CN113231007B - A kind of method and application of preparing heavy metal adsorbent by using blast furnace slag - Google Patents
A kind of method and application of preparing heavy metal adsorbent by using blast furnace slag Download PDFInfo
- Publication number
- CN113231007B CN113231007B CN202110628633.7A CN202110628633A CN113231007B CN 113231007 B CN113231007 B CN 113231007B CN 202110628633 A CN202110628633 A CN 202110628633A CN 113231007 B CN113231007 B CN 113231007B
- Authority
- CN
- China
- Prior art keywords
- solution
- blast furnace
- furnace slag
- suspension
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002893 slag Substances 0.000 title claims abstract description 43
- 229910001385 heavy metal Inorganic materials 0.000 title claims abstract description 39
- 239000003463 adsorbent Substances 0.000 title claims abstract description 37
- 238000000034 method Methods 0.000 title claims abstract description 27
- 239000000725 suspension Substances 0.000 claims abstract description 27
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 24
- 239000007787 solid Substances 0.000 claims abstract description 16
- 239000000706 filtrate Substances 0.000 claims abstract description 9
- 239000003513 alkali Substances 0.000 claims abstract description 8
- 238000001035 drying Methods 0.000 claims abstract description 7
- 238000000967 suction filtration Methods 0.000 claims abstract description 6
- 239000000047 product Substances 0.000 claims abstract description 4
- 238000002791 soaking Methods 0.000 claims abstract description 4
- 238000001914 filtration Methods 0.000 claims abstract description 3
- 238000000227 grinding Methods 0.000 claims abstract description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 32
- 238000002360 preparation method Methods 0.000 claims description 31
- 239000006185 dispersion Substances 0.000 claims description 12
- 239000010865 sewage Substances 0.000 claims description 12
- 150000002500 ions Chemical class 0.000 claims description 11
- 238000001132 ultrasonic dispersion Methods 0.000 claims description 10
- 238000010438 heat treatment Methods 0.000 claims description 7
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 6
- 239000002253 acid Substances 0.000 claims description 6
- 238000009210 therapy by ultrasound Methods 0.000 claims description 5
- 238000005406 washing Methods 0.000 claims description 5
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 4
- 238000001816 cooling Methods 0.000 claims description 4
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 claims description 3
- 238000006243 chemical reaction Methods 0.000 claims description 3
- 238000002156 mixing Methods 0.000 claims description 3
- 238000003756 stirring Methods 0.000 claims description 3
- 230000035484 reaction time Effects 0.000 claims description 2
- 238000000926 separation method Methods 0.000 claims description 2
- 239000002244 precipitate Substances 0.000 claims 1
- 238000001179 sorption measurement Methods 0.000 abstract description 18
- 229910052782 aluminium Inorganic materials 0.000 abstract description 11
- -1 aluminum ions Chemical class 0.000 abstract description 8
- 229910000323 aluminium silicate Inorganic materials 0.000 abstract description 6
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 abstract description 6
- 239000000243 solution Substances 0.000 description 45
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 5
- 239000010703 silicon Substances 0.000 description 5
- 239000002351 wastewater Substances 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 229910052742 iron Inorganic materials 0.000 description 4
- 238000001878 scanning electron micrograph Methods 0.000 description 4
- 239000000292 calcium oxide Substances 0.000 description 3
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 3
- 238000000724 energy-dispersive X-ray spectrum Methods 0.000 description 3
- 229910021645 metal ion Inorganic materials 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- 235000012239 silicon dioxide Nutrition 0.000 description 3
- 239000002910 solid waste Substances 0.000 description 3
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000004115 Sodium Silicate Substances 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 239000012670 alkaline solution Substances 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000004567 concrete Substances 0.000 description 2
- 229910052593 corundum Inorganic materials 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000012213 gelatinous substance Substances 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000002354 inductively-coupled plasma atomic emission spectroscopy Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000013049 sediment Substances 0.000 description 2
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 2
- 229910052911 sodium silicate Inorganic materials 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229910001845 yogo sapphire Inorganic materials 0.000 description 2
- BZSXEZOLBIJVQK-UHFFFAOYSA-N 2-methylsulfonylbenzoic acid Chemical compound CS(=O)(=O)C1=CC=CC=C1C(O)=O BZSXEZOLBIJVQK-UHFFFAOYSA-N 0.000 description 1
- 206010067125 Liver injury Diseases 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000003929 acidic solution Substances 0.000 description 1
- ANBBXQWFNXMHLD-UHFFFAOYSA-N aluminum;sodium;oxygen(2-) Chemical compound [O-2].[O-2].[Na+].[Al+3] ANBBXQWFNXMHLD-UHFFFAOYSA-N 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 238000000498 ball milling Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical group [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 238000009388 chemical precipitation Methods 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000010440 gypsum Substances 0.000 description 1
- 229910052602 gypsum Inorganic materials 0.000 description 1
- 231100000234 hepatic damage Toxicity 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 230000008818 liver damage Effects 0.000 description 1
- 238000005374 membrane filtration Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000001223 reverse osmosis Methods 0.000 description 1
- 238000013341 scale-up Methods 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229910001388 sodium aluminate Inorganic materials 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 238000004846 x-ray emission Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/04—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
- B01J20/041—Oxides or hydroxides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/06—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
- B01J20/08—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04 comprising aluminium oxide or hydroxide; comprising bauxite
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/10—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/28—Treatment of water, waste water, or sewage by sorption
- C02F1/281—Treatment of water, waste water, or sewage by sorption using inorganic sorbents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2220/00—Aspects relating to sorbent materials
- B01J2220/40—Aspects relating to the composition of sorbent or filter aid materials
- B01J2220/48—Sorbents characterised by the starting material used for their preparation
- B01J2220/4875—Sorbents characterised by the starting material used for their preparation the starting material being a waste, residue or of undefined composition
- B01J2220/4887—Residues, wastes, e.g. garbage, municipal or industrial sludges, compost, animal manure; fly-ashes
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/10—Inorganic compounds
- C02F2101/20—Heavy metals or heavy metal compounds
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Organic Chemistry (AREA)
- Analytical Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Water Treatment By Sorption (AREA)
Abstract
Description
技术领域technical field
本发明属于重金属污水处理技术领域,具体涉及一种利用高炉渣制备重金属吸附剂的方法及应用。The invention belongs to the technical field of heavy metal sewage treatment, and in particular relates to a method and application for preparing a heavy metal adsorbent by using blast furnace slag.
背景技术Background technique
我国是钢铁大国,钢铁产量为世界第一,高炉炼铁是最为普遍的炼铁方法,据不完全统计,在高炉炼铁的过程中,每生产1t铁便会排出350kg高炉渣,而利用率仅在70%~85%,与发达国家相比,我国高炉渣的回收率还处于较低水平。为了提高高炉渣的资源再利用率,经学者们对其进行了深入研究,根据化学成分和化学性质的多样化,常将其应用于机械、建筑、电子等领域。就目前而言,高炉渣已经利用于水泥、混凝土、废料、石膏、玻璃等生产生活材料的制备上,但途径单一,附加值较低,仍需开发高炉渣高值化利用技术。my country is a big iron and steel country with the world's largest iron and steel output. Blast furnace ironmaking is the most common ironmaking method. According to incomplete statistics, in the process of blast furnace ironmaking, 350kg of blast furnace slag will be discharged for every 1 ton of iron produced, and the utilization rate of iron is 350kg. Only at 70% to 85%, the recovery rate of blast furnace slag in my country is still at a low level compared with developed countries. In order to improve the resource reuse rate of blast furnace slag, scholars have conducted in-depth research on it. According to the diversification of chemical composition and chemical properties, it is often used in machinery, construction, electronics and other fields. At present, blast furnace slag has been used in the preparation of cement, concrete, waste, gypsum, glass and other production and living materials, but the method is simple and the added value is low, and high-value utilization technology of blast furnace slag still needs to be developed.
重金属污染是废水污染中比较多见的一种,重金属被人体摄入后,会引发肾脏、肝脏损伤等各种疾病,因此重金属污染是当今社会面临的主要问题之一。现阶段去除水体中重金属离子的主要方法有离子交换、膜过滤、化学沉淀、吸附、电解法、高级氧化和反渗透等。吸附法是一种利用固体吸附剂去除废水中杂质的方法,这种方法的优势主要有反应过程速度快、吸附效率高、操作设施方便简单等,因此,越来越多的人使用这种方法进行废水中重金属杂质的去除。Heavy metal pollution is one of the more common types of wastewater pollution. After heavy metal is ingested by the human body, it will cause various diseases such as kidney and liver damage. Therefore, heavy metal pollution is one of the main problems facing today's society. At this stage, the main methods for removing heavy metal ions in water include ion exchange, membrane filtration, chemical precipitation, adsorption, electrolysis, advanced oxidation and reverse osmosis. Adsorption method is a method of removing impurities in wastewater by using solid adsorbent. The advantages of this method are mainly fast reaction process, high adsorption efficiency, convenient and simple operation facilities, etc. Therefore, more and more people use this method. Carry out the removal of heavy metal impurities in wastewater.
近年来,处理重金属废水时应用较多的固体吸附剂有活性炭、农业固废、工业固废、以及天然吸附剂等。其中工业固废是作为重金属废水吸附剂比较热点的一个方向,公开的现有技术有专利CN200710175228.4公开了一种利用高炉渣制备的水处理剂及其制备方法,高炉渣包括:SiO2:25-30%,CaO:40-45%,Al2O3:15-20%,MgO:10-20%,且(CaO+MgO)/(Al2O3+SiO2)为1.08-1.5。将其和pH>11的碱性水溶液按照固液比为1-∶51混和,过滤后在50-120℃干燥24-48h,取出,粉碎,最后过6-80m的标准筛。专利CN201811406908.7公开了一种改性高炉渣及其应用,该改性高炉渣通过如下步骤制得:将高炉渣球磨、筛分后,按固液比0.05~0.15:1加至酸性溶液中,振荡、过滤、离心、烘干后制得改性高炉渣;其应用于稀土溶液中金属离子的吸附。虽然上述技术吸附剂的制备方法简单,成本低廉,但其应用效果稍差,特别是对重金属离子的吸附率较低,金属离子得不到有效的回收和再利用,因此有必要进一步改进高炉渣吸附剂的制备方法,以期提高重金属离子的吸附率,使金属离子得到有效的回收和再利用,高炉渣也得到资源利用最大化。In recent years, activated carbon, agricultural solid waste, industrial solid waste, and natural adsorbents have been widely used as solid adsorbents in the treatment of heavy metal wastewater. Among them, industrial solid waste is a hot spot as a heavy metal wastewater adsorbent. The disclosed prior art is patent CN200710175228.4 which discloses a water treatment agent prepared by utilizing blast furnace slag and its preparation method. The blast furnace slag includes: SiO 2 : 25-30%, CaO: 40-45%, Al2O3 : 15-20%, MgO: 10-20%, and (CaO+MgO)/( Al2O3 + SiO2 ) was 1.08-1.5. It is mixed with an alkaline aqueous solution with pH>11 according to a solid-liquid ratio of 1-:51, filtered and dried at 50-120°C for 24-48 hours, taken out, pulverized, and finally passed through a standard sieve of 6-80 m. Patent CN201811406908.7 discloses a modified blast furnace slag and its application. The modified blast furnace slag is prepared through the following steps: after ball milling and screening the blast furnace slag, add it to an acidic solution at a solid-liquid ratio of 0.05-0.15:1 , the modified blast furnace slag is obtained after shaking, filtering, centrifuging and drying; it is applied to the adsorption of metal ions in rare earth solution. Although the preparation method of the above-mentioned technical adsorbent is simple and the cost is low, its application effect is slightly poor, especially the adsorption rate of heavy metal ions is low, and the metal ions cannot be effectively recovered and reused. Therefore, it is necessary to further improve the blast furnace slag. The preparation method of the adsorbent is intended to improve the adsorption rate of heavy metal ions, so that the metal ions can be effectively recovered and reused, and the blast furnace slag can also be maximized in resource utilization.
发明内容SUMMARY OF THE INVENTION
为解决上述技术问题,本发明的目的在于提供一种利用高炉渣制备重金属吸附剂的方法,该方法处理后的高炉渣具有蓬松、颗粒状的骨架,骨架表面覆盖一层凸起和“褶皱”的硅铝酸盐粗糙凝胶,这种结构的吸附剂比表面积大,对重金属具有良好的吸附率。In order to solve the above-mentioned technical problems, the object of the present invention is to provide a method for preparing a heavy metal adsorbent by utilizing blast furnace slag. The blast furnace slag treated by the method has a fluffy and granular skeleton, and the surface of the skeleton is covered with a layer of protrusions and "folds". The aluminosilicate rough gel, the adsorbent with this structure has a large specific surface area and a good adsorption rate for heavy metals.
为实现上述目的,本发明采取的具体的技术方案如下:For realizing the above object, the concrete technical scheme that the present invention takes is as follows:
一种利用高炉渣制备重金属吸附剂的方法,包括如下步骤:A method for preparing a heavy metal adsorbent using blast furnace slag, comprising the following steps:
S1:将高炉渣浸泡于水中,过滤、烘干,取出放于球磨机中,研磨,备用;S1: soak the blast furnace slag in water, filter, dry, take it out and put it in a ball mill, grind it, and use it for later use;
S2:将步骤S1所得研磨产物与碱液1混合,加热升温,然后保持恒温搅拌反应,最后冷却、抽滤,保留滤液记为溶液1,将滤渣用水洗至恒重,烘干备用记为固体1;S2: the ground product obtained in step S1 is mixed with
S3:向溶液1中添加酸液调节pH,然后抽滤,保留滤液记为溶液2备用;用水洗涤滤渣,然后逐渐加入碱液2,调节pH,超声处理,得澄清溶液3,备用。S3: Add acid solution to
S4:将固体1加至水中,进行首次超声分散,得悬浮液1,向悬浮液1中加入溶液3并混合均匀,然后再次超声分散得悬浮液2,继续向悬浮液2中添加溶液2,最后升温并保持恒温固化,经离心分离、沉淀物干燥,得到上述重金属吸附剂。S4: add the solid 1 to water, carry out ultrasonic dispersion for the first time to obtain the
步骤S1所述高炉渣和水的重量比为1:1.2-2.0,所述浸泡时间为10-20min,该步骤可以除去高炉渣中可溶性物质;所述研磨为研磨至粒径为50-200目,优选为100-180目。The weight ratio of blast furnace slag and water described in step S1 is 1:1.2-2.0, the soaking time is 10-20min, and this step can remove soluble substances in the blast furnace slag; the grinding is to grind to a particle size of 50-200 mesh , preferably 100-180 mesh.
步骤S2所述碱液1没有特别的限制,本领域常用即可,包括但不限于氢氧化钠溶液或氢氧化钾溶液中的至少一种,所述碱液1的浓度为5-10mol/L,所述碱液1与高炉渣的重量比为3-6:1;所述加热升温为升温至40-80℃,所述反应时间为0.5-1.5h,所述冷却为冷却至室温。该步骤为利用碱液将高炉渣上非晶态的硅、铝、硅酸钠、氯酸钠等物质溶解,得到含有硅、铝、钠的溶液1和高炉渣骨架。The
步骤S3所述酸液没有特别的限制,本领域常用即可,包括但不限于硫酸或盐酸溶液中的至少一种,所述酸液的浓度为2-4mol/L,调节pH至7.5-8.5,所述洗涤次数为1-3次,所述碱液2没有特别的限制,本领域常用即可,包括但不限于氢氧化钠溶液或氢氧化钾溶液中的至少一种,所述碱液2的浓度为0.5-2mol/L,所述碱液2与滤渣的重量比为5-10:1,所述pH调节至8.5-10.5;所述超声处理功率为1-3kW,超声处理频率为60-80kHz,超声处理时间为1-3h。该步骤通过调节溶液1的pH至中性或偏碱性,将硅、铝分开,硅存在于硅酸滤渣中,铝以铝酸钠的形式存在溶液2中;而将滤渣加至碱液2中,控制pH在8.5-10.5范围内,又可以将硅酸溶解,得到稳定的硅酸钠溶液3。The acid solution described in step S3 is not particularly limited, and can be commonly used in the art, including but not limited to at least one of sulfuric acid or hydrochloric acid solution, the concentration of the acid solution is 2-4mol/L, and the pH is adjusted to 7.5-8.5 , the washing times are 1-3 times, the
步骤S4所述固体1和水的重量比为1:3-6,优选为1:4-5,所述首次超声分散功率为0.5kW-1.5kW,分散频率为40-60kHz,分散时间为1-3h,所述悬浮液1和溶液3的重量比为1:1-3,所述再次超声分散的功率为0.5kW-1.5kW,分散频率为60-80kHz,分散时间为30-90min,所述悬浮液2和溶液2的重量比为1:0.5-4,优选为1:2-4,所述升温温度为50-100℃,优选为50-80℃,所述恒温固化时间为5-10d。该步骤为将高炉渣骨架分散为均匀的悬浮液1,通过调控悬浮液1中高炉渣颗粒的用量及与溶液2和溶液3的配合比,以在高炉渣骨架表面生成具有一定厚度的连续的特殊凸起和“褶皱”的硅铝酸盐粗糙凝胶结构,该结构的高炉渣比表面积大,对重金属具有良好的吸附性能。The weight ratio of the solid 1 to water in step S4 is 1:3-6, preferably 1:4-5, the first ultrasonic dispersion power is 0.5kW-1.5kW, the dispersion frequency is 40-60kHz, and the dispersion time is 1 -3h, the weight ratio of the
本发明还提供了一种上述重金属吸附剂的应用,将吸附剂和二价重金属离子浓度为1.0-1.2g/L的污水按(0.1-1)g:100ml的比例混合均匀,于振荡速度为50-100r/min的振荡仪上振荡20-50min,污水中二价重金属离子吸附率≥65%。The invention also provides an application of the above heavy metal adsorbent. The adsorbent and the sewage with the divalent heavy metal ion concentration of 1.0-1.2g/L are uniformly mixed in a ratio of (0.1-1) g:100ml, and the oscillation speed is Vibration for 20-50min on a 50-100r/min oscillator, the adsorption rate of divalent heavy metal ions in sewage is ≥65%.
与现有技术相比,本发明的有益效果是:Compared with the prior art, the beneficial effects of the present invention are:
本发明通过从高炉渣中分离出铝离子和硅酸根离子,然后将二者与处理后的高炉渣骨架混合,通过控制三者的用量和固化条件,制备出一种具有蓬松、颗粒状骨架,同时骨架表面覆盖一层凸起和“褶皱”的硅铝酸盐粗糙凝胶的吸附剂,这种结构的吸附剂比表面积大,对重金属离子具有良好的吸附率。In the present invention, aluminum ions and silicate ions are separated from blast furnace slag, then the two are mixed with the treated blast furnace slag skeleton, and the dosage and curing conditions of the three are controlled to prepare a fluffy, granular skeleton, At the same time, the surface of the skeleton is covered with a raised and "wrinkled" aluminosilicate rough gel adsorbent. The adsorbent with this structure has a large specific surface area and a good adsorption rate for heavy metal ions.
本发明制备方法安全简单、不需要严苛的设备工艺条件、原料廉价成本低,适合放大化生产。The preparation method of the invention is safe and simple, does not require strict equipment and process conditions, has cheap raw materials and low cost, and is suitable for scale-up production.
附图说明Description of drawings
图1为制备例1制备的重金属吸附剂放大3000倍的SEM图。Fig. 1 is the SEM image of the heavy metal adsorbent prepared in Preparation Example 1 at a magnification of 3000 times.
图2为制备例1制备的重金属吸附剂放大1000倍的SEM图。FIG. 2 is a 1000 times magnified SEM image of the heavy metal adsorbent prepared in Preparation Example 1.
图3为制备例1制备的重金属吸附剂的EDS谱图。3 is the EDS spectrum of the heavy metal adsorbent prepared in Preparation Example 1.
图4为本发明制备重金属吸附剂的工艺流程。Fig. 4 is the technological process of preparing heavy metal adsorbent of the present invention.
具体实施方式Detailed ways
下面结合具体实施例对本发明作进一步的说明,但并不局限于说明书上的内容。若无特别说明,实施例中所述“份”均为重量份。The present invention is further described below in conjunction with specific embodiments, but is not limited to the contents in the description. Unless otherwise specified, the "parts" in the examples are all parts by weight.
本发明实施例中采用的高炉渣来自山西华兴铝业有限公司。高炉渣的主要化学成分的含量经X射线荧光光谱分析(仪器型号:XRF-1800),结果如表1所示:The blast furnace slag used in the embodiment of the present invention comes from Shanxi Huaxing Aluminum Co., Ltd. The content of the main chemical components of blast furnace slag was analyzed by X-ray fluorescence spectroscopy (instrument model: XRF-1800), and the results are shown in Table 1:
表1Table 1
制备例1Preparation Example 1
S1:将100份高炉渣浸泡于200份水中20分钟,过滤、烘干,取出放于球磨机中,研磨至粒径为120目,备用;S1: Immerse 100 parts of blast furnace slag in 200 parts of water for 20 minutes, filter, dry, take out and place in a ball mill, grind to a particle size of 120 mesh, for use;
S2:将步骤S1所得研磨产物与浓度为10mol/L的氢氧化钠溶液以重量比为1:6混合,加热升温至60℃,然后保持恒温搅拌反应1.5h,最后冷却、抽滤,保留滤液记为溶液1,将滤渣用水洗4次至恒重,烘干备用记为固体1;该步骤为用碱液将铝、硅从高炉渣上分离下来。S2: Mix the ground product obtained in step S1 with a sodium hydroxide solution with a concentration of 10 mol/L at a weight ratio of 1:6, heat up to 60° C., then keep the constant temperature stirring for 1.5 hours, and finally cool and filter with suction to retain the filtrate. Denoted as
S3:向溶液1中添加浓度为4mol/L的盐酸溶液调节pH至8,然后抽滤,保留滤液记为溶液2备用;用水洗涤滤渣3次,然后加至1mol/L的氢氧化钠溶液,调节pH至10,用功率为2kW、频率为60kHz的超声处理1.5h,得澄清溶液3,备用。S3: adding the hydrochloric acid solution with a concentration of 4mol/L in
S4:将固体1以和水的重量比为1:5加至水中,进行首次超声分散,超声分散功率为1.2kW,分散频率为50kHz,分散时间为2.0h,得悬浮液1;向以悬浮液1和溶液3重量比为1:1加入溶液3并混合均匀,然后再次超声分散,超声分散的功率为1.5kW,分散频率为60kHz,分散时间为60min,得悬浮液2;继续向悬浮液2中以其与溶液2的重量比为1:2添加溶液2,最后升温至80℃,并保持恒温固化8d,经离心分离、沉淀物干燥,得到上述重金属吸附剂。S4: add the solid 1 to water at a weight ratio of 1:5, and perform ultrasonic dispersion for the first time, the ultrasonic dispersion power is 1.2kW, the dispersion frequency is 50kHz, and the dispersion time is 2.0h to obtain
图1为制备例1制备的重金属吸附剂放大3000倍的SEM图。图2为制备例1制备的重金属吸附剂放大1000倍的SEM图。图3为制备例1制备的重金属吸附剂的EDS谱图。表2是EDS谱图表面微区化学组成分析表Fig. 1 is the SEM image of the heavy metal adsorbent prepared in Preparation Example 1 at a magnification of 3000 times. FIG. 2 is a 1000 times magnified SEM image of the heavy metal adsorbent prepared in Preparation Example 1. 3 is the EDS spectrum of the heavy metal adsorbent prepared in Preparation Example 1. Table 2 is the chemical composition analysis table of the surface micro-region of the EDS spectrum
表2Table 2
制备例2Preparation Example 2
其余与制备例1相同,不同之处在于,步骤S4悬浮液1是固体1以和水的重量比为1:4制备的。The rest are the same as in Preparation Example 1, except that in Step S4, the
制备例3Preparation Example 3
其余与制备例1相同,不同之处在于,步骤S4悬浮液2是悬浮液1和溶液3以重量比为1:3制备的。The rest are the same as in Preparation Example 1, except that in step S4,
制备例4Preparation Example 4
其余与制备例1相同,不同之处在于,步骤S4悬浮液2与溶液2的重量比为1:0.5。The rest are the same as in Preparation Example 1, except that in step S4, the weight ratio of
制备例5Preparation Example 5
其余与制备例1相同,不同之处在于,步骤S4悬浮液1是固体1以和水的重量比为1:3制备的。The rest are the same as in Preparation Example 1, except that in step S4, the
制备例6Preparation Example 6
其余与制备例1相同,不同之处在于,步骤S4悬浮液1是固体1以和水的重量比为1:6制备的。The rest are the same as in Preparation Example 1, except that in step S4, the
制备例7Preparation Example 7
其余与制备例1相同,不同之处在于,步骤S4悬浮液2与溶液2的重量比为1:4。The rest are the same as in Preparation Example 1, except that in step S4, the weight ratio of
制备例8Preparation Example 8
其余与制备例1相同,不同之处在于,步骤S4最后升温至50℃,并保持恒温固化8d。The rest are the same as in Preparation Example 1, except that in step S4, the temperature is finally raised to 50° C., and the temperature is maintained for 8 d.
制备例9Preparation Example 9
其余与制备例1相同,不同之处在于,步骤S4最后升温至100℃,并保持恒温固化8d。The rest is the same as that of Preparation Example 1, except that in step S4, the temperature is finally raised to 100° C., and the temperature is maintained for 8 d.
实施例1-9Examples 1-9
将吸附剂和Pb2+浓度为1.0g/L的污水按1g:100ml混合均匀,于振荡速度为80r/min的振荡仪上振荡50min,过滤,得吸附后的平衡溶液,使用ICP-AES法测定平衡溶液中Pb2+浓度,并计算回收率。ICP-AES,设备:ICP发射光谱仪SPS 1200AR型;原子吸收分光光度计:AA8200型。测定时采用0mg/L及1.0mg/L两点标准曲线法。Mix the adsorbent and sewage with a Pb 2+ concentration of 1.0g/L at a rate of 1g:100ml, shake for 50min on a shaker with a shaking speed of 80r/min, filter to obtain the equilibrium solution after adsorption, and use the ICP-AES method The Pb 2+ concentration in the equilibrium solution was determined and the recovery was calculated. ICP-AES, equipment: ICP emission spectrometer SPS 1200AR model; atomic absorption spectrophotometer: AA8200 model. The two-point standard curve method of 0 mg/L and 1.0 mg/L was used for the determination.
式中:R为回收率;In the formula: R is the recovery rate;
C0为溶液中Pb2+的初始浓度(g/L);C 0 is the initial concentration of Pb 2+ in the solution (g/L);
Ce为溶液中Pb2+的平衡浓度(g/L);C e is the equilibrium concentration of Pb 2+ in the solution (g/L);
m为吸附剂的质量(g);m is the mass of the adsorbent (g);
V为吸附溶液的体积(L)。V is the volume (L) of the adsorption solution.
依次将制备例1-9制备的吸附剂进行实施例中的实验测试,分别对应实施例1-9。The adsorbents prepared in Preparation Examples 1-9 were successively subjected to the experimental tests in the Examples, corresponding to Examples 1-9 respectively.
更换含Pb2+污水为浓度相同的含Cu2+污水、Mn2+污水、Mn4+污水、Ni2+污水、Cd2+污水、Co3+污水重复上述实施例中的实验测试,实验结果见下表3。Replace the sewage containing Pb 2+ with the sewage containing Cu 2+ , Mn 2+ sewage, Mn 4+ sewage, Ni 2+ sewage, Cd 2+ sewage, and Co 3+ sewage with the same concentration. Repeat the experimental test in the above embodiment. The results are shown in Table 3 below.
表3table 3
由图1、2可以看出本发明制备的吸附剂具有蓬松、颗粒状骨架,骨架表面还覆盖一层凸起和“褶皱”的硅铝酸盐粗糙凝胶的吸附剂,这种结构的吸附剂比表面积大,对吸附重金属离子十分有帮助。It can be seen from Figures 1 and 2 that the adsorbent prepared by the present invention has a fluffy and granular framework, and the surface of the framework is also covered with a layer of convex and "wrinkled" aluminosilicate rough gel adsorbent. The specific surface area of the agent is large, which is very helpful for the adsorption of heavy metal ions.
由图3、4可以看出蓬松、颗粒状骨架表面被凸起和褶皱状的凝胶状物质紧密包裹,通过EDS对红色方框中凝胶物质的元素组成研究发现,其主要是由硅铝氧钙和钠元素组成(碳元素是制备样品时样品表面喷碳所致),证明这种凝胶是一种特殊结构的硅铝酸盐物质。From Figures 3 and 4, it can be seen that the surface of the fluffy and granular skeleton is tightly wrapped by convex and wrinkled gelatinous substances. The elemental composition of the gelatinous substances in the red box is studied by EDS, and it is found that it is mainly composed of silicon and aluminum. The composition of calcium oxide and sodium elements (the carbon element is caused by carbon spraying on the surface of the sample when preparing the sample) proves that the gel is a special structure of aluminosilicate material.
由上表可以看出本发明由高炉渣制备的吸附剂对重金属具有良好的吸附效果,特别是Pb2+、Cu2+、Mn2+、Ni2+、Cd2+二价重金属离子,吸附率均于80%,但也有一定的选择性,特别是当重金属离子为Mn4+、Co3+非二价重金属离子时,吸附率最高仅为78.77%。It can be seen from the above table that the adsorbent prepared from blast furnace slag has a good adsorption effect on heavy metals, especially Pb 2+ , Cu 2+ , Mn 2+ , Ni 2+ , Cd 2+ divalent heavy metal ions, adsorption The adsorption rate is all above 80%, but also has certain selectivity, especially when the heavy metal ions are Mn 4+ , Co 3+ non-divalent heavy metal ions, the highest adsorption rate is only 78.77%.
上述详细说明是针对本发明其中之一可行实施例的具体说明,该实施例并非用以限制本发明的专利范围,凡未脱离本发明所为的等效实施或变更,均应包含于本发明技术方案的范围内。The above detailed description is a specific description of one of the feasible embodiments of the present invention, and this embodiment is not intended to limit the patent scope of the present invention. Any equivalent implementation or modification that does not depart from the present invention shall be included in the present invention. within the scope of the technical solution.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110628633.7A CN113231007B (en) | 2021-06-07 | 2021-06-07 | A kind of method and application of preparing heavy metal adsorbent by using blast furnace slag |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110628633.7A CN113231007B (en) | 2021-06-07 | 2021-06-07 | A kind of method and application of preparing heavy metal adsorbent by using blast furnace slag |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113231007A CN113231007A (en) | 2021-08-10 |
CN113231007B true CN113231007B (en) | 2022-07-12 |
Family
ID=77136954
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110628633.7A Active CN113231007B (en) | 2021-06-07 | 2021-06-07 | A kind of method and application of preparing heavy metal adsorbent by using blast furnace slag |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113231007B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115806348A (en) * | 2021-09-14 | 2023-03-17 | 西南湿地有限公司 | A kind of preparation method of high-efficiency phosphorus removal constructed wetland modified filler |
CN118788297A (en) * | 2024-08-13 | 2024-10-18 | 中国地质大学(北京) | An iron-modified blast furnace slag-based heavy metal adsorbent and its preparation method and application |
CN119303541B (en) * | 2024-12-16 | 2025-03-18 | 兰州理工大学 | Geopolymer adsorbent, preparation method and application thereof in zinc-containing sewage treatment |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103359848A (en) * | 2012-04-06 | 2013-10-23 | 华东理工大学 | Method for treating silicon-containing washing wastewater in preparation process of Na type molecular sieves |
CN108404860A (en) * | 2018-05-18 | 2018-08-17 | 刘凡领 | A kind of preparation method of inorganic heavy metal ion sorbing material |
CN111921490A (en) * | 2020-08-19 | 2020-11-13 | 广东工业大学 | Adsorbent, preparation method and application thereof, and heavy metal wastewater treatment agent |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
LU84743A1 (en) * | 1983-04-11 | 1984-11-28 | Sipac | PROCESS FOR PRODUCING ZEOLITE A AND PRODUCTS OBTAINED |
CN1247457C (en) * | 2003-03-11 | 2006-03-29 | 中国石油化工股份有限公司 | Synthetic method for ZSM-5 zeolite |
WO2005061408A1 (en) * | 2003-12-24 | 2005-07-07 | Mt Aspiring Geochemistry Consultants Pty Ltd | Porous particulate material for fluid treatment, cementitious composition and method of manufacture thereof |
CN100358807C (en) * | 2004-07-12 | 2008-01-02 | 中国石油化工股份有限公司 | Selective preparation method for zeolite |
CN101397154B (en) * | 2007-09-27 | 2011-04-20 | 中国科学院过程工程研究所 | Water treatment agent prepared by blast furnace slag and preparation method thereof |
CN102872795A (en) * | 2012-08-28 | 2013-01-16 | 常州大学 | Composite adsorbing material for removing chromium ions in natural water and preparation method thereof |
CN103464094B (en) * | 2013-09-12 | 2016-01-20 | 同济大学 | A kind of preparation method of Nanoscale Iron modified zeolite |
CN104556139B (en) * | 2013-10-22 | 2018-06-15 | 中国石油化工股份有限公司 | A kind of method that beta-molecular sieve is prepared with oil shale waste |
CN104805250B (en) * | 2015-04-21 | 2017-03-15 | 北京科技大学 | The process that a kind of high-temperature slag is continuously modified |
CN107855108B (en) * | 2017-03-15 | 2020-04-07 | 吉林大学 | Method for synthesizing zeolite by utilizing coal gasification fine slag and prepared zeolite material |
CN107715832A (en) * | 2017-10-16 | 2018-02-23 | 湖南理工学院 | A kind of preparation method of porous adsorbent |
CN109589911A (en) * | 2018-11-23 | 2019-04-09 | 江苏科技大学 | A kind of modified blast furnace slag and its application |
WO2020141379A1 (en) * | 2019-01-04 | 2020-07-09 | Sabic Global Technologies B.V. | Steel ladle furnace slag binder materials and uses thereof |
CN110357122B (en) * | 2019-07-05 | 2022-10-18 | 吉林建筑大学 | Method for synthesizing X-type zeolite by modifying oil shale waste |
CN112058219A (en) * | 2020-09-17 | 2020-12-11 | 昆明理工大学 | A kind of preparation method and application of blast furnace nickel iron slag-based zeolite molecular sieve |
-
2021
- 2021-06-07 CN CN202110628633.7A patent/CN113231007B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103359848A (en) * | 2012-04-06 | 2013-10-23 | 华东理工大学 | Method for treating silicon-containing washing wastewater in preparation process of Na type molecular sieves |
CN108404860A (en) * | 2018-05-18 | 2018-08-17 | 刘凡领 | A kind of preparation method of inorganic heavy metal ion sorbing material |
CN111921490A (en) * | 2020-08-19 | 2020-11-13 | 广东工业大学 | Adsorbent, preparation method and application thereof, and heavy metal wastewater treatment agent |
Also Published As
Publication number | Publication date |
---|---|
CN113231007A (en) | 2021-08-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113231007B (en) | A kind of method and application of preparing heavy metal adsorbent by using blast furnace slag | |
JP4332591B2 (en) | Method for recovering silica and then alumina from coal ash | |
UA123164C2 (en) | Molten-salt chlorinated-slag resource processing method | |
CN108706561B (en) | Method for preparing high-purity iron phosphate by using pyrite cinder | |
CN104291349A (en) | Method for preparing P type molecular sieve by using coal ash as raw material | |
CN109482135A (en) | A kind of preparation method and application of calcium silicates adsorbent material | |
CN108554379B (en) | Adsorbent based on waste steel slag and preparation method and application thereof | |
CN103031443A (en) | Method of dealkalizing red mud and recovering aluminum and iron | |
CN101456612A (en) | Clean production novel process for preparing environment pollution treatment material by fly ash | |
CN110721655A (en) | Preparation method of heavy metal adsorbent based on red mud | |
CN116196884B (en) | A manganese activated red mud catalytic oxidation adsorption material and its preparation method and application | |
CN105271297A (en) | Method for preparing 4A molecular sieves by using tailings and application of 4A molecular sieves | |
JP6089792B2 (en) | Steelmaking slag treatment method | |
CN113089076B (en) | A kind of method for preparing calcium sulfate whisker based on chlor-alkali salt mud | |
CN110508261B (en) | Preparation method of calcium-based magnesium hydroxide for adsorbing heavy metal copper | |
CN106669590A (en) | Heavy metal mesoporous adsorbent material with molybdenum ore tailings as raw material as well as preparation method and application thereof | |
JP3766318B2 (en) | Method for producing porous material | |
CN115571922A (en) | A process for recovering sodium carbonate and magnetic iron oxide from red mud with carbon dioxide | |
CN116967259A (en) | A method for simultaneously treating organic matter in red mud and circulating mother liquor | |
KR101707769B1 (en) | Water treatment agent manufacturing method and a water treatment agent is made by him | |
CN1093087C (en) | Process for preparing high-crystallinity X-type zeolite from coal gangue as raw material | |
CN114452933A (en) | A kind of preparation method and application of modified attapulgite for organic arsenic compound adsorption | |
CN113371783A (en) | Method for treating nitrogen and phosphorus wastewater by using water-quenched slag-fly ash-based 4A zeolite | |
CN112174279A (en) | A kind of polymeric aluminosilicate inorganic flocculant and its preparation method and application | |
JP2005162513A (en) | Method for producing zeolitic soil from water purification plant generated soil, wastewater treatment method and used zeolitic soil treatment method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |