CN113267275B - Piezoelectric-piezoresistive flexible sensor for dynamic and static cooperative detection and preparation method thereof - Google Patents
Piezoelectric-piezoresistive flexible sensor for dynamic and static cooperative detection and preparation method thereof Download PDFInfo
- Publication number
- CN113267275B CN113267275B CN202110399548.8A CN202110399548A CN113267275B CN 113267275 B CN113267275 B CN 113267275B CN 202110399548 A CN202110399548 A CN 202110399548A CN 113267275 B CN113267275 B CN 113267275B
- Authority
- CN
- China
- Prior art keywords
- piezoresistive
- piezoelectric
- layer
- electrode
- unit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 29
- 230000003068 static effect Effects 0.000 title claims abstract description 29
- 238000002360 preparation method Methods 0.000 title claims abstract description 11
- 238000005538 encapsulation Methods 0.000 claims abstract description 36
- 238000000034 method Methods 0.000 claims description 25
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 21
- 239000002033 PVDF binder Substances 0.000 claims description 21
- 239000002135 nanosheet Substances 0.000 claims description 21
- 229920002981 polyvinylidene fluoride Polymers 0.000 claims description 21
- 229910002804 graphite Inorganic materials 0.000 claims description 19
- 239000010439 graphite Substances 0.000 claims description 19
- 239000000463 material Substances 0.000 claims description 15
- 239000007864 aqueous solution Substances 0.000 claims description 10
- 239000002131 composite material Substances 0.000 claims description 9
- 238000001523 electrospinning Methods 0.000 claims description 9
- 239000004205 dimethyl polysiloxane Substances 0.000 claims description 8
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 claims description 8
- -1 polydimethylsiloxane Polymers 0.000 claims description 8
- 230000004048 modification Effects 0.000 claims description 6
- 238000012986 modification Methods 0.000 claims description 6
- 238000009210 therapy by ultrasound Methods 0.000 claims description 6
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 5
- 229910052737 gold Inorganic materials 0.000 claims description 5
- 239000010931 gold Substances 0.000 claims description 5
- 229920000139 polyethylene terephthalate Polymers 0.000 claims description 5
- 239000005020 polyethylene terephthalate Substances 0.000 claims description 5
- 229920001940 conductive polymer Polymers 0.000 claims description 4
- 229920005570 flexible polymer Polymers 0.000 claims description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 239000010949 copper Substances 0.000 claims description 3
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 claims description 3
- 239000002121 nanofiber Substances 0.000 claims description 3
- 229920000642 polymer Polymers 0.000 claims description 3
- 229910052709 silver Inorganic materials 0.000 claims description 3
- 239000004332 silver Substances 0.000 claims description 3
- 229910052751 metal Inorganic materials 0.000 claims description 2
- 239000002184 metal Substances 0.000 claims description 2
- 229920000131 polyvinylidene Polymers 0.000 claims 2
- BQCIDUSAKPWEOX-UHFFFAOYSA-N 1,1-Difluoroethene Chemical compound FC(F)=C BQCIDUSAKPWEOX-UHFFFAOYSA-N 0.000 claims 1
- 239000000835 fiber Substances 0.000 claims 1
- XUCNUKMRBVNAPB-UHFFFAOYSA-N fluoroethene Chemical compound FC=C XUCNUKMRBVNAPB-UHFFFAOYSA-N 0.000 claims 1
- 230000035945 sensitivity Effects 0.000 abstract description 5
- 230000000694 effects Effects 0.000 abstract description 3
- 230000008569 process Effects 0.000 description 11
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 5
- 230000009471 action Effects 0.000 description 5
- 238000013461 design Methods 0.000 description 4
- 239000012528 membrane Substances 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 238000009987 spinning Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 229920009405 Polyvinylidenefluoride (PVDF) Film Polymers 0.000 description 2
- 238000003491 array Methods 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 239000003292 glue Substances 0.000 description 2
- 238000001755 magnetron sputter deposition Methods 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 230000008447 perception Effects 0.000 description 2
- 238000007650 screen-printing Methods 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- VRBFTYUMFJWSJY-UHFFFAOYSA-N 28804-46-8 Chemical compound ClC1CC(C=C2)=CC=C2C(Cl)CC2=CC=C1C=C2 VRBFTYUMFJWSJY-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229920001166 Poly(vinylidene fluoride-co-trifluoroethylene) Polymers 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000011231 conductive filler Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 238000005566 electron beam evaporation Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000009459 flexible packaging Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 229910021389 graphene Inorganic materials 0.000 description 1
- 239000012510 hollow fiber Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000003698 laser cutting Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000010534 mechanism of action Effects 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000001132 ultrasonic dispersion Methods 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L1/00—Measuring force or stress, in general
- G01L1/16—Measuring force or stress, in general using properties of piezoelectric devices
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L1/00—Measuring force or stress, in general
- G01L1/18—Measuring force or stress, in general using properties of piezo-resistive materials, i.e. materials of which the ohmic resistance varies according to changes in magnitude or direction of force applied to the material
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Force Measurement Appropriate To Specific Purposes (AREA)
- Measuring Fluid Pressure (AREA)
- Pressure Sensors (AREA)
Abstract
本发明提供一种用于动静态协同检测的压电‑压阻柔性传感器及其制备方法,包括:用于采集多点动态压电信号的压电单元和用于采集静态或低频压阻信号的压阻单元,其中,压电单元包括第一电极阵列层、压电敏感层和第二共电极层;压阻单元包括压阻敏感层、上下封装层以及对称设置于压阻敏感层两侧的第一电极、第二电极;压电单元的第二共电极层的下表面与压阻单元的上封装层的上表面键合,使压电单元与压阻单元键合为一整体结构。本发明使压电与压阻效应统一在单一器件中,利用压电单元对高动态压力行为的敏感性与压阻单元对静态及低频压力行为的适用性,通过信号实时抓取与分析即可实现单一柔性触觉传感器同时用于动静态协同检测的领域。
The invention provides a piezoelectric-piezoresistive flexible sensor for dynamic and static cooperative detection and a preparation method thereof, including: a piezoelectric unit for collecting multi-point dynamic piezoelectric signals and a piezoelectric unit for collecting static or low-frequency piezoresistive signals Piezoresistive unit, wherein the piezoelectric unit includes a first electrode array layer, a piezoelectric sensitive layer and a second common electrode layer; the piezoelectric unit includes a piezoresistive sensitive layer, an upper and lower encapsulation layer, and symmetrically arranged on both sides of the piezoresistive sensitive layer. A first electrode, a second electrode; the lower surface of the second common electrode layer of the piezoelectric unit is bonded with the upper surface of the upper encapsulation layer of the piezoresistive unit, so that the piezoelectric unit and the piezoresistive unit are bonded into an integral structure. The invention unifies the piezoelectric and piezoresistive effects in a single device, utilizes the sensitivity of the piezoelectric unit to high dynamic pressure behavior and the applicability of the piezoresistive unit to static and low-frequency pressure behavior, and can capture and analyze signals in real time. A single flexible tactile sensor can be used in the field of dynamic and static cooperative detection at the same time.
Description
技术领域technical field
本发明涉及柔性触觉传感器领域,具体地,涉及一种用于动静态协同检测的压电-压阻双机制柔性传感器。The invention relates to the field of flexible tactile sensors, in particular to a piezoelectric-piezoresistive dual-mechanism flexible sensor for dynamic and static cooperative detection.
背景技术Background technique
随着智能终端的普及,柔性电子设备由于其在人机交互和软机器人等领域的潜力而蓬勃发展,在这其中,柔性触觉传感器因其在电子皮肤、医疗保健等领域的广泛应用,具有广阔的市场前景。触觉传感器是模仿人皮肤的触觉感知功能,通过传感器与被测物体的相互接触,或者传感器本身承受到的特定变形来完成对被测物物性的感知或者施加者动作行为本身的监测。With the popularization of smart terminals, flexible electronic devices have flourished due to their potential in human-computer interaction and soft robotics. Among them, flexible tactile sensors have broad applications in electronic skin, medical care and other fields. market prospects. The tactile sensor imitates the tactile perception function of human skin, and completes the perception of the physical properties of the measured object or the monitoring of the action behavior of the applier itself through the mutual contact between the sensor and the measured object, or the specific deformation that the sensor itself undergoes.
从作用机理上来讲,目前被研究与应用最多、最普遍的柔性触觉传感器分别是压电式与压阻式传感器。压电式触觉传感器依赖于压电效应,在压电材料中,当受到某固定方向外力的作用时,材料中偶极子在外界压力作用下重新定向排列并在内部形成电极化现象,导致在晶体上下表面产生与施加压力成比例的相反电荷。当外力作用方向改变时,电荷的极性也随之改变。通常用于柔性压力传感器的压电材料包括聚丙烯,PVDF,和P(VDF-TrFE)等。类似地,压阻式触觉传感器依赖于压阻效应,这种效应发生在材料的电阻响应随着施加压力的变化而产生规律变化。通常用于压阻式柔性传感器的活性材料主要是基于含有导电填料的弹性体复合材料,如石墨烯,碳纳米管,金属颗粒,和导电聚合物,它们被加入到弹性体(如PDMS和聚氨酯)中以产生压阻性能。In terms of mechanism of action, currently the most studied and applied flexible tactile sensors are piezoelectric and piezoresistive sensors. Piezoelectric tactile sensors rely on the piezoelectric effect. In piezoelectric materials, when subjected to an external force in a certain direction, the dipoles in the material are reoriented and arranged under the action of external pressure and an electric polarization is formed inside, resulting in The upper and lower surfaces of the crystal generate opposite charges proportional to the applied pressure. When the direction of the external force changes, the polarity of the charge also changes. Piezoelectric materials commonly used in flexible pressure sensors include polypropylene, PVDF, and P(VDF-TrFE), among others. Similarly, piezoresistive tactile sensors rely on the piezoresistive effect, which occurs when the resistive response of a material changes regularly with applied pressure. Active materials commonly used in piezoresistive flexible sensors are mainly based on elastomeric composites containing conductive fillers, such as graphene, carbon nanotubes, metal particles, and conductive polymers, which are added to elastomers such as PDMS and polyurethane ) to produce piezoresistive properties.
由于简单、可扩展、大面积和低成本的制造工艺以及良好柔韧性,延展性,机械稳定性和高灵敏度的综合优势,基于这两种机理的柔性触觉传感器受到人们的广泛研究。通常,由于压电式传感器与压阻式传感器分别在动态监测和静态检测中各自的优势,人们已经在提高单个压电或压阻传感器的性能方面进行了很多工作。然而,受单一机制的限制,压电式触觉传感器通常无法实现静态测量,并且在低频下具有相对较差的灵敏度和可靠性。相反,柔性压阻式触觉传感器通常具有较差的动态响应能力。因此,这两种传感器都很难满足单个柔性压力传感器在全频率范围内实现高动态和静态检测能力的要求,同时,如何利用最简化的工艺实现触觉传感器的多点式检测,提高制备效率与检测精度,也是这一领域面临的一个重要难题与挑战。Due to the simple, scalable, large-area, and low-cost fabrication process and the comprehensive advantages of good flexibility, ductility, mechanical stability, and high sensitivity, flexible tactile sensors based on these two mechanisms have been extensively studied. In general, much work has been done to improve the performance of a single piezoelectric or piezoresistive sensor due to the respective advantages of piezoelectric and piezoresistive sensors in dynamic monitoring and static detection, respectively. However, limited by a single mechanism, piezoelectric tactile sensors generally cannot achieve static measurements and have relatively poor sensitivity and reliability at low frequencies. In contrast, flexible piezoresistive tactile sensors typically have poor dynamic responsiveness. Therefore, it is difficult for these two sensors to meet the requirements of a single flexible pressure sensor to achieve high dynamic and static detection capabilities in the full frequency range. At the same time, how to use the most simplified process to realize multi-point detection of tactile sensors, improve the preparation efficiency and Detection accuracy is also an important problem and challenge in this field.
经对现有技术文献专利的检索发现,申请号为202011035525.0的中国专利,该专利公开了一种压电压阻复合式触觉传感器,该传感器也是包含压电层与压阻层,但是,压电层上下电极均是面电极,无法实现多点式阵列检测,另外一个缺点是压阻层的电极设计以上下结构布置,一方面对压阻敏感层表面的平整度要求很高,提高了制备工艺难度,另一方面,在沉积上下电极时,由于压阻敏感层多孔化的结构缺陷,很容易造成上下电极导通,致使器件失效。After searching for prior art documents and patents, it was found that the Chinese patent with the application number of 202011035525.0 discloses a piezo-voltage-resistive composite tactile sensor. The sensor also includes a piezoelectric layer and a piezo-resistive layer. However, the piezoelectric layer The upper and lower electrodes are both surface electrodes, which cannot realize multi-point array detection. Another disadvantage is that the electrodes of the piezoresistive layer are designed to be arranged in an upper and lower structure. On the other hand, when the upper and lower electrodes are deposited, due to the porous structure of the piezoresistive sensitive layer, it is easy to cause the upper and lower electrodes to be turned on, resulting in device failure.
基于以上观点,一种工艺简单、成品率高,可定制化阵列结构设计的面向多点式动静态检测的柔性触觉传感器亟需被开发。Based on the above viewpoints, a flexible tactile sensor with simple process, high yield, and customizable array structure design for multi-point dynamic and static detection needs to be developed.
发明内容SUMMARY OF THE INVENTION
针对现有技术中的缺陷,本发明的目的是提供一种用于动静态协同检测的压电-压阻柔性传感器及制备方法。In view of the defects in the prior art, the purpose of the present invention is to provide a piezoelectric-piezoresistive flexible sensor for dynamic and static cooperative detection and a preparation method thereof.
本发明第一个方面提供一种用于动静态协同检测的压电-压阻柔性传感器,包括:A first aspect of the present invention provides a piezoelectric-piezoresistive flexible sensor for dynamic and static cooperative detection, comprising:
用于采集多点动态压电信号的压电单元,所述压电单元包括第一电极阵列层、压电敏感层和第二共电极层,其中,所述第一电极阵列层设置于所述压电敏感层的上表面,所述第一电极阵列层由若干呈阵列式分布的电极点组成;所述第二共电极层设置于所述压电敏感层的下表面;A piezoelectric unit for collecting multi-point dynamic piezoelectric signals, the piezoelectric unit includes a first electrode array layer, a piezoelectric sensitive layer and a second common electrode layer, wherein the first electrode array layer is arranged on the the upper surface of the piezoelectric sensitive layer, the first electrode array layer is composed of a plurality of electrode points distributed in an array; the second common electrode layer is arranged on the lower surface of the piezoelectric sensitive layer;
用于采集静态或低频压阻信号的压阻单元,所述压阻单元包括压阻敏感层、第一电极、第二电极、上封装层和下封装层,其中,所述第一电极、所述第二电极分别对称设置于所述压阻敏感层两侧,所述上封装层和所述下封装层分别设置于所述压阻敏感层、所述第一电极和所述第二电极的上表面、下表面;A piezoresistive unit for collecting static or low-frequency piezoresistive signals, the piezoresistive unit includes a piezoresistive sensitive layer, a first electrode, a second electrode, an upper encapsulation layer and a lower encapsulation layer, wherein the first electrode, all the The second electrodes are symmetrically arranged on both sides of the piezoresistive sensitive layer, and the upper encapsulation layer and the lower encapsulation layer are respectively arranged on the piezoresistive sensitive layer, the first electrode and the second electrode. upper surface, lower surface;
所述压电单元的第二共电极层的下表面与所述压阻单元的上封装层的上表面以面对面键合,使所述压电单元与所述压阻单元键合为一整体结构。The lower surface of the second common electrode layer of the piezoelectric unit and the upper surface of the upper encapsulation layer of the piezoresistive unit are bonded face-to-face, so that the piezoelectric unit and the piezoresistive unit are bonded into an integral structure .
优选地,所述压电单元、所述压阻单元的材料均采用柔性高分子或高分子基复合材料,使所述柔性触觉传感器在受到外力作用时,整体能发生对应形变,分别产生压电阵列信号与压阻信号。Preferably, the piezoelectric unit and the piezoresistive unit are made of flexible polymer or polymer-based composite material, so that the flexible tactile sensor can deform correspondingly as a whole when subjected to external force, and generate piezoelectricity respectively. Array signals and piezoresistive signals.
优选地,所述压阻敏感层的材料为石墨纳米片修饰的多孔网络化结构聚偏氟乙烯复合材料,由嵌入多孔网络化结构的二维结构的石墨纳米片相互搭接,形成敏感的三维导电网络。Preferably, the material of the piezoresistive sensitive layer is a porous networked polyvinylidene fluoride composite material modified by graphite nanosheets, and the two-dimensional graphite nanosheets embedded in the porous networked structure are overlapped with each other to form a sensitive three-dimensional conductive network.
优选地,所述压阻敏感层的厚度为10微米-200微米,其中,所述多孔网络化结构的单根纳米纤维直径为50纳米-2微米。Preferably, the thickness of the piezoresistive sensitive layer is 10 micrometers to 200 micrometers, wherein the diameter of a single nanofiber of the porous network structure is 50 nanometers to 2 micrometers.
优选地,所述压阻单元的总厚度为50微米-500微米;Preferably, the total thickness of the piezoresistive unit is 50-500 microns;
所述上封装层、所述下封装层的材料均采用聚二甲基硅氧烷(PDMS)。The materials of the upper encapsulation layer and the lower encapsulation layer are both polydimethylsiloxane (PDMS).
优选地,所述压电敏感层采用聚偏氟乙烯(PVDF)薄膜。Preferably, the piezoelectric sensitive layer adopts a polyvinylidene fluoride (PVDF) film.
优选地,所述第二共电极层为表面镀有氧化铟锡的聚对苯二甲酸乙二醇酯薄膜;Preferably, the second common electrode layer is a polyethylene terephthalate film coated with indium tin oxide on the surface;
所述第二共电极层的厚度为20微米-100微米。The thickness of the second common electrode layer is 20 micrometers to 100 micrometers.
优选地,所述第一电极阵列层、所述第一电极和所述第二电极的材料均选用金、银、铜或导电聚合物的任一种。Preferably, the materials of the first electrode array layer, the first electrodes and the second electrodes are all selected from any one of gold, silver, copper or conductive polymers.
本发明第二个方面提供一种所述的用于动静态协同检测的压电-压阻柔性传感器的制备方法,包括:A second aspect of the present invention provides a method for preparing the piezoelectric-piezoresistive flexible sensor for dynamic and static cooperative detection, comprising:
在压电敏感层的上表面图案化沉积金属电极,得到若干电极点以呈阵列式分布于所述压电敏感层的上表面,即得到第一电极阵列层;A metal electrode is patterned and deposited on the upper surface of the piezoelectric sensitive layer to obtain a plurality of electrode points distributed in an array on the upper surface of the piezoelectric sensitive layer, that is, a first electrode array layer is obtained;
将所述压电敏感层的下表面与第二共电极层的上表面键合在一起,得到压电单元;bonding the lower surface of the piezoelectric sensitive layer with the upper surface of the second common electrode layer to obtain a piezoelectric unit;
制备压阻敏感层;Preparation of piezoresistive sensitive layer;
在制备的压阻敏感层的两侧分别对称制备第一电极、第二电极,即在所述压阻敏感层上引出左右电极;A first electrode and a second electrode are respectively prepared symmetrically on both sides of the prepared piezoresistive sensitive layer, that is, the left and right electrodes are drawn from the piezoresistive sensitive layer;
在所述压阻敏感层、所述第一电极和所述第二电极的上表面、下表面分别旋涂上封装层、下封装层,得到压阻单元;An encapsulation layer and a lower encapsulation layer are spin-coated on the piezoresistive sensitive layer, the upper surface and the lower surface of the first electrode and the second electrode, respectively, to obtain a piezoresistive unit;
将所述压电单元与所述压阻单元修饰为相同尺寸,再将所述压电单元的第二共电极层下表面与所述压阻单元的上封装层以面对面键合在一起,得到所述柔性触觉传感器。The piezoelectric unit and the piezoresistive unit are modified to have the same size, and then the lower surface of the second common electrode layer of the piezoelectric unit and the upper encapsulation layer of the piezoresistive unit are bonded together face-to-face to obtain the flexible tactile sensor.
优选地,上述所述制备压阻敏感层包括:Preferably, the above-mentioned preparation of the piezoresistive sensitive layer comprises:
采用静电纺丝方法制备具有多孔网络化结构的聚偏氟乙烯薄膜;Polyvinylidene fluoride film with porous network structure was prepared by electrospinning method;
将石墨纳米片分散在去离子水溶液中超声处理,形成均匀混合的石墨纳米片水溶液,其中,所述石墨纳米片的质量分数为0.5%-2%;dispersing the graphite nanosheets in a deionized aqueous solution for ultrasonic treatment to form a uniformly mixed graphite nanosheet aqueous solution, wherein the mass fraction of the graphite nanosheets is 0.5%-2%;
将制备的聚偏氟乙烯薄膜浸渍于所述石墨纳米片水溶液中,利用超声将所述石墨纳米片修饰扦插进所述聚偏氟乙烯薄膜的多孔网络中,构建导电网络,其中,超声修饰时间为0.5h-2h。The prepared polyvinylidene fluoride film is immersed in the graphite nanosheet aqueous solution, and the graphite nanosheet is modified and inserted into the porous network of the polyvinylidene fluoride film by ultrasound to construct a conductive network, wherein the ultrasonic modification time 0.5h-2h.
与现有技术相比,本发明具有如下至少一种的有益效果:Compared with the prior art, the present invention has at least one of the following beneficial effects:
本发明上述传感器,通过将压电单元与压阻电元以面对面方式键合为一体,利用压电-压阻双机制实现了动静态作用检测,通过对压电单元的电极图案化设计实现对外部动态作用的多点式阵列检测;同时压阻单元以左右两侧电极布置于压阻敏感层设计结构,降低了对压阻敏感层表面平整度的要求,简化了工艺,同时避免了溅射上下电极过程中出现电极导通,器件失效的问题。The above-mentioned sensor of the present invention, by bonding the piezoelectric unit and the piezoresistive element in a face-to-face manner, realizes the dynamic and static action detection by using the piezoelectric-piezoresistive dual mechanism, and realizes the detection of the dynamic and static effects through the electrode pattern design of the piezoelectric unit. Multi-point array detection with external dynamic action; at the same time, the piezoresistive unit is arranged with the left and right electrodes on the piezoresistive sensitive layer design structure, which reduces the requirement for the surface flatness of the piezoresistive sensitive layer, simplifies the process, and avoids sputtering. In the process of upper and lower electrodes, the electrodes are turned on and the device fails.
附图说明Description of drawings
通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:Other features, objects and advantages of the present invention will become more apparent by reading the detailed description of non-limiting embodiments with reference to the following drawings:
图1是本发明一优选实施例的用于动静态协同检测的压电-压阻柔性传感器的三维整体结构示意图;1 is a schematic diagram of a three-dimensional overall structure of a piezoelectric-piezoresistive flexible sensor for dynamic and static cooperative detection according to a preferred embodiment of the present invention;
图2是本发明一优选实施例的用于动静态协同检测的压电-压阻柔性传感器的剖视图;2 is a cross-sectional view of a piezoelectric-piezoresistive flexible sensor for dynamic and static cooperative detection according to a preferred embodiment of the present invention;
图中标记分别表示为:1为第一电极阵列层、2为压电敏感层、3为第二共电极层、4A为上封装层、4B为下封装层、5为压阻敏感层、6为第一电极。The marks in the figure are respectively indicated as: 1 is the first electrode array layer, 2 is the piezoelectric sensitive layer, 3 is the second common electrode layer, 4A is the upper encapsulation layer, 4B is the lower encapsulation layer, 5 is the piezoresistive sensitive layer, 6 for the first electrode.
具体实施方式Detailed ways
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进。这些都属于本发明的保护范围。The present invention will be described in detail below with reference to specific embodiments. The following examples will help those skilled in the art to further understand the present invention, but do not limit the present invention in any form. It should be noted that, for those skilled in the art, several modifications and improvements can be made without departing from the concept of the present invention. These all belong to the protection scope of the present invention.
参照图1所示,为本发明一优选实施例的用于动静态协同检测的压电-压阻柔性传感器的三维整体结构示意图,包括:压电单元和压阻单元。Referring to FIG. 1 , it is a schematic diagram of a three-dimensional overall structure of a piezoelectric-piezoresistive flexible sensor for dynamic and static cooperative detection according to a preferred embodiment of the present invention, including a piezoelectric unit and a piezoresistive unit.
压电单元用于采集多点动态压电信号。压电单元包括第一电极阵列层1、压电敏感层2和第二共电极层3,其中,第一电极阵列层1设置于压电敏感层2的上表面,第一电极阵列层1由若干呈阵列式分布的电极点组成,以实现多通道检测;第一电极阵列层1可以采用丝网印刷技术进行制备;第二共电极层3设置于压电敏感层2的下表面。在一实例中,在压电敏感层2上制备第一电极阵列层1为N*N个独立的圆形金电极,N为大于1的整数;N*N个相互独立的电极阵列可以用于采集动态压电信号的分布情况;例如:N等于3,即实现了3*3阵列式压电传感电极,当受到外力发生形变时,该第一电极阵列层1能够反馈出不同阵列点压电信号,进而对外力动态作用分布进行准确检测。The piezoelectric unit is used to collect multi-point dynamic piezoelectric signals. The piezoelectric unit includes a first
压阻单元用于采集静态或低频压阻信号。压阻单元包括压阻敏感层5、第一电极6、第二电极、上封装层4A和下封装层4B。Piezoresistive units are used to acquire static or low frequency piezoresistive signals. The piezoresistive unit includes a piezoresistive
参照图2所示,将第一电极6、第二电极分别对称设置于压阻敏感层5两侧,使第一电极6、第二电极与压阻敏感层5位于同一层。由于压阻敏感层5为多孔结构,因此其上、下表面会不可避免出现平整度不高的情况;另外如果在压阻敏感层5多孔结构上下表面以面对面的方式沉积或溅射金属电极时,会出现电极导通情况,由于压阻敏感层5平整度不高及多孔结构特征,使在压阻敏感层5上、下面制备上、下电极容易发生导通,即从两方面加大了工艺难度,降低了成品率,因此上述压阻单元采取以左右对称电极布置的策略,有效的避免了这两个方面的难题,既满足了压阻敏感层5多孔结构带来的高灵敏度,同时也保证了制备过程中的效率与成品率,大大降低工艺难度。Referring to FIG. 2 , the
上封装层4A和下封装层4B分别设置于压阻敏感层5、第一电极6和第二电极的上表面、下表面。上封装层4A和下封装层4B可以采用柔性材料。上封装层4A、下封装层4B既起到了保护柔性触觉传感器的作用,又实现了避免与压电信号相互串扰的作用。The
将压电单元的第二共电极层3的下表面与压阻单元的上封装层4A的上表面以面对面方式键合在一起,使压电单元与压阻单元键合为一整体结构。The lower surface of the second
在其他部分优选实施例中,压电单元、压阻单元的材料均采用柔性高分子或高分子基复合材料,使柔性触觉传感器在受到外力作用时,整体能发生对应形变,分别产生压电阵列信号与压阻信号。In other preferred embodiments, the materials of the piezoelectric unit and the piezoresistive unit are flexible polymers or polymer-based composite materials, so that when the flexible tactile sensor is subjected to external force, the whole can be deformed correspondingly to generate piezoelectric arrays respectively. signal and piezoresistive signal.
作为一优选方式,压阻敏感层为高导电性的石墨纳米片(Graphite nanosheet,GN)修饰的静电纺丝聚偏氟乙烯(PVDF)复合材料,由嵌入静电纺丝网络的二维结构的石墨纳米片相互搭接,形成敏感的三维导电网络。压阻敏感层可以采用静电纺丝方法制备出多孔化的压阻敏感膜,由于采用静电纺丝方法制备多孔化压阻敏感膜,在受到外界作用时,多孔化压阻敏膜会产生变形,而二维结构的GN纳米片(石墨纳米片)会随着变形发生靠近或远离,促使压阻敏感层的电阻发生变化,通过测量电阻变化来实现对外界作用力的检测。压阻敏感层的厚度为10微米-200微米,其中,多孔网络化结构的单根纳米纤维直径为50纳米-2微米。As a preferred method, the piezoresistive sensitive layer is an electrospun polyvinylidene fluoride (PVDF) composite material modified by a highly conductive graphite nanosheet (GN), composed of two-dimensional graphite embedded in an electrospinning network. The nanosheets overlap each other to form a sensitive three-dimensional conductive network. The piezoresistive sensitive layer can be made of a porous piezoresistive sensitive film by an electrospinning method. Since the porous piezoresistive sensitive film is prepared by an electrospinning method, the porous piezoresistive sensitive film will deform when subjected to external action. The GN nanosheets (graphite nanosheets) with two-dimensional structure will approach or move away with the deformation, which will cause the resistance of the piezoresistive sensitive layer to change. The thickness of the piezoresistive sensitive layer is 10 micrometers to 200 micrometers, wherein the diameter of a single nanofiber of the porous network structure is 50 nanometers to 2 micrometers.
在其他部分优选实施例中,上封装层4A、下封装层4B的材料均采用聚二甲基硅氧烷(PDMS)。压阻单元的总厚度为50微米-500微米。In other preferred embodiments, the materials of the
在其他部分优选实施例中,压电敏感层采用聚偏氟乙烯(PVDF)薄膜。In other preferred embodiments, the piezoelectric sensitive layer adopts polyvinylidene fluoride (PVDF) film.
在其他部分优选实施例中,第二共电极层为表面镀有氧化铟锡(ITO)的聚对苯二甲酸乙二醇酯(PET)薄膜。第二共电极层的厚度为20微米-100微米。In other preferred embodiments, the second common electrode layer is a polyethylene terephthalate (PET) film coated with indium tin oxide (ITO) on the surface. The thickness of the second common electrode layer is 20 micrometers to 100 micrometers.
在其他部分优选实施例中,第一电极阵列层、第一电极和第二电极的材料均选用金、银、铜或导电聚合物的任一种。第一电极阵列层、第一电极和第二电极均可以采用丝网印刷、磁控溅射、电子束蒸发或刷涂法的任一种方法制备得到。In other preferred embodiments, the materials of the first electrode array layer, the first electrode and the second electrode are all selected from any one of gold, silver, copper or conductive polymers. The first electrode array layer, the first electrode and the second electrode can be prepared by any method of screen printing, magnetron sputtering, electron beam evaporation or brush coating.
在另一实施例中,提供一种用于动静态协同检测的压电-压阻柔性传感器的制备方法,包括,按照以下步骤执行:In another embodiment, a method for preparing a piezoelectric-piezoresistive flexible sensor for dynamic and static cooperative detection is provided, comprising: performing the following steps:
S1:选取28微米厚的PVDF薄膜作为压电敏感层,用导电胶将PVDF薄膜下表面与ITO/PET柔性基底带有ITO那面键合好,完成第二共电极的制备。S1: Select a PVDF film with a thickness of 28 microns as the piezoelectric sensitive layer, and bond the lower surface of the PVDF film with the ITO/PET flexible substrate with conductive glue to complete the preparation of the second common electrode.
S2:利用激光切割的方法制备3*3阵列圆形硬掩膜,每个单元直径为3毫米,将硬掩膜与PVDF薄膜上表面压紧,进行磁控溅射,在PVDF薄膜上表面先后沉积厚度为20纳米的铬与200纳米的金阵列电极,完成第一电极阵列的制备,得到压电单元;通过图案化上电极阵列的方法使该压电单元能够满足对外部动态作用的多点检测,提高准确性与识别度。S2: Use laser cutting to prepare a 3*3 array of circular hard masks, each with a diameter of 3 mm, press the hard mask and the upper surface of the PVDF film, and perform magnetron sputtering, successively on the upper surface of the PVDF film Depositing 20 nanometers of chromium and 200 nanometers of gold array electrodes to complete the preparation of the first electrode array to obtain a piezoelectric unit; the method of patterning the upper electrode array enables the piezoelectric unit to satisfy multiple points of external dynamic action detection to improve accuracy and recognition.
S3:压阻敏感层中多孔结构采用柔性高分子PVDF制备,具体地,采用静电纺丝方法进行PVDF多空纤维膜的制备;先将一定量的PVDF溶解在N,N-二甲基甲酰胺(DMF)与丙酮的混合液中(体积比为2:3),调节好适当浓度,有利于下一步纺丝工作。S3: The porous structure in the piezoresistive sensitive layer is prepared by flexible polymer PVDF. Specifically, the PVDF hollow fiber membrane is prepared by electrospinning method; a certain amount of PVDF is first dissolved in N,N-dimethylformamide (DMF) and acetone in the mixed solution (volume ratio of 2:3), adjusting the appropriate concentration is conducive to the next spinning work.
S4:采用静电纺丝方法制备具有多孔网络化结构的PVDF膜;其中,静电纺丝过程中,设置喷丝头与收集圆筒之间的距离为12厘米,电压为15kV,挤压速度为2mL/h-3mL/h,收集圆筒转速为400rpm,静电纺丝过程中控制湿度不超过55%,纺丝膜厚度与纺丝时间成正比,一般情况下,根据不同的溶液挤出速度,纺丝时间控制在1-3小时之间。S4: PVDF membrane with porous network structure is prepared by electrospinning method; wherein, during the electrospinning process, the distance between the spinneret and the collecting cylinder is set to 12 cm, the voltage is 15 kV, and the extrusion speed is 2 mL /h-3mL/h, the speed of the collecting cylinder is 400rpm, the humidity during the electrospinning process is controlled not to exceed 55%, the thickness of the spinning film is proportional to the spinning time, in general, according to different solution extrusion speeds, spinning Silk time is controlled between 1-3 hours.
S5:采用超声分散法制备导电GN溶液,具体地,将一定量GN(石墨纳米片)分散在去离子水溶液中超声处理1h-2h,形成均匀混合的GN水溶液,GN水溶液用于下一步超声修饰处理,GN质量分数一般在0.5wt%-2wt%之间,可以根据不同情况进行调节。S5: The conductive GN solution is prepared by ultrasonic dispersion method. Specifically, a certain amount of GN (graphite nanosheets) is dispersed in a deionized aqueous solution for 1h-2h ultrasonic treatment to form a uniformly mixed GN aqueous solution, and the GN aqueous solution is used for the next ultrasonic modification Treatment, the mass fraction of GN is generally between 0.5wt% and 2wt%, which can be adjusted according to different situations.
S6:将步骤S4制备的多孔网络化结构的PVDF膜浸渍在步骤S5制备好的GN水溶液中,采用超声处理将二维的GN纳米片修饰扦插进PVDF膜的多孔网络中,构建灵敏的导电网络,其中,超声处理时间与超声功率大小有关,另外,在相同功率大小情况下,可通过调节超声处理时间来控制压阻敏感层的初始电阻与改善灵敏度,通常来说,超声修饰时间为0.5h-2h。S6: Immerse the PVDF membrane with porous network structure prepared in step S4 in the GN aqueous solution prepared in step S5, and use ultrasonic treatment to modify the two-dimensional GN nanosheets into the porous network of the PVDF membrane to construct a sensitive conductive network. , among which, the ultrasonic treatment time is related to the ultrasonic power. In addition, under the same power, the initial resistance of the piezoresistive sensitive layer can be controlled and the sensitivity can be improved by adjusting the ultrasonic treatment time. Generally speaking, the ultrasonic modification time is 0.5h -2h.
S7:为了降低沉积电极对膜平整度的要求,简化工艺,并且避免上下面电极容易导通的问题,在制备压阻层电极时采用左右电极布置设计,在步骤S6中制备好的压阻敏感层左右两端引出电极线。S7: In order to reduce the requirements for the film flatness of the deposition electrodes, simplify the process, and avoid the problem that the upper and lower electrodes are easily turned on, the left and right electrode layout design is adopted when preparing the piezoresistive layer electrodes, and the piezoresistive sensitive electrodes prepared in step S6 Electrode lines are drawn from the left and right ends of the layer.
S8:柔性压阻封装层的材料选择PDMS溶液,具体地,将PDMS溶液本体与固化剂按照10:1的质量比进行混合,搅拌均匀后利用真空烘箱抽出搅拌过程中引入的气泡,随后旋涂在S7中得到的压阻敏感层上表面、下表面,其中,旋转速度控制在500pm-800rpm,旋转时间为1分钟,随后放入真空烘箱,在80℃下固化3h,进行柔性封装处理。S8: Select the PDMS solution as the material of the flexible piezoresistive encapsulation layer. Specifically, the PDMS solution body and the curing agent are mixed in a mass ratio of 10:1, and after stirring evenly, the bubbles introduced during the stirring process are extracted by a vacuum oven, and then spin-coated The upper and lower surfaces of the piezoresistive sensitive layer obtained in S7, wherein the rotation speed is controlled at 500pm-800rpm, the rotation time is 1 minute, and then placed in a vacuum oven, cured at 80°C for 3h, and flexible packaging is performed.
S9:用柔性胶将S2中得到的压电单元与S8得到的封装好的压阻单元进行面对面键合,最后器件整体用parylene-C封装,得到压电-压阻双机制柔性触觉传感器。S9: The piezoelectric unit obtained in S2 and the packaged piezoresistive unit obtained in S8 are bonded face-to-face with flexible glue, and finally the whole device is packaged with parylene-C to obtain a piezoelectric-piezoresistive dual-mechanism flexible tactile sensor.
以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变形或修改,这并不影响本发明的实质。Specific embodiments of the present invention have been described above. It should be understood that the present invention is not limited to the above specific embodiments, and those skilled in the art can make various variations or modifications within the scope of the claims, which do not affect the essence of the present invention.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110399548.8A CN113267275B (en) | 2021-04-14 | 2021-04-14 | Piezoelectric-piezoresistive flexible sensor for dynamic and static cooperative detection and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110399548.8A CN113267275B (en) | 2021-04-14 | 2021-04-14 | Piezoelectric-piezoresistive flexible sensor for dynamic and static cooperative detection and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113267275A CN113267275A (en) | 2021-08-17 |
CN113267275B true CN113267275B (en) | 2022-08-16 |
Family
ID=77228942
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110399548.8A Active CN113267275B (en) | 2021-04-14 | 2021-04-14 | Piezoelectric-piezoresistive flexible sensor for dynamic and static cooperative detection and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113267275B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116067535B (en) * | 2022-11-29 | 2025-06-03 | 哈尔滨工业大学 | Flexible tactile sensors for medical rehabilitation robots |
CN117433668A (en) * | 2023-12-08 | 2024-01-23 | 深圳市鑫精诚传感技术有限公司 | Composite force measuring sensor and force measuring method thereof |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8132468B2 (en) * | 2008-05-29 | 2012-03-13 | Zoran Radivojevic | Flexural deformation sensing device and a user interface using the same |
CN110044522B (en) * | 2019-03-25 | 2020-07-24 | 北京航空航天大学 | A method of using neural network to realize the uniformity of piezoelectric response of piezoelectric pressure detection touch screen |
CN111795764B (en) * | 2019-04-09 | 2021-11-09 | 绍兴文理学院元培学院 | Sandwich type large-area high-density flexible array sensor and preparation method thereof |
CN111055554A (en) * | 2019-12-31 | 2020-04-24 | 苏州能斯达电子科技有限公司 | A novel flexible smart fabric sensor and its manufacturing method |
CN111855036A (en) * | 2020-07-29 | 2020-10-30 | 观云(山东)智能科技有限公司 | Ultra-wide range flexible sensor, preparation method thereof and distributed pressure monitoring system |
CN112284577B (en) * | 2020-09-27 | 2022-09-27 | 西安交通大学 | Piezoelectric resistance composite tactile sensor and preparation method thereof |
-
2021
- 2021-04-14 CN CN202110399548.8A patent/CN113267275B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN113267275A (en) | 2021-08-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Li et al. | Ultracomfortable hierarchical nanonetwork for highly sensitive pressure sensor | |
CN202679272U (en) | A nanometer generator with mixed piezoelectric and triboelectric films | |
CN100585352C (en) | Array type ultra-thin compliant force sensor and preparation method thereof | |
CN108871629A (en) | A kind of flexible resistive array of pressure sensors and preparation method thereof | |
CN111256571A (en) | Flexible capacitive tactile sensor, preparation method thereof, and tactile sensing system | |
CN113267275B (en) | Piezoelectric-piezoresistive flexible sensor for dynamic and static cooperative detection and preparation method thereof | |
CN208721291U (en) | A flexible resistive pressure sensor array | |
CN106197774A (en) | Flexible piezoresistive tactile sensor array and preparation method thereof | |
CN107525613B (en) | Stretchable flexible pressure sensor and method of making the same | |
CN111024272A (en) | A kind of preparation method of capacitive flexible sensor | |
CN110375895A (en) | Multi-functional Grazing condition finger print touch sensor | |
CN113074843A (en) | Multifunctional planar capacitive flexible sensor and preparation method thereof | |
Yu et al. | Two-sided topological architecture on a monolithic flexible substrate for ultrasensitive strain sensors | |
CN209117220U (en) | A kind of threedimensional haptic sensor array of flexible piezoelectric formula | |
CN113551811B (en) | Design method of 4D printed multifunctional touch sensor | |
CN114235225A (en) | Ionization type flexible triaxial force touch sensor, preparation and application | |
CN109916292A (en) | A kind of preparation method of multilayer capacitive flexible smart wearable sensor device | |
Zhou et al. | Matrix-addressed crosstalk-free self-powered pressure sensor array based on electrospun isolated PVDF-TrFE cells | |
CN117288352A (en) | Multi-mode flexible touch sensor based on capacitor array and preparation method and application thereof | |
CN113103709A (en) | Fiber-based pressure-temperature dual-mode electronic skin and preparation method thereof | |
CN112945429A (en) | High-sensitivity flexible pressure sensor and manufacturing method thereof | |
Hu et al. | High sensitivity triboelectric based flexible self-powered tactile sensor with bionic fingerprint ring structure | |
Yang et al. | Electrospun ionic nanofiber membrane-based fast and highly sensitive capacitive pressure sensor | |
CN106953001A (en) | A flexible pressure sensor based on carbon nanotube film and photoresist and its preparation method | |
Yang et al. | High-sensitivity wearable flexible pressure sensor based on MXene and polyaniline for human motion detection |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |