CN113197585B - 一种神经肌肉信息交互模型构建及参数辨识优化方法 - Google Patents
一种神经肌肉信息交互模型构建及参数辨识优化方法 Download PDFInfo
- Publication number
- CN113197585B CN113197585B CN202110357404.6A CN202110357404A CN113197585B CN 113197585 B CN113197585 B CN 113197585B CN 202110357404 A CN202110357404 A CN 202110357404A CN 113197585 B CN113197585 B CN 113197585B
- Authority
- CN
- China
- Prior art keywords
- control module
- motion control
- sensory feedback
- signal
- gain
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000002232 neuromuscular Effects 0.000 title claims abstract description 51
- 230000003993 interaction Effects 0.000 title claims abstract description 40
- 238000000034 method Methods 0.000 title claims abstract description 40
- 238000005457 optimization Methods 0.000 title claims abstract description 29
- 238000010276 construction Methods 0.000 title claims description 20
- 230000033001 locomotion Effects 0.000 claims abstract description 96
- 230000001953 sensory effect Effects 0.000 claims abstract description 70
- 230000006870 function Effects 0.000 claims abstract description 69
- 230000008878 coupling Effects 0.000 claims abstract description 52
- 238000010168 coupling process Methods 0.000 claims abstract description 52
- 238000005859 coupling reaction Methods 0.000 claims abstract description 52
- 230000036982 action potential Effects 0.000 claims abstract description 19
- 230000008859 change Effects 0.000 claims abstract description 18
- 238000001228 spectrum Methods 0.000 claims abstract description 12
- 239000002245 particle Substances 0.000 claims abstract description 11
- 238000004422 calculation algorithm Methods 0.000 claims abstract description 8
- 239000013598 vector Substances 0.000 claims description 31
- 230000014509 gene expression Effects 0.000 claims description 19
- 230000002401 inhibitory effect Effects 0.000 claims description 18
- 230000000946 synaptic effect Effects 0.000 claims description 15
- 238000012546 transfer Methods 0.000 claims description 15
- 230000002964 excitative effect Effects 0.000 claims description 14
- 238000004458 analytical method Methods 0.000 claims description 12
- 230000005284 excitation Effects 0.000 claims description 12
- 210000000170 cell membrane Anatomy 0.000 claims description 11
- 238000001914 filtration Methods 0.000 claims description 11
- 230000003190 augmentative effect Effects 0.000 claims description 10
- 210000001787 dendrite Anatomy 0.000 claims description 10
- 230000001360 synchronised effect Effects 0.000 claims description 7
- 230000008569 process Effects 0.000 claims description 6
- 238000005070 sampling Methods 0.000 claims description 6
- 238000013459 approach Methods 0.000 claims description 4
- 230000005540 biological transmission Effects 0.000 claims description 4
- 230000002452 interceptive effect Effects 0.000 claims description 4
- 230000011514 reflex Effects 0.000 claims description 4
- 230000003068 static effect Effects 0.000 claims description 4
- 230000007115 recruitment Effects 0.000 claims description 2
- 230000037361 pathway Effects 0.000 claims 4
- 230000005764 inhibitory process Effects 0.000 claims 2
- 230000003595 spectral effect Effects 0.000 claims 1
- 230000002194 synthesizing effect Effects 0.000 claims 1
- 210000004556 brain Anatomy 0.000 abstract description 16
- 210000002569 neuron Anatomy 0.000 abstract description 15
- 210000003205 muscle Anatomy 0.000 abstract description 12
- 230000007246 mechanism Effects 0.000 abstract description 5
- 238000011160 research Methods 0.000 abstract description 3
- 230000009471 action Effects 0.000 description 7
- 230000003183 myoelectrical effect Effects 0.000 description 7
- 238000004088 simulation Methods 0.000 description 6
- 210000001087 myotubule Anatomy 0.000 description 5
- 230000001537 neural effect Effects 0.000 description 5
- 230000000638 stimulation Effects 0.000 description 5
- 238000007781 pre-processing Methods 0.000 description 4
- 210000003710 cerebral cortex Anatomy 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 210000003414 extremity Anatomy 0.000 description 3
- 210000002161 motor neuron Anatomy 0.000 description 3
- 206010001497 Agitation Diseases 0.000 description 2
- 230000003044 adaptive effect Effects 0.000 description 2
- 230000002490 cerebral effect Effects 0.000 description 2
- 238000005094 computer simulation Methods 0.000 description 2
- 238000002567 electromyography Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 230000010365 information processing Effects 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000007659 motor function Effects 0.000 description 2
- 210000005036 nerve Anatomy 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 210000003766 afferent neuron Anatomy 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 210000002585 gamma motor neuron Anatomy 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000012880 independent component analysis Methods 0.000 description 1
- 210000003141 lower extremity Anatomy 0.000 description 1
- 238000012067 mathematical method Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 210000000337 motor cortex Anatomy 0.000 description 1
- 230000004220 muscle function Effects 0.000 description 1
- 230000001936 parietal effect Effects 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 230000008288 physiological mechanism Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000035807 sensation Effects 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 210000002435 tendon Anatomy 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7235—Details of waveform analysis
- A61B5/7246—Details of waveform analysis using correlation, e.g. template matching or determination of similarity
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Pathology (AREA)
- Heart & Thoracic Surgery (AREA)
- Psychiatry (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Biophysics (AREA)
- Artificial Intelligence (AREA)
- Biomedical Technology (AREA)
- Physiology (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
- Prostheses (AREA)
Abstract
本发明提供一种神经肌肉信息交互模型构建及参数辨识优化方法,其包括构建神经肌肉信息交互模型和基于多层次耦合特征的参数辨识及优化。当有外界信号刺激时会使大脑神经元动作电位变化,进而引起相应肌肉运动单元动作电位的变化;当有外界感觉信号输入时,会由中介体传回大脑,从而产生感觉反馈传入信号。接着基于实测信号建立多层次特征指标,并构建基于多层次耦合特征指标的目标函数;然后基于无迹卡尔曼滤波(UKF)方法对神经肌肉信息交互模型进行参数辨识;最后以实测脑电和肌电信号能量谱为目标,基于混合粒子群算法对所辨识参量进行优化选取。本发明从神经元层面研究大脑与肌肉间多层次功能耦合连接机制,对运动控制系统机制研究有一定科学意义。
Description
技术领域
本发明涉及神经信息处理及神经动力学领域,特别涉及一种基于神经肌肉信息交互模型及参数辨识优化方法。
背景技术
大脑运动皮层的脑电信号(Electroencephalogram,EEG)和相应肢体肌肉组织的肌电信号(Electromyography,EMG)分别反映了运动控制和肌肉功能响应信息,所以脑电和肌电信号的同步特征分析能够体现出大脑皮层与肌肉组织之间的功能联系特征,进而体现神经肌肉控制系统的功能状态。EEG和EMG信号间的神经肌肉功能耦合(FunctionalCorticomuscular Coupling,FCMC)现象能够反映运动控制系统中大脑与肌肉间不同层面的信息交互及传递,有助于从系统层面揭示运动控制系统神经网络的协同工作方式,进一步理解大脑皮层对于信息处理和选择运动产生模式的能力,为运动功能评价提供全新视角。研究受神经肌肉功能耦合机制约束下的模型构建及参数辨识方法,有助于从微观层面揭示上位运动神经元与肢体动作电位间的信息交互关系。
目前,大多是从功能耦合的角度探究大脑皮层和躯体肌肉之间的信息交互,但基于脑电和肌电信号的神经肌肉功能耦合分析只是通过数学方法客观计算推断与之相应的运动控制系统的内在生理机制,未能直接表征运动控制系统内部结构和功能的真实变化。而系统建模为解决这一问题提供了很好的途径,通过对控制系统内在结构建模,以可变参量的形式模拟仿真控制系统内在的变化因子,实现对系统内部特性的深度解析。
目前,基于仿真模型探究人体生理内在变化机制的研究中,神经元群模型或运动神经元模型已被广泛应用,但都局限于探究大脑神经元的实际作用机制关系。在此基础上,本发明基于神经元群模型及下肢动作神经元模型,建立大脑与肌肉间的运动控制和感觉反馈的闭环控制环路模型,基于EEG和EMG信号获取神经肌肉耦合强度、耦合方向及延迟时间等多层次特征指标,构建基于多层次耦合特征指标的目标函数,并基于无迹卡尔曼滤波(Unscented Kalman Filter,UKF)方法和混合粒子群算法进行模型参数有效辨识及优化选取,实现神经肌肉信息交互模型的构建,客观、定量地描述神经肌肉系统的运动功能状态。
发明内容
针对现有技术存在的问题,本发明提供一种神经肌肉信息交互模型构建及参数辨识优化方法,神经肌肉信息交互模型构建及参数辨识优化方法具体实施步骤如下:
S1、分别构建运动控制通路模型部分和感觉反馈通路模型部分:
S11、构建运动控制通路模型部分:
S111、给定引起运动控制模块中电位U变化的外界信号,获得与运动控制模块中电位U相关的局部兴奋性平均突触增益参数He和兴奋性细胞膜平均时间常数和树突平均时间常数的和εe,通过相关参数得到运动控制模块的模型函数表达式如下:
S112、根据步骤S111中x0(t)的变化,通过控制感觉反馈模块中元群募集α与γ,引起感觉反馈模块中元群的变化,输出感觉反馈模块中单元动作电位y(t),其函数关系如下:
y(t)=[α(αs,αd)+γ(γs,γd)]g[x0(t+τ)] (2)
式中,g[·]为x(t)和y(t)间的具有一定延时的信息传递函数,x0(t)代表由运动控制模块传至感觉反馈模块的兴奋信号,τ为延时因子,α(·)和γ(·)分别为α与γ感觉反馈模块元群的增益函数,αs,αd,γs,γd分别为静态和动态感觉反馈模块中的元群;
S12、构建感觉反馈通路模型部分:
S121、输入感觉反馈模块中的外界感觉信号y0(t),通过中介体Ia和Ib传回运动控制模块,产生感觉反馈模块至运动控制模块的反馈传入信号z(t),其具体的表达式为:
式中,L[·]为z(t)和y0(t)间的信息传递函数,l是牵张反射增益,s是交互兴奋增益,r是交互抑制增益,b是Ib的增益,g是运动控制模块的中间抑制性元群的增益,v'和分别为来自于中介体Ia和Ib传入运动控制模块的放电频率,G'(t)是随机的已知向量;
S122、基于步骤S11中运动控制模块的函数关系,得到x2(t)与z(t)关系如下:
S13、综合步骤S11和步骤S12中运动控制模块与感觉反馈模块的作用关系,得到运动控制模块信号与感觉反馈模块信号的表达关系分别为:
式中,N1=[α γ 0 0],N2=[(αs,αd) (γs,γd) 0 0]T分别为未知参数向量,He为运动控制模块中局部兴奋性平均突触增益参数,εe为兴奋性细胞膜平均时间常数和树突平均时间常数的和,Hi为运动控制模块中局部抑制性平均突触增益参数,εi为抑制性细胞膜平均时间常数和树突平均时间常数的和,s是交互兴奋增益,r是交互抑制增益,b是Ib的增益,v'和分别为来自于中介体Ia和Ib传入运动控制模块的放电频率,α(·)和γ(·)分别为感觉反馈模块元群α与γ的增益函数;V(t)=g[x0(t+τ)]分别为随机的已知向量;
S2、基于多层次耦合特征的参数辨识及优化:
S21、基于多层次耦合特征指标构建参数辨识的目标函数:
S211、对采集的数据进行预处理,并用非线性多尺度脑肌电同步耦合分析方法建立耦合强度VC、耦合方向TSE和时间延迟TD多层次特征指标;
S2111、基于时频一致性方法,获取耦合强度VC;
S2112、基于传递谱熵,获取耦合方向TSE;
S2113、基于时延信息传递,获取时间延迟TD;
S212、利用方程误差参数辨识方法构建基于多层次耦合特征指标的目标函数,目标函数的具体表达式为:
S22、基于无迹卡尔曼滤波(UKF)以及步骤S212构建的目标函数对神经肌肉信息交互模型进行参数辨识:
S221、令脑电和肌电信号表达式的输入信号U(t)服从高斯分布;
S222、基于步骤S211建立的多层次特征指标,利用增广状态向量构建状态方程,将模型中的未知参数向量定义为系统中新增状态向量,具体表示为:
X'(k)=[X(k) H(k) ξ(k)] (7)
其中,X为特征指标,H=[M1 M2]和ξ=N1·N2分别表示式(5)中的运动控制模块参数和感觉反馈模块参数;
新的状态方程如下:
式中,X'(k+1)为n维随机状态向量序列,Z(k+1)为n维系统可观测输出变量,包含x(t)和y(t),F(·)和h(·)分别为n维和m维函数,U(k)为系统输入变量;
S23、基于混合粒子群算法对参量H=[HVC HTSE HTD]及ξ=[ξVC ξTSE ξTD]进行最优选取。
可优选的是,运动控制模块中的元群信号x(t)和感觉反馈模块中的单元动作电位y(t)的变化分别与外界信号的刺激有关。
可优选的是,多层次耦合特征指标下的目标函数参数集合,是根据目标函数的输出有效逼近基于实测信号计算的U(k)值。
可优选的是,步骤S23中的最优选取,是基于对实测控制系统神经肌肉功能耦合(FCMC)分析指标的逼近优化原则,以实测运动控制模块和感觉反馈模块中信号能量谱为目标。
本发明与现有技术相比,具有如下优点:
在神经肌肉系统信息交互仿真建模层面,将神经元群模型和运动神经元模型有机整合,构建神经肌肉信息交互模型,构建目标函数并基于无迹卡尔曼滤波方法对仿真模型参数进行有效辨识,再以脑电和肌电信号能量谱为目标,基于混合粒子群算法对所辨识参量进行优化选取,从微观上为运动功能评价提供研究新思路。
附图说明
图1为本发明一种神经肌肉信息交互模型构建及参数辨识优化方法的总体研究方案;
图2为本发明一种神经肌肉信息交互模型构建及参数辨识优化方法的参数辨识及优化策略。
具体实施方式
为详尽本发明之技术内容、结构特征、所达成目的及功效,以下将结合说明书附图进行详细说明。
一种神经肌肉信息交互模型构建及参数辨识优化方法,如图1所示。以运动控制过程中大脑信息与肌肉信息交互为基础,建立大脑与肌肉之间的信息交互仿真模型,构建目标函数并基于无迹卡尔曼滤波方法对仿真模型参数进行有效辨识,再以脑电和肌电信号能量谱为目标,基于混合粒子群算法对所辨识参量进行优化选取,实现神经肌肉信息交互模型的构建。
本发明是这样实现的:
S1、分别构建运动控制通路模型部分和感觉反馈通路模型部分。
S2、基于多层次耦合特征的参数辨识及优化。
下面将对本发明进行详细说明。
S1、分别构建运动控制通路模型部分和感觉反馈通路模型部分。
神经肌肉信息交互模型主要分为运动控制通路建模和感觉反馈通路建模两部分。
S11、构建运动控制通路模型部分:
S111、给定引起运动控制模块中电位U变化的外界信号,获得与运动控制模块中电位U相关的局部兴奋性平均突触增益参数He、兴奋性细胞膜平均时间常数和树突平均时间常数的和εe,通过相关参数得到运动控制模块的模型函数表达式如下:
S112、根据步骤S111中x0(t)的变化,通过控制感觉反馈模块中元群募集α与γ,引起感觉反馈模块中元群的变化,输出感觉反馈模块中单元动作电位y(t),其函数关系如下:
y(t)=[α(αs,αd)+γ(γs,γd)]g[x0(t+τ)] (2)
式中,g[·]为x(t)和y(t)间的具有一定延时的信息传递函数,x0(t)代表由运动控制模块传至感觉反馈模块的兴奋信号,τ为延时因子,α(·)和γ(·)分别为α与γ感觉反馈模块元群的增益函数,αs,αd,γs,γd分别为静态和动态感觉反馈模块中的元群。
S12、构建感觉反馈通路模型部分:
S121、输入感觉反馈模块中的外界感觉信号y0(t),通过中介体Ia和Ib传回运动控制模块,产生感觉反馈模块至运动控制模块的反馈传入信号z(t),其具体的表达式为:
式中,L[·]为z(t)和y0(t)间的信息传递函数,l是牵张反射增益,s是交互兴奋增益,r是交互抑制增益,b是Ib的增益,g是运动控制模块的中间抑制性元群的增益,v'和分别为来自于中介体Ia和Ib传入运动控制模块的放电频率,G'(t)是随机的已知向量;
S122、基于步骤S11中基于运动控制模块的函数关系,得到x2(t)与z(t)关系如下:
S13、综合步骤S11和步骤S12中运动控制模块与感觉反馈模块的作用关系,得到运动控制模块信号与感觉反馈模块信号的表达关系分别为:
式中,N1=[α γ 0 0],N2=[(αs,αd) (γs,γd) 0 0]T分别为未知参数向量,He为运动控制模块中局部兴奋性平均突触增益参数,εe为兴奋性细胞膜平均时间常数和树突平均时间常数的和,Hi为运动控制模块中局部抑制性平均突触增益参数,εi为抑制性细胞膜平均时间常数和树突平均时间常数的和,s是交互兴奋增益,r是交互抑制增益,b是Ib的增益,v'和分别为来自于中介体Ia和Ib传入运动控制模块的放电频率,α(·)和γ(·)分别为感觉反馈模块元群α与γ的增益函数;V(t)=g[x0(t+τ)]分别为随机的已知向量。
S2、如图1所示,基于神经肌肉多层次耦合特征的参数辨识及优化。首先基于脑电和肌电信号建立多层次特征指标,并构建基于多层次耦合特征指标的目标函数;然后,基于无迹卡尔曼滤波(UKF)方法对神经肌肉信息交互模型进行参数辨识,获取体现运动控制系统的关键模型参量指标;最后,以脑电和肌电信号能量谱为目标,基于混合粒子群算法实现对所辨识参量进行优化选取,实现神经肌肉信息交互模型构建。
S21、基于多层次耦合特征指标构建参数辨识的目标函数:
S211、对采集的脑电和肌电信号进行预处理,并用非线性多尺度脑肌电同步耦合分析方法建立耦合强度VC、耦合方向TSE和时间延迟TD多层次特征指标;
S2111、基于时频一致性方法,获取耦合强度VC;
S2112、基于传递谱熵,获取耦合方向TSE;
S2113、基于时延信息传递,获取时间延迟TD;
S212、利用方程误差参数辨识方法构建基于多层次耦合特征指标的目标函数,目标函数的具体表达式为:
S22、基于无迹卡尔曼滤波(UKF)以及步骤S212构建的目标函数对神经肌肉信息交互模型进行参数辨识:
S221、令脑电和肌电信号表达式的输入信号U(t)服从高斯分布;
S222、基于步骤S211建立的多层次特征指标,利用增广状态向量构建状态方程,将模型中的未知参数向量定义为系统中新增状态向量,具体表示为:
X'(k)=[X(k) H(k) ξ(k)] (7)
其中,X为特征指标,H=[M1 M2]和ξ=N1·N2分别表示式(5)中的运动控制模块参数和感觉反馈模块参数;
新的状态方程如下:
式中,X'(k+1)为n维随机状态向量序列,Z(k+1)为n维系统可观测输出变量,包含x(t)和y(t),F(·)和h(·)分别为n维和m维函数,U(k)为系统输入变量;
S223、基于无迹卡尔曼滤波方法以及步骤S222中建立的新的状态方程,并利用步骤212中的目标函数对未知参数H和ξ进行辨识;即基于UKF中采样策略逼近非线性分布的估计原则,当状态值X(k+1)满足时,辨识过程结束,此时模型的输出有效逼近基于输入的脑电和肌电信号计算的U(k)值,得到多层次耦合特征指标下的模型参数集合。由S1可知神经群参数H和肌纤维参数ξ与模型各个未知参量存在函数关系。
S23、基于混合粒子群算法对参量H=[HVC HTSE HTD]及ξ=[ξVC ξTSE ξTD]进行最优选取,基于对输入的脑电和肌电信号控制系统神经肌肉功能耦合(FCMC)分析指标的逼近优化原则,以输入的脑电和肌电信号运动控制模块和感觉反馈模块中信号能量谱为目标。
在本发明的一个优选实施例中,运动控制模块中的元群信号x(t)和感觉反馈模块中的单元动作电位y(t)的变化分别与外界刺激信号有关。
以下结合实施例对本发明一种神经肌肉信息交互模型构建及参数辨识优化方法做进一步描述:
S1、构建神经肌肉信息交互模型。基于生物物理学理论,对信号的FCMC指标分析神经肌肉闭环通路的特性进行建模,将神经元群和肢体运动神经元模型有机整合,从神经元层面建立大脑与肌肉间的运动控制环路,即神经肌肉信息交互模型。神经肌肉信息交互模型主要分为运动控制通路建模和感觉反馈通路建模两部分。
S11、构建运动控制通路模型部分:
S111、根据输入的引起相应脑区兴奋神经元动作电位U变化的外界信号,获得与脑区兴奋神经元动作电位U相关的局部脑区兴奋性平均突出增益参数He、细胞膜平均时间常数和树突平均时间常数和εe的变化,通过上述相关参数得到基于神经元群的模型函数表达式如下:
S112、根据步骤S111知,大量神经元的电势变化将导致局部场电位x(t)(x1-x2的值)的改变,其中x1为兴奋性变化量,x2为抑制性反馈变化量,兴奋信号x0可以控制α与γ运动神经元募集,同时输出运动单元动作电位y(t),其函数关系如下:
y(t)=[α(αs,αd)+γ(γs,γd)]g[x0(t+τ)] (2)
式中,g[·]为x(t)和y(t)间的具有一定延时的信息传递函数,x0(t)代表由运动控制模块传至感觉反馈模块的兴奋信号,τ为延时因子,α(·)和γ(·)分别为α与γ感觉反馈模块元群的增益函数,αs,αd,γs,γd分别为静态和动态感觉反馈模块中的元群。
外界刺激信号可以导致大脑神经元群信号x(t)及肌纤维运动单元动作电位y(t)的变化。
S12、构建感觉反馈通路模型部分:
S121、输入感觉反馈模块中的外界感觉信号y0(t),通过纺锤体Ia和高尔基腱器Ib传入神经元传回大脑对动作调整,从而产生感觉反馈传入信号z(t),其具体的表达式为:
式中,L[·]为z(t)和y0(t)间的信息传递函数,l是牵张反射增益,s是交互兴奋增益,r是交互抑制增益,b是Ib的增益,g是运动控制模块的中间抑制性元群的增益,v'和分别为来自于中介体Ia和Ib传入运动控制模块的放电频率,G'(t)是随机的已知向量;
S122、基于步骤S11中基于运动控制模块的函数关系,得到x2(t)与z(t)关系如下:
S13、综合S11和S12中运动控制模块与感觉反馈模块的作用关系,得到运动控制模块信号与感觉反馈模块信号的表达关系分别为:
式中,N1=[α γ 0 0],N2=[(αs,αd) (γs,γd) 0 0]T分别为未知参数向量,He为运动控制模块中局部兴奋性平均突触增益参数,εe为兴奋性细胞膜平均时间常数和树突平均时间常数的和,Hi为运动控制模块中局部抑制性平均突触增益参数,εi为抑制性细胞膜平均时间常数和树突平均时间常数的和,s是交互兴奋增益,r是交互抑制增益,b是Ib的增益,v'和分别为来自于中介体Ia和Ib传入运动控制模块的放电频率,α(·)和γ(·)分别为感觉反馈模块元群α与γ的增益函数;V(t)=g[x0(t+τ)]分别为随机的已知向量。
由上述建模过程可知,脑电仿真信号的输出既受外部输入的影响也受神经肌肉系统的自反馈信息的约束;肌电信号的输出受大脑外部输入的影响,也受神经肌肉系统各级单元的调制,并与大脑输入信息之间有一定的时延关系,可以通过对(5)式中的模型参数进行辨识估计,以实现外部刺激信号下神经肌肉闭环控制模型的有效构建。
S2、基于神经肌肉多层次耦合特征指标的参数辨识及优化。首先同步采集脑电和肌电信号,并进行预处理,再基于脑电和肌电信号建立多层次特征指标,构建基于多层次耦合特征的目标函数;然后,基于无迹卡尔曼滤波(UKF)方法对神经肌肉信息交互模型进行参数辨识,获取体现运动控制系统内在生理变化的关键模型参量指标;最后,以脑电和肌电信号能量谱为目标,基于混合粒子群算法实现对所辨识参量进行优化选取,具体辨识及优化策略如图2所示,进而实现神经肌肉信息交互模型的构建。
S21、基于多层次耦合特征指标构建参数辨识的目标函数:
S211、基于64导博睿康(Neuracle)设备和10通道Delsys肌电设备搭建脑电和肌电信号同步采集实验平台,实现多通道脑电和肌电信号同步采集。选取与运动及运动感觉相关额区、枕区、顶区以及颞区的64个脑电极位置。并对采集到的脑电和肌电数据进行预处理,基于自适应高通滤波进行基线校正,通过自适应陷波去除工频干扰,基于独立分量分析去眼电干扰。将预处理的数据用非线性多尺度脑肌电同步耦合分析方法建立耦合强度VC、耦合方向TSE和时间延迟TD多层次特征指标;
S2111、基于时频一致性方法,获取耦合强度VC;
S2112、基于传递谱熵,获取耦合方向TSE;
S2113、基于时延信息传递,获取时间延迟TD;
S212、利用方程误差参数辨识方法构建基于多层次耦合特征指标的目标函数,其基本思想是通过极小化模型输出与系统输出的误差来实现,目标函数的具体表达式为:
S22、基于无迹卡尔曼滤波(UKF)以及步骤S212构建的目标函数对神经肌肉信息交互模型进行参数辨识:
S221、为使神经信息交互模型及作用关系符合实际神经肌肉系统工作特性,令脑电和肌电信号表达式的输入信号U(t)服从高斯分布(E[U(t)]=0,σ[U(t)]=Q),建立外界刺激下神经肌肉控制系统仿真模型;
S222、基于步骤S211建立的多层次特征指标,利用增广状态向量构建状态方程,将模型中的未知参数向量定义为系统中新增状态向量,具体表示为:
X'(k)=[X(k) H(k) ξ(k)] (7)
其中,X为特征指标,H=[M1 M2]和ξ=N1·N2分别表示式(5)中的神经群参数和肌纤维参数;
新的状态方程如下:
式中,X'(k+1)为n维随机状态向量序列,Z(k+1)为n维系统可观测输出变量,包含x(t)和y(t),F(·)和h(·)分别为n维和m维函数,U(k)为系统输入变量;
由步骤S1可知神经群参数H和肌纤维参数ξ与模型各个未知参量存在函数关系,因此基于UKF中采样策略逼近非线性分布的估计原则,对系统模型的未知参数H和ξ进行辨识,当状态值X(k+1)满足时,辨识过程结束,此时模型的输出有效逼近基于脑电和肌电信号计算的U(k)值,得到多层次耦合特征指标下的模型参数集合。
S23、基于混合粒子群算法对参量H=[HVC HTSE HTD]及ξ=[ξVC ξTSE ξTD]进行最优选取,基于对神经肌肉控制系统FCMC分析指标的逼近优化原则,以脑电和肌电信号能量谱为目标,基于混合粒子群算法实现对神经群参数H=[HVC HTSE HTD]及肌纤维参数ξ=[ξVC ξTSEξTD]的最优选取,进而实现对正常神经肌肉信息交互模型的构建,并能获取体现大脑与肌肉信息交互内在微观表现的最优化特征指标H和ξ。
以上所述的实施例仅是对本发明的优选实施方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案做出的各种变形和改进,均应落入本发明权利要求书确定的保护范围内。
Claims (5)
1.一种神经肌肉信息交互模型构建及参数辨识优化方法,其特征在于,具体实施步骤如下:
S1、分别构建运动控制通路模型部分和感觉反馈通路模型部分:
S11、构建运动控制通路模型部分:
S111、根据输入的给定引起运动控制模块中电位U变化的外界信号,获得与运动控制模块中电位U相关的局部兴奋性平均突触增益参数He和兴奋性细胞膜平均时间常数和树突平均时间常数的和εe,得到运动控制模块的模型函数表达式如下:
S112、根据步骤S111中x0(t)的变化,通过控制感觉反馈模块中元群募集α与γ,引起感觉反馈模块中元群的变化,输出感觉反馈模块中单元动作电位y(t),其函数关系如下:
y(t)=[α(αs,αd)+γ(γs,γd)]g[x0(t+τ)] (2)
式中,g[·]为x(t)和y(t)间的具有一定延时的信息传递函数,x0(t)代表由运动控制模块传至感觉反馈模块的兴奋信号,τ为延时因子,α(·)和γ(·)分别为α与γ感觉反馈模块元群的增益函数,αs,αd,γs,γd分别为静态和动态感觉反馈模块中的元群;
S12、构建感觉反馈通路模型部分:
S121、输入感觉反馈模块中的外界感觉信号y0(t),通过中介体Ia和Ib传回运动控制模块,产生感觉反馈模块至运动控制模块的反馈传入信号z(t),其具体的表达式为:
式中,L[·]为z(t)和y0(t)间的信息传递函数,l是牵张反射增益,s是交互兴奋增益,r是交互抑制增益,b是Ib的增益,g是运动控制模块的中间抑制性元群的增益,v'和分别为来自于中介体Ia和Ib传入运动控制模块的放电频率,G'(t)是随机的已知向量;
S122、基于步骤S11中运动控制模块的函数关系,得到x2(t)与z(t)关系如下:
S13、综合步骤S11和步骤S12中运动控制模块与感觉反馈模块的作用关系,得到运动控制模块信号与感觉反馈模块信号的表达关系分别为:
式中,x(t)代表运动控制模块中局部场电位,y(t)代表感觉反馈模块中单元动作电位,N1=[αγ00],N2=[(αs,αd) (γs,γd)0 0]T分别为未知参数向量,He为运动控制模块中局部兴奋性平均突触增益参数,εe为兴奋性细胞膜平均时间常数和树突平均时间常数的和,Hi为运动控制模块中局部抑制性平均突触增益参数,εi为抑制性细胞膜平均时间常数和树突平均时间常数的和,s是交互兴奋增益,r是交互抑制增益,b是Ib的增益,v'和分别为来自于中介体Ia和Ib传入运动控制模块的放电频率,α(·)和γ(·)分别为感觉反馈模块元群α与γ的增益函数,其中L[·]为z(t)和y0(t)间的信息传递函数,y0(t)为输入感觉反馈模块中的外界感觉信号,g是运动控制模块的中间抑制性元群的增益,V(t)=g[x0(t+τ)]分别为随机的已知向量,g[·]为x(t)和y(t)间的具有一定延时的信息传递函数;
S2、基于多层次耦合特征的参数辨识及优化:
S21、基于多层次耦合特征指标构建参数辨识的目标函数:
S211、对采集的数据进行预处理,并用非线性多尺度脑电信号和非线性多尺度肌电信号同步耦合分析方法建立耦合强度VC、耦合方向TSE和时间延迟TD多层次特征指标;
S2111、基于时频一致性方法,获取耦合强度VC;
S2112、基于传递谱熵,获取耦合方向TSE;
S2113、基于时延信息传递,获取时间延迟TD;
S212、利用方程误差参数辨识方法构建基于多层次耦合特征指标的目标函数,目标函数的具体表达式为:
S22、基于无迹卡尔曼滤波以及步骤S212构建的目标函数对神经肌肉信息交互模型进行参数辨识:
S221、令脑电和肌电信号表达式的输入信号U(t)服从高斯分布;
S222、基于步骤S211建立的多层次特征指标,利用增广状态向量构建状态方程,将模型中的未知参数向量定义为系统中新增状态向量,具体表示为:
X'(k)=[X(k) H(k) ξ(k)] (7)
其中,X为特征指标,H=[M1 M2]和ξ=N1·N2分别表示式(5)中的运动控制模块参数和感觉反馈模块参数,H(k)表示运动控制模块参数,ξ(k)表示感觉反馈模块参数,k表示第k时刻;
新的状态方程如下:
式中,X'(k+1)为n维随机状态向量序列,Z(k+1)为n维系统可观测输出变量,Z(k+1)包含运动控制模块中局部场电位x(t)和感觉反馈模块中单元动作电位y(t),F(·)和h(·)分别为n维和m维函数,U(k)为系统输入变量,k表示第k时刻,k+1表示第k+1时刻;
S23、基于混合粒子群算法对参量H=[HVC HTSE HTD]及ξ=[ξVC ξTSE ξTD]进行最优选取。
2.根据权利要求1所述的一种神经肌肉信息交互模型构建及参数辨识优化方法,其特征在于,运动控制模块中的元群信号x(t)和感觉反馈模块中的单元动作电位y(t)的变化分别与外界刺激信号有关。
4.根据权利要求1或者3所述的一种神经肌肉信息交互模型构建及参数辨识优化方法,其特征在于,多层次耦合特征指标下的目标函数参数集合,是根据目标函数的输出有效逼近基于脑电和肌电信号计算的U(k)值。
5.根据权利要求1所述的一种神经肌肉信息交互模型构建及参数辨识优化方法,其特征在于,步骤S23中的最优选取,是基于对脑电和肌电信号控制系统神经肌肉功能耦合分析指标的逼近优化原则,以脑电和肌电信号运动控制模块和感觉反馈模块中信号能量谱为目标。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110357404.6A CN113197585B (zh) | 2021-04-01 | 2021-04-01 | 一种神经肌肉信息交互模型构建及参数辨识优化方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110357404.6A CN113197585B (zh) | 2021-04-01 | 2021-04-01 | 一种神经肌肉信息交互模型构建及参数辨识优化方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113197585A CN113197585A (zh) | 2021-08-03 |
CN113197585B true CN113197585B (zh) | 2022-02-18 |
Family
ID=77026087
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110357404.6A Active CN113197585B (zh) | 2021-04-01 | 2021-04-01 | 一种神经肌肉信息交互模型构建及参数辨识优化方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113197585B (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115568865B (zh) * | 2022-10-18 | 2024-07-23 | 天津大学 | 一种基于脑电数据驱动的多通道脑响应辨识系统 |
WO2025015896A1 (zh) * | 2023-07-16 | 2025-01-23 | 毕云剑 | 一种双目视觉深度计算系统及类脑计算模型 |
CN118378052B (zh) * | 2024-06-25 | 2024-09-24 | 鹏城实验室 | 信号分析方法、装置、设备及介质 |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004085674A1 (en) * | 2003-03-27 | 2004-10-07 | Bionomics Limited | Methods for the diagnosis and treatment of epilepsy |
CN103505202A (zh) * | 2012-06-27 | 2014-01-15 | 天津宇迪智能技术有限公司 | 心、脑电信号同步采集的心脑耦合系统 |
CN104138258A (zh) * | 2014-07-18 | 2014-11-12 | 燕山大学 | 一种便携式脑肌电同步采集装置 |
CN105877766A (zh) * | 2016-06-21 | 2016-08-24 | 东北大学 | 一种基于多生理信号融合的精神状态检测系统及方法 |
CN106073702A (zh) * | 2016-05-27 | 2016-11-09 | 燕山大学 | 基于小波‑传递熵的多时频尺度间脑肌电耦合分析方法 |
DE102016110902A1 (de) * | 2015-06-14 | 2016-12-15 | Facense Ltd. | Head-Mounted-Devices zur Erfassung thermischer Messwerte |
CN106821375A (zh) * | 2017-02-10 | 2017-06-13 | 东南大学 | 一种基于csp算法及ar模型想象动作电位的脑电信号特征提取方法 |
CN107864440A (zh) * | 2016-07-08 | 2018-03-30 | 奥迪康有限公司 | 包括eeg记录和分析系统的助听系统 |
CN109222906A (zh) * | 2018-09-13 | 2019-01-18 | 复旦大学 | 一种基于脑部电信号构建疼痛状态预测模型的方法 |
CN110811609A (zh) * | 2019-10-28 | 2020-02-21 | 杭州电子科技大学 | 基于自适应模板匹配与机器学习算法融合的癫痫棘波智能检测方法 |
CN110897639A (zh) * | 2020-01-02 | 2020-03-24 | 清华大学深圳国际研究生院 | 一种基于深度卷积神经网络的脑电睡眠分期方法 |
CN112120694A (zh) * | 2020-08-19 | 2020-12-25 | 中国地质大学(武汉) | 一种基于神经网络的运动想象脑电信号分类方法 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006122035A2 (en) * | 2005-05-06 | 2006-11-16 | University Of Maryland, Baltimore | Method for treating central pain syndrome or for inducing centrally generated pain in an animal model |
WO2016205231A1 (en) * | 2015-06-19 | 2016-12-22 | Duke University | Systems and methods for utilizing deep brain stimulation local evoked potentials for the treatment of neurological disorders |
CN105147248B (zh) * | 2015-07-30 | 2019-02-05 | 华南理工大学 | 基于生理信息的抑郁症评估系统及其评估方法 |
US10796596B2 (en) * | 2015-08-27 | 2020-10-06 | Hrl Laboratories, Llc | Closed-loop intervention control system |
CN105727442B (zh) * | 2015-12-16 | 2018-11-06 | 深圳先进技术研究院 | 闭环的脑控功能性电刺激系统 |
CN106691441A (zh) * | 2016-12-22 | 2017-05-24 | 蓝色传感(北京)科技有限公司 | 基于脑电与运动状态反馈的注意力训练系统及方法 |
US11151440B2 (en) * | 2017-11-08 | 2021-10-19 | International Business Machines Corporation | Neural response human detector |
US11141088B2 (en) * | 2018-10-09 | 2021-10-12 | Sony Corporation | Electronic device for recognition of mental behavioral attributes based on deep neural networks |
CN111190364A (zh) * | 2019-12-06 | 2020-05-22 | 南京工程学院 | 一种基于感觉反馈cpg模型的仿生海豚智能控制方法 |
-
2021
- 2021-04-01 CN CN202110357404.6A patent/CN113197585B/zh active Active
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004085674A1 (en) * | 2003-03-27 | 2004-10-07 | Bionomics Limited | Methods for the diagnosis and treatment of epilepsy |
CN103505202A (zh) * | 2012-06-27 | 2014-01-15 | 天津宇迪智能技术有限公司 | 心、脑电信号同步采集的心脑耦合系统 |
CN104138258A (zh) * | 2014-07-18 | 2014-11-12 | 燕山大学 | 一种便携式脑肌电同步采集装置 |
DE102016110902A1 (de) * | 2015-06-14 | 2016-12-15 | Facense Ltd. | Head-Mounted-Devices zur Erfassung thermischer Messwerte |
CN106073702A (zh) * | 2016-05-27 | 2016-11-09 | 燕山大学 | 基于小波‑传递熵的多时频尺度间脑肌电耦合分析方法 |
CN105877766A (zh) * | 2016-06-21 | 2016-08-24 | 东北大学 | 一种基于多生理信号融合的精神状态检测系统及方法 |
CN107864440A (zh) * | 2016-07-08 | 2018-03-30 | 奥迪康有限公司 | 包括eeg记录和分析系统的助听系统 |
CN106821375A (zh) * | 2017-02-10 | 2017-06-13 | 东南大学 | 一种基于csp算法及ar模型想象动作电位的脑电信号特征提取方法 |
CN109222906A (zh) * | 2018-09-13 | 2019-01-18 | 复旦大学 | 一种基于脑部电信号构建疼痛状态预测模型的方法 |
CN110811609A (zh) * | 2019-10-28 | 2020-02-21 | 杭州电子科技大学 | 基于自适应模板匹配与机器学习算法融合的癫痫棘波智能检测方法 |
CN110897639A (zh) * | 2020-01-02 | 2020-03-24 | 清华大学深圳国际研究生院 | 一种基于深度卷积神经网络的脑电睡眠分期方法 |
CN112120694A (zh) * | 2020-08-19 | 2020-12-25 | 中国地质大学(武汉) | 一种基于神经网络的运动想象脑电信号分类方法 |
Non-Patent Citations (11)
Title |
---|
丘脑皮层神经群模型仿真及现场可编程门阵列实现研究;梁振虎等;《生物医学工程学杂志》;20160825(第04期);617-625 * |
基于Gabor小波和格兰杰因果的脑-肌电同步性分析;谢平等;《中国生物医学工程学报》;20170220(第01期);28-37 * |
基于MEMD-rTVgPDC的皮层肌肉耦合分析;张敏等;《传感技术学报》;20200315(第03期);11-18 * |
基于变分模态分解-传递熵的脑肌电信号耦合分析;谢平等;《物理学报》;20161231(第11期);118701-2-118701-9 * |
基于变尺度符号传递熵的多通道脑肌电信号耦合分析;高云园等;《中国生物医学工程学报》;20180220(第01期);1465-1471 * |
基于多尺度传递熵的脑肌电信号耦合分析;谢平等;《物理学报》;20151231(第24期);423-432 * |
多通道神经群模型建模及分析;崔冬等;《中国科学:信息科学》;20110815(第08期);978-988 * |
帕金森状态的慢变量反馈模糊控制;刘晨等;《中国科学:信息科学》;20150320(第03期);439-456 * |
神经群模型中癫痫状棘波的UKF控制研究;刘仙等;《生物医学工程学杂志》;20131231(第06期);1147-1152 * |
神经群模型中癫痫状棘波的闭环控制性能研究;刘仙等;《物理学报》;20130123(第02期);978-988 * |
经穴电刺激诱发的脑-肌电信号相干性研究;乔晓艳等;《测试技术学报》;20160630(第03期);191-197 * |
Also Published As
Publication number | Publication date |
---|---|
CN113197585A (zh) | 2021-08-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113197585B (zh) | 一种神经肌肉信息交互模型构建及参数辨识优化方法 | |
CN105022486B (zh) | 基于不同表情驱动的脑电信号辨识方法 | |
Sanger | Bayesian filtering of myoelectric signals | |
Cooray et al. | Dynamic causal modelling of electrographic seizure activity using Bayesian belief updating | |
CN114521904B (zh) | 一种基于耦合神经元群的脑电活动模拟方法及系统 | |
CN101596338A (zh) | 基于bp神经网络整定pid的功能性电刺激精密控制方法 | |
CN113952614B (zh) | 融合机械手和功能性电刺激的手功能康复双闭环调控系统 | |
CN112675428B (zh) | 抗癫痫电刺激硬件在环仿真系统 | |
Chen et al. | Neucuberehab: A pilot study for eeg classification in rehabilitation practice based on spiking neural networks | |
Parker et al. | Control of powered upper limb prostheses | |
Zhang et al. | Homology characteristics of EEG and EMG for lower limb voluntary movement intention | |
CN115826743B (zh) | 一种面向ssvep脑机接口的多通道脑电信号建模方法 | |
Zhang et al. | Electroencephalogram and surface electromyogram fusion-based precise detection of lower limb voluntary movement using convolution neural network-long short-term memory model | |
CN118335282B (zh) | 基于混合fes外骨骼系统融合控制的康复步态模式靶向生成方法及系统 | |
CN118761446A (zh) | 基于孪生脑模型的静息态脑活动数据同化方法 | |
Reddy et al. | Optimization driven spike deep belief neural network classifier: a deep-learning based multichannel spike sorting neural signal processor (nsp) module for high-channel-count brain machine interfaces (bmis) | |
CN115281690A (zh) | 下肢运动状态下脑电运动伪迹去除方法、设备及存储设备 | |
Chen et al. | Research on EEG classification with neural networks based on the levenberg-marquardt algorithm | |
Liang et al. | NClSilico: A Closed-Loop neuromodulation platform in silico | |
Watanabe et al. | Nonlinear frequency-domain analysis of the transformation of cortical inputs by a motoneuron pool-muscle complex | |
Wang et al. | Research of EEG recognition algorithm based on motor imagery | |
Thi et al. | A study of finger movement classification based on 2-sEMG channels | |
Ibrahim et al. | Fuzzy modelling of knee joint with genetic optimization | |
CN114668408B (zh) | 一种膜电位数据生成方法及系统 | |
York et al. | Muscles recruited during an isometric knee extension task is defined by proprioceptive feedback |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |