|
基于多任务贝叶斯压缩感知的稀疏可重构天线阵的优化设计;沈海鸥等;《电子学报》;20160915(第09期);全文 * |
采用二阶锥规划和压缩感知的方向图综合算法;鞠文哲等;《计算机应用研究》;20170727(第07期);全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN113268853A (en) | 2021-08-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106650104B (en) | Synthesis method of broadband invariant sparse array considering mutual coupling effect | |
CN114202072B (en) | Expectation value estimation method and system in quantum system | |
CN108919199B (en) | Sidelobe suppression method and array sparse method for multi-beam imaging sonar sparse array | |
Gies et al. | Particle swarm optimization for reconfigurable phase‐differentiated array design | |
CN110082708B (en) | Non-Uniform Array Design and Direction of Arrival Estimation Method | |
Hussein et al. | Optimum design of linear antenna arrays using a hybrid MoM/GA algorithm | |
CN109472059B (en) | Amplitude and Phase Compensation Method for Phased Array Antenna Based on Measured Strain | |
Liao et al. | Robust beamforming with magnitude response constraints using iterative second-order cone programming | |
CN107729640A (en) | A kind of sparse antenna array using minimum array element integrates method of structuring the formation | |
CN115480212A (en) | Positioning method, positioning device, base station, storage medium and computer program product | |
CN114580249B (en) | Multi-loop FDTD electromagnetic field simulation analysis method, system, equipment and medium | |
CN114755652B (en) | Method for acquiring electric large-size target broadband RCS based on ACA and CAT | |
CN113268853B (en) | Antenna directional pattern optimization method and device and readable storage medium | |
CN110364829A (en) | A Sparse Linear Array Antenna | |
CN109783960B (en) | A DOA Estimation Method Based on Partial Mesh Refinement | |
CN114487988B (en) | Angle of Arrival Estimation System Based on Deep Learning | |
CN119165438A (en) | Direction of arrival determination method, device, computer equipment and readable storage medium | |
CN112202483B (en) | Beamforming method and device, electronic device, storage medium | |
CN114202064B (en) | A method, device, electronic device and storage medium for determining the incident position of a signal source | |
CN109932682B (en) | Two-dimensional multi-snapshot non-grid compressed beam forming sound source identification method | |
CN116449368B (en) | Imaging method, device and equipment of short-distance millimeter wave MIMO-SAR | |
CN113312841B (en) | A variable-norm equivalent source near-field acoustic holography algorithm with sound source sparsity adaptability | |
CN113365345A (en) | Phase deviation correction method, phase deviation correction device, computer equipment and storage medium | |
Buttazzoni et al. | Far-field synthesis of sparse arrays with cross-polar pattern reduction | |
CN118378509B (en) | Electromagnetic scattering rapid analysis method for large-scale quasi-periodic array electromagnetic structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |