CN113222951B - 一种识别髋关节x线的骨质疏松人工智能诊断装置 - Google Patents
一种识别髋关节x线的骨质疏松人工智能诊断装置 Download PDFInfo
- Publication number
- CN113222951B CN113222951B CN202110549854.5A CN202110549854A CN113222951B CN 113222951 B CN113222951 B CN 113222951B CN 202110549854 A CN202110549854 A CN 202110549854A CN 113222951 B CN113222951 B CN 113222951B
- Authority
- CN
- China
- Prior art keywords
- image
- neural network
- network model
- hip joint
- ray
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 210000004394 hip joint Anatomy 0.000 title claims abstract description 40
- 208000001132 Osteoporosis Diseases 0.000 title claims abstract description 35
- 238000003745 diagnosis Methods 0.000 title claims abstract description 17
- 238000003062 neural network model Methods 0.000 claims abstract description 58
- 210000000988 bone and bone Anatomy 0.000 claims abstract description 34
- 238000003709 image segmentation Methods 0.000 claims abstract description 33
- 238000012549 training Methods 0.000 claims abstract description 18
- 238000013473 artificial intelligence Methods 0.000 claims abstract description 10
- 238000001514 detection method Methods 0.000 claims abstract description 10
- 238000012545 processing Methods 0.000 claims abstract description 8
- 238000013527 convolutional neural network Methods 0.000 claims description 25
- 210000002436 femur neck Anatomy 0.000 claims description 22
- 230000037182 bone density Effects 0.000 claims description 21
- 238000013528 artificial neural network Methods 0.000 claims description 12
- 230000007704 transition Effects 0.000 claims description 8
- 238000011176 pooling Methods 0.000 claims description 7
- 230000011218 segmentation Effects 0.000 claims description 5
- 238000010276 construction Methods 0.000 claims description 4
- 238000007689 inspection Methods 0.000 claims description 3
- 238000000034 method Methods 0.000 claims description 3
- 238000002372 labelling Methods 0.000 claims 7
- 238000012935 Averaging Methods 0.000 claims 1
- 210000001624 hip Anatomy 0.000 abstract description 11
- 238000012216 screening Methods 0.000 abstract description 3
- 238000009547 dual-energy X-ray absorptiometry Methods 0.000 description 9
- 206010017076 Fracture Diseases 0.000 description 8
- 208000010392 Bone Fractures Diseases 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 229910052500 inorganic mineral Inorganic materials 0.000 description 4
- 239000011707 mineral Substances 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 238000004195 computer-aided diagnosis Methods 0.000 description 2
- 230000008602 contraction Effects 0.000 description 2
- 230000001054 cortical effect Effects 0.000 description 2
- 238000013136 deep learning model Methods 0.000 description 2
- 210000000527 greater trochanter Anatomy 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 210000000528 lesser trochanter Anatomy 0.000 description 2
- 210000004705 lumbosacral region Anatomy 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 208000037411 Aortic calcification Diseases 0.000 description 1
- 208000020084 Bone disease Diseases 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 208000029725 Metabolic bone disease Diseases 0.000 description 1
- 206010049088 Osteopenia Diseases 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- 210000000683 abdominal cavity Anatomy 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000037180 bone health Effects 0.000 description 1
- 230000002308 calcification Effects 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000009693 chronic damage Effects 0.000 description 1
- 208000037976 chronic inflammation Diseases 0.000 description 1
- 230000006020 chronic inflammation Effects 0.000 description 1
- 230000001447 compensatory effect Effects 0.000 description 1
- 238000002591 computed tomography Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000001739 density measurement Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000002059 diagnostic imaging Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 238000013399 early diagnosis Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 206010020718 hyperplasia Diseases 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000001537 neural effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 210000000689 upper leg Anatomy 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0012—Biomedical image inspection
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/50—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications
- A61B6/505—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications for diagnosis of bone
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/52—Devices using data or image processing specially adapted for radiation diagnosis
- A61B6/5211—Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data
- A61B6/5217—Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data extracting a diagnostic or physiological parameter from medical diagnostic data
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/241—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/048—Activation functions
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/11—Region-based segmentation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10116—X-ray image
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20081—Training; Learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20084—Artificial neural networks [ANN]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30004—Biomedical image processing
- G06T2207/30008—Bone
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Data Mining & Analysis (AREA)
- Molecular Biology (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Artificial Intelligence (AREA)
- Evolutionary Computation (AREA)
- General Engineering & Computer Science (AREA)
- Computing Systems (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Radiology & Medical Imaging (AREA)
- Computational Linguistics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Public Health (AREA)
- Heart & Thoracic Surgery (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- Surgery (AREA)
- High Energy & Nuclear Physics (AREA)
- Optics & Photonics (AREA)
- Pathology (AREA)
- Bioinformatics & Computational Biology (AREA)
- Physiology (AREA)
- Quality & Reliability (AREA)
- Evolutionary Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Dentistry (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Image Analysis (AREA)
- Apparatus For Radiation Diagnosis (AREA)
Abstract
Description
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110549854.5A CN113222951B (zh) | 2021-05-20 | 2021-05-20 | 一种识别髋关节x线的骨质疏松人工智能诊断装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110549854.5A CN113222951B (zh) | 2021-05-20 | 2021-05-20 | 一种识别髋关节x线的骨质疏松人工智能诊断装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113222951A CN113222951A (zh) | 2021-08-06 |
CN113222951B true CN113222951B (zh) | 2023-05-02 |
Family
ID=77093771
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110549854.5A Active CN113222951B (zh) | 2021-05-20 | 2021-05-20 | 一种识别髋关节x线的骨质疏松人工智能诊断装置 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113222951B (zh) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114049315B (zh) * | 2021-10-29 | 2023-04-18 | 北京长木谷医疗科技有限公司 | 关节识别方法、电子设备、存储介质及计算机程序产品 |
CN113822231A (zh) * | 2021-11-08 | 2021-12-21 | 中国人民解放军陆军特色医学中心 | 一种基于深度学习图像识别的转子间骨折手术辅助系统 |
CN114723763B (zh) * | 2022-05-24 | 2022-09-02 | 博志生物科技(深圳)有限公司 | 一种医学图像分割方法、装置、设备及存储介质 |
CN116570367B (zh) * | 2023-05-12 | 2024-08-16 | 北京长木谷医疗科技股份有限公司 | 机器人手术操作骨磨削骨质智能感知预测方法装置及设备 |
CN117635951B (zh) * | 2024-01-24 | 2024-05-03 | 苏州大学附属第二医院 | 基于x线图像自动识别髋部骨质疏松的判定方法及系统 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1633594A (zh) * | 2002-02-27 | 2005-06-29 | 成像治疗仪股份有限公司 | X射线图像定量分析的方法和装置 |
CN1682236A (zh) * | 2002-08-20 | 2005-10-12 | 成像治疗仪股份有限公司 | 用于x射线图像分析的方法和设备 |
CN110033438A (zh) * | 2019-03-14 | 2019-07-19 | 上海市第六人民医院 | 髋关节标记系统及其标记方法 |
CN112396591A (zh) * | 2020-11-25 | 2021-02-23 | 暨南大学附属第一医院(广州华侨医院) | 一种基于腰椎x线图像的骨质疏松智能评估方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070047794A1 (en) * | 2000-10-11 | 2007-03-01 | Philipp Lang | Methods and devices for analysis of x-ray images |
CN110648337A (zh) * | 2019-09-23 | 2020-01-03 | 武汉联影医疗科技有限公司 | 髋关节分割方法、装置、电子设备和存储介质 |
CN110796636A (zh) * | 2019-09-25 | 2020-02-14 | 中国人民解放军战略支援部队信息工程大学 | 基于卷积神经网络的ct图像骨质状况检测方法及装置 |
-
2021
- 2021-05-20 CN CN202110549854.5A patent/CN113222951B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1633594A (zh) * | 2002-02-27 | 2005-06-29 | 成像治疗仪股份有限公司 | X射线图像定量分析的方法和装置 |
CN1682236A (zh) * | 2002-08-20 | 2005-10-12 | 成像治疗仪股份有限公司 | 用于x射线图像分析的方法和设备 |
CN110033438A (zh) * | 2019-03-14 | 2019-07-19 | 上海市第六人民医院 | 髋关节标记系统及其标记方法 |
CN112396591A (zh) * | 2020-11-25 | 2021-02-23 | 暨南大学附属第一医院(广州华侨医院) | 一种基于腰椎x线图像的骨质疏松智能评估方法 |
Non-Patent Citations (2)
Title |
---|
S. M. Nazia Fathima 等.Estimation of t-score and BMD values from X-ray images for detection of osteoporosis.《ICCSP '19: Proceedings of the 3rd International Conference on Cryptography, Security and Privacy》.2019,220–224. * |
高小玲 等.原发性骨淋巴瘤影像学特征及误诊分析.《华南国防医学杂志》.2018,26-30+57. * |
Also Published As
Publication number | Publication date |
---|---|
CN113222951A (zh) | 2021-08-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113222951B (zh) | 一种识别髋关节x线的骨质疏松人工智能诊断装置 | |
CN1663530B (zh) | 用于处理图像数据以帮助检测疾病的方法和装置 | |
Pietka et al. | Feature extraction in carpal-bone analysis | |
Areeckal et al. | Current and emerging diagnostic imaging-based techniques for assessment of osteoporosis and fracture risk | |
CN110796636A (zh) | 基于卷积神经网络的ct图像骨质状况检测方法及装置 | |
Tang et al. | CNN-based qualitative detection of bone mineral density via diagnostic CT slices for osteoporosis screening | |
EP3971830B1 (en) | Pneumonia sign segmentation method and apparatus, medium and electronic device | |
CN111724357B (zh) | 基于数字放射图像及支持向量回归的手臂骨密度测量方法 | |
Zhou et al. | Detection and semiquantitative analysis of cardiomegaly, pneumothorax, and pleural effusion on chest radiographs | |
Zeng et al. | TUSPM-NET: A multi-task model for thyroid ultrasound standard plane recognition and detection of key anatomical structures of the thyroid | |
CN116433620A (zh) | 基于ct图像的骨密度预测及骨质疏松智能筛查方法和系统 | |
CN113397485A (zh) | 一种基于深度学习的脊柱侧弯筛查方法 | |
Ou et al. | A sub-pixel accurate quantification of joint space narrowing progression in rheumatoid arthritis | |
Ji et al. | ResDSda_U-Net: A novel U-net-based residual network for segmentation of pulmonary nodules in lung CT images | |
Xue et al. | A dual-selective channel attention network for osteoporosis prediction in computed tomography images of lumbar spine | |
Wu et al. | B-ultrasound guided venipuncture vascular recognition system based on deep learning | |
CN117893729A (zh) | Bifpn结合cbam注意力机制的骨折医学影像分析方法 | |
CN117710288A (zh) | 一种基于深度学习的低剂量胸部ct影像骨密度检测方法 | |
CN117036302A (zh) | 主动脉瓣膜钙化程度的确定方法和系统 | |
Dias et al. | Osteoporosis screening: Leveraging EfficientNet with complete and cropped facial panoramic radiography imaging | |
Zhou et al. | Towards Cross-Scale Attention and Surface Supervision for Fractured Bone Segmentation in CT | |
CN115439396A (zh) | 使用人工神经网络确定肌肉结构的特性 | |
KR102258070B1 (ko) | 발의 유형 평가 방법 및 이를 이용한 발의 유형 평가용 디바이스 | |
Hidjah et al. | Periapical radiograph texture features for osteoporosis detection using deep convolutional neural network | |
Wu et al. | An Automated Assessment Method for Chronic Kidney Disease–Mineral and Bone Disorder (CKD-MBD) Utilizing Metacarpal Cortical Percentage |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB03 | Change of inventor or designer information | ||
CB03 | Change of inventor or designer information |
Inventor after: Qin Yanguo Inventor after: He Meng Inventor after: Guo Deming Inventor after: Tang Xiongfeng Inventor after: Shen Xianyue Inventor after: Chen Bo Inventor before: Qin Yanguo Inventor before: He Meng Inventor before: Tang Xiongfeng Inventor before: Guo Deming Inventor before: Shen Xianyue Inventor before: Chen Bo |
|
GR01 | Patent grant | ||
GR01 | Patent grant |