CN113184926A - 利用电镀污泥制备Ni-Cu LDH材料的方法及应用 - Google Patents
利用电镀污泥制备Ni-Cu LDH材料的方法及应用 Download PDFInfo
- Publication number
- CN113184926A CN113184926A CN202110481107.2A CN202110481107A CN113184926A CN 113184926 A CN113184926 A CN 113184926A CN 202110481107 A CN202110481107 A CN 202110481107A CN 113184926 A CN113184926 A CN 113184926A
- Authority
- CN
- China
- Prior art keywords
- electroplating sludge
- preparing
- ldh material
- ldh
- drying
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
- C01G53/04—Oxides
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G3/00—Compounds of copper
- C01G3/02—Oxides; Hydroxides
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B1/00—Preliminary treatment of ores or scrap
- C22B1/02—Roasting processes
- C22B1/08—Chloridising roasting
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B15/00—Obtaining copper
- C22B15/0026—Pyrometallurgy
- C22B15/0056—Scrap treating
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B15/00—Obtaining copper
- C22B15/0063—Hydrometallurgy
- C22B15/0065—Leaching or slurrying
- C22B15/0082—Leaching or slurrying with water
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B15/00—Obtaining copper
- C22B15/0063—Hydrometallurgy
- C22B15/0084—Treating solutions
- C22B15/0089—Treating solutions by chemical methods
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B23/00—Obtaining nickel or cobalt
- C22B23/02—Obtaining nickel or cobalt by dry processes
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B23/00—Obtaining nickel or cobalt
- C22B23/04—Obtaining nickel or cobalt by wet processes
- C22B23/0407—Leaching processes
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B23/00—Obtaining nickel or cobalt
- C22B23/04—Obtaining nickel or cobalt by wet processes
- C22B23/0453—Treatment or purification of solutions, e.g. obtained by leaching
- C22B23/0461—Treatment or purification of solutions, e.g. obtained by leaching by chemical methods
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B7/00—Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
- C22B7/001—Dry processes
- C22B7/002—Dry processes by treating with halogens, sulfur or compounds thereof; by carburising, by treating with hydrogen (hydriding)
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B7/00—Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
- C22B7/006—Wet processes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/24—Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/30—Electrodes characterised by their material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/84—Processes for the manufacture of hybrid or EDL capacitors, or components thereof
- H01G11/86—Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/72—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/80—Particles consisting of a mixture of two or more inorganic phases
- C01P2004/82—Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/40—Electric properties
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Power Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Environmental & Geological Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Manufacture And Refinement Of Metals (AREA)
Abstract
本发明属于电镀污泥资源化技术领域,公开了一种利用电镀污泥制备Ni‑Cu LDH材料的方法及应用。将电镀污泥经氯化焙烧处理,得到氯化电镀污泥,然后加水搅拌溶解氯化盐,过滤取滤液与对苯二甲酸和聚乙烯吡咯烷酮加入N,N‑二甲基甲酰胺、乙醇和水的混合溶剂中水热反应,固体产物经洗涤、干燥,得到Ni‑Cu MOF材料,然后将Ni‑Cu MOF材料加入到氢氧化钾溶液中,室温搅拌处理后固液分离,所得固体经洗涤、干燥,得到可应用于超级电容器电极的Ni‑Cu LDH材料。本发明不仅实现了电镀污泥中重金属的高值化利用,也为超级电容器材料制备提供了新的思路。
Description
技术领域
本发明属于电镀污泥资源化技术领域,具体涉及一种利用电镀污泥制备Ni-CuLDH材料的方法及应用。
背景技术
电镀污泥是电镀行业通过物理化学方法处理电镀废水过程中产生的危险废物。电镀污泥中含有大量重金属,如铬、镍、铜、锌等,如果电镀污泥被随意堆存在环境中,这些重金属将进入环境,污染土壤、地下水,进而通过食物链威胁到人类的身体健康。此外,电镀污泥中重金属的含量有的甚至比矿石还高,是一种丰富的二次资源。因此,我们有必要对电镀污泥中重金属进行资源化回收。
传统湿法提取电镀污泥中重金属需结合化学沉淀法、萃取法、电沉积等对浸出液中重金属进行分离提纯。例如,专利CN 108754150A公开了一种电镀污泥中有价金属综合回收的方法,首先利用硫酸浸出电镀污泥中重金属,再通过铁粉置换、调节pH、萃取、沉淀等工艺回收电镀污泥中重金属。专利CN 110055425 A公开了一种电镀污泥重金属资源化方法,通过酸浸将电镀污泥中重金属全部溶出,再通过铁还原铜、氧化沉淀加入的铁,最后通过硫酸、硝酸铅获得铬酸铅等方式分离各重金属。这些先通过湿法浸出,在通过其他分离方法分离提纯的工艺均存在整个流程长、操作复杂、化学试剂使用量大等缺点。因此,亟需一种对电镀污泥浸出液直接高值化利用的方法。
专利CN 109280777 A公开了一种氯化焙烧法选择性回收电镀污泥中重金属的方法,通过将电镀污泥与氯化剂混合后焙烧处理,实现电镀污泥中铬、镍、铜的选择性氯化,挥发的氯化铬通过尾气收集并用水吸收,得到氯化铬溶液,固体物料加水溶解其中的氯化镍、氯化铜,固液分离,得到金属氯化物混合溶液及固体泥渣。该专利虽然公开了通过氯化焙烧实现了电镀污泥中重金属的选择性回收,但并未公开其高值化利用的方法。专利CN111393664 A及CN 111320759A均公开了利用金属盐及有机配体制备MOF材料的方法,但上述方法均采用直接配置的金属盐溶液制备。若能将电镀污泥经适当方式处理后获取其中的有价金属,然后利用其有价金属通过特定的方法制备成适用于超级电容器电极的LDH(层状双金属氢氧化物)材料,将具备极高的环保及商业价值。
发明内容
针对以上现有技术存在的缺点和不足之处,本发明的首要目的在于提供一种利用电镀污泥制备Ni-Cu LDH材料的方法。
本发明的另一目的在于提供一种通过上述方法制备得到的Ni-Cu LDH材料。
本发明的再一目的在于提供上述Ni-Cu LDH材料在超级电容器电极中的应用。
本发明方法通过将氯化焙烧结合水浸处理的电镀污泥浸出液制备MOF,再以MOF为前驱体合成一种可做超级电容器电极的LDH材料。本方法具有操作简单、LDH材料电化学性能优异等优点。本发明不仅实现了电镀污泥中重金属的高值化利用,也为超级电容器材料制备提供了新的思路。
本发明目的通过以下技术方案实现:
一种利用电镀污泥制备Ni-Cu LDH材料的方法,包括如下制备步骤:
(1)将电镀污泥烘干、粉碎后与氯化剂混合均匀,惰性气氛下焙烧处理,得到氯化电镀污泥;
(2)向步骤(1)所得氯化电镀污泥中加水搅拌溶解氯化盐,过滤得滤液;
(3)取步骤(2)所得滤液与对苯二甲酸和聚乙烯吡咯烷酮加入溶剂中,超声处理后于140~170℃水热反应,反应结束后冷却至室温,固液分离,所得固体经洗涤、干燥,得到Ni-CuMOF材料;
(4)取步骤(3)所得Ni-Cu MOF材料加入到氢氧化钾溶液中,室温搅拌处理后固液分离,所得固体经洗涤、干燥,得到Ni-Cu LDH材料。
优选地,步骤(1)中所述氯化剂为盐酸、氯化铵、氯化镁、氯化铁中的至少一种。
优选地,步骤(1)中烘干、粉碎后的电镀污泥与氯化剂混合的质量之比为1:(0.5~1.5)。
优选地,步骤(1)中所述焙烧处理的温度为300~500℃,焙烧处理的时间为0.5~2.5h。
优选地,步骤(2)中所述氯化电镀污泥与水的质量比为1:(5~15)。
优选地,步骤(3)中所述溶剂为N,N-二甲基甲酰胺、乙醇与水的混合溶剂,或N,N-二甲基甲酰胺与乙醇的混合溶剂。更优选为体积比为1:1:1的N,N-二甲基甲酰胺、乙醇与水的混合溶剂,或体积比为4:7的N,N-二甲基甲酰胺与乙醇的混合溶剂。
优选地,步骤(3)中所述滤液、对苯二甲酸、聚乙烯吡咯烷酮及溶剂加入的比例为2.5mL:150mg:0~1.5g:27.5~30mL。
优选地,步骤(3)中所述超声处理的时间为30min。
优选地,步骤(3)中所述水热反应的时间为10~18h。
优选地,步骤(3)中所述洗涤、干燥是指采用乙醇清洗后真空干燥。
优选地,步骤(4)中所述Ni-Cu MOF材料与氢氧化钾溶液的质量体积比为0.1:10g/mL。
优选地,步骤(4)中所述氢氧化钾溶液的浓度为2mol/L。
优选地,步骤(4)中所述搅拌处理的时间为1~7h。
优选地,步骤(4)中所述洗涤、干燥是指采用去离子水清洗后真空干燥。
一种Ni-Cu LDH材料,通过上述方法制备得到。
上述Ni-Cu LDH材料在超级电容器电极中的应用。
本发明的原理为:以电镀污泥中镍、铜为金属源,通过氯化焙烧提取重金属的方法具有高选择性,溶液主要含有镍、铜离子,不含铬。以对苯二甲酸为配体,N,N-二甲基甲酰胺与乙醇为有机溶剂或N,N-二甲基甲酰胺、乙醇与水的混合溶剂合成Ni-Cu MOF,再以Ni-CuMOF为模板通过碱性水解形成Ni-Cu LDH。所得Ni-Cu LDH可应用于超级电容器电极材料,主要通过下式:
Ni(OH)2+OH-=NiOOH+H2O+e-
进行氧化还原反应实现储能。
与现有技术相比,本发明的有益效果是:
(1)本发明以氯化焙烧结合水浸提取电镀污泥中的重金属浸出液为金属源制备Ni-CuMOF。再以MOF为前驱体,通过保型水解制备的LDH继承了MOF的多孔结构和超高表面积,具有良好的电化学性能。
(2)本发明利用电镀污泥中重金属制备Ni-Cu LDH材料的方法操作简单方便,能耗低,经济效益和社会效益显著。
(3)本发明避免了湿法需结合沉淀法、萃取法、电沉积等对电镀污泥浸出液分离提纯的繁琐步骤。
(4)本发明将电镀污泥资源化利用,而且解决了电镀污泥存在的环境问题。
(5)本发明工艺对其他固体废物重金属的资源化利用同样具有借鉴意义。
附图说明
图1实施例1中制备的Ni-Cu LDH材料在不同电流密度下的GCD图;
图2实施例2中制备的Ni-Cu LDH材料的XRD图;
图3实施例2中制备的Ni-Cu LDH材料在不同扫描速率下的CV图;
图4实施例3中制备的Ni-Cu LDH材料在10A/g时的循环稳定性图。
具体实施方式
下面结合实施例及附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。
以下实施例中所述电镀污泥来源于镀镍废水物化处理产生,主要金属含量如下表1所示
表1电镀污泥中金属含量
以下实施例中电极制备步骤如下:取80mgNi-Cu LDH、10mg乙炔黑、10mg聚四氟乙烯加入10mL乙醇中,超声30min后在80℃烘箱中干燥12h。将烘干后的混合物分成三份,均匀涂抹在1cm×1cm的泡沫镍上,然后用10.0MPa的压力压紧,得到工作电极。测试前,工作电极在6M KOH溶液中浸泡12h。
以下实施例中电化学测试方法如下:采用电化学工作站CHI660E。测试在一个三电极系统中进行,以6M KOH溶液作为电解液,以铂片作为对电极,以Hg/HgO电极作为参比电极,Ni-Cu LDH作为工作电极。
实施例1
(1)取5g电镀污泥、3.21g氯化铵,混合均匀,在氮气气氛下升温至350℃焙烧2h,冷却即得氯化电镀污泥;
(2)向步骤(1)的氯化电镀污泥中加45mL水,搅拌15min后过滤得滤液;
(3)取2.5mL步骤(2)的滤液、150mg对苯二甲酸、1.5g聚乙烯吡咯烷酮加入30mL混合液(N,N-二甲基甲酰胺:乙醇:水=1:1:1,体积比),超声30分钟后150℃水热10h,待水热反应结束后冷却至室温,固液分离,所得固体用乙醇清洗三遍后真空干燥,得到Ni-Cu MOF材料;
(4)称取0.1g步骤(3)的MOF材料于10mL 2mol/L氢氧化钾溶液中,室温下搅拌7h后固液分离,所得固体用去离子水清洗三遍后真空干燥得Ni-Cu LDH材料。
所得Ni-Cu LDH材料电极在不同电流密度下的GCD图如图1所示,在0.5A g-1、1A g-1、2A g-1、5A g-1、10A g-1、20A g-1电流密度下的比电容分别为1231.4F g-1、1151.7F g-1、1078F g-1、860.2F g-1、590F g-1、80F g-1。
实施例2
(1)取5g电镀污泥、6mL盐酸,混合均匀,在氮气气氛下升温至350℃焙烧0.5h,冷却即得氯化电镀污泥;
(2)向步骤(1)的氯化电镀污泥中加45mL水,搅拌15min后过滤得滤液;
(3)取2.5mL步骤(2)的滤液、150mg对苯二甲酸、1.5g聚乙烯吡咯烷酮加入30mL混合液(N,N-二甲基甲酰胺:乙醇:水=1:1:1,体积比),超声30分钟后170℃水热14h,待水热反应结束后冷却至室温,固液分离,所得固体用乙醇清洗三遍后真空干燥,得到Ni-Cu MOF材料;
(4)称取0.1g步骤(3)的MOF材料于10mL 2mol/L氢氧化钾溶液中,室温下搅拌5h后固液分离,所得固体用去离子水清洗三遍后真空干燥得Ni-Cu LDH材料。
本实施例所得Ni-Cu LDH材料的XRD图如图2所示,Ni-Cu LDH的衍射峰是Ni(OH)2和Cu(OH)2,对应的标准卡片为JCPDS:14-0117和JCPDS:72-0140。所得Ni-Cu LDH材料电极在不同扫描速率下的CV图如图3所示,曲线中可以看到一对明显的氧化还原峰,随着扫描速率的增大,还原峰向负电位方向移动,这是由于法拉第反应过程中有一定电阻。
实施例3
(1)取5g电镀污泥、6mL盐酸,混合均匀,在氮气气氛下升温至350℃焙烧0.5h,冷却即得氯化电镀污泥;
(2)向步骤(1)的氯化电镀污泥中加45mL水,搅拌15min后过滤得滤液;
(3)取2.5mL步骤(2)的滤液、150mg对苯二甲酸、1.5g聚乙烯吡咯烷酮加入27.5mL混合液(N,N-二甲基甲酰胺:乙醇=4:7,体积比),超声30分钟后150℃水热10h,待水热反应结束后冷却至室温,固液分离,所得固体用乙醇清洗三遍后真空干燥,得到Ni-Cu MOF材料;
(4)称取0.1g步骤(3)的MOF材料于10mL 2mol/L氢氧化钾溶液中,室温下搅拌5h后固液分离,所得固体用去离子水清洗三遍后真空干燥得Ni-Cu LDH材料。
所得Ni-Cu LDH材料电极在10A/g时的循环稳定性图如图4所示,循环1000圈后,电容保持率为63%,具有良好的循环性能。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其它的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。
Claims (10)
1.一种利用电镀污泥制备Ni-Cu LDH材料的方法,其特征在于包括如下制备步骤:
(1)将电镀污泥烘干、粉碎后与氯化剂混合均匀,惰性气氛下焙烧处理,得到氯化电镀污泥;
(2)向步骤(1)所得氯化电镀污泥中加水搅拌溶解氯化盐,过滤得滤液;
(3)取步骤(2)所得滤液与对苯二甲酸和聚乙烯吡咯烷酮加入溶剂中,超声处理后于140~170℃水热反应,反应结束后冷却至室温,固液分离,所得固体经洗涤、干燥,得到Ni-Cu MOF材料;
(4)取步骤(3)所得Ni-Cu MOF材料加入到氢氧化钾溶液中,室温搅拌处理后固液分离,所得固体经洗涤、干燥,得到Ni-Cu LDH材料。
2.根据权利要求1所述的一种利用电镀污泥制备Ni-Cu LDH材料的方法,其特征在于:步骤(1)中所述氯化剂为盐酸、氯化铵、氯化镁、氯化铁中的至少一种;所述烘干、粉碎后的电镀污泥与氯化剂混合的质量之比为1:(0.5~1.5)。
3.根据权利要求1所述的一种利用电镀污泥制备Ni-Cu LDH材料的方法,其特征在于:步骤(1)中所述焙烧处理的温度为300~500℃,焙烧处理的时间为0.5~2.5h。
4.根据权利要求1所述的一种利用电镀污泥制备Ni-Cu LDH材料的方法,其特征在于:步骤(2)中所述氯化电镀污泥与水的质量比为1:(5~15)。
5.根据权利要求1所述的一种利用电镀污泥制备Ni-Cu LDH材料的方法,其特征在于:步骤(3)中所述溶剂为N,N-二甲基甲酰胺、乙醇与水的混合溶剂,或N,N-二甲基甲酰胺与乙醇的混合溶剂。
6.根据权利要求1所述的一种利用电镀污泥制备Ni-Cu LDH材料的方法,其特征在于:步骤(3)中所述滤液、对苯二甲酸、聚乙烯吡咯烷酮及溶剂加入的比例为2.5mL:150mg:0~1.5g:27.5~30mL;所述超声处理的时间为30min;所述水热反应的时间为10~18h;所述洗涤、干燥是指采用乙醇清洗后真空干燥。
7.根据权利要求1所述的一种利用电镀污泥制备Ni-Cu LDH材料的方法,其特征在于:步骤(4)中所述Ni-Cu MOF材料与氢氧化钾溶液的质量体积比为0.1:10g/mL;所述氢氧化钾溶液的浓度为2mol/L。
8.根据权利要求1所述的一种利用电镀污泥制备Ni-Cu LDH材料的方法,其特征在于:步骤(4)中所述搅拌处理的时间为1~7h;所述洗涤、干燥是指采用去离子水清洗后真空干燥。
9.一种Ni-Cu LDH材料,其特征在于:通过权利要求1~8任一项所述的方法制备得到。
10.权利要求9所述的一种Ni-Cu LDH材料在超级电容器电极中的应用。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110481107.2A CN113184926B (zh) | 2021-04-30 | 2021-04-30 | 利用电镀污泥制备Ni-Cu LDH材料的方法及应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110481107.2A CN113184926B (zh) | 2021-04-30 | 2021-04-30 | 利用电镀污泥制备Ni-Cu LDH材料的方法及应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113184926A true CN113184926A (zh) | 2021-07-30 |
CN113184926B CN113184926B (zh) | 2023-04-28 |
Family
ID=76983105
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110481107.2A Active CN113184926B (zh) | 2021-04-30 | 2021-04-30 | 利用电镀污泥制备Ni-Cu LDH材料的方法及应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113184926B (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113846348A (zh) * | 2021-09-14 | 2021-12-28 | 杭州师范大学 | 一种纳米花结构Ni-Cu LDH电催化剂及其制备方法、应用 |
CN114984932A (zh) * | 2022-06-01 | 2022-09-02 | 纽博恩(佛山)科技有限公司 | 一种利用电镀污泥制备LDHs吸附材料的方法和应用 |
CN116874042A (zh) * | 2023-08-28 | 2023-10-13 | 中铁建发展集团有限公司 | 钌/污泥基生物炭/泡沫镍阴极材料制备方法及其产品与应用 |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106955709A (zh) * | 2017-01-13 | 2017-07-18 | 北京化工大学 | 一种三维花状负载型双金属铜镍纳米催化剂的制备方法 |
CN107151331A (zh) * | 2017-06-05 | 2017-09-12 | 北京化工大学 | 一种电化学方法快速制备结构可控金属有机骨架化合物的方法 |
CN109280777A (zh) * | 2018-11-29 | 2019-01-29 | 华南理工大学 | 一种氯化焙烧法选择性回收电镀污泥中重金属的方法 |
CN110491682A (zh) * | 2019-09-05 | 2019-11-22 | 西北师范大学 | MOF衍生的双金属氢氧化物Ni/Co-MDH的合成及应用 |
CN110523415A (zh) * | 2019-09-03 | 2019-12-03 | 浙江天地环保科技有限公司 | 铜铁层状双金属氢氧化物、铜铁层状双金属氢氧化物/碳基复合材料及其制备方法和应用 |
CN110921721A (zh) * | 2019-12-03 | 2020-03-27 | 西北师范大学 | 一种基于金属有机框架衍生的双金属氢氧化物的制备及应用 |
CN111592001A (zh) * | 2020-05-31 | 2020-08-28 | 佛山经纬纳科环境科技有限公司 | 一种粉煤灰制备层状双氢氧化物和白炭黑的方法 |
CN111613451A (zh) * | 2019-02-25 | 2020-09-01 | 中国石油大学(华东) | 一种应用于超级电容器的多孔氢氧化镍材料及其制备方法 |
CN111760570A (zh) * | 2020-06-10 | 2020-10-13 | 东南大学 | 一种核壳结构镍基脱氢催化剂及其制备方法 |
CN112264018A (zh) * | 2020-11-02 | 2021-01-26 | 华南师范大学 | 一种镍钴氧化物纳米片管状催化剂及其制备方法和用途 |
CN112275323A (zh) * | 2020-11-15 | 2021-01-29 | 南开大学 | 镍基Ni-MOF-Ni/MCM-41复合材料的制备方法和应用 |
-
2021
- 2021-04-30 CN CN202110481107.2A patent/CN113184926B/zh active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106955709A (zh) * | 2017-01-13 | 2017-07-18 | 北京化工大学 | 一种三维花状负载型双金属铜镍纳米催化剂的制备方法 |
CN107151331A (zh) * | 2017-06-05 | 2017-09-12 | 北京化工大学 | 一种电化学方法快速制备结构可控金属有机骨架化合物的方法 |
CN109280777A (zh) * | 2018-11-29 | 2019-01-29 | 华南理工大学 | 一种氯化焙烧法选择性回收电镀污泥中重金属的方法 |
CN111613451A (zh) * | 2019-02-25 | 2020-09-01 | 中国石油大学(华东) | 一种应用于超级电容器的多孔氢氧化镍材料及其制备方法 |
CN110523415A (zh) * | 2019-09-03 | 2019-12-03 | 浙江天地环保科技有限公司 | 铜铁层状双金属氢氧化物、铜铁层状双金属氢氧化物/碳基复合材料及其制备方法和应用 |
CN110491682A (zh) * | 2019-09-05 | 2019-11-22 | 西北师范大学 | MOF衍生的双金属氢氧化物Ni/Co-MDH的合成及应用 |
CN110921721A (zh) * | 2019-12-03 | 2020-03-27 | 西北师范大学 | 一种基于金属有机框架衍生的双金属氢氧化物的制备及应用 |
CN111592001A (zh) * | 2020-05-31 | 2020-08-28 | 佛山经纬纳科环境科技有限公司 | 一种粉煤灰制备层状双氢氧化物和白炭黑的方法 |
CN111760570A (zh) * | 2020-06-10 | 2020-10-13 | 东南大学 | 一种核壳结构镍基脱氢催化剂及其制备方法 |
CN112264018A (zh) * | 2020-11-02 | 2021-01-26 | 华南师范大学 | 一种镍钴氧化物纳米片管状催化剂及其制备方法和用途 |
CN112275323A (zh) * | 2020-11-15 | 2021-01-29 | 南开大学 | 镍基Ni-MOF-Ni/MCM-41复合材料的制备方法和应用 |
Non-Patent Citations (1)
Title |
---|
TENG WANG ET AL.: ""Binary NiCu layered double hydroxide Nanosheets for enhanced energy storage performance as supercapacitor electrode"", 《SCIENCE CHINA MATERIALS》 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113846348A (zh) * | 2021-09-14 | 2021-12-28 | 杭州师范大学 | 一种纳米花结构Ni-Cu LDH电催化剂及其制备方法、应用 |
CN113846348B (zh) * | 2021-09-14 | 2022-11-01 | 杭州师范大学 | 一种纳米花结构Ni-Cu LDH电催化剂及其制备方法、应用 |
CN114984932A (zh) * | 2022-06-01 | 2022-09-02 | 纽博恩(佛山)科技有限公司 | 一种利用电镀污泥制备LDHs吸附材料的方法和应用 |
CN114984932B (zh) * | 2022-06-01 | 2023-11-21 | 纽博恩(佛山)科技有限公司 | 一种利用电镀污泥制备LDHs吸附材料的方法和应用 |
CN116874042A (zh) * | 2023-08-28 | 2023-10-13 | 中铁建发展集团有限公司 | 钌/污泥基生物炭/泡沫镍阴极材料制备方法及其产品与应用 |
CN116874042B (zh) * | 2023-08-28 | 2024-05-07 | 中铁建发展集团有限公司 | 钌/污泥基生物炭/泡沫镍阴极材料制备方法及其产品与应用 |
Also Published As
Publication number | Publication date |
---|---|
CN113184926B (zh) | 2023-04-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Yue et al. | Recovering valuable metals from spent lithium ion battery via a combination of reduction thermal treatment and facile acid leaching | |
CN113184926B (zh) | 利用电镀污泥制备Ni-Cu LDH材料的方法及应用 | |
CN111471864B (zh) | 一种废旧锂离子电池浸出液中回收铜、铝、铁的方法 | |
Wang et al. | Deep eutectic solvents (DESs) for green recycling of wasted lithium-ion batteries (LIBs): progress on pushing the overall efficiency | |
CN111206153A (zh) | 一种镍钴锰酸锂电池正极材料的回收方法 | |
CN113073194A (zh) | 一种废旧锂电池回收利用的除氟工艺 | |
CN111477986B (zh) | 一种电解硫酸钠废液制备三元锂离子电池前驱体的方法 | |
CN110040782A (zh) | 一种二氧化锰、及其制备方法和用途 | |
CN112007644B (zh) | 基于盐模板法回收芬顿污泥制备二维Fe/Fe3O4光催化剂的方法 | |
Yang et al. | Enhanced Leaching of Mn from electrolytic manganese anode slime via an electric field | |
CN110759644B (zh) | 一种用废弃磷酸铁锂电池合成磷酸铁和氧化铁薄膜的方法 | |
Zhu et al. | Review on the sustainable recycling of spent ternary lithium-ion batteries: From an eco-friendly and efficient perspective | |
CN114621080B (zh) | 一种利用高铁氧化锰矿制备草酸铁锰的方法 | |
Skowroński et al. | Reuse of nickel recovered from spent Ni–Cd batteries for the preparation of C/Ni and C/Ni/Pd layered electrodes for energy sources | |
CN113611857B (zh) | 一种利用含锰钴镍废渣制备三元正极材料的方法 | |
CN113184921B (zh) | 基于含镍污泥的ldh基复合材料及其制备方法 | |
Zhang et al. | Recovery of manganese from manganese oxide ores in the EDTA solution | |
CN110479228A (zh) | 一种失效的离子筛型锰系吸附剂的再生方法 | |
CN110548485A (zh) | 一种改性废旧阴极炭材料及其制备和应用方法 | |
CN116732322A (zh) | 一种天然低共熔溶剂回收废旧锂离子电池正极材料中有价金属的方法 | |
Patnaik et al. | Synthesis and characterization of fibrous nickel hydroxide obtained from spent nickel catalyst | |
Li et al. | Electrocatalysis coupled super-stable mineralization for the efficient treatment of phosphorus containing plating wastewater | |
CN111763828B (zh) | 一种镍氢电池有价金属绿色综合回收方法 | |
Liao et al. | A hydrometallurgical route to produce ZnO nanoparticles and NiO strips from the spent Ni/ZnO catalyst | |
CN110699552B (zh) | 从scr催化剂中选择性提取高纯金属钛的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |