[go: up one dir, main page]

CN113206224B - Core-shell structure Prussian blue potassium ion battery positive electrode material modified by polymeric organic matters and preparation method thereof - Google Patents

Core-shell structure Prussian blue potassium ion battery positive electrode material modified by polymeric organic matters and preparation method thereof Download PDF

Info

Publication number
CN113206224B
CN113206224B CN202110378255.1A CN202110378255A CN113206224B CN 113206224 B CN113206224 B CN 113206224B CN 202110378255 A CN202110378255 A CN 202110378255A CN 113206224 B CN113206224 B CN 113206224B
Authority
CN
China
Prior art keywords
potassium
core
suspension
ion battery
prussian blue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110378255.1A
Other languages
Chinese (zh)
Other versions
CN113206224A (en
Inventor
廖世军
沈牧原
邵奕嘉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Guangzhou Institute of Modern Industrial Technology
Original Assignee
South China University of Technology SCUT
Guangzhou Institute of Modern Industrial Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT, Guangzhou Institute of Modern Industrial Technology filed Critical South China University of Technology SCUT
Priority to CN202110378255.1A priority Critical patent/CN113206224B/en
Publication of CN113206224A publication Critical patent/CN113206224A/en
Application granted granted Critical
Publication of CN113206224B publication Critical patent/CN113206224B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

The invention discloses a core-shell Prussian blue potassium ion battery anode material modified by a polymeric organic substance and a preparation method thereof. The preparation method comprises the following steps: firstly preparing an iron-based Prussian blue core by a coprecipitation method, then adding a transition metal salt and potassium ferrocyanide into the suspension in an in-situ growth mode, mixing and stirring, growing another iron-based Prussian blue on the particle surface, and obtaining the K with a core-shell structure after aging, centrifuging, washing and drying processesxM1Fe(CN)6@KyM2Fe(CN)6And (3) powder. And dispersing the powder in an organic monomer salt solution, mixing and stirring for a certain time, and centrifuging, drying, washing and collecting to obtain the core-shell Prussian blue cathode material modified by the polymeric organic substance. The potassium ion battery positive electrode material has excellent rate capability and cycle performance. Meanwhile, the preparation method of the material is simple and easy to operate, low in production cost and beneficial to large-scale production.

Description

一种多聚有机物修饰的核壳结构普鲁士蓝钾离子电池正极材 料及其制备方法A kind of polyorganic modified core-shell structure Prussian blue potassium ion battery cathode material and preparation method thereof

技术领域technical field

本发明涉及一种钾离子电池正极材料及其制备方法,具体涉及一种多聚有机物修饰的核壳普鲁士蓝钾离子电池正极材料及其制备方法。The invention relates to a positive electrode material for a potassium ion battery and a preparation method thereof, in particular to a positive electrode material for a core-shell Prussian blue potassium ion battery modified by a polymer organic matter and a preparation method thereof.

背景技术Background technique

在过去的二十多年里,凭借着高容量、循环稳定性好等优秀特性,锂离子电池在全球实现了大规模的商业化应用,已成为最为重要和应用最为广泛的一类二次电池。但是,锂离子电池在电动汽车及储能设备中的大量使用以及锂资源的有限性,导致锂盐价格大幅度攀升,给锂离子电池的发展和成本控制带来了巨大的压力。在此背景下,人们开始寻找低成本、原材料资源丰富的可替代品来替代锂离子电池,在多种新兴的电池技术中,钾离子电池是个理想的选择。In the past two decades, with its excellent characteristics such as high capacity and good cycle stability, lithium-ion batteries have achieved large-scale commercial applications around the world, and have become the most important and widely used type of secondary batteries. . However, the extensive use of lithium-ion batteries in electric vehicles and energy storage equipment and the limited lithium resources have led to a sharp rise in the price of lithium salts, which has brought enormous pressure to the development and cost control of lithium-ion batteries. In this context, people began to look for low-cost, raw material-rich alternatives to replace lithium-ion batteries. Among a variety of emerging battery technologies, potassium-ion batteries are an ideal choice.

普鲁士蓝类材料作为一类钾离子电池正极材料,具有开放的框架结构,晶格中有较大的离子通道和空隙,所以它是少数能够容纳钠离子、钾离子等较大碱金属离子的宿主材料之一,非常有利于钾离子的快速嵌入脱出。得益于该结构特点,普鲁士蓝类材料在过去一段时间以来被作为理想的钾离子电池正极材料之一而得到了广泛的研究。Prussian blue materials, as a class of positive electrode materials for potassium ion batteries, have an open frame structure with large ion channels and voids in the lattice, so they are one of the few hosts that can accommodate larger alkali metal ions such as sodium ions and potassium ions. One of the materials, it is very beneficial to the rapid intercalation and deintercalation of potassium ions. Benefiting from this structural feature, Prussian blue-like materials have been widely studied as one of the ideal cathode materials for potassium-ion batteries in the past period of time.

中国发明专利申请CN 107226475 A提出基于普鲁士蓝的钾离子电池正极材料,虽然其容量可达90.7mAh/g,循环400次,容量保持率在90.37%;然而,这种材料存在倍率性能较差的问题。Chinese invention patent application CN 107226475 A proposes a potassium-ion battery cathode material based on Prussian blue, although its capacity can reach 90.7mAh/g, cycle 400 times, and the capacity retention rate is 90.37%; however, this material has poor rate performance. question.

发明内容SUMMARY OF THE INVENTION

鉴于现有材料存在的不足,本发明提供一种新型高倍率性能、高循环性能的多聚有机物修饰的核壳普鲁士蓝钾离子电池正极材料及其制备方法。In view of the deficiencies of existing materials, the present invention provides a novel high rate performance, high cycle performance polymer organic modified core-shell Prussian blue potassium ion battery positive electrode material and a preparation method thereof.

本发明技术方案如下。The technical solution of the present invention is as follows.

一种多聚有机物修饰的核壳结构普鲁士蓝钾离子电池正极材料,表达式为:KxM1Fe(CN)6@KyM2Fe(CN)6@多聚有机物;其中0≤x≤2,0≤y≤2;所述M1、M2分别为Fe、Mn、Co、Ni、Cu、Zn中的一种以上,多聚有机物包括聚多巴胺、聚吡咯或聚苯胺。A polyorganic modified core-shell structure Prussian blue potassium ion battery cathode material, the expression is: K x M 1 Fe(CN) 6 @K y M 2 Fe(CN) 6 @polyorganic; where 0≤x ≤2, 0≤y≤2; the M 1 and M 2 are one or more of Fe, Mn, Co, Ni, Cu, and Zn, respectively, and the polymeric organic matter includes polydopamine, polypyrrole or polyaniline.

一种多聚有机物修饰的核壳结构普鲁士蓝钾离子电池正极材料的制备方法,包括如下步骤:A method for preparing a positive electrode material for a core-shell structure Prussian blue potassium ion battery modified by a polymeric organic matter, comprising the following steps:

一、制备KxM1Fe(CN)6@KyM2Fe(CN)6钾离子电池正极材料;1. Preparation of K x M 1 Fe(CN) 6 @K y M 2 Fe(CN) 6 cathode material for potassium ion battery;

二、将步骤一中制备的KxM1Fe(CN)6@KyM2Fe(CN)6粉末超声分散于去离子水中,得到悬浊液E;2. Ultrasonic dispersion of the K x M 1 Fe(CN) 6 @K y M 2 Fe(CN) 6 powder prepared in step 1 in deionized water to obtain suspension E;

三、将有机单体盐加入悬浊液E中,搅拌溶解并反应,得到悬浊液F;3. Add the organic monomer salt into the suspension E, stir to dissolve and react to obtain the suspension F;

四、将悬浊液F陈化、离心、干燥,得到KxM1Fe(CN)6@KyM2Fe(CN)6@多聚有机物正极材料粉末,其中0≤x≤2,0≤y≤2;所述M1、M2分别为Fe、Mn、Co、Ni、Cu、Zn中的一种以上。4. Ageing, centrifuging and drying the suspension F to obtain K x M 1 Fe(CN) 6 @K y M 2 Fe(CN) 6 @Polymeric organic cathode material powder, wherein 0≤x≤2,0 ≤y≤2; the M 1 and M 2 are one or more of Fe, Mn, Co, Ni, Cu, and Zn, respectively.

上述方法中,步骤一的具体步骤如下:In the above method, the specific steps of step 1 are as follows:

(1)将亚铁氰化钾、钾盐溶解于去离子水中配成溶液A;(1) potassium ferrocyanide, potassium salt are dissolved in deionized water to be made into solution A;

(2)将过渡金属盐、还原剂、络合剂溶解于去离子水中配成溶液B;(2) dissolving transition metal salt, reducing agent and complexing agent in deionized water to prepare solution B;

(3)将溶液B按照滴加到溶液A中,搅拌反应后,得到悬浊液C;(3) solution B is added dropwise to solution A, and after stirring reaction, suspension C is obtained;

(4)将过渡金属盐、络合剂、亚铁氰化钾同时加入悬浊液C中,搅拌反应一定时间,得到悬浊液D;(4) adding transition metal salt, complexing agent, potassium ferrocyanide into suspension C simultaneously, stirring and reacting for a certain time to obtain suspension D;

(5)将悬浊液D陈化、离心、干燥,得到KxM1Fe(CN)6@KyM2Fe(CN)6正极材料粉末(0≤x≤2,0≤y≤2;所述M1、M2分别为Fe、Mn、Co、Ni、Cu、Zn中的一种及以上)。(5) Ageing, centrifuging and drying the suspension D to obtain K x M 1 Fe(CN) 6 @K y M 2 Fe(CN) 6 positive electrode material powder (0≤x≤2, 0≤y≤2 ; The M 1 and M 2 are respectively one or more of Fe, Mn, Co, Ni, Cu, and Zn).

上述方法中,步骤(1)中,所述钾盐为氯化钾、乙酸钾、柠檬酸钾中的一种及以上;所述亚铁氰化钾与钾盐的摩尔比为1:10~200;所述亚铁氰化钾在A溶液中的浓度为0.01~0.05M;所述钾盐在A溶液中的浓度为0.1~10M。In the above method, in step (1), the potassium salt is one or more of potassium chloride, potassium acetate and potassium citrate; the mol ratio of the potassium ferrocyanide to the potassium salt is 1:10~ 200; the concentration of the potassium ferrocyanide in the A solution is 0.01-0.05M; the concentration of the potassium salt in the A solution is 0.1-10M.

上述方法中,步骤(2)和步骤(4)中,所述过渡金属盐为氯化亚铁、氯化铁、硫酸亚铁、硝酸亚铁、氯化锰、硫酸锰、氯化钴、氯化镍、硝酸镍、硫酸镍、氯化铜、硝酸铜、硫酸铜、硝酸锌中的一种以上;所述还原剂为抗坏血酸、柠檬酸、铁粉中的一种以上;所述络合剂为柠檬酸钾、柠檬酸钠、焦磷酸钾中的一种以上所述过渡金属盐在B溶液中的浓度为0.01~0.05M;所述还原剂在B溶液中的浓度为0.01~0.05M;所述络合剂在B溶液中的浓度为0.02~0.5M;所述过渡金属盐和亚铁氰化钾在悬浊液D中的浓度为0.001~0.1M;所述络合剂在悬浊液D中的浓度为0.001~0.1M。In the above method, in step (2) and step (4), the transition metal salt is ferrous chloride, ferric chloride, ferrous sulfate, ferrous nitrate, manganese chloride, manganese sulfate, cobalt chloride, chlorine more than one of nickel chloride, nickel nitrate, nickel sulfate, copper chloride, copper nitrate, copper sulfate, zinc nitrate; the reducing agent is more than one of ascorbic acid, citric acid, iron powder; the complexing agent The concentration of one or more transition metal salts in potassium citrate, sodium citrate and potassium pyrophosphate in solution B is 0.01-0.05M; the concentration of the reducing agent in solution B is 0.01-0.05M; The concentration of the complexing agent in solution B is 0.02-0.5M; the concentration of the transition metal salt and potassium ferrocyanide in the suspension D is 0.001-0.1M; The concentration in liquid D is 0.001 to 0.1M.

上述方法中,步骤(3)中所述滴加的速度为3~6毫升/分钟;所述搅拌时间为4~12h;所述反应温度为0~75℃;所述溶液A和溶液B体积比为1:1~1.5。In the above method, the dropwise addition rate in step (3) is 3-6 ml/min; the stirring time is 4-12 h; the reaction temperature is 0-75°C; the volume of solution A and solution B is The ratio is 1:1 to 1.5.

上述方法中,步骤(5)中所述陈化时间为6~24小时;所述干燥温度为60~120℃。In the above method, the aging time in step (5) is 6-24 hours; the drying temperature is 60-120°C.

上述方法中,步骤(4)中所述过渡金属盐与步骤(2)中所述过渡金属盐的摩尔比为1:1~20。In the above method, the molar ratio of the transition metal salt in step (4) to the transition metal salt in step (2) is 1:1-20.

上述方法中,步骤三中悬浊液F中有机单体盐的浓度为0.0001~0.015M;所述有机单体盐包括盐酸多巴胺、吡咯或苯胺。In the above method, the concentration of the organic monomer salt in the suspension F in step 3 is 0.0001-0.015M; the organic monomer salt includes dopamine hydrochloride, pyrrole or aniline.

上述方法中,步骤四中,所述陈化时间为6~24小时;所述干燥温度为60~120℃。In the above method, in step 4, the aging time is 6-24 hours; the drying temperature is 60-120°C.

与现有技术相比,本发明的优点在于:Compared with the prior art, the advantages of the present invention are:

(1)本发明所制备的材料KxM1Fe(CN)6@KyM2Fe(CN)6@多聚有机物利用具有稳定性的KyM2Fe(CN)6普鲁士蓝材料提升材料整体的循环稳定性,又利用多聚有机物修饰提升了材料的导电性,同时兼顾了循环性能和倍率性能,是一种具有应用价值和前景新型钾离子电池正极材料。(1) The material K x M 1 Fe(CN) 6 @K y M 2 Fe(CN) 6 @Polymer organics prepared by the present invention is improved by using the stable K y M 2 Fe(CN) 6 Prussian blue material The overall cycle stability of the material, and the use of polyorganic modification to improve the conductivity of the material, while taking into account the cycle performance and rate performance, is a new type of potassium-ion battery cathode material with application value and prospects.

(2)本发明的方法原料来源广泛,价格低廉,合成工艺简单,设备要求低,反应条件易于控制和掌握。(2) The method of the present invention has wide raw material sources, low price, simple synthesis process, low equipment requirements, and easy control and mastery of reaction conditions.

附图说明Description of drawings

图1为本发明实施例1制备材料的XRD谱图;Fig. 1 is the XRD spectrum of the material prepared in Example 1 of the present invention;

图2为本发明实施例1制备材料的倍率性能图;Fig. 2 is the rate performance diagram of the material prepared in Example 1 of the present invention;

图3为本发明实施例1制备材料在200mA/g电流密度下放电比容量循环图。3 is a cycle diagram of discharge specific capacity of the material prepared in Example 1 of the present invention at a current density of 200 mA/g.

具体实施方式Detailed ways

下面结合具体实施例对本发明进一步地具体详细描述,但本发明的实施方式不限于此,对于未特别注明的工艺参数,可参照常规技术进行。The present invention will be further described in detail below with reference to specific examples, but the embodiments of the present invention are not limited thereto. For process parameters that are not particularly noted, reference may be made to conventional techniques.

实施例1Example 1

(1)将0.003mol亚铁氰化钾、0.3mol氯化钾溶解于200mL去离子水中配成溶液A;(1) dissolve 0.003mol potassium ferrocyanide and 0.3mol potassium chloride in 200mL deionized water to make solution A;

(2)将0.003mol氯化亚铁、0.2g抗坏血酸、0.006mol柠檬酸钾溶解于200mL去离子水中配成溶液B;(2) 0.003mol ferrous chloride, 0.2g ascorbic acid, 0.006mol potassium citrate are dissolved in 200mL deionized water to make solution B;

(3)在搅拌下将溶液B按照3~6毫升/分钟的速度加入到溶液A中,搅拌6h,得到悬浊液C;(3) adding solution B to solution A at a rate of 3 to 6 ml/min under stirring, and stirring for 6 h to obtain suspension C;

(4)将0.0015mol氯化镍、0.0015mol柠檬酸钾、0.0015mol亚铁氰化钾同时加入悬浊液C中,混合均匀并连续搅拌24h,得到悬浊液D;(4) 0.0015mol nickel chloride, 0.0015mol potassium citrate, 0.0015mol potassium ferrocyanide were added to suspension C simultaneously, mixed uniformly and continuously stirred for 24h to obtain suspension D;

(5)将悬浊液D陈化、离心、干燥,即可得到KxFeFe(CN)6@KyNiFe(CN)6粉末(0≤x≤2,0≤y≤2)。(5) The suspension D is aged, centrifuged and dried to obtain K x FeFe(CN) 6 @K y NiFe(CN) 6 powder (0≤x≤2, 0≤y≤2).

(6)取1g步骤(5)中制备的KxFeFe(CN)6@KyNiFe(CN)6粉末超声分散于200mL去离子水中,得到悬浊液E;(6) take 1g of K x FeFe(CN) 6 @K y NiFe(CN) 6 powder prepared in step (5) and ultrasonically disperse it in 200 mL of deionized water to obtain suspension E;

(7)将盐酸多巴胺溶解于悬浊液E中,混合均匀并连续搅拌24h,得到悬浊液F,盐酸多巴胺浓度为0.015M;(7) dissolving dopamine hydrochloride in suspension E, mixing well and stirring continuously for 24h to obtain suspension F, the concentration of dopamine hydrochloride is 0.015M;

(8)将悬浊液E陈化、离心、干燥得到KxFeFe(CN)6@KyNiFe(CN)6@聚多巴胺正极材料粉末(0≤x≤2,0≤y≤2);(8) ageing, centrifuging and drying the suspension E to obtain K x FeFe(CN) 6 @K y NiFe(CN) 6 @polydopamine positive electrode material powder (0≤x≤2, 0≤y≤2);

(9)将上述得到的KxFeFe(CN)6@KyNiFe(CN)6@聚多巴胺钾离子电池正极材料按照下述方法制成电池:(9) The above-obtained K x FeFe(CN) 6 @K y NiFe(CN) 6 @Polydopamine potassium ion battery positive electrode material is made into a battery according to the following method:

将正极材料与粘结剂聚偏氟乙烯(PVDF)、导电剂乙炔黑按照质量比7:2:1的比例混合,加入溶剂N-甲基吡咯烷酮(NMP)搅拌4-6h,将浆料涂抹在干净的铝箔上,放入80℃真空烘箱烘干待用;以KxFeFe(CN)6@KyNiFe(CN)6@聚多巴胺极片作为正极,以钾片作为负极,以Whatman GF/D作为隔膜,以0.8mol/L六氟磷酸钾(KPF6)/碳酸乙烯酯(EC):碳酸二甲酯(DEC)作为电解液组装纽扣电池。Mix the positive electrode material with the binder polyvinylidene fluoride (PVDF) and the conductive agent acetylene black according to the mass ratio of 7:2:1, add the solvent N-methylpyrrolidone (NMP), stir for 4-6h, and smear the slurry On a clean aluminum foil, put it in a vacuum oven at 80 °C to dry before use; use K x FeFe(CN) 6 @K y NiFe(CN) 6 @polydopamine pole piece as the positive electrode, potassium piece as the negative electrode, and Whatman GF /D was used as the separator, and 0.8 mol/L potassium hexafluorophosphate (KPF 6 )/ethylene carbonate (EC): dimethyl carbonate (DEC) was used as the electrolyte to assemble a button battery.

电化学性能检测:将组装好的纽扣电池进行恒电流充放电测试,检测电池的倍率性能和循环性能,测试电压范围在2-4.5V。Electrochemical performance test: The assembled button battery is tested for constant current charge and discharge to test the rate performance and cycle performance of the battery. The test voltage range is 2-4.5V.

图1为该材料的XRD图;其在50mA/g电流密度下放电比容量为115mAh/g,在500mA/g电流密度下放电比容量为94mAh/g,如图2所示;其在200mA/g电流密度下循环250圈后容量保有率为88.7%,如图3所示。Figure 1 is the XRD pattern of the material; its discharge specific capacity is 115mAh/g at a current density of 50mA/g, and its discharge specific capacity is 94mAh/g at a current density of 500mA/g, as shown in Figure 2; its discharge capacity at 200mA/g The capacity retention rate was 88.7% after 250 cycles at g current density, as shown in Figure 3.

材料主要电化学性能见表1The main electrochemical properties of the materials are shown in Table 1.

实施例2Example 2

(1)将0.003mol亚铁氰化钾、0.3mol氯化钾溶解于200mL去离子水中配成溶液A;(1) dissolve 0.003mol potassium ferrocyanide and 0.3mol potassium chloride in 200mL deionized water to make solution A;

(2)将0.003mol氯化亚铁、0.2g抗坏血酸、0.006mol柠檬酸钾溶解于200mL去离子水中配成溶液B;(2) 0.003mol ferrous chloride, 0.2g ascorbic acid, 0.006mol potassium citrate are dissolved in 200mL deionized water to make solution B;

(3)在搅拌下将溶液B按照3~6毫升/分钟的速度加入到溶液A中,搅拌6h,得到悬浊液C;(3) adding solution B to solution A at a rate of 3 to 6 ml/min under stirring, and stirring for 6 h to obtain suspension C;

(4)将0.0015mol氯化镍、0.0015mol柠檬酸钾、0.0015mol亚铁氰化钾同时加入悬浊液C中,混合均匀并连续搅拌24h,得到悬浊液D;(4) 0.0015mol nickel chloride, 0.0015mol potassium citrate, 0.0015mol potassium ferrocyanide were added to suspension C simultaneously, mixed uniformly and continuously stirred for 24h to obtain suspension D;

(5)将悬浊液D陈化、离心、干燥,即可得到KxFeFe(CN)6@KyNiFe(CN)6粉末(0≤x≤2,0≤y≤2)。(5) The suspension D is aged, centrifuged and dried to obtain K x FeFe(CN) 6 @K y NiFe(CN) 6 powder (0≤x≤2, 0≤y≤2).

(6)取1g步骤(5)中制备的KxFeFe(CN)6@KyNiFe(CN)6粉末超声分散于200mL去离子水中,得到悬浊液E;(6) take 1g of K x FeFe(CN) 6 @K y NiFe(CN) 6 powder prepared in step (5) and ultrasonically disperse it in 200 mL of deionized water to obtain suspension E;

(7)将盐酸多巴胺溶解于悬浊液E中,混合均匀并连续搅拌24h,得到悬浊液F,盐酸多巴胺浓度为0.0001M;(7) dissolving dopamine hydrochloride in suspension E, mixing uniformly and stirring continuously for 24h to obtain suspension F, the concentration of dopamine hydrochloride is 0.0001M;

(8)将悬浊液E陈化、离心、干燥得到KxFeFe(CN)6@KyNiFe(CN)6@聚多巴胺正极材料粉末(0≤x≤2,0≤y≤2);(8) ageing, centrifuging and drying the suspension E to obtain K x FeFe(CN) 6 @K y NiFe(CN) 6 @polydopamine positive electrode material powder (0≤x≤2, 0≤y≤2);

(9)将上述得到的KxFeFe(CN)6@KyNiFe(CN)6@聚多巴胺钾离子电池正极材料制成电池。(9) The above-obtained K x FeFe(CN) 6 @K y NiFe(CN) 6 @polydopamine potassium ion battery positive electrode material is made into a battery.

材料的基础性能见表1。The basic properties of the materials are shown in Table 1.

实施例3Example 3

(1)将0.003mol亚铁氰化钾、0.3mol氯化钾溶解于200mL去离子水中配成溶液A;(1) dissolve 0.003mol potassium ferrocyanide and 0.3mol potassium chloride in 200mL deionized water to make solution A;

(2)将0.003mol氯化亚铁、0.2g抗坏血酸、0.006mol柠檬酸钾溶解于200mL去离子水中配成溶液B;(2) 0.003mol ferrous chloride, 0.2g ascorbic acid, 0.006mol potassium citrate are dissolved in 200mL deionized water to make solution B;

(3)在搅拌下将溶液B按照3~6毫升/分钟的速度加入到溶液A中,搅拌6h,得到悬浊液C;(3) adding solution B to solution A at a rate of 3 to 6 ml/min under stirring, and stirring for 6 h to obtain suspension C;

(4)将0.003mol氯化镍、0.003mol柠檬酸钾、0.003mol亚铁氰化钾同时加入悬浊液C中,混合均匀并连续搅拌24h,得到悬浊液D;(4) 0.003mol nickel chloride, 0.003mol potassium citrate, 0.003mol potassium ferrocyanide were added to suspension C simultaneously, mixed uniformly and continuously stirred for 24h to obtain suspension D;

(5)将悬浊液D陈化、离心、干燥,即可得到KxFeFe(CN)6@KyNiFe(CN)6粉末(0≤x≤2,0≤y≤2)。(5) The suspension D is aged, centrifuged and dried to obtain K x FeFe(CN) 6 @K y NiFe(CN) 6 powder (0≤x≤2, 0≤y≤2).

(6)取1g步骤(5)中制备的KxFeFe(CN)6@KyNiFe(CN)6粉末超声分散于200mL去离子水中,得到悬浊液E;(6) take 1g of K x FeFe(CN) 6 @K y NiFe(CN) 6 powder prepared in step (5) and ultrasonically disperse it in 200 mL of deionized water to obtain suspension E;

(7)将盐酸多巴胺溶解于悬浊液E中,混合均匀并连续搅拌24h,得到悬浊液F,盐酸多巴胺浓度为0.015M;(7) dissolving dopamine hydrochloride in suspension E, mixing well and stirring continuously for 24h to obtain suspension F, the concentration of dopamine hydrochloride is 0.015M;

(8)将悬浊液E陈化、离心、干燥得到KxFeFe(CN)6@KyNiFe(CN)6@聚多巴胺正极材料粉末(0≤x≤2,0≤y≤2);(8) ageing, centrifuging and drying the suspension E to obtain K x FeFe(CN) 6 @K y NiFe(CN) 6 @polydopamine positive electrode material powder (0≤x≤2, 0≤y≤2);

(9)将上述得到的KxFeFe(CN)6@KyNiFe(CN)6@聚多巴胺钾离子电池正极材料制成电池。(9) The above-obtained K x FeFe(CN) 6 @K y NiFe(CN) 6 @polydopamine potassium ion battery positive electrode material is made into a battery.

材料的基础性能见表1。The basic properties of the materials are shown in Table 1.

实施例4Example 4

(1)将0.003mol亚铁氰化钾、0.3mol氯化钾溶解于200mL去离子水中配成溶液A;(1) dissolve 0.003mol potassium ferrocyanide and 0.3mol potassium chloride in 200mL deionized water to make solution A;

(2)将0.003mol氯化亚铁、0.2g抗坏血酸、0.006mol柠檬酸钾溶解于200mL去离子水中配成溶液B;(2) dissolve 0.003mol ferrous chloride, 0.2g ascorbic acid, 0.006mol potassium citrate in 200mL deionized water to make solution B;

(3)在搅拌下将溶液B按照3~6毫升/分钟的速度加入到溶液A中,搅拌6h,得到悬浊液C;(3) adding solution B to solution A at a rate of 3 to 6 ml/min under stirring, and stirring for 6 h to obtain suspension C;

(4)将0.003mol氯化镍、0.003mol柠檬酸钾、0.003mol亚铁氰化钾同时加入悬浊液C中,混合均匀并连续搅拌24h,得到悬浊液D;(4) 0.003mol nickel chloride, 0.003mol potassium citrate, 0.003mol potassium ferrocyanide were added to suspension C simultaneously, mixed uniformly and continuously stirred for 24h to obtain suspension D;

(5)将悬浊液D离心、干燥,即可得到KxFeFe(CN)6@KyNiFe(CN)6正极材料粉末(0≤x≤2,0≤y≤2);(5) Centrifuge and dry the suspension D to obtain K x FeFe(CN) 6 @K y NiFe(CN) 6 positive electrode material powder (0≤x≤2, 0≤y≤2);

(6)将上述得到的KxFeFe(CN)6@KyNiFe(CN)6钾离子电池正极材料制成电池。(6) The above-obtained K x FeFe(CN) 6 @K y NiFe(CN) 6 potassium ion battery positive electrode material is made into a battery.

材料的基础性能见表1。The basic properties of the materials are shown in Table 1.

表1为各实施例主要性能表Table 1 is the main performance table of each embodiment

Figure BDA0003012115880000091
Figure BDA0003012115880000091

本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。The above-mentioned embodiments of the present invention are only examples for clearly illustrating the present invention, and are not intended to limit the embodiments of the present invention. For those of ordinary skill in the art, changes or modifications in other different forms can also be made on the basis of the above description. There is no need and cannot be exhaustive of all implementations here. Any modifications, equivalent replacements and improvements made within the spirit and principle of the present invention shall be included within the protection scope of the claims of the present invention.

Claims (8)

1.一种多聚有机物修饰的核壳结构普鲁士蓝钾离子电池正极材料的制备方法,其特征在于,包括如下步骤:1. a kind of preparation method of the core-shell structure Prussian blue potassium ion battery positive electrode material modified by polymeric organic matter, is characterized in that, comprises the steps: 一、制备KxM1Fe(CN)6@KyM2Fe(CN)6钾离子电池正极材料;1. Preparation of K x M 1 Fe(CN) 6 @K y M 2 Fe(CN) 6 cathode material for potassium ion battery; 二、将步骤一中制备的KxM1Fe(CN)6@KyM2Fe(CN)6粉末超声分散于去离子水中,得到悬浊液E;2. Ultrasonic dispersion of the K x M 1 Fe(CN) 6 @K y M 2 Fe(CN) 6 powder prepared in step 1 in deionized water to obtain suspension E; 三、将有机单体盐加入悬浊液E中,搅拌溶解并反应,得到悬浊液F;3. Add the organic monomer salt into the suspension E, stir to dissolve and react to obtain the suspension F; 四、将悬浊液F陈化、离心、干燥,得到KxM1Fe(CN)6@KyM2Fe(CN)6@多聚有机物正极材料粉末,其中0≤x≤2,0≤y≤2;所述M1、M2分别为Fe、Mn、Co、Ni、Cu、Zn中的一种以上;4. Ageing, centrifuging and drying the suspension F to obtain K x M 1 Fe(CN) 6 @K y M 2 Fe(CN) 6 @Polymeric organic cathode material powder, wherein 0≤x≤2,0 ≤y≤2; the M 1 and M 2 are respectively one or more of Fe, Mn, Co, Ni, Cu, and Zn; 步骤一的具体步骤如下:The specific steps of step 1 are as follows: (1)将亚铁氰化钾、钾盐溶解于去离子水中配成溶液A;(1) Dissolve potassium ferrocyanide and potassium salt in deionized water to prepare solution A; (2)将过渡金属盐、还原剂、络合剂溶解于去离子水中配成溶液B;(2) Dissolve the transition metal salt, reducing agent and complexing agent in deionized water to prepare solution B; (3)将溶液B按照滴加到溶液A中,搅拌反应后,得到悬浊液C;(3) Add solution B dropwise to solution A, and after stirring and reacting, obtain suspension C; (4)将过渡金属盐、络合剂、亚铁氰化钾同时加入悬浊液C中,搅拌反应一定时间,得到悬浊液D;(4) adding the transition metal salt, complexing agent and potassium ferrocyanide into suspension C at the same time, and stirring and reacting for a certain period of time to obtain suspension D; (5)将悬浊液D陈化、离心、干燥,得到KxM1Fe(CN)6@KyM2Fe(CN)6正极材料粉末,其中0≤x≤2,0≤y≤2;所述M1、M2分别为Fe、Mn、Co、Ni、Cu、Zn中的一种及以上;(5) Ageing, centrifuging and drying the suspension D to obtain K x M 1 Fe(CN) 6 @K y M 2 Fe(CN) 6 cathode material powder, where 0≤x≤2, 0≤y≤ 2; the M 1 and M 2 are respectively one or more of Fe, Mn, Co, Ni, Cu, and Zn; 所述多聚有机物修饰的核壳结构普鲁士蓝钾离子电池正极材料的表达式为:KxM1Fe(CN)6@KyM2Fe(CN)6@多聚有机物;其中0≤x≤2,0≤y≤2;所述M1、M2分别为Fe、Mn、Co、Ni、Cu、Zn中的一种以上,多聚有机物包括聚多巴胺、聚吡咯或聚苯胺。The expression of the polyorganic modified core-shell structure Prussian blue potassium ion battery cathode material is: K x M 1 Fe(CN) 6 @K y M 2 Fe(CN) 6 @polyorganic; where 0≤x ≤2, 0≤y≤2; the M 1 and M 2 are one or more of Fe, Mn, Co, Ni, Cu, and Zn, respectively, and the polymeric organic matter includes polydopamine, polypyrrole or polyaniline. 2.根据权利要求1所述多聚有机物修饰的核壳结构普鲁士蓝钾离子电池正极材料的制备方法,其特征在于,步骤(1)中,所述钾盐为氯化钾、乙酸钾、柠檬酸钾中的一种及以上;所述亚铁氰化钾与钾盐的摩尔比为1:10~200;所述亚铁氰化钾在A溶液中的浓度为0.01~0.05M;所述钾盐在A溶液中的浓度为0.1~10 M。2. The method for preparing a positive electrode material for a core-shell structure Prussian blue potassium ion battery modified by a polymeric organic matter according to claim 1, wherein in step (1), the potassium salt is potassium chloride, potassium acetate, lemon One and more in potassium acid; The mol ratio of described potassium ferrocyanide and potassium salt is 1:10~200; The concentration of described potassium ferrocyanide in A solution is 0.01~0.05M; The concentration of potassium salt in solution A is 0.1~10 M. 3.根据权利要求1所述多聚有机物修饰的核壳结构普鲁士蓝钾离子电池正极材料的制备方法,其特征在于,步骤(2)和步骤(4)中,所述过渡金属盐为氯化亚铁、氯化铁、硫酸亚铁、硝酸亚铁、氯化锰、硫酸锰、氯化钴、氯化镍、硝酸镍、硫酸镍、氯化铜、硝酸铜、硫酸铜、硝酸锌中的一种以上;所述还原剂为抗坏血酸、柠檬酸、铁粉中的一种以上;所述络合剂为柠檬酸钾、柠檬酸钠、焦磷酸钾中的一种以上;所述过渡金属盐在B溶液中的浓度为0.01~0.05M;所述还原剂在B溶液中的浓度为0.01~0.05 M;所述络合剂在B溶液中的浓度为0.02~0.5M;所述过渡金属盐和亚铁氰化钾在悬浊液D中的浓度为0.001~0.1 M;所述络合剂在悬浊液D中的浓度为0.001~0.1 M。3 . The method for preparing a positive electrode material for a core-shell structure Prussian blue potassium ion battery modified by a polymeric organic matter according to claim 1 , wherein in step (2) and step (4), the transition metal salt is chlorinated Ferrous iron, ferric chloride, ferrous sulfate, ferrous nitrate, manganese chloride, manganese sulfate, cobalt chloride, nickel chloride, nickel nitrate, nickel sulfate, copper chloride, copper nitrate, copper sulfate, zinc nitrate more than one kind; the reducing agent is more than one kind of ascorbic acid, citric acid, iron powder; the complexing agent is more than one kind of potassium citrate, sodium citrate, potassium pyrophosphate; the transition metal salt The concentration in solution B is 0.01~0.05M; the concentration of the reducing agent in solution B is 0.01~0.05M; the concentration of the complexing agent in solution B is 0.02~0.5M; the transition metal salt The concentration of potassium ferrocyanide and potassium ferrocyanide in the suspension D is 0.001~0.1 M; the concentration of the complexing agent in the suspension D is 0.001~0.1 M. 4.根据权利要求1所述多聚有机物修饰的核壳结构普鲁士蓝钾离子电池正极材料的制备方法,其特征在于,步骤(3)中所述滴加的速度为3~6毫升/分钟;所述搅拌时间为4~12h;所述反应温度为0~75℃;所述溶液A和溶液B体积比为1:1~1.5。4. The method for preparing a positive electrode material for a core-shell structure Prussian blue potassium ion battery modified by a polymeric organic matter according to claim 1, wherein the dripping rate in step (3) is 3-6 ml/min; The stirring time is 4-12 h; the reaction temperature is 0-75° C.; the volume ratio of the solution A and the solution B is 1:1-1.5. 5.根据权利要求1所述多聚有机物修饰的核壳结构普鲁士蓝钾离子电池正极材料的制备方法,其特征在于,步骤(5)中所述陈化时间为6~24小时;所述干燥温度为60~120℃。5 . The method for preparing a positive electrode material for a core-shell structure Prussian blue potassium ion battery modified by a polymeric organic matter according to claim 1 , wherein the aging time in step (5) is 6 to 24 hours; the drying The temperature is 60~120℃. 6.根据权利要求1所述多聚有机物修饰的核壳结构普鲁士蓝钾离子电池正极材料的制备方法,其特征在于,步骤(4)中所述过渡金属盐与步骤(2)中所述过渡金属盐的摩尔比为1:1~20。6 . The method for preparing a positive electrode material for a Prussian blue potassium ion battery with a core-shell structure modified by a polymeric organic matter according to claim 1 , wherein the transition metal salt in step (4) is the same as the transition metal salt in step (2) The molar ratio of the metal salt is 1:1~20. 7.根据权利要求1所述多聚有机物修饰的核壳结构普鲁士蓝钾离子电池正极材料的制备方法,其特征在于,步骤三中悬浊液F中有机单体盐的浓度为0.0001~0.015 M;所述有机单体盐包括盐酸多巴胺、吡咯或苯胺。7. the preparation method of the core-shell structure Prussian blue potassium ion battery positive electrode material modified according to claim 1, is characterized in that, in step 3, the concentration of organic monomer salt in suspension F is 0.0001~0.015 M ; The organic monomer salt includes dopamine hydrochloride, pyrrole or aniline. 8.根据权利要求1所述多聚有机物修饰的核壳结构普鲁士蓝钾离子电池正极材料的制备方法,其特征在于,步骤四中,所述陈化时间为6~24小时;所述干燥温度为60~120℃。8. the preparation method of the core-shell structure Prussian blue potassium ion battery positive electrode material modified by the polymeric organic matter according to claim 1, is characterized in that, in step 4, described ageing time is 6~24 hours; 60~120℃.
CN202110378255.1A 2021-04-08 2021-04-08 Core-shell structure Prussian blue potassium ion battery positive electrode material modified by polymeric organic matters and preparation method thereof Active CN113206224B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110378255.1A CN113206224B (en) 2021-04-08 2021-04-08 Core-shell structure Prussian blue potassium ion battery positive electrode material modified by polymeric organic matters and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110378255.1A CN113206224B (en) 2021-04-08 2021-04-08 Core-shell structure Prussian blue potassium ion battery positive electrode material modified by polymeric organic matters and preparation method thereof

Publications (2)

Publication Number Publication Date
CN113206224A CN113206224A (en) 2021-08-03
CN113206224B true CN113206224B (en) 2022-07-01

Family

ID=77026444

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110378255.1A Active CN113206224B (en) 2021-04-08 2021-04-08 Core-shell structure Prussian blue potassium ion battery positive electrode material modified by polymeric organic matters and preparation method thereof

Country Status (1)

Country Link
CN (1) CN113206224B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4170808B1 (en) * 2021-08-25 2025-06-11 Contemporary Amperex Technology (Hong Kong) Limited Organic-inorganic hybrid porous material composition, electrochemical devices therewith, an electrical device and a method of manufacturing an eletrochemical device separator
CN114477232B (en) * 2022-01-24 2023-07-25 郑州大学 High-quality K 2 Zn 3 [Fe(CN) 6 ] 2 Preparation of crystals and use thereof
CN115676852B (en) * 2022-11-14 2024-08-30 中国地质大学(武汉) Ferromanganese-based Prussian blue potassium ion battery positive electrode material, and preparation method and application thereof
CN115832287B (en) * 2022-11-30 2024-11-26 北京航空航天大学 Carbon nanotube-polyaniline-Prussian blue composite material, preparation method thereof, and positive electrode material for potassium ion battery
CN115863633B (en) * 2023-02-24 2023-05-23 江门市科恒实业股份有限公司 Sodium ion battery positive electrode material and preparation method thereof
CN117219748B (en) * 2023-10-08 2024-05-31 铜陵新地标实业有限公司 A negative electrode material, a negative electrode sheet and a potassium ion battery having the negative electrode sheet

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108878803A (en) * 2018-05-23 2018-11-23 广东工业大学 A kind of Prussian blue similar object electrode material of hollow core-shell structure and its preparation method and application
CN112174167A (en) * 2020-08-13 2021-01-05 国网浙江省电力有限公司电力科学研究院 A core-shell structure Prussian blue material and its preparation method and application

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9083041B2 (en) * 2012-03-28 2015-07-14 Sharp Laboratories Of America, Inc. Transition metal hexacyanometallate-conductive polymer composite
CN107394140B (en) * 2017-07-05 2020-05-05 河南师范大学 Preparation method of poly-dopamine-coated sodiumsulverine-based Prussian blue electrode material
CN110224130A (en) * 2019-06-27 2019-09-10 浙江大学 A kind of prussian blue sodium-ion battery positive material and preparation method thereof of conducting polymer cladding
CN110451525B (en) * 2019-08-07 2021-05-11 清华大学 Method for rapidly preparing Prussian blue analogue with monoclinic crystal structure

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108878803A (en) * 2018-05-23 2018-11-23 广东工业大学 A kind of Prussian blue similar object electrode material of hollow core-shell structure and its preparation method and application
CN112174167A (en) * 2020-08-13 2021-01-05 国网浙江省电力有限公司电力科学研究院 A core-shell structure Prussian blue material and its preparation method and application

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Prussian Blue [K2FeFe(CN)6] Doped with Nickel as a Superior Cathode: An Efficient Strategy To Enhance Potassium Storage Performance;Bin Huang et al;《ACS Sustainable Chem. Eng.》;20190917;第7卷;第16659-16667页 *
Surface engineering induced core-shell Prussian blue@polyaniline nanocubes as a high-rate and long-life sodium-ion battery cathode;Qi Zhang et al;《Journal of Power Sources》;20180815;第395卷;第305-313页 *

Also Published As

Publication number Publication date
CN113206224A (en) 2021-08-03

Similar Documents

Publication Publication Date Title
CN113206224B (en) Core-shell structure Prussian blue potassium ion battery positive electrode material modified by polymeric organic matters and preparation method thereof
CN112624199B (en) Carbon quantum dot/manganese dioxide nanocomposite, preparation method and application thereof
CN106549155A (en) A kind of potassium sodium ferromanganese base prussian blue electrode material and its preparation method and application
CN110265652B (en) A kind of preparation method of nano-sheet Sb/C composite material for lithium ion/sodium ion battery negative electrode
CN108306059A (en) The preparation method of environmentally protective high power water system Zinc ion battery
CN108155367A (en) A kind of positive electrode and its anode pole piece of conducting polymer cladding nickle cobalt lithium manganate
CN108110240B (en) Nano porous silicon-based composite electrode material and preparation method thereof
CN103715416A (en) Preparation method of Li[Li0.201Ni0.133Co0.133Mn0.533]O2 for high-capacity lithium-ion battery cathode material
CN108847476A (en) Preparation method of zinc ion battery anode
CN109860536B (en) Lithium-rich manganese-based material and preparation method and application thereof
CN103682303A (en) Lithium ion battery, active material of negative electrode thereof, and preparation method of active material
CN105489949B (en) A kind of mixed aqueous solution battery preparation method based on embedding sodium positive electrode
CN113336279A (en) Ni-Co-S nano polyhedral material with hollow structure and preparation and application thereof
CN102195033B (en) Method for preparing lithium battery anode material Li-Mn compound oxide at low temperature and lithium ion secondary battery
CN109627441B (en) Tubular covalent organic framework polyimide, preparation method thereof and battery application
CN106450228A (en) Composite nanometer material for lithium ion battery and preparing method thereof
CN110137472B (en) Preparation method of composite positive electrode material
CN105742619B (en) A kind of unformed Mn oxide cladding ferriferous oxide lithium/anode material of lithium-ion battery and preparation method thereof
CN116062795B (en) Preparation method, product and application of doped birnessite nanospheres
CN115571929B (en) Nickel-manganese binary composite positive electrode material and preparation method thereof
CN103078082B (en) A high-capacity V2O5 thin-film cathode material for lithium-ion batteries
CN115092960B (en) Defect-rich vanadium disulfide, preparation method thereof and application of defect-rich vanadium disulfide serving as positive electrode material in water-based zinc ion battery
CN113675388B (en) Nitrogen-doped carbon-coated tin niobate nanomaterial, preparation method and application thereof
CN115882045A (en) A kind of high-entropy Prussian blue potassium ion battery cathode material, potassium ion battery and preparation method thereof
CN115101813A (en) Ether-based lithium battery electrolyte and preparation method and application thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant