[go: up one dir, main page]

CN113241946B - A DC/DC conversion circuit and a DC/DC converter - Google Patents

A DC/DC conversion circuit and a DC/DC converter Download PDF

Info

Publication number
CN113241946B
CN113241946B CN202110432839.2A CN202110432839A CN113241946B CN 113241946 B CN113241946 B CN 113241946B CN 202110432839 A CN202110432839 A CN 202110432839A CN 113241946 B CN113241946 B CN 113241946B
Authority
CN
China
Prior art keywords
output voltage
signal
output
transistor
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110432839.2A
Other languages
Chinese (zh)
Other versions
CN113241946A (en
Inventor
赵猛
闫桂珍
陈中建
鲁文高
张雅聪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Weiyuan Times Technology Co ltd
Original Assignee
Peking University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peking University filed Critical Peking University
Priority to CN202110432839.2A priority Critical patent/CN113241946B/en
Publication of CN113241946A publication Critical patent/CN113241946A/en
Application granted granted Critical
Publication of CN113241946B publication Critical patent/CN113241946B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of DC power input into DC power output
    • H02M3/02Conversion of DC power input into DC power output without intermediate conversion into AC
    • H02M3/04Conversion of DC power input into DC power output without intermediate conversion into AC by static converters
    • H02M3/10Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

The invention provides a direct current/direct current conversion circuit and a direct current/direct current converter, and relates to the technical field of integrated circuits. The circuit comprises: the device comprises an output unit, a rectifying unit and a detection control unit; the output unit receives an input voltage and outputs a first output voltage to the rectifying unit and the detection control unit; the rectification unit rectifies and filters the first output voltage, outputs a second output voltage, generates a first signal and transmits the first signal to the detection control unit; the detection control unit receives the first signal and the first output voltage and generates a control signal to control the DC/DC conversion circuit to work in an accelerated charging mode, a normal charging mode or a sleep mode. The direct current/direct current conversion circuit of the embodiment of the invention shortens the establishment time of the output voltage of the direct current/direct current converter while reducing the output voltage ripple, and has higher practical value.

Description

一种直流/直流转换电路和直流/直流转换器A DC/DC conversion circuit and a DC/DC converter

技术领域technical field

本发明涉及集成电路技术领域,尤其涉及一种直流/直流转换电路和直流/直流转换器。The present invention relates to the technical field of integrated circuits, and in particular, to a DC/DC conversion circuit and a DC/DC converter.

背景技术Background technique

目前直流/直流转换器在MEMS加速度计和MEMS陀螺仪接口集成电路中有重要的应用。特别地,升压型直流/直流转换器为闭环MEMS惯性传感器提供足够高的驱动电压,以产生足够高的静电力实现闭环反馈功能。闭环MEMS惯性传感器系统对驱动电压的建立时间、纹波幅度有较高的要求,传统结构的DC/DC(直流/直流)转换器往往采用固定或正比于参考电压与输出电压差值的充电电流的升压方案,在保持低静态功耗状态下很难满足低纹波和快速建立的要求。At present, DC/DC converters have important applications in MEMS accelerometers and MEMS gyroscope interface integrated circuits. In particular, the boost DC/DC converter provides a high enough drive voltage for closed-loop MEMS inertial sensors to generate a high enough electrostatic force for the closed-loop feedback function. The closed-loop MEMS inertial sensor system has high requirements on the settling time and ripple amplitude of the driving voltage. The traditional DC/DC (direct current/direct current) converter often uses a charging current that is fixed or proportional to the difference between the reference voltage and the output voltage. It is difficult to meet the requirements of low ripple and fast settling while maintaining a low static power consumption state.

传统结构的升压型直流/直流转换器的充电电流与电压建立时间成反比,与纹波大小和静态功耗成正比,传统结构的直流/直流转换器为保证低静态功耗,很难实现电压的快速建立,通常电压建立时间在几十毫秒量级,不能满足MEMS惯性传感器电压建立时间低于10毫秒的要求。即使采用动态充电电流,使充电电流正比于参考电压与输出电压的差值,在输出电压接近参考电压时,充电电流变得较小,使得输出电压上升至预设值的稳定时间增加,仍然无法满足MEMS惯性传感器驱动电压短时间内完全稳定建立的要求。此外,高精度MEMS惯性传感器要求驱动电压的纹波低于1mV,传统结构的直流/直流转换器很难将纹波限制在1mV以下。因此如何在降低输出电压纹波的同时,缩短升压型直流/直流转换器的输出电压的建立时间,是一个亟需解决的问题。The charging current of the boost DC/DC converter with the traditional structure is inversely proportional to the voltage settling time, and proportional to the ripple size and the static power consumption. In order to ensure low static power consumption, the traditional structure of the DC/DC converter is difficult to achieve. The rapid establishment of the voltage, usually the voltage establishment time is in the order of tens of milliseconds, cannot meet the requirement that the voltage establishment time of the MEMS inertial sensor is less than 10 milliseconds. Even if a dynamic charging current is used to make the charging current proportional to the difference between the reference voltage and the output voltage, when the output voltage is close to the reference voltage, the charging current becomes smaller, which increases the stabilization time for the output voltage to rise to the preset value, still unable to It can meet the requirement that the driving voltage of the MEMS inertial sensor is completely and stably established in a short time. In addition, high-precision MEMS inertial sensors require the ripple of the driving voltage to be less than 1mV, and it is difficult for the traditional DC/DC converter to limit the ripple to less than 1mV. Therefore, how to shorten the settling time of the output voltage of the boost DC/DC converter while reducing the output voltage ripple is an urgent problem to be solved.

发明内容SUMMARY OF THE INVENTION

本发明提供一种直流/直流转换电路和直流/直流转换器,提出了一种既降低输出电压纹波,还缩短升压型直流/直流转换器的输出电压的建立时间的技术方案。The present invention provides a DC/DC conversion circuit and a DC/DC converter, and proposes a technical scheme that not only reduces the output voltage ripple, but also shortens the settling time of the output voltage of the boosted DC/DC converter.

本发明实施例第一方面提供一种直流/直流转换电路,所述电路包括:输出单元、整流单元、检测控制单元;A first aspect of the embodiments of the present invention provides a DC/DC conversion circuit, the circuit includes: an output unit, a rectification unit, and a detection control unit;

所述输出单元接收输入电压,输出第一输出电压至所述整流单元和所述检测控制单元,所述第一输出电压高于所述输入电压;the output unit receives an input voltage, and outputs a first output voltage to the rectification unit and the detection control unit, where the first output voltage is higher than the input voltage;

所述整流单元对所述第一输出电压进行整流滤波,输出第二输出电压,以及产生第一信号并传输至所述检测控制单元,所述第一信号表征所述第二输出电压是否建立完成;The rectifying unit rectifies and filters the first output voltage, outputs a second output voltage, and generates a first signal and transmits it to the detection control unit, where the first signal represents whether the establishment of the second output voltage is completed ;

所述检测控制单元接收所述第一信号、所述第一输出电压,产生控制信号,以控制所述直流/直流转换电路工作于加速充电模式,或者工作于正常充电模式,或者工作于休眠模式;The detection control unit receives the first signal and the first output voltage, and generates a control signal to control the DC/DC conversion circuit to work in an accelerated charging mode, or in a normal charging mode, or in a sleep mode ;

其中,所述加速充电模式为:以最高允许充电电流升高所述第一输出电压的模式;Wherein, the accelerated charging mode is: a mode in which the first output voltage is increased with the highest allowable charging current;

所述正常充电模式为:以预设充电电流升高所述第一输出电压的模式;The normal charging mode is: a mode in which the first output voltage is increased by a preset charging current;

所述休眠模式为:停止升高所述第一输出电压,直至所述第一输出电压降低至参考电压以下的模式。The sleep mode is a mode in which the raising of the first output voltage is stopped until the first output voltage drops below a reference voltage.

可选地,所述输出单元包括:电感、第一功率晶体管和第二功率晶体管;Optionally, the output unit includes: an inductor, a first power transistor and a second power transistor;

所述电感的第一端接收所述输入电压,所述电感的第二端与所述第一功率晶体管的漏极、所述第二功率晶体的漏极分别连接;The first end of the inductor receives the input voltage, and the second end of the inductor is connected to the drain of the first power transistor and the drain of the second power crystal, respectively;

所述第一功率晶体管的栅极与所述检测控制单元中的驱动模块连接;The gate of the first power transistor is connected to the driving module in the detection control unit;

所述第一功率晶体管的源极接地;the source of the first power transistor is grounded;

所述第二功率晶体管的栅极与所述驱动模块连接;the gate of the second power transistor is connected to the driving module;

所述第二功率晶体管的源极与所述整流单元连接,所述第二功率晶体管的源极输出所述第一输出电压。The source of the second power transistor is connected to the rectifying unit, and the source of the second power transistor outputs the first output voltage.

可选地,所述整流单元包括:第三功率晶体管、第一电阻、第二电阻、第一反相器、运算放大器;Optionally, the rectifying unit includes: a third power transistor, a first resistor, a second resistor, a first inverter, and an operational amplifier;

所述第三功率晶体管的源极与所述第二功率晶体管的源极连接;the source of the third power transistor is connected to the source of the second power transistor;

所述第三功率晶体管的栅极与所述运算放大器的输出端、所述第一反相器的输入端分别连接;The gate of the third power transistor is connected to the output end of the operational amplifier and the input end of the first inverter respectively;

所述第三功率晶体管的漏极与所述第一电阻的第一端连接,所述第三功率晶体管的漏极输出所述第二输出电压;The drain of the third power transistor is connected to the first end of the first resistor, and the drain of the third power transistor outputs the second output voltage;

所述第一电阻的第二端与所述第二电阻的第一端和所述运算放大器的同相端连接;The second end of the first resistor is connected to the first end of the second resistor and the non-inverting end of the operational amplifier;

所述第二电阻的第二端接地;the second end of the second resistor is grounded;

所述运算放大器的反相端接收所述参考电压;an inverting terminal of the operational amplifier receives the reference voltage;

所述第一反相器的输出端与所述检测控制单元中的第一脉冲产生模块连接,所述第一反相器的输出端输出所述第一信号。The output end of the first inverter is connected to the first pulse generating module in the detection control unit, and the output end of the first inverter outputs the first signal.

可选地,所述检测控制单元包括:第三电阻、第四电阻、第一比较器、第二比较器、第二脉冲产生模块、逻辑控制模块、第二反相器;Optionally, the detection control unit includes: a third resistor, a fourth resistor, a first comparator, a second comparator, a second pulse generation module, a logic control module, and a second inverter;

所述第三电阻的第一端与所述第一比较器的同相端连接,所述第三电阻的第一端接收所述第一输出电压;The first end of the third resistor is connected to the non-inverting end of the first comparator, and the first end of the third resistor receives the first output voltage;

所述第三电阻的第二端与所述第四电阻的第一端、所述第二比较器的同相端分别连接;The second end of the third resistor is connected to the first end of the fourth resistor and the non-inverting end of the second comparator respectively;

所述第四电阻的第二端接地;the second end of the fourth resistor is grounded;

所述第一比较器的反相端接收所述电感的第二端的电压;the inverting terminal of the first comparator receives the voltage of the second terminal of the inductor;

所述第一比较器的输出端与所述逻辑控制模块的输入端连接,所述第一比较器的输出端输出第三信号,所述第三信号表征所述电感的第二端,与所述第二功率晶体管的源极之间的电流流向;The output end of the first comparator is connected to the input end of the logic control module, and the output end of the first comparator outputs a third signal, and the third signal represents the second end of the inductance, and is connected to the second end of the inductor. the current flow between the sources of the second power transistor;

所述第二比较器的反相端接收所述参考电压;an inverting terminal of the second comparator receives the reference voltage;

所述第二比较器的输出端与所述逻辑控制模块的输入端连接,所述第二比较器的输出端输出第二信号,所述第二信号表征所述第一输出电压与所述参考电压之间的大小关系;The output end of the second comparator is connected to the input end of the logic control module, the output end of the second comparator outputs a second signal, and the second signal represents the first output voltage and the reference The magnitude relationship between the voltages;

所述逻辑控制模块的输出端与所述驱动模块的输入端连接;The output end of the logic control module is connected with the input end of the driving module;

所述驱动模块的输出端与所述第一功率晶体管的栅极、所述第二功率晶体管的栅极、所述第二反相器的输入端、所述第二脉冲产生模块的输入端分别连接,所述驱动模块输出所述控制信号;The output end of the driving module is respectively the gate of the first power transistor, the gate of the second power transistor, the input end of the second inverter, and the input end of the second pulse generating module. connected, the drive module outputs the control signal;

所述第二脉冲产生模块的输出端与所述逻辑控制模块连接;The output end of the second pulse generating module is connected with the logic control module;

所述第二反相器的输出端与所述第一脉冲产生模块连接。The output end of the second inverter is connected to the first pulse generating module.

可选地,所述包括:所述第一脉冲产生模块包括:储能电容阵列、第一普通晶体管、第三比较器;Optionally, the method includes: the first pulse generating module includes: an energy storage capacitor array, a first common transistor, and a third comparator;

所述储能电容阵列的第一端与充电电流源、所述第三比较器的同相端、所述第一普通晶体管的漏极分别连接;The first end of the energy storage capacitor array is respectively connected with the charging current source, the non-inverting end of the third comparator, and the drain of the first common transistor;

所述储能电容阵列的第二端接收所述第一信号、外部数字控制信号;The second end of the energy storage capacitor array receives the first signal and the external digital control signal;

所述储能电容阵列的第三端与所述第一普通晶体管的源极连接,并接地;The third end of the energy storage capacitor array is connected to the source of the first common transistor and grounded;

所述第一普通晶体管的栅极与所述第二反相器的输出端连接;The gate of the first common transistor is connected to the output end of the second inverter;

所述第三比较器的反相端接收所述参考电压;an inverting terminal of the third comparator receives the reference voltage;

所述第三比较器的输出端与所述逻辑控制模块连接,所述第三比较器的输出端输出所述第一脉冲信号。The output end of the third comparator is connected to the logic control module, and the output end of the third comparator outputs the first pulse signal.

可选地,所述储能电容阵列包括:第二普通晶体管、第三普通晶体管、第四普通晶体管、第五普通晶体管、第一电容、第二电容、第三电容、第四电容、第五电容、第一或门、第二或门、第三或门;Optionally, the energy storage capacitor array includes: a second common transistor, a third common transistor, a fourth common transistor, a fifth common transistor, a first capacitor, a second capacitor, a third capacitor, a fourth capacitor, a fifth Capacitor, first OR gate, second OR gate, third OR gate;

所述第二普通晶体管、所述第三普通晶体管、所述第四普通晶体管、所述第五普通晶体管各自的漏级,均与所述充电电流源、所述第三比较器的同相端、所述第一普通晶体管的漏极、所述第五电容的第一端分别连接。The drain stages of the second common transistor, the third common transistor, the fourth common transistor, and the fifth common transistor are all connected to the charging current source, the non-inverting terminal of the third comparator, The drain of the first common transistor and the first end of the fifth capacitor are respectively connected.

所述第二普通晶体管的栅极与所述第一或门的第一输入端、所述第二或门的第一输入端、所述第三或门的第一输入端、所述第一反向器的输出端分别连接;The gate of the second ordinary transistor and the first input terminal of the first OR gate, the first input terminal of the second OR gate, the first input terminal of the third OR gate, the first input terminal of the The output terminals of the inverter are respectively connected;

所述第二普通晶体管的源极与所述第一电容的第一端连接;the source of the second common transistor is connected to the first end of the first capacitor;

所述第一电容的第二端、所述第二电容的第二端、所述第三电容的第二端、所述第四电容的第二端、所述第五电容的第二端、所述第一普通晶体管的源极分别连接,并接地;the second end of the first capacitor, the second end of the second capacitor, the second end of the third capacitor, the second end of the fourth capacitor, the second end of the fifth capacitor, The sources of the first common transistors are respectively connected and grounded;

所述第三普通晶体管的栅极与所述第一或门的输出端连接;the gate of the third common transistor is connected to the output end of the first OR gate;

所述第四普通晶体管的栅级与所述第二或门的输出端连接;the gate of the fourth common transistor is connected to the output end of the second OR gate;

所述第五普通晶体管的栅级与所述第三或门的输出端连接;the gate of the fifth common transistor is connected to the output end of the third OR gate;

所述第一或门的第二输入端接收所述外部数字控制信号中的第一数字控制信号;the second input terminal of the first OR gate receives the first digital control signal in the external digital control signal;

所述第二或门的第二输入端接收所述外部数字控制信号中的第二数字控制信号;the second input terminal of the second OR gate receives the second digital control signal in the external digital control signal;

所述第三或门的第二输入端接收所述外部数字控制信号中的第三数字控制信号。The second input terminal of the third OR gate receives a third digital control signal of the external digital control signals.

可选地,所述第一信号为高电平表征所述第二输出电压建立完成,所述第一信号为低电平表征所述第二输出电压未建立完成;Optionally, the first signal being a high level indicates that the establishment of the second output voltage is completed, and the first signal being a low level indicates that the second output voltage has not been established;

所述第三信号为高电平表征所述电感的第二端,与所述第二功率晶体管的源极之间的电流流向为:从所述第二功率晶体管的源极流向所述电感的第二端;The high level of the third signal indicates that the second terminal of the inductor and the source of the second power transistor flow in the direction of: from the source of the second power transistor to the source of the inductor. second end;

所述第三信号为低电平表征所述电感的第二端,与所述第二功率晶体管的源极之间的电流流向为:从所述电感的第二端流向所述第二功率晶体管的源极;The low level of the third signal indicates the second terminal of the inductor, and the current flow between the second terminal of the inductor and the source of the second power transistor is: from the second terminal of the inductor to the second power transistor the source;

所述第二信号为高电平表征所述第一输出电压高于所述参考电压,所述第二信号为低电平表征所述第一输出电压低于所述参考电压。The high level of the second signal indicates that the first output voltage is higher than the reference voltage, and the low level of the second signal indicates that the first output voltage is lower than the reference voltage.

可选地,所述第二输出电压建立完成的标准为:所述第二输出电压的大小等于所述参考电压与第一比例的乘积;Optionally, the standard for completing the establishment of the second output voltage is: the magnitude of the second output voltage is equal to the product of the reference voltage and the first ratio;

所述第二输出电压未建立完成的标准为:所述第二输出电压的大小小于所述参考电压与所述第一比例的乘积;The criterion that the second output voltage is not established is: the magnitude of the second output voltage is smaller than the product of the reference voltage and the first ratio;

所述第一输出电压高于所述参考电压的标准为:所述第一输出电压的大小大于所述参考电压与第二比例的乘积,其中,所述第二比例大于所述第一比例;The criterion that the first output voltage is higher than the reference voltage is: the magnitude of the first output voltage is greater than the product of the reference voltage and a second ratio, wherein the second ratio is greater than the first ratio;

所述第一输出电压低于所述参考电压的标准为:所述第一输出电压的大小不大于所述参考电压与所述第二比例的乘积。The criterion that the first output voltage is lower than the reference voltage is that the magnitude of the first output voltage is not greater than the product of the reference voltage and the second ratio.

可选地,所述第一信号为高电平时,所述第二普通晶体管、所述第三普通晶体管、所述第四普通晶体管、所述第五普通晶体管均导通,所述储能电容阵列的电容值为预设最大电容值,所述第一脉冲信号保持低电平的时长最长;Optionally, when the first signal is at a high level, the second common transistor, the third common transistor, the fourth common transistor, and the fifth common transistor are all turned on, and the energy storage capacitor is turned on. The capacitance value of the array is a preset maximum capacitance value, and the first pulse signal maintains a low level for the longest duration;

所述第一信号为低电平时,所述第二普通晶体管关断,所述第三普通晶体管、所述第四普通晶体管、所述第五普通晶体管受控于所述外部数字信号,所述储能电容阵列的电容值由所述外部数字信号决定,所述第一脉冲信号保持低电平的时长由所述外部数字信号决定。When the first signal is at a low level, the second common transistor is turned off, the third common transistor, the fourth common transistor, and the fifth common transistor are controlled by the external digital signal, and the The capacitance value of the energy storage capacitor array is determined by the external digital signal, and the duration that the first pulse signal remains at a low level is determined by the external digital signal.

本发明实施例第二方面提供一种直流/直流转换器,所述直流/直流转换器包括:如第一方面任一所述的电路。A second aspect of the embodiments of the present invention provides a DC/DC converter, where the DC/DC converter includes: the circuit according to any one of the first aspects.

本发明提供的直流/直流转换电路,输出单元接收输入电压,输出高于输入电压的第一输出电压至整流单元和检测控制单元,整流单元对第一输出电压进行整流滤波,降低了第一输出电压的纹波,输出低纹波的第二输出电压,同时,整流单元产生表征第二输出电压是否建立完成的第一信号,并传输至检测控制单元,检测控制单元接收第一信号、第一输出电压之后,产生控制信号,以控制直流/直流转换电路工作于加速充电模式,或者工作于正常充电模式,或者工作于休眠模式。其中,当直流/直流转换电路工作于加速充电模式时,整个电路以最高允许充电电流升高第一输出电压,这样就使得第一输出电压快速的建立起来,相当于第二输出电压被快速的建立起来,相较于目前传统的直流/直流转换电路,缩短了输出电压建立的时间。检测控制单元可以基于第一信号和第一输出电压,在加速充电模式和正常充电模式之间切换,在加速充电模式下充电电流大,以缩短输出电压建立时间,正常充电模式下,维持适当的输出电流并保证较低的输出纹波,提升传感器的噪声性能。本发明的直流/直流转换电路,在降低输出电压纹波的同时,缩短直流/直流转换器的输出电压的建立时间,具有较高的实用性价值。In the DC/DC conversion circuit provided by the present invention, the output unit receives the input voltage and outputs a first output voltage higher than the input voltage to the rectifier unit and the detection control unit, and the rectifier unit rectifies and filters the first output voltage to reduce the first output voltage. The ripple of the voltage outputs a second output voltage with low ripple. At the same time, the rectifier unit generates a first signal indicating whether the establishment of the second output voltage is completed, and transmits it to the detection control unit. The detection control unit receives the first signal, the first signal After the voltage is output, a control signal is generated to control the DC/DC conversion circuit to work in an accelerated charging mode, or in a normal charging mode, or in a sleep mode. Among them, when the DC/DC conversion circuit works in the accelerated charging mode, the entire circuit increases the first output voltage with the highest allowable charging current, so that the first output voltage is quickly established, which is equivalent to the second output voltage being rapidly increased Compared with the current traditional DC/DC conversion circuit, it shortens the time for the output voltage to establish. The detection control unit can switch between the accelerated charging mode and the normal charging mode based on the first signal and the first output voltage. In the accelerated charging mode, the charging current is large to shorten the output voltage settling time. output current and ensure low output ripple, improving the noise performance of the sensor. The DC/DC conversion circuit of the present invention reduces the output voltage ripple and shortens the settling time of the output voltage of the DC/DC converter, which has high practical value.

附图说明Description of drawings

为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例的描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。In order to illustrate the technical solutions of the embodiments of the present invention more clearly, the following briefly introduces the drawings that are used in the description of the embodiments of the present invention. Obviously, the drawings in the following description are only some embodiments of the present invention. , for those of ordinary skill in the art, other drawings can also be obtained from these drawings without creative labor.

图1是传统结构的升压型直流/直流转换器的电路结构图;Fig. 1 is the circuit structure diagram of the boost type DC/DC converter of the traditional structure;

图2是本发明实施例一种直流/直流转换电路的模块化示意图;2 is a modular schematic diagram of a DC/DC conversion circuit according to an embodiment of the present invention;

图3是本发明实施例中一种优选的直流/直流转换电路的结构示意图;3 is a schematic structural diagram of a preferred DC/DC conversion circuit in an embodiment of the present invention;

图4是本发明实施例中一种优选的整流电路200的结构示意图;FIG. 4 is a schematic structural diagram of a preferred rectifier circuit 200 in an embodiment of the present invention;

图5是本发明实施例中一种优选的第一脉冲产生模块340的结构示意图;5 is a schematic structural diagram of a preferred first pulse generation module 340 in an embodiment of the present invention;

图6是本发明实施例中的直流/直流转换电路的波形示意图。FIG. 6 is a schematic waveform diagram of a DC/DC conversion circuit in an embodiment of the present invention.

具体实施方式Detailed ways

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are part of the embodiments of the present invention, but not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.

发明人发现,目前传统结构的直流/直流转换器很难限制纹波在较低水平,同时输出电压的建立时间较长,很难满足MEMS惯性传感器的工作需求。发明人进一步研究发现导致上述问题的原因,结合图1所示的传统结构的升压型直流/直流转换器的电路结构图,图1中包含P型功率晶体管M1、N型功率晶体管M2、电感L、电阻分压电路(由电阻R1和R2构成)、比较器CMP,电流检测模块ISENSE,脉冲产生器PULSE,逻辑控制器LOGIC,功率晶体管(M1和M2)的驱动器DRIVER。The inventor found that it is difficult to limit the ripple to a low level in the current traditional DC/DC converter, and at the same time, the settling time of the output voltage is long, which is difficult to meet the working requirements of the MEMS inertial sensor. The inventors have further studied and found the reasons for the above problems. Combined with the circuit structure diagram of the boost DC/DC converter with the traditional structure shown in FIG. 1 , FIG. 1 includes a P-type power transistor M 1 and an N-type power transistor M 2 . , inductor L, resistor divider circuit (composed of resistors R1 and R2 ) , comparator CMP, current detection module ISENSE, pulse generator PULSE, logic controller LOGIC, driver DRIVER for power transistors (M1 and M2).

当图1中电路工作时,电阻分压电路,分压得到与输出电压VOUT成比例的反馈电压VFB,与电感L的第二端的电压VSW通过比较器CMP相比较产生判断信号输出给逻辑控制电路LOGIC;脉冲产生器PULSE产生控制电感L充电时间的脉冲信号,进而控制对P型功率晶体管M1的源极输出VOUT的充电电流;电流检测模块ISENSE通过检测流过P型功率管M1充电电流是否为零,判断对输出VOUT是否充电完毕,充电完毕后关断P型功率管M1When the circuit in FIG. 1 is working, the resistor divider circuit will divide the voltage to obtain a feedback voltage V FB proportional to the output voltage V OUT , which is compared with the voltage V SW of the second end of the inductor L through the comparator CMP to generate a judgment signal and output to The logic control circuit LOGIC; the pulse generator PULSE generates a pulse signal that controls the charging time of the inductor L, and then controls the charging current to the source of the P-type power transistor M 1 to output V OUT ; the current detection module ISENSE detects the current flowing through the P-type power transistor by detecting Whether the charging current of M1 is zero, it is judged whether the charging of the output VOUT is completed, and the P - type power transistor M1 is turned off after the charging is completed.

由于直流/直流转换器的充电电流与电压建立时间与成反比,与纹波大小和静态功耗成正比,图1中传统结构的直流/直流转换器为保证低静态功耗,很难实现电压的快速建立,通常电压建立时间在几十毫秒量级,不能满足MEMS惯性传感器电压建立时间低于10毫秒的要求。即使采用动态充电电流,使充电电流正比于参考电压与输出电压的差值,在输出电压接近参考电压时,充电电流变得较小,使得输出电压上升至预设值的稳定时间增加,仍然无法满足MEMS惯性传感器驱动电压短时间内完全稳定建立的要求。此外,高精度MEMS惯性传感器要求驱动电压的纹波低于1mV,而图1传统结构的直流/直流转换器因电路结构以及元器件自身的特性,导致很难将纹波限制在1mV以下。Since the charging current of the DC/DC converter is inversely proportional to the voltage settling time, and proportional to the ripple size and static power consumption, the DC/DC converter with the traditional structure in Figure 1 is difficult to achieve low static power consumption in order to ensure low static power consumption. The fast settling time of the MEMS inertial sensor, usually the voltage settling time is in the order of tens of milliseconds, which cannot meet the requirement that the voltage settling time of the MEMS inertial sensor is less than 10 milliseconds. Even if a dynamic charging current is used to make the charging current proportional to the difference between the reference voltage and the output voltage, when the output voltage is close to the reference voltage, the charging current becomes smaller, which increases the stabilization time for the output voltage to rise to the preset value, still unable to It can meet the requirement that the driving voltage of the MEMS inertial sensor is completely and stably established in a short time. In addition, high-precision MEMS inertial sensors require the ripple of the driving voltage to be less than 1mV, while the DC/DC converter with the traditional structure in Figure 1 is difficult to limit the ripple to less than 1mV due to the circuit structure and the characteristics of the components themselves.

基于上述问题,发明人经过大量的研究、实际测试、仿真,创造性的提出了本发明实施例的直流/直流转换电路,以下,对本发明实施例的直流/直流转换电路进行详细解释和说明。Based on the above problems, the inventor creatively proposes the DC/DC conversion circuit of the embodiment of the present invention through a lot of research, actual testing, and simulation.

参照图2,示出了本发明实施例一种直流/直流转换电路的模块化示意图。该直流/直流转换电路包括:输出单元、整流单元、检测控制单元;输出单元接收输入电压,输出高于输入电压的第一输出电压至整流单元和检测控制单元;整流单元对第一输出电压进行整流滤波,输出纹波被降低的第二输出电压,同时,整流单元产生表征第二输出电压是否建立完成的第一信号并传输至检测控制单元;检测控制单元接收第一信号、第一输出电压,产生控制信号,以控制直流/直流转换电路工作于加速充电模式,或者工作于正常充电模式,或者工作于休眠模式。其中,加速充电模式为:以最高允许充电电流升高第一输出电压的模式这样就保证了第二输出电压的快速建立;在第二输出电压建立完成后,进入正常充电模式,正常工作模式为:以预设充电电流升高第一输出电压的模式。检测电路单元基于第一信号和第一输出电压,在加速充电模式和正常充电模式之间切换,在加速充电模式下充电电流大,以缩短输出电压建立时间,正常充电模式下,维持适当的输出电流并保证较低的输出纹波,提升传感器的噪声性能。另外,当第一输出电压较大时,进入休眠模式,休眠模式为:停止升高第一输出电压,直至第一输出电压降低至参考电压以下的模式。由于休眠模式下仅有部分元器件工作,这间接的降低了直流/直流转换电路的静态功耗。Referring to FIG. 2 , a modular schematic diagram of a DC/DC conversion circuit according to an embodiment of the present invention is shown. The DC/DC conversion circuit includes: an output unit, a rectification unit, and a detection control unit; the output unit receives an input voltage, and outputs a first output voltage higher than the input voltage to the rectification unit and the detection control unit; Rectification and filtering to output the second output voltage with reduced ripple. At the same time, the rectification unit generates a first signal indicating whether the establishment of the second output voltage is completed and transmits it to the detection control unit; the detection control unit receives the first signal and the first output voltage. , and generate a control signal to control the DC/DC conversion circuit to work in an accelerated charging mode, or in a normal charging mode, or in a sleep mode. Among them, the accelerated charging mode is: a mode in which the first output voltage is increased with the highest allowable charging current, thus ensuring the rapid establishment of the second output voltage; after the establishment of the second output voltage is completed, the normal charging mode is entered, and the normal working mode is : A mode in which the first output voltage is boosted with a preset charging current. The detection circuit unit switches between the accelerated charging mode and the normal charging mode based on the first signal and the first output voltage. In the accelerated charging mode, the charging current is large to shorten the settling time of the output voltage. In the normal charging mode, a proper output is maintained. current and ensure lower output ripple, improving the noise performance of the sensor. In addition, when the first output voltage is relatively high, a sleep mode is entered, and the sleep mode is a mode in which the increase of the first output voltage is stopped until the first output voltage drops below the reference voltage. Since only some components work in the sleep mode, this indirectly reduces the static power consumption of the DC/DC conversion circuit.

参照图3,示出了本发明实施例中一种优选的直流/直流转换电路的结构示意图,图3中包括:输出电路100、整流电路200和检测控制电路300。其中,输出电路100具体包括:电感L、第一功率晶体管MN_PW和第二功率晶体管MP_PW。整流电路200的具体结构参见下文以及图4所示,先不赘述。检测控制电路300包括:由第三电阻R3和第四电阻R4构成的分压电路310,第一比较器320,第二比较器330,第一脉冲产生模块340,第二脉冲产生模块350,逻辑控制模块360,驱动模块370。第一脉冲产生模块340的具体结构参见下文和图5所示,先不赘述。Referring to FIG. 3 , a schematic structural diagram of a preferred DC/DC conversion circuit in an embodiment of the present invention is shown. FIG. 3 includes an output circuit 100 , a rectifier circuit 200 and a detection control circuit 300 . The output circuit 100 specifically includes: an inductor L, a first power transistor MN_PW and a second power transistor MP_PW. The specific structure of the rectifier circuit 200 can be referred to below and shown in FIG. 4 , which will not be described in detail. The detection control circuit 300 includes: a voltage divider circuit 310 composed of a third resistor R 3 and a fourth resistor R 4 , a first comparator 320 , a second comparator 330 , a first pulse generation module 340 , and a second pulse generation module 350 , the logic control module 360 , and the drive module 370 . The specific structure of the first pulse generating module 340 can be referred to below and shown in FIG. 5 , which will not be described in detail.

图3中,Vin表示输入电压,VOUT1表示第一输出电压,VSW表示电感L的第二端的电压,即第一功率晶体管MN_PW的漏极电压,第二功率晶体管MP_PW的漏极电压。SN表示第一功率晶体管MN_PW的栅极控制信号,SP表示第二功率晶体管MP_PW的栅极控制信号,其由驱动模块370发送,而驱动模块370是接收逻辑控制模块360发送的逻辑信号产生两个控制信号。TM1表示第一脉冲信号,TM2表示第二脉冲信号,D表示外部数字控制信号,NSN表示SN信号的反相信号。H1表示第一信号,H2表示第二信号,H3表示第三信号,C0表示第一输出电压的输出电容,RL和CL分别表示第二输出电压的负载电阻和负载电容。In FIG. 3 , V in represents the input voltage, V OUT1 represents the first output voltage, and V SW represents the voltage of the second terminal of the inductor L, ie the drain voltage of the first power transistor MN_PW and the drain voltage of the second power transistor MP_PW. SN represents the gate control signal of the first power transistor MN_PW, SP represents the gate control signal of the second power transistor MP_PW, which is sent by the driving module 370, and the driving module 370 receives the logic signal sent by the logic control module 360 to generate two control signal. TM1 represents the first pulse signal, TM2 represents the second pulse signal, D represents the external digital control signal, and NSN represents the inverted signal of the SN signal. H1 represents the first signal, H2 represents the second signal, H3 represents the third signal, C 0 represents the output capacitance of the first output voltage, and RL and CL represent the load resistance and load capacitance of the second output voltage, respectively.

图3中,电感L的第一端接收输入电压Vin,电感L的第二端与第一功率晶体管MN_PW的漏极、第二功率晶体MP_PW的漏极分别连接;第一功率晶体管MN_PW的栅极与检测控制单元中的驱动模块370连接;第一功率晶体管MN_PW的源极接地;第二功率晶体管MP_PW的栅极与驱动模块370连接;第二功率晶体管MP_PW的源极与整流单元200连接,第二功率晶体管MP_PW的源极输出第一输出电压VOUT1In FIG. 3 , the first end of the inductor L receives the input voltage V in , and the second end of the inductor L is connected to the drain of the first power transistor MN_PW and the drain of the second power transistor MP_PW respectively; the gate of the first power transistor MN_PW The source of the first power transistor MN_PW is grounded; the gate of the second power transistor MP_PW is connected to the drive module 370; the source of the second power transistor MP_PW is connected to the rectifier unit 200, The source of the second power transistor MP_PW outputs the first output voltage V OUT1 .

本发明实施例中,第一功率晶体管MN_PW和第二功率晶体管MP_PW被控制的交替的导通以实现电压转换。第一功率晶体管MN_PW和第二功率晶体管MP_PW不会同时导通,但可以同时断开。即第一功率晶体管MN_PW导通时,第二功率晶体管MP_PW断开,第二功率晶体管MP_PW导通时,第一功率晶体管MN_PW断开,或者,第一功率晶体管MN_PW和第二功率晶体管MP_PW同时断开。In the embodiment of the present invention, the first power transistor MN_PW and the second power transistor MP_PW are controlled to be turned on alternately to realize voltage conversion. The first power transistor MN_PW and the second power transistor MP_PW are not turned on at the same time, but may be turned off at the same time. That is, when the first power transistor MN_PW is turned on, the second power transistor MP_PW is turned off, and when the second power transistor MP_PW is turned on, the first power transistor MN_PW is turned off, or the first power transistor MN_PW and the second power transistor MP_PW are turned off at the same time. open.

本发明实施例中,作为一种优选的方式,电感L可以被设置于芯片外,而其他电路部分可以被集成于芯片内。另外,本发明实施例中,直流/直流转换电路中的输出电路100为升压型,也可以将本发明实施例中的电路应用于输出电路100为降压型的结构中,此时输出电路100中的电感L、第一功率晶体管MN_PW和第二功率晶体管MP_PW的连接关系会调整,具体连接关系属于现有技术,此处不再描述。In the embodiment of the present invention, as a preferred manner, the inductor L may be provided outside the chip, and other circuit parts may be integrated in the chip. In addition, in the embodiment of the present invention, the output circuit 100 in the DC/DC conversion circuit is a boost type, and the circuit in the embodiment of the present invention can also be applied to a structure in which the output circuit 100 is a step-down type. In this case, the output circuit The connection relationship between the inductor L, the first power transistor MN_PW, and the second power transistor MP_PW in 100 will be adjusted, and the specific connection relationship belongs to the prior art, and will not be described here.

参照图4,示出了本发明实施例中一种优选的整流电路200的结构示意图。图4中包括:第一电阻R1、第二电阻R2、运算放大器220、第三功率晶体管MP0、第一反相器INV1,其中,第一电阻R1和第二电阻R2构成了一个电压采样电路210。Referring to FIG. 4 , a schematic structural diagram of a preferred rectifier circuit 200 in an embodiment of the present invention is shown. FIG. 4 includes: a first resistor R 1 , a second resistor R 2 , an operational amplifier 220 , a third power transistor MP0 , and a first inverter INV1 , wherein the first resistor R 1 and the second resistor R 2 form a Voltage sampling circuit 210 .

第三功率晶体管MP0的源极与第二功率晶体管MN_PW的源极连接,相当于接收第一输出电压VOUT1;第三功率晶体管MP0的栅极与运算放大器220的输出端、第一反相器INV1的输入端分别连接;第三功率晶体管MP0的漏极与第一电阻R1的第一端连接,第三功率晶体管MP0的漏极输出第二输出电压VOUT2;该第二输出电压VOUT2提供给负载使用。即,该第二输出电压VOUT2为直流/直流转换器的对外输出电压。The source of the third power transistor MP0 is connected to the source of the second power transistor MN_PW, which is equivalent to receiving the first output voltage V OUT1 ; the gate of the third power transistor MP0 is connected to the output end of the operational amplifier 220 and the first inverter The input terminals of INV1 are respectively connected; the drain of the third power transistor MP0 is connected to the first terminal of the first resistor R1, and the drain of the third power transistor MP0 outputs the second output voltage V OUT2 ; the second output voltage V OUT2 available to the load. That is, the second output voltage V OUT2 is the external output voltage of the DC/DC converter.

第一电阻R1的第二端与第二电阻R2的第一端和运算放大器220的同相端连接,第一电阻R1与第二电阻R2构成的分压电路对第二输出电压VOUT2进行分压得到第二反馈电压VFB2,第二反馈电压VFB2作为运算放大器220的同相端输入;第二电阻R2的第二端接地;运算放大器220的反相端接收参考电压VREF;第一反相器220的输出端与检测控制单元中的第一脉冲产生模块340连接,第一反相器220的输出端输出第一信号H1至第一脉冲产生模块340。The second end of the first resistor R1 is connected to the first end of the second resistor R2 and the non-inverting end of the operational amplifier 220, and the voltage divider circuit formed by the first resistor R1 and the second resistor R2 is responsible for the second output voltage V OUT2 divides the voltage to obtain the second feedback voltage V FB2 , and the second feedback voltage V FB2 is input as the non-inverting terminal of the operational amplifier 220 ; the second terminal of the second resistor R 2 is grounded; the inverting terminal of the operational amplifier 220 receives the reference voltage V REF ; The output end of the first inverter 220 is connected to the first pulse generation module 340 in the detection control unit, and the output end of the first inverter 220 outputs the first signal H1 to the first pulse generation module 340 .

本发明实施例中,运算放大器220基于第二反馈电压VFB2和参考电压VREF得到误差放大电压N1,第三功率晶体管MP0的栅极受误差放大电压N1控制,调节第二输出电压VOUT2的充电电流,抑制第二输出电压VOUT2的纹波。经过仿真以及实测,整流电路200的第二输出电压VOUT2纹波幅度较第一输出电压VOUT1纹波幅度衰减了约50倍,相较于目前传统的直流/直流转换器,极大了降低了第二输出电压VOUT2纹波。In the embodiment of the present invention, the operational amplifier 220 obtains the error amplification voltage N1 based on the second feedback voltage V FB2 and the reference voltage V REF , and the gate of the third power transistor MP0 is controlled by the error amplification voltage N1 to adjust the magnitude of the second output voltage V OUT2 The charging current suppresses the ripple of the second output voltage V OUT2 . After simulation and actual measurement, the ripple amplitude of the second output voltage V OUT2 of the rectifier circuit 200 is attenuated by about 50 times compared with the ripple amplitude of the first output voltage V OUT1 , which is greatly reduced compared to the current traditional DC/DC converter. the second output voltage V OUT2 ripple.

同时,第一反相器INV1基于运算放大器220输出的误差放大电压N1,得到第一信号H1,第一信号H1为高电平表示第二输出电压VOUT2等于参考电压VREF与第一比例的乘积,第二输出电压VOUT2已建立完成,第一信号H1为低电平表示第二输出电压低于参考电压VREF与第一比例的乘积,第二输出电压VOUT2尚未建立完成。其中,第一比例为设计值,根据预设的第二输出电压VOUT2大小及参考电压VREF大小,经过计算得到。At the same time, the first inverter INV1 obtains the first signal H1 based on the error amplifying voltage N1 output by the operational amplifier 220, and the first signal H1 being at a high level indicates that the second output voltage V OUT2 is equal to the reference voltage V REF and the first ratio Product, the second output voltage V OUT2 has been established, the first signal H1 is low level indicates that the second output voltage is lower than the product of the reference voltage V REF and the first ratio, the second output voltage V OUT2 has not been established. The first ratio is a design value, which is calculated according to the preset second output voltage V OUT2 and the reference voltage V REF .

结合图3,检测控制单元300包括:第三电阻R3、第四电阻R4、第一比较器330、第二比较器320、第一脉冲产生模块340、第二脉冲产生模块350、逻辑控制模块360、驱动模块370、第二反相器INV2。3 , the detection control unit 300 includes: a third resistor R 3 , a fourth resistor R 4 , a first comparator 330 , a second comparator 320 , a first pulse generation module 340 , a second pulse generation module 350 , a logic control Module 360, driving module 370, second inverter INV2.

其中,第三电阻R3的第一端与第一比较器330的同相端连接,第三电阻R3的第一端接收第一输出电压VOUT1;即,第一比较器330的同相端接收第一输出电压VOUT1The first end of the third resistor R 3 is connected to the non-inverting end of the first comparator 330 , and the first end of the third resistor R 3 receives the first output voltage V OUT1 ; that is, the non-inverting end of the first comparator 330 receives the first output voltage V OUT1 ; The first output voltage V OUT1 .

第三电阻R3的第二端与第四电阻R4的第一端、第二比较器320的同相端分别连接;第四电阻R4的第二端接地;第三电阻R3、第四电阻R4构成另一个分压电压310,其同样对第一输出电压VOUT1构进行分压,得到第一反馈电压VFB1。第一反馈电压VFB1作为第二比较器320的同相端输入。The second end of the third resistor R 3 is connected to the first end of the fourth resistor R 4 and the non-inverting end of the second comparator 320 respectively; the second end of the fourth resistor R 4 is grounded; the third resistor R 3 , the fourth The resistor R 4 forms another divided voltage 310 , which also divides the first output voltage V OUT1 to obtain the first feedback voltage V FB1 . The first feedback voltage V FB1 is input as the non-inverting terminal of the second comparator 320 .

第一比较器330的反相端接收电感L的第二端的电压(图2中用VSW表示);第一比较器330的输出端与逻辑控制模块360的输入端连接,第一比较器330的输出端输出第三信号H3,第三信号H3表征电感L的第二端,与第二功率晶体管MP_PW的源极之间的电流流向;即,第三信号H3表征VSW与VOUT1之间的电流流向。第三信号H3为高电平表征VSW与VOUT1之间的电流流向为:从VOUT1流向VSW;第三信号H3为低电平表征VSW与VOUT1之间的电流流向为:从VSW流向VOUT1The inverting terminal of the first comparator 330 receives the voltage of the second terminal of the inductor L (represented by V SW in FIG. 2 ); the output terminal of the first comparator 330 is connected to the input terminal of the logic control module 360 , and the first comparator 330 The output terminal of the output terminal outputs a third signal H3, and the third signal H3 represents the current flow between the second terminal of the inductor L and the source of the second power transistor MP_PW; that is, the third signal H3 represents the relationship between V SW and V OUT1 direction of current flow. When the third signal H3 is at a high level, it means that the current flow between V SW and V OUT1 is: from V OUT1 to V SW ; when the third signal H3 is at a low level, it means that the current flow between V SW and V OUT1 is: from V SW flows to V OUT1 .

第二比较器320的反相端接收参考电压VREF;第二比较器320的输出端与逻辑控制模块360的输入端连接,第二比较器320的输出端输出第二信号H2,第二信号H2表征第一输出电压VOUT1与参考电压VREF之间的大小关系。第二信号H2为高电平表征第一输出电压VOUT1高于参考电压VREF与第二比例的乘积,第三信号H2为低电平表征第一输出电压VOUT1低于参考电压VREF与第二比例的乘积,其中,第二比例大于第一比例。The inverting terminal of the second comparator 320 receives the reference voltage V REF ; the output terminal of the second comparator 320 is connected to the input terminal of the logic control module 360 , and the output terminal of the second comparator 320 outputs the second signal H2 , the second signal H2 represents the magnitude relationship between the first output voltage V OUT1 and the reference voltage V REF . The high level of the second signal H2 indicates that the first output voltage V OUT1 is higher than the product of the reference voltage V REF and the second ratio, and the third signal H2 is low level indicates that the first output voltage V OUT1 is lower than the reference voltage V REF and The product of the second ratio, wherein the second ratio is greater than the first ratio.

逻辑控制模块360的输出端与驱动模块370的输入端连接;驱动模块370的输出端与第一功率晶体管MN_PW的栅极、第二功率晶体管MP_PW的栅极、第二反相器INV2的输入端、第二脉冲产生模块350的输入端分别连接,驱动模块370基于接收到的逻辑控制模块360的逻辑信号,输出控制信号第一功率晶体管MN_PW的栅极控制信号SN、第二功率晶体管MP_PW的栅极控制信号SP。The output terminal of the logic control module 360 is connected to the input terminal of the driving module 370; the output terminal of the driving module 370 is connected to the gate of the first power transistor MN_PW, the gate of the second power transistor MP_PW, and the input terminal of the second inverter INV2 The input terminals of the second pulse generating module 350 are respectively connected, and the driving module 370 outputs the control signal based on the received logic signal of the logic control module 360, the gate control signal SN of the first power transistor MN_PW and the gate of the second power transistor MP_PW. pole control signal SP.

第二脉冲产生模块350的输出端与逻辑控制模块360连接;第二反相器INV2的输出端与第一脉冲产生模块340连接,其将第一功率晶体管MN_PW的栅极控制信号SN取反得到NSN信号,输出至第一脉冲产生模块340。The output end of the second pulse generation module 350 is connected to the logic control module 360; the output end of the second inverter INV2 is connected to the first pulse generation module 340, which inverts the gate control signal SN of the first power transistor MN_PW to obtain The NSN signal is output to the first pulse generating module 340 .

参照图5,示出了本发明实施例中一种优选的第一脉冲产生模块340的结构示意图。图5中包括:储能电容阵列341、第一普通晶体管MN1、第三比较器342;储能电容阵列341的第一端(图5中VRAMP)与充电电流源(图5中IB)、第三比较器342的同相端、第一普通晶体管MN1的漏极分别连接;储能电容阵列341的第二端接收第一信号H1、外部数字控制信号D[2:0];储能电容阵列341的第三端与第一普通晶体管MN1的源极连接,并接地;第一普通晶体管MN1的栅极与第二反相器INV2的输出端连接,即第一普通晶体管MN1的栅极接收NSN信号。Referring to FIG. 5 , a schematic structural diagram of a preferred first pulse generating module 340 in an embodiment of the present invention is shown. FIG. 5 includes: storage capacitor array 341, first common transistor MN1, third comparator 342; first end of storage capacitor array 341 (V RAMP in FIG. 5 ) and charging current source ( IB in FIG. 5 ) , the non-inverting end of the third comparator 342 and the drain of the first common transistor MN1 are respectively connected; the second end of the energy storage capacitor array 341 receives the first signal H1 and the external digital control signal D[2:0]; the energy storage capacitor The third end of the array 341 is connected to the source of the first common transistor MN1 and grounded; the gate of the first common transistor MN1 is connected to the output end of the second inverter INV2, that is, the gate of the first common transistor MN1 receives NSN signal.

第三比较器342的反相端接收参考电压VREF;第三比较器342的输出端与逻辑控制模块360连接,第三比较器342的输出端输出第一脉冲信号TM1。The inverting terminal of the third comparator 342 receives the reference voltage V REF ; the output terminal of the third comparator 342 is connected to the logic control module 360 , and the output terminal of the third comparator 342 outputs the first pulse signal TM1 .

具体的,储能电容阵列341包括:第二普通晶体管MN2、第三普通晶体管MN3、第四普通晶体管MN4、第五普通晶体管MN5、第一电容C1、第二电容C2、第三电容C3、第四电容C4、第五电容C5、第一或门OR1、第二或门OR2、第三或门OR3。Specifically, the energy storage capacitor array 341 includes: a second common transistor MN2, a third common transistor MN3, a fourth common transistor MN4, a fifth common transistor MN5, a first capacitor C 1 , a second capacitor C 2 , and a third capacitor C 3. The fourth capacitor C 4 , the fifth capacitor C 5 , the first OR gate OR1, the second OR gate OR2, and the third OR gate OR3.

第二普通晶体管MN2、第三普通晶体管MN3、第四普通晶体管MN4、第五普通晶体管MN5各自的漏级,均与充电电流源IB、第三比较器342的同相端、第一普通晶体管MN1的漏极、第五电容C5的第一端分别连接。第二普通晶体管MN2、第三普通晶体管MN3、第四普通晶体管MN4、第五普通晶体管MN5各自的漏级上的电压即为VRAMPThe drain stages of the second common transistor MN2, the third common transistor MN3, the fourth common transistor MN4, and the fifth common transistor MN5 are all connected with the charging current source IB , the non-inverting terminal of the third comparator 342, and the first common transistor MN1. The drain of , and the first end of the fifth capacitor C5 are respectively connected. The voltage on the respective drains of the second common transistor MN2, the third common transistor MN3, the fourth common transistor MN4, and the fifth common transistor MN5 is V RAMP .

第二普通晶体管MN2的栅极与第一或门OR1的第一输入端、第二或门OR2的第一输入端、第三或门OR3的第一输入端、第一反向器INV1的输出端分别连接,接收第一信号H1;第二普通晶体管MN2的源极与第一电容C1的第一端连接;第一电容C1的第二端、第二电容C2的第二端、第三电容C3的第二端、第四电容C4的第二端、第五电容C5的第二端、第一普通晶体管MN1的源极分别连接,并接地。第三普通晶体管MN3的栅极与第一或门OR1的输出端连接;第四普通晶体管MN4的栅级与第二或门OR2的输出端连接;第五普通晶体管MN5的栅级与第三或门OR3的输出端连接。The gate of the second ordinary transistor MN2 is connected to the first input terminal of the first OR gate OR1, the first input terminal of the second OR gate OR2, the first input terminal of the third OR gate OR3, and the output of the first inverter INV1 The terminals are respectively connected to receive the first signal H1; the source of the second ordinary transistor MN2 is connected to the first terminal of the first capacitor C1 ; the second terminal of the first capacitor C1, the second terminal of the second capacitor C2, The second end of the third capacitor C3, the second end of the fourth capacitor C4 , the second end of the fifth capacitor C5 , and the source of the first common transistor MN1 are respectively connected and grounded. The gate of the third ordinary transistor MN3 is connected to the output terminal of the first OR gate OR1; the gate of the fourth ordinary transistor MN4 is connected to the output terminal of the second OR gate OR2; the gate of the fifth ordinary transistor MN5 is connected to the third OR gate The output of gate OR3 is connected.

第一或门OR1的第二输入端接收外部数字控制信号D[2:0]中的第一数字控制信号D[2];第二或门OR2的第二输入端接收外部数字控制信号D[2:0]中的第二数字控制信号D[1];第三或门OR3的第二输入端接收外部数字控制信号D[2:0]中的第三数字控制信号D[0]。The second input terminal of the first OR gate OR1 receives the first digital control signal D[2] in the external digital control signal D[2:0]; the second input terminal of the second OR gate OR2 receives the external digital control signal D[ 2:0] in the second digital control signal D[1]; the second input terminal of the third OR gate OR3 receives the third digital control signal D[0] in the external digital control signal D[2:0].

结合图5可知,第一脉冲信号TM1的宽度是充电电流源IB和储能电容阵列341有效电容值的函数,其中储能电容阵列341有效电容值受外部数字控制信号D[2:0]和第一信号H1控制。第一脉冲信号TM1用于控制第一功率晶体管MN_PW导通时间,进而控制对第一输出电压VOUT1的充电电流。当整个转换电流工作于加速充电模式下,储能电容阵列341的电容值被配置成预设的最大值,此时第一脉冲产生模块340输出的第一脉冲信号TM1的脉冲宽度最宽,第一功率晶体管MN_PW导通时间最长,对第一输出电压VOUT1充电的电流最大,即,以最高允许充电电流升高第一输出电压VOUT1。而当整个转换电流工作于其他模式下,储能电容阵列341的电容值由外部数字控制信号D[2:0]决定,此时第一脉冲产生模块340输出的第一脉冲信号TM1的宽度也由外部数字控制信号D[2:0]决定,其以相应的电流对第一输出电压VOUT1充电。5, the width of the first pulse signal TM1 is a function of the charging current source IB and the effective capacitance value of the energy storage capacitor array 341, wherein the effective capacitance value of the energy storage capacitor array 341 is controlled by the external digital control signal D[2:0] and the first signal H1 control. The first pulse signal TM1 is used to control the on-time of the first power transistor MN_PW, thereby controlling the charging current for the first output voltage V OUT1 . When the entire conversion current works in the accelerated charging mode, the capacitance value of the energy storage capacitor array 341 is configured to be the preset maximum value. At this time, the pulse width of the first pulse signal TM1 output by the first pulse generation module 340 is the widest. A power transistor MN_PW conducts the longest time and charges the first output voltage V OUT1 with the maximum current, that is, the first output voltage V OUT1 is increased with the highest allowable charging current. When the entire conversion current works in other modes, the capacitance value of the energy storage capacitor array 341 is determined by the external digital control signal D[2:0]. At this time, the width of the first pulse signal TM1 output by the first pulse generation module 340 is also Determined by an external digital control signal D[2:0], it charges the first output voltage V OUT1 with a corresponding current.

充电电流源IB提供基准电流对储能电容阵列341进行充电;第一普通晶体管MN1根据第一功率晶体管MN_PW的栅极控制信号SN的反相信号NSN,在NSN高电平时,将储能电容阵列341上极板电压VRAMP(即储能电容阵列341第一端的电压)快速放电至零电平;第三比较器342比较储能电容阵列上极板电压VRAMP和参考电压VREF得到第一脉冲信号TM1。当储能电容阵列341上极板电压VRAMP大于参考电压VREF时,第一脉冲信号TM1为高电平,则第一功率晶体管MN_PW断开;当储能电容阵列341上极板电压VRAMP小于参考电压VREF时,第一脉冲信号TM1为低电平,则第一功率晶体管MN_PW导通。The charging current source IB provides a reference current to charge the energy storage capacitor array 341; the first ordinary transistor MN1 charges the energy storage capacitor array 341 according to the inverted signal NSN of the gate control signal SN of the first power transistor MN_PW when NSN is at a high level. The upper plate voltage V RAMP of the array 341 (ie the voltage at the first end of the storage capacitor array 341 ) is rapidly discharged to zero level; the third comparator 342 compares the upper plate voltage V RAMP of the storage capacitor array with the reference voltage V REF to obtain The first pulse signal TM1. When the upper plate voltage V RAMP of the energy storage capacitor array 341 is greater than the reference voltage V REF , the first pulse signal TM1 is at a high level, and the first power transistor MN_PW is turned off; when the upper plate voltage V RAMP of the energy storage capacitor array 341 is at a high level When the voltage is lower than the reference voltage V REF , the first pulse signal TM1 is at a low level, and the first power transistor MN_PW is turned on.

本发明实施例中,第二脉冲产生模块350与第一脉冲产生模块340结构相似,但其储能电容阵列中的储能电容大小固定,通过充电电流源IB对储能电容充电产生指定宽度的第二脉冲信号TM2,由于结构相似,不再单独示图。In the embodiment of the present invention, the second pulse generation module 350 is similar in structure to the first pulse generation module 340, but the size of the storage capacitor in the storage capacitor array is fixed, and the storage capacitor is charged by the charging current source IB to generate a specified width The second pulse signal TM2 is not shown separately because of its similar structure.

第二脉冲信号TM2的宽度是充电电流源IB和储能电容的函数。第二脉冲产生模块350用于限制第一功率晶体管MN_PW和第二功率晶体管MP_PW同时关断的时间,以及第二功率晶体管MP_PW导通的时间,第一功率晶体管MN_PW、第二功率晶体管MP_PW同时关断时间或第二功率晶体管MP_PW导通时间超过第二脉冲信号TM2的宽度后,重新开始本周期的开关动作,避免整个直流/直流转换电路因充电电流不足或负载过重而出现状态锁定。The width of the second pulse signal TM2 is a function of the charging current source IB and the storage capacitor. The second pulse generating module 350 is configured to limit the time when the first power transistor MN_PW and the second power transistor MP_PW are turned off at the same time, and the time when the second power transistor MP_PW is turned on, the first power transistor MN_PW and the second power transistor MP_PW are turned off at the same time After the off time or the on time of the second power transistor MP_PW exceeds the width of the second pulse signal TM2, the switching operation of this cycle is restarted to avoid the state lock of the entire DC/DC conversion circuit due to insufficient charging current or heavy load.

本发明实施例中,逻辑控制模块360接收各种信号以确定直流/直流转换器的工作状态。各种信号包括:第三信号H3,第二信号H2,第一脉冲信号TM1,第二脉冲信号TM2。逻辑控制模块360根据各种信号产生检测控制电路300希望实现的控制逻辑。由于功率晶体管的驱动需要较高的电压,因此设计一个驱动电路370,驱动电路370接收逻辑控制模块360产生的逻辑信号,将其升压,产生第一功率晶体管MN_PW的栅极控制信号SN,产生第二功率晶体管MP_PW的栅极控制信号驱动信号SP。第二反相器用于产生反相信号NSN,反相信号NSN用于控制第一脉冲产生模块340中第一普通晶体管MN1的导通和断开。In the embodiment of the present invention, the logic control module 360 receives various signals to determine the working state of the DC/DC converter. Various signals include: a third signal H3, a second signal H2, a first pulse signal TM1, and a second pulse signal TM2. The logic control module 360 generates control logic that the detection control circuit 300 wishes to implement according to various signals. Since the driving of the power transistor requires a higher voltage, a driving circuit 370 is designed. The driving circuit 370 receives the logic signal generated by the logic control module 360 and boosts it to generate the gate control signal SN of the first power transistor MN_PW to generate The gate control signal of the second power transistor MP_PW drives the signal SP. The second inverter is used to generate an inversion signal NSN, and the inversion signal NSN is used to control the turn-on and turn-off of the first common transistor MN1 in the first pulse generating module 340 .

综合上述结构,结合图3、图4、图5,本发明实施例的直流/直流转换电路的工作原理为:Combining the above structure, with reference to Figure 3, Figure 4, and Figure 5, the working principle of the DC/DC conversion circuit according to the embodiment of the present invention is as follows:

直流/直流转换电路的工作周期开始时,第一功率晶体管MN_PW和第二功率晶体管MP_PW均断开,第二比较器320比较第一反馈电压VFB1和参考电压VREF,如果第一反馈电压VFB1低于参考电压VREF,第二比较器320输出的第二信号H2为低电平,表明第一输出电压VOUT1尚未高于参考电压VREF与第二比例的乘积,需要持续对第一输出电压VOUT1充电。此时,逻辑控制模块360控制第一脉冲产生模块340的第一普通晶体管MN1断开,充电电流源IB对储能电容阵列341的上极板VRAMP充电,当储能电容阵列341的上极板电压VRAMP低于参考电压VREF时,第三比较器342输出的第一脉冲信号TM1为低电平,第一脉冲信号TM1为低电平期间,第一功率晶体管MN_PW导通,第二功率晶体管MP_PW断开。第一脉冲信号TM1保持低电平的时间约为:When the duty cycle of the DC/DC conversion circuit starts, the first power transistor MN_PW and the second power transistor MP_PW are both turned off, and the second comparator 320 compares the first feedback voltage V FB1 with the reference voltage V REF , if the first feedback voltage V REF FB1 is lower than the reference voltage V REF , and the second signal H2 output by the second comparator 320 is at a low level, indicating that the first output voltage V OUT1 is not higher than the product of the reference voltage V REF and the second ratio, and it is necessary to continue to measure the first output voltage V OUT1 . The output voltage V OUT1 is charged. At this time, the logic control module 360 controls the first common transistor MN1 of the first pulse generation module 340 to turn off, and the charging current source IB charges the upper plate V RAMP of the energy storage capacitor array 341. When the plate voltage V RAMP is lower than the reference voltage V REF , the first pulse signal TM1 output by the third comparator 342 is at a low level. During the period when the first pulse signal TM1 is at a low level, the first power transistor MN_PW is turned on, and the first pulse signal TM1 is turned on. Two power transistors MP_PW are turned off. The time that the first pulse signal TM1 remains low is about:

Figure BDA0003032034530000151
Figure BDA0003032034530000151

其中,CT为储能电容阵列341的电容值。当整流电路200中的第二反馈电压VFB2远低于参考电压VREF时,运算放大器220输出节点N1电位接近零,第三功率晶体管MP0完全导通,第二输出电压VOUT2与第一输出电压VOUT1近似相等。运算放大器220输出节点N1的电位低于第一反相器INV1的阈值VT,第一反向器INV1输出的第一信号H1为高电平,表示第二输出电压VOUT2尚未高于参考电压VREF与第一比例的乘积,需要加速充电以缩短第二输出电压VOUT2的建立时间,此时,直流/直流转换电路工作于加速充电模式。此时,储能电容阵列341中第二普通晶体管MN2、第三普通晶体管MN3、第四普通晶体管MN4、第五普通晶体管MN5均导通,储能电容阵列341的电容值为最大电容值CTmaxWherein, C T is the capacitance value of the energy storage capacitor array 341 . When the second feedback voltage V FB2 in the rectifier circuit 200 is much lower than the reference voltage V REF , the potential of the output node N1 of the operational amplifier 220 is close to zero, the third power transistor MP0 is fully turned on, and the second output voltage V OUT2 and the first output The voltages V OUT1 are approximately equal. The potential of the output node N1 of the operational amplifier 220 is lower than the threshold V T of the first inverter INV1 , and the first signal H1 output by the first inverter INV1 is at a high level, indicating that the second output voltage V OUT2 is not higher than the reference voltage The product of V REF and the first ratio requires accelerated charging to shorten the settling time of the second output voltage V OUT2 . At this time, the DC/DC conversion circuit operates in the accelerated charging mode. At this time, the second common transistor MN2, the third common transistor MN3, the fourth common transistor MN4, and the fifth common transistor MN5 in the energy storage capacitor array 341 are all turned on, and the capacitance value of the energy storage capacitor array 341 is the maximum capacitance value C Tmax :

CTmax=C1+C2+C3+C4+C5 C Tmax =C 1 +C 2 +C 3 +C 4 +C 5

其中,C1、C2、C3、C4、C5分别为第一电容C1、第二电容C2、第三电容C3、第四电容C4、第五电容C5各自的电容值。第二普通晶体管MN2、第三普通晶体管MN3、第四普通晶体管MN4、第五普通晶体管MN5均导通,第一脉冲信号TM1为低电平的时长最长;当整流电路200的第二反馈电压VFB2接近参考电压VREF时,运算放大器220输出节点N1电位升高并高于第一反相器INV1的阈值VT时,第一反相器INV1输出的第一信号H1由高电平跳变为低电平,表示第二输出电压VOUT2已建立完成,无需加速充电,直流/直流转换电路进入正常充电模式。此时,第二普通晶体管MN2断开,第三普通晶体管MN3、第四普通晶体管MN4、第五普通晶体管MN5的导通或关断由外部数字控制信号D[2:0]决定,储能电容阵列341的电容值CT也由外部数字控制信号D[2:0]决定,相应的第一功率晶体管MN_PW的导通时间也由外部数字控制信号D[2:0]决定。Wherein, C 1 , C 2 , C 3 , C 4 , and C 5 are the respective capacitances of the first capacitor C 1 , the second capacitor C 2 , the third capacitor C 3 , the fourth capacitor C 4 , and the fifth capacitor C 5 . value. The second common transistor MN2, the third common transistor MN3, the fourth common transistor MN4, and the fifth common transistor MN5 are all turned on, and the first pulse signal TM1 is at a low level for the longest time; when the second feedback voltage of the rectifier circuit 200 When V FB2 is close to the reference voltage V REF , when the potential of the output node N1 of the operational amplifier 220 rises and is higher than the threshold VT of the first inverter INV1 , the first signal H1 output by the first inverter INV1 jumps from a high level When it becomes a low level, it indicates that the second output voltage V OUT2 has been established, and no accelerated charging is required, and the DC/DC conversion circuit enters the normal charging mode. At this time, the second common transistor MN2 is turned off, and the turn-on or turn-off of the third common transistor MN3, the fourth common transistor MN4, and the fifth common transistor MN5 is determined by the external digital control signal D[2:0], and the energy storage capacitor The capacitance value C T of the array 341 is also determined by the external digital control signal D[2:0], and the corresponding turn-on time of the first power transistor MN_PW is also determined by the external digital control signal D[2:0].

当储能电容阵列341的上极板电压VRAMP高于VREF时,第三比较器342输出的第一脉冲信号TM1由低电平变为高电平,此时第一功率晶体管MN_PW、第二功率晶体管MP_PW均断开,第二脉冲产生模块350输出的第二脉冲信号TM2由高电平变为低电平。在第二脉冲信号TM2为低电平的时段内,如果第一比较器330输出的第三信号H3为高电平,表示VSW电压低于第一输出电压VOUT1,无法通过第二功率晶体管MP_PW向第一输出电压VOUT1充电,此时第一功率晶体管MN_PW和第二功率晶体管MP_PW均保持断开状态以等待VSW升高;当第二脉冲信号TM2由低电平变为高电平时,如果第三信号H3仍为高电平,则表示第一功率晶体管MN_PW导通时间过短导致充电电流过小,直流/直流转换电路将进入连续工作模式,重新以指定的导通时间开启第一功率晶体管MN_PW,直到第一功率晶体管MN_PW和第二功率晶体管MP_PW均保持断开时VSW高于第一输出电压VOUT1When the upper plate voltage V RAMP of the energy storage capacitor array 341 is higher than V REF , the first pulse signal TM1 output by the third comparator 342 changes from a low level to a high level. At this time, the first power transistor MN_PW, the first pulse signal TM1 The two power transistors MP_PW are both turned off, and the second pulse signal TM2 output by the second pulse generating module 350 changes from a high level to a low level. During the period when the second pulse signal TM2 is at a low level, if the third signal H3 output by the first comparator 330 is at a high level, it means that the voltage of V SW is lower than the first output voltage V OUT1 and cannot pass through the second power transistor MP_PW charges the first output voltage V OUT1 , at this time the first power transistor MN_PW and the second power transistor MP_PW are both kept off to wait for V SW to rise; when the second pulse signal TM2 changes from a low level to a high level , if the third signal H3 is still at a high level, it means that the on-time of the first power transistor MN_PW is too short and the charging current is too small. A power transistor MN_PW until V SW is higher than the first output voltage V OUT1 when both the first power transistor MN_PW and the second power transistor MP_PW remain off.

在第二脉冲信号TM2为低电平期间,如果第三信号H3由高电平变为低电平,则表示VSW电压高于第一输出电压VOUT1,此时第一功率晶体管MN_PW断开,第二功率晶体管MP_PW导通,VSW对第一输出电压VOUT1进行充电。During the period when the second pulse signal TM2 is at a low level, if the third signal H3 changes from a high level to a low level, it means that the V SW voltage is higher than the first output voltage V OUT1 , and the first power transistor MN_PW is turned off at this time , the second power transistor MP_PW is turned on, and V SW charges the first output voltage V OUT1 .

在第二脉冲信号TM2为低电平期间,如果第三信号H3由低电平变为高电平,则表示完成对第一输出电压VOUT1充电,此时,第一功率晶体管MN_PW和第二功率晶体管MP_PW均断开,逻辑控制模块360控制第一脉冲产生模块340中的第一普通晶体管MN1导通,储能电容阵列341上极板VRAMP节点电压被复位至零,直流/直流转换电路工作周期结束,进入下一个工作周期。During the period when the second pulse signal TM2 is at a low level, if the third signal H3 changes from a low level to a high level, it means that the charging of the first output voltage V OUT1 is completed. At this time, the first power transistor MN_PW and the second power transistor MN_PW and the second The power transistors MP_PW are all turned off, the logic control module 360 controls the first common transistor MN1 in the first pulse generation module 340 to be turned on, the voltage of the V RAMP node on the upper plate of the energy storage capacitor array 341 is reset to zero, and the DC/DC conversion circuit When the work cycle ends, enter the next work cycle.

若第三信号H3为低电平期间,第二脉冲信号TM2由低电平变为高电平,则表示负载比较重,正常充电模式已经无法驱动这么重的负载了,则直流/直流转换电路进入连续工作模式,强行关断第一功率晶体管MN_PW和第二功率晶体管MP_PW,逻辑控制模块360控制第一脉冲产生模块340中第一普通晶体管MN1导通,储能电容阵列341上极板VRAMP节点电压被复位至零,直流/直流转换电路工作周期结束,进入下一个工作周期。If the second pulse signal TM2 changes from a low level to a high level during the period when the third signal H3 is at a low level, it indicates that the load is relatively heavy, and the normal charging mode can no longer drive such a heavy load, and the DC/DC conversion circuit Enter the continuous working mode, forcibly turn off the first power transistor MN_PW and the second power transistor MP_PW, the logic control module 360 controls the first common transistor MN1 in the first pulse generating module 340 to conduct, and the upper plate V RAMP of the energy storage capacitor array 341 The node voltage is reset to zero, the working cycle of the DC/DC conversion circuit ends, and the next working cycle is entered.

如果直流/直流转换电路在工作周期开始时,整流电路200中的第一反馈电压VFB1高于参考电压VREF,第二比较器320输出的第二信号H2为高电平,表明第一输出电压VOUT1已高于参考电压VREF与第二比例的乘积,无需再对第一输出电压VOUT1充电,此时直流/直流转换电路进入休眠模式,第一功率晶体管MN_PW和第二功率晶体管MP_PW均保持断开状态,直到第二比较器320输出的第二信号H2由高电平跳变为低电平。在休眠模式下,仅图2中的第二比较器320、整流电路200中几个元器件在工作,其余的元器件都被关断,因此在休眠模式下直流/直流转换电路的电流很低,经过测试整个直流/直流转换电路的电流可以低至5uA附近。If the first feedback voltage V FB1 in the rectifier circuit 200 is higher than the reference voltage V REF at the beginning of the working cycle of the DC/DC conversion circuit, the second signal H2 output by the second comparator 320 is at a high level, indicating that the first output The voltage V OUT1 is already higher than the product of the reference voltage V REF and the second ratio, and there is no need to charge the first output voltage V OUT1 . At this time, the DC/DC conversion circuit enters the sleep mode, and the first power transistor MN_PW and the second power transistor MP_PW Both remain disconnected until the second signal H2 output from the second comparator 320 transitions from a high level to a low level. In the sleep mode, only a few components in the second comparator 320 and the rectifier circuit 200 in FIG. 2 are working, and the rest of the components are turned off, so the current of the DC/DC conversion circuit is very low in the sleep mode , after testing the current of the entire DC/DC conversion circuit can be as low as around 5uA.

参照图6,示出了本发明实施例中的直流/直流转换电路的波形示意图。当第二输出电压VOUT2没有升到高于参考电压VREF与第一比例的乘积时,直流/直流转换电路进入加速充电模式,第一功率晶体管MN_PW导通时间最长,流过电感L的充电电流IL最大,当电感L充电电流IL降至0时,第二功率晶体管MP_PW断开,进入下一个工作周期,加速充电模式下第一输出电压VOUT1上升速度较快;当第二输出电压VOUT2高于参考电压VREF与第一比例的乘积时,但第一输出电压VOUT1没有高于参考电压VREF与第二比例的乘积时,直流/直流转换电路进入正常充电模式,第一功率晶体管MN_PW导通时间由外部数字控制信号决定,流过电感L的充电电流IL也由外部数字控制信号决定,当电感L的充电电流IL降至0时,第二功率晶体管MP_PW断开,进入下一个工作周期,正常充电模式下第一输出电压VOUT1以设定的速率上升,以免因升压速率过快导致稳态时电压纹波较大。当第一输出电压VOUT1高于参考电压VREF与第二比例的乘积时,直流/直流转换电路进入休眠模式,第一功率晶体管MN_PW和第二功率晶体管MP_PW均断开,电感L充电电流IL为零,从而降低静态工作电流,直至第一输出电压VOUT1降至参考电压VREF与第二比例的乘积以下时,直流/直流转换电路再次进入正常充电模式。Referring to FIG. 6 , a schematic waveform diagram of a DC/DC conversion circuit in an embodiment of the present invention is shown. When the second output voltage V OUT2 does not rise above the product of the reference voltage V REF and the first ratio, the DC/DC conversion circuit enters the accelerated charging mode, the first power transistor MN_PW conducts for the longest time, and the current flowing through the inductor L The charging current IL is the largest. When the charging current IL of the inductor L drops to 0, the second power transistor MP_PW is turned off and enters the next working cycle. In the accelerated charging mode, the first output voltage V OUT1 rises faster; When the output voltage V OUT2 is higher than the product of the reference voltage V REF and the first ratio, but the first output voltage V OUT1 is not higher than the product of the reference voltage V REF and the second ratio, the DC/DC conversion circuit enters the normal charging mode, The conduction time of the first power transistor MN_PW is determined by the external digital control signal, and the charging current IL flowing through the inductor L is also determined by the external digital control signal. When the charging current IL of the inductor L drops to 0, the second power transistor MP_PW It is disconnected to enter the next working cycle. In the normal charging mode, the first output voltage V OUT1 rises at a set rate, so as to avoid a large voltage ripple in the steady state due to an excessively fast boost rate. When the first output voltage V OUT1 is higher than the product of the reference voltage V REF and the second ratio, the DC/DC conversion circuit enters the sleep mode, the first power transistor MN_PW and the second power transistor MP_PW are both turned off, and the inductor L charges the current I L is zero, thereby reducing the quiescent operating current until the first output voltage V OUT1 falls below the product of the reference voltage V REF and the second ratio, and the DC/DC conversion circuit enters the normal charging mode again.

基于上述直流/直流转换电路,本发明实施例还提供一种直流/直流转换器,所述直流/直流转换器包括:如以上任一所述的直流/直流转换电路。Based on the above DC/DC conversion circuit, an embodiment of the present invention further provides a DC/DC converter, where the DC/DC converter includes: the DC/DC conversion circuit described above.

综上所述,本发明实施例直流/直流转换电路,输出单元接收输入电压,输出高于输入电压的第一输出电压至整流单元和检测控制单元,整流单元对第一输出电压进行整流滤波,降低了第一输出电压的纹波,输出低纹波的第二输出电压,同时,整流单元产生表征第二输出电压是否建立完成的第一信号,并传输至检测控制单元,检测控制单元接收第一信号、第一输出电压之后,产生控制信号,以控制直流/直流转换电路工作于加速充电模式,或者工作于正常充电模式,或者工作于休眠模式。其中,当直流/直流转换电路工作于加速充电模式时,整个电路以最高允许充电电流升高第一输出电压,这样就使得第一输出电压快速的建立起来,相当于第二输出电压被快速的建立起来,相较于目前传统的直流/直流转换电路,缩短了输出电压建立的时间。检测控制单元可以基于第一信号和第一输出电压,在加速充电模式和正常充电模式之间切换,在加速充电模式下充电电流大,以缩短输出电压建立时间,正常充电模式下,维持适当的输出电流并保证较低的输出纹波,提升传感器的噪声性能,休眠模式下,直流/直流转换电路的功耗极小。本发明的直流/直流转换电路,在降低输出电压纹波的同时,缩短直流/直流转换器的输出电压的建立时间,具有较高的实用性价值。To sum up, in the DC/DC conversion circuit of the embodiment of the present invention, the output unit receives the input voltage, and outputs a first output voltage higher than the input voltage to the rectifier unit and the detection control unit, and the rectifier unit rectifies and filters the first output voltage, The ripple of the first output voltage is reduced, and a second output voltage with low ripple is output. At the same time, the rectifier unit generates a first signal indicating whether the establishment of the second output voltage is completed, and transmits it to the detection control unit, and the detection control unit receives the first signal. After a signal and the first output voltage, a control signal is generated to control the DC/DC conversion circuit to work in an accelerated charging mode, or in a normal charging mode, or in a sleep mode. Among them, when the DC/DC conversion circuit works in the accelerated charging mode, the entire circuit increases the first output voltage with the highest allowable charging current, so that the first output voltage is quickly established, which is equivalent to the second output voltage being rapidly increased Compared with the current traditional DC/DC conversion circuit, it shortens the time for the output voltage to establish. The detection control unit can switch between the accelerated charging mode and the normal charging mode based on the first signal and the first output voltage. In the accelerated charging mode, the charging current is large to shorten the output voltage settling time. Output current and ensure low output ripple, improve the noise performance of the sensor, and the power consumption of the DC/DC conversion circuit is extremely small in sleep mode. The DC/DC conversion circuit of the present invention reduces the output voltage ripple and shortens the settling time of the output voltage of the DC/DC converter, which has high practical value.

需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。It should be noted that, herein, the terms "comprising", "comprising" or any other variation thereof are intended to encompass non-exclusive inclusion, such that a process, method, article or device comprising a series of elements includes not only those elements, It also includes other elements not expressly listed or inherent to such a process, method, article or apparatus. Without further limitation, an element qualified by the phrase "comprising a..." does not preclude the presence of additional identical elements in a process, method, article or apparatus that includes the element.

上面结合附图对本发明的实施例进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可做出很多形式,这些均属于本发明的保护之内。The embodiments of the present invention have been described above in conjunction with the accompanying drawings, but the present invention is not limited to the above-mentioned specific embodiments, which are merely illustrative rather than restrictive. Under the inspiration of the present invention, without departing from the scope of protection of the present invention and the claims, many forms can be made, which all belong to the protection of the present invention.

Claims (10)

1.一种直流/直流转换电路,其特征在于,所述电路包括:输出单元、整流单元、检测控制单元;1. A DC/DC conversion circuit, characterized in that the circuit comprises: an output unit, a rectifier unit, and a detection control unit; 所述输出单元接收输入电压,输出第一输出电压至所述整流单元和所述检测控制单元,所述第一输出电压高于所述输入电压;the output unit receives an input voltage, and outputs a first output voltage to the rectification unit and the detection control unit, where the first output voltage is higher than the input voltage; 所述整流单元对所述第一输出电压进行整流滤波,输出第二输出电压,以及产生第一信号并传输至所述检测控制单元,所述第一信号表征所述第二输出电压是否建立完成;The rectifying unit rectifies and filters the first output voltage, outputs a second output voltage, and generates a first signal and transmits it to the detection control unit, where the first signal represents whether the establishment of the second output voltage is completed ; 所述检测控制单元接收所述第一信号、所述第一输出电压,产生控制信号,以控制所述直流/直流转换电路工作于加速充电模式,或者工作于正常充电模式,或者工作于休眠模式;The detection control unit receives the first signal and the first output voltage, and generates a control signal to control the DC/DC conversion circuit to work in an accelerated charging mode, or in a normal charging mode, or in a sleep mode ; 其中,所述加速充电模式为:以最高允许充电电流升高所述第一输出电压的模式;Wherein, the accelerated charging mode is: a mode in which the first output voltage is increased with the highest allowable charging current; 所述正常充电模式为:以预设充电电流升高所述第一输出电压的模式;The normal charging mode is: a mode in which the first output voltage is increased by a preset charging current; 所述休眠模式为:停止升高所述第一输出电压,直至所述第一输出电压降低至参考电压以下的模式。The sleep mode is a mode in which the raising of the first output voltage is stopped until the first output voltage drops below a reference voltage. 2.根据权利要求1所述的电路,其特征在于,所述输出单元包括:电感、第一功率晶体管和第二功率晶体管;2. The circuit according to claim 1, wherein the output unit comprises: an inductor, a first power transistor and a second power transistor; 所述电感的第一端接收所述输入电压,所述电感的第二端与所述第一功率晶体管的漏极、所述第二功率晶体的漏极分别连接;The first end of the inductor receives the input voltage, and the second end of the inductor is connected to the drain of the first power transistor and the drain of the second power crystal, respectively; 所述第一功率晶体管的栅极与所述检测控制单元中的驱动模块连接;The gate of the first power transistor is connected to the driving module in the detection control unit; 所述第一功率晶体管的源极接地;the source of the first power transistor is grounded; 所述第二功率晶体管的栅极与所述驱动模块连接;the gate of the second power transistor is connected to the driving module; 所述第二功率晶体管的源极与所述整流单元连接,所述第二功率晶体管的源极输出所述第一输出电压。The source of the second power transistor is connected to the rectifying unit, and the source of the second power transistor outputs the first output voltage. 3.根据权利要求2所述的电路,其特征在于,所述整流单元包括:第三功率晶体管、第一电阻、第二电阻、第一反相器、运算放大器;3. The circuit according to claim 2, wherein the rectifier unit comprises: a third power transistor, a first resistor, a second resistor, a first inverter, and an operational amplifier; 所述第三功率晶体管的源极与所述第二功率晶体管的源极连接;the source of the third power transistor is connected to the source of the second power transistor; 所述第三功率晶体管的栅极与所述运算放大器的输出端、所述第一反相器的输入端分别连接;The gate of the third power transistor is connected to the output end of the operational amplifier and the input end of the first inverter respectively; 所述第三功率晶体管的漏极与所述第一电阻的第一端连接,所述第三功率晶体管的漏极输出所述第二输出电压;The drain of the third power transistor is connected to the first end of the first resistor, and the drain of the third power transistor outputs the second output voltage; 所述第一电阻的第二端与所述第二电阻的第一端和所述运算放大器的同相端连接;The second end of the first resistor is connected to the first end of the second resistor and the non-inverting end of the operational amplifier; 所述第二电阻的第二端接地;the second end of the second resistor is grounded; 所述运算放大器的反相端接收所述参考电压;an inverting terminal of the operational amplifier receives the reference voltage; 所述第一反相器的输出端与所述检测控制单元中的第一脉冲产生模块连接,所述第一反相器的输出端输出所述第一信号。The output end of the first inverter is connected to the first pulse generating module in the detection control unit, and the output end of the first inverter outputs the first signal. 4.根据权利要求3所述的电路,其特征在于,所述检测控制单元包括:第三电阻、第四电阻、第一比较器、第二比较器、第二脉冲产生模块、逻辑控制模块、第二反相器;4. The circuit according to claim 3, wherein the detection control unit comprises: a third resistor, a fourth resistor, a first comparator, a second comparator, a second pulse generation module, a logic control module, the second inverter; 所述第三电阻的第一端与所述第一比较器的同相端连接,所述第三电阻的第一端接收所述第一输出电压;The first end of the third resistor is connected to the non-inverting end of the first comparator, and the first end of the third resistor receives the first output voltage; 所述第三电阻的第二端与所述第四电阻的第一端、所述第二比较器的同相端分别连接;The second end of the third resistor is connected to the first end of the fourth resistor and the non-inverting end of the second comparator respectively; 所述第四电阻的第二端接地;the second end of the fourth resistor is grounded; 所述第一比较器的反相端接收所述电感的第二端的电压;the inverting terminal of the first comparator receives the voltage of the second terminal of the inductor; 所述第一比较器的输出端与所述逻辑控制模块的输入端连接,所述第一比较器的输出端输出第三信号,所述第三信号表征所述电感的第二端,与所述第二功率晶体管的源极之间的电流流向;The output end of the first comparator is connected to the input end of the logic control module, and the output end of the first comparator outputs a third signal, and the third signal represents the second end of the inductance, and is connected to the second end of the inductor. the current flow between the sources of the second power transistor; 所述第二比较器的反相端接收所述参考电压;an inverting terminal of the second comparator receives the reference voltage; 所述第二比较器的输出端与所述逻辑控制模块的输入端连接,所述第二比较器的输出端输出第二信号,所述第二信号表征所述第一输出电压与所述参考电压之间的大小关系;The output end of the second comparator is connected to the input end of the logic control module, the output end of the second comparator outputs a second signal, and the second signal represents the first output voltage and the reference The magnitude relationship between the voltages; 所述逻辑控制模块的输出端与所述驱动模块的输入端连接;The output end of the logic control module is connected with the input end of the driving module; 所述驱动模块的输出端与所述第一功率晶体管的栅极、所述第二功率晶体管的栅极、所述第二反相器的输入端、所述第二脉冲产生模块的输入端分别连接,所述驱动模块输出所述控制信号;The output end of the driving module is respectively the gate of the first power transistor, the gate of the second power transistor, the input end of the second inverter, and the input end of the second pulse generating module. connected, the drive module outputs the control signal; 所述第二脉冲产生模块的输出端与所述逻辑控制模块连接;The output end of the second pulse generating module is connected with the logic control module; 所述第二反相器的输出端与所述第一脉冲产生模块连接。The output end of the second inverter is connected to the first pulse generating module. 5.根据权利要求4所述的电路,其特征在于,所述包括:所述第一脉冲产生模块包括:储能电容阵列、第一普通晶体管、第三比较器;5 . The circuit according to claim 4 , wherein: the first pulse generating module comprises: an energy storage capacitor array, a first common transistor, and a third comparator; 5 . 所述储能电容阵列的第一端与充电电流源、所述第三比较器的同相端、所述第一普通晶体管的漏极分别连接;The first end of the energy storage capacitor array is respectively connected to the charging current source, the non-inverting end of the third comparator, and the drain of the first common transistor; 所述储能电容阵列的第二端接收所述第一信号、外部数字控制信号;The second end of the energy storage capacitor array receives the first signal and the external digital control signal; 所述储能电容阵列的第三端与所述第一普通晶体管的源极连接,并接地;The third end of the energy storage capacitor array is connected to the source of the first common transistor and grounded; 所述第一普通晶体管的栅极与所述第二反相器的输出端连接;the gate of the first common transistor is connected to the output end of the second inverter; 所述第三比较器的反相端接收所述参考电压;an inverting terminal of the third comparator receives the reference voltage; 所述第三比较器的输出端与所述逻辑控制模块连接,所述第三比较器的输出端输出所述第一脉冲信号。The output end of the third comparator is connected to the logic control module, and the output end of the third comparator outputs the first pulse signal. 6.根据权利要求5所述的电路,其特征在于,所述储能电容阵列包括:第二普通晶体管、第三普通晶体管、第四普通晶体管、第五普通晶体管、第一电容、第二电容、第三电容、第四电容、第五电容、第一或门、第二或门、第三或门;6. The circuit according to claim 5, wherein the energy storage capacitor array comprises: a second common transistor, a third common transistor, a fourth common transistor, a fifth common transistor, a first capacitor, a second capacitor , the third capacitor, the fourth capacitor, the fifth capacitor, the first OR gate, the second OR gate, the third OR gate; 所述第二普通晶体管、所述第三普通晶体管、所述第四普通晶体管、所述第五普通晶体管各自的漏级,均与所述充电电流源、所述第三比较器的同相端、所述第一普通晶体管的漏极、所述第五电容的第一端分别连接;The drain stages of the second common transistor, the third common transistor, the fourth common transistor, and the fifth common transistor are all connected with the charging current source, the non-inverting terminal of the third comparator, The drain of the first common transistor and the first end of the fifth capacitor are respectively connected; 所述第二普通晶体管的栅极与所述第一或门的第一输入端、所述第二或门的第一输入端、所述第三或门的第一输入端、所述第一反向器的输出端分别连接;The gate of the second ordinary transistor and the first input terminal of the first OR gate, the first input terminal of the second OR gate, the first input terminal of the third OR gate, the first input terminal of the The output ends of the inverters are respectively connected; 所述第二普通晶体管的源极与所述第一电容的第一端连接;the source of the second common transistor is connected to the first end of the first capacitor; 所述第一电容的第二端、所述第二电容的第二端、所述第三电容的第二端、所述第四电容的第二端、所述第五电容的第二端、所述第一普通晶体管的源极分别连接,并接地;the second end of the first capacitor, the second end of the second capacitor, the second end of the third capacitor, the second end of the fourth capacitor, the second end of the fifth capacitor, The sources of the first common transistors are respectively connected and grounded; 所述第三普通晶体管的栅极与所述第一或门的输出端连接;the gate of the third common transistor is connected to the output end of the first OR gate; 所述第四普通晶体管的栅级与所述第二或门的输出端连接;the gate of the fourth common transistor is connected to the output end of the second OR gate; 所述第五普通晶体管的栅级与所述第三或门的输出端连接;the gate of the fifth common transistor is connected to the output end of the third OR gate; 所述第一或门的第二输入端接收所述外部数字控制信号中的第一数字控制信号;the second input terminal of the first OR gate receives the first digital control signal in the external digital control signal; 所述第二或门的第二输入端接收所述外部数字控制信号中的第二数字控制信号;the second input terminal of the second OR gate receives the second digital control signal in the external digital control signal; 所述第三或门的第二输入端接收所述外部数字控制信号中的第三数字控制信号。The second input terminal of the third OR gate receives a third digital control signal of the external digital control signals. 7.根据权利要求4所述的电路,其特征在于,所述第一信号为高电平表征所述第二输出电压建立完成,所述第一信号为低电平表征所述第二输出电压未建立完成;7 . The circuit according to claim 4 , wherein the first signal is at a high level to indicate that the second output voltage is established, and the first signal is at a low level to indicate the second output voltage. 8 . not completed; 所述第三信号为高电平表征所述电感的第二端,与所述第二功率晶体管的源极之间的电流流向为:从所述第二功率晶体管的源极流向所述电感的第二端;The high level of the third signal indicates that the second terminal of the inductor and the source of the second power transistor flow in the direction of: from the source of the second power transistor to the source of the inductor. second end; 所述第三信号为低电平表征所述电感的第二端,与所述第二功率晶体管的源极之间的电流流向为:从所述电感的第二端流向所述第二功率晶体管的源极;The low level of the third signal indicates the second terminal of the inductor, and the current flow between the second terminal of the inductor and the source of the second power transistor is: from the second terminal of the inductor to the second power transistor the source; 所述第二信号为高电平表征所述第一输出电压高于所述参考电压,所述第二信号为低电平表征所述第一输出电压低于所述参考电压。The high level of the second signal indicates that the first output voltage is higher than the reference voltage, and the low level of the second signal indicates that the first output voltage is lower than the reference voltage. 8.根据权利要求7所述的电路,其特征在于,所述第二输出电压建立完成的标准为:所述第二输出电压的大小等于所述参考电压与第一比例的乘积;8 . The circuit according to claim 7 , wherein the standard for completing the establishment of the second output voltage is: the magnitude of the second output voltage is equal to the product of the reference voltage and the first ratio; 9 . 所述第二输出电压未建立完成的标准为:所述第二输出电压的大小小于所述参考电压与所述第一比例的乘积;The criterion that the second output voltage is not established is: the magnitude of the second output voltage is smaller than the product of the reference voltage and the first ratio; 所述第一输出电压高于所述参考电压的标准为:所述第一输出电压的大小大于所述参考电压与第二比例的乘积,其中,所述第二比例大于所述第一比例;The criterion that the first output voltage is higher than the reference voltage is: the magnitude of the first output voltage is greater than the product of the reference voltage and a second ratio, wherein the second ratio is greater than the first ratio; 所述第一输出电压低于所述参考电压的标准为:所述第一输出电压的大小不大于所述参考电压与所述第二比例的乘积。The criterion that the first output voltage is lower than the reference voltage is that the magnitude of the first output voltage is not greater than the product of the reference voltage and the second ratio. 9.根据权利要求6所述的电路,其特征在于,所述第一信号为高电平时,所述第二普通晶体管、所述第三普通晶体管、所述第四普通晶体管、所述第五普通晶体管均导通,所述储能电容阵列的电容值为预设最大电容值,所述第一脉冲信号保持低电平的时长最长;9 . The circuit according to claim 6 , wherein when the first signal is at a high level, the second common transistor, the third common transistor, the fourth common transistor, the fifth common transistor, and the fifth The common transistors are all turned on, the capacitance value of the energy storage capacitor array is a preset maximum capacitance value, and the first pulse signal maintains a low level for the longest time; 所述第一信号为低电平时,所述第二普通晶体管关断,所述第三普通晶体管、所述第四普通晶体管、所述第五普通晶体管受控于所述外部数字控制信号,所述储能电容阵列的电容值由所述外部数字控制信号决定,所述第一脉冲信号保持低电平的时长由所述外部数字控制信号决定。When the first signal is at a low level, the second common transistor is turned off, the third common transistor, the fourth common transistor, and the fifth common transistor are controlled by the external digital control signal, so The capacitance value of the energy storage capacitor array is determined by the external digital control signal, and the duration that the first pulse signal remains at a low level is determined by the external digital control signal. 10.一种直流/直流转换器,其特征在于,所述直流/直流转换器包括:如权利要求1-9任一所述的电路。10. A DC/DC converter, characterized in that the DC/DC converter comprises: the circuit according to any one of claims 1-9.
CN202110432839.2A 2021-04-21 2021-04-21 A DC/DC conversion circuit and a DC/DC converter Active CN113241946B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110432839.2A CN113241946B (en) 2021-04-21 2021-04-21 A DC/DC conversion circuit and a DC/DC converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110432839.2A CN113241946B (en) 2021-04-21 2021-04-21 A DC/DC conversion circuit and a DC/DC converter

Publications (2)

Publication Number Publication Date
CN113241946A CN113241946A (en) 2021-08-10
CN113241946B true CN113241946B (en) 2022-04-15

Family

ID=77128943

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110432839.2A Active CN113241946B (en) 2021-04-21 2021-04-21 A DC/DC conversion circuit and a DC/DC converter

Country Status (1)

Country Link
CN (1) CN113241946B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114953905A (en) * 2022-02-24 2022-08-30 珠海格力电器股份有限公司 Control device and control method for vehicle air conditioner
CN114499130B (en) * 2022-04-14 2022-07-22 深圳市思远半导体有限公司 Self-adaptive constant-on-time step-down direct-current converter
CN114499127B (en) * 2022-04-14 2022-09-09 深圳市思远半导体有限公司 Step-down constant on-time voltage stabilization direct current converter

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105244981A (en) * 2015-11-20 2016-01-13 深圳市祝你快乐科技有限公司 Energy saving charger capable of automatic power cutoff
CN110612651A (en) * 2017-05-08 2019-12-24 博朗有限公司 Circuit and method for charging secondary battery
CN112152449A (en) * 2020-09-22 2020-12-29 无锡力芯微电子股份有限公司 DC-DC converter

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1087508A1 (en) * 1999-09-21 2001-03-28 STMicroelectronics S.r.l. Method of controlling a DC-DC converter
JP2001095253A (en) * 1999-09-24 2001-04-06 Sony Corp Switching power circuit
JP4312000B2 (en) * 2003-07-23 2009-08-12 パナソニック株式会社 Buck-boost DC-DC converter
US7221135B2 (en) * 2005-04-20 2007-05-22 Stmicroelectronics S.R.L. Method for regulating the time constant matching in DC/DC converters
JP2007306647A (en) * 2006-05-09 2007-11-22 Lenovo Singapore Pte Ltd Power supply system and electronic equipment
CN100530919C (en) * 2007-02-06 2009-08-19 西安交通大学 Single chip high frequency DC-DC converter
JP4720821B2 (en) * 2007-12-14 2011-07-13 ミツミ電機株式会社 DC-DC converter and power supply control semiconductor integrated circuit
CN101986509B (en) * 2010-10-21 2014-03-12 南京德朔实业有限公司 Charger
US9190903B2 (en) * 2013-12-20 2015-11-17 Infineon Technologies, Ag System and method for a controlled feedback charge pump
TWI543507B (en) * 2014-06-04 2016-07-21 通嘉科技股份有限公司 Dummy load controllers and control methods
US10720841B2 (en) * 2017-02-03 2020-07-21 President And Fellows Of Harvard College Area efficient single-ended analog-to-digital converter
CN108556643B (en) * 2017-12-26 2021-07-27 湖南省军民融合装备技术创新中心 A fast charging device and method for vehicle-mounted energy storage unit
CN109120153B (en) * 2018-09-03 2020-04-07 上海南芯半导体科技有限公司 BUCK circuit and switching power supply
CN110380489A (en) * 2019-08-08 2019-10-25 珠海英集芯半导体有限公司 A kind of fast charge circuit that can automatically adjust power and method
CN112636587B (en) * 2020-12-30 2022-03-08 芯天下技术股份有限公司 Charge pump circuit and nonvolatile memory

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105244981A (en) * 2015-11-20 2016-01-13 深圳市祝你快乐科技有限公司 Energy saving charger capable of automatic power cutoff
CN110612651A (en) * 2017-05-08 2019-12-24 博朗有限公司 Circuit and method for charging secondary battery
CN112152449A (en) * 2020-09-22 2020-12-29 无锡力芯微电子股份有限公司 DC-DC converter

Also Published As

Publication number Publication date
CN113241946A (en) 2021-08-10

Similar Documents

Publication Publication Date Title
CN113241946B (en) A DC/DC conversion circuit and a DC/DC converter
US11239404B2 (en) Method for reducing losses and distortion in a driver with a capacitive load
US10686382B2 (en) Symmetric time shift control for resonant converters
TWI593224B (en) Buck-boost power converter and associated control circuit
US8330442B2 (en) DC to DC converter and method for reducing overshoot
CN101356719B (en) Improvements to Transition Behavior When Switching Between Control Loops in Voltage Switching Regulators
JP6359255B2 (en) Buck-boost power converter system and method
KR100912865B1 (en) Switching regulator and semiconductor device using the same
JP3511195B2 (en) Voltage conversion circuit
US7202655B2 (en) Constant voltage circuit and constant current source, amplifier, and power supply circuit using the same
CN101018013B (en) Current-controlled dc-dc converter, control circuit and control method for the same
CN101510721B (en) Single inductance switch DC voltage converter and three mode control method
JP2014506776A (en) Hysteresis current mode controller for bidirectional converter with lossless inductor current detection
US8242758B2 (en) Converter and driving method thereof
CN103023326A (en) Constant time control method, control circuit and switching regulator using same
JP2013070470A (en) DC / DC converter
JP6767867B2 (en) Resonant power converter and control method
JP2011035948A (en) Dc-dc converter, control circuit and power supply voltage control method
JP2010068671A (en) Dc-dc converter
US11258365B2 (en) Power converter
TWI470392B (en) Dc-dc controller and operation method thereof
US11695333B2 (en) Hybrid switched capacitor converters with real-time control of switching state duration, and associated methods
JP5955294B2 (en) Switching power supply
US20210159787A1 (en) Voltage regulation circuit
JP2016101085A (en) Controllers for dc/dc converter

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20250113

Address after: C1017, Shangke Office Community, No. 58 Dongbeiwang West Road, Haidian District, Beijing 100089

Patentee after: Beijing Weiyuan Times Technology Co.,Ltd.

Country or region after: China

Address before: 100871 No. 5, the Summer Palace Road, Beijing, Haidian District

Patentee before: Peking University

Country or region before: China