[go: up one dir, main page]

CN113173862B - A method for the selective desaturation of inert carbon-carbon bonds to synthesize alkenes - Google Patents

A method for the selective desaturation of inert carbon-carbon bonds to synthesize alkenes Download PDF

Info

Publication number
CN113173862B
CN113173862B CN202110477262.7A CN202110477262A CN113173862B CN 113173862 B CN113173862 B CN 113173862B CN 202110477262 A CN202110477262 A CN 202110477262A CN 113173862 B CN113173862 B CN 113173862B
Authority
CN
China
Prior art keywords
carbon
nmr
desaturation
compound
selective
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110477262.7A
Other languages
Chinese (zh)
Other versions
CN113173862A (en
Inventor
王传勇
邢仲秋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yangzhou University
Original Assignee
Yangzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yangzhou University filed Critical Yangzhou University
Priority to CN202110477262.7A priority Critical patent/CN113173862B/en
Publication of CN113173862A publication Critical patent/CN113173862A/en
Application granted granted Critical
Publication of CN113173862B publication Critical patent/CN113173862B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C231/00Preparation of carboxylic acid amides
    • C07C231/12Preparation of carboxylic acid amides by reactions not involving the formation of carboxamide groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B35/00Reactions without formation or introduction of functional groups containing hetero atoms, involving a change in the type of bonding between two carbon atoms already directly linked
    • C07B35/04Dehydrogenation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/44Iso-indoles; Hydrogenated iso-indoles
    • C07D209/48Iso-indoles; Hydrogenated iso-indoles with oxygen atoms in positions 1 and 3, e.g. phthalimide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D211/00Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings
    • C07D211/04Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D211/06Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members
    • C07D211/36Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D211/56Nitrogen atoms
    • C07D211/58Nitrogen atoms attached in position 4
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D309/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings
    • C07D309/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings having no double bonds between ring members or between ring members and non-ring members
    • C07D309/08Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings having no double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D309/14Nitrogen atoms not forming part of a nitro radical
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/02Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings
    • C07D333/04Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom
    • C07D333/06Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to the ring carbon atoms
    • C07D333/24Radicals substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/02Systems containing only non-condensed rings with a three-membered ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2602/00Systems containing two condensed rings
    • C07C2602/02Systems containing two condensed rings the rings having only two atoms in common
    • C07C2602/14All rings being cycloaliphatic
    • C07C2602/26All rings being cycloaliphatic the ring system containing ten carbon atoms
    • C07C2602/28Hydrogenated naphthalenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/56Ring systems containing bridged rings
    • C07C2603/58Ring systems containing bridged rings containing three rings
    • C07C2603/70Ring systems containing bridged rings containing three rings containing only six-membered rings
    • C07C2603/74Adamantanes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本案涉及一种惰性碳碳键选择性去饱和化合成烯烃的方法,以氯代酰胺类化合物为原料,在可见光、钌催化剂和配体存在条件下合成,反应液经后处理得到远程烯基酰胺化合物。本发明在钌催化剂和苯基吡啶配体存在下成功实现了酰胺化合物的分子内碳氢键活化,合成了远程烯烃化合物;该方法使用简单易得的氯代酰胺作为原料,底物适用范围广,反应效率高;在自由基迁移过程中总是发生1,5迁移并伴随β‑H消除,且以端烯和形成共轭双键为主要产物,具有较好的区域选择性;所得的烯烃化合物E/Z值最高大于20:1,立体选择性好。并且该类化合物的双键可进一步转化成其他官能团,转化过程简单一步到位,得到的衍生物可作为医药中间体,潜在应用价值高。This case involves a method for the selective desaturation of inert carbon-carbon bonds to synthesize olefins. Using chlorinated amides as raw materials, they are synthesized in the presence of visible light, ruthenium catalysts and ligands, and the reaction solution is post-treated to obtain remote alkenyl amides. compound. In the present invention, in the presence of ruthenium catalysts and phenylpyridine ligands, the intramolecular carbon-hydrogen bond activation of amide compounds is successfully realized, and remote olefin compounds are synthesized; the method uses simple and easy-to-obtain chlorinated amides as raw materials, and the substrate has a wide range of applications , the reaction efficiency is high; in the process of free radical migration, 1,5 migration always occurs and is accompanied by β-H elimination, and the terminal alkenes and the formation of conjugated double bonds are the main products, which have good regioselectivity; the resulting alkenes The highest E/Z value of the compound is greater than 20:1, and the stereoselectivity is good. Moreover, the double bond of this type of compound can be further converted into other functional groups, and the conversion process is simple and one-step, and the obtained derivatives can be used as pharmaceutical intermediates, with high potential application value.

Description

一种惰性碳碳键选择性去饱和化合成烯烃的方法A method for the selective desaturation of inert carbon-carbon bonds to synthesize alkenes

技术领域technical field

本发明涉及有机物合成技术领域,具体为一种惰性碳碳键选择性去饱和化合成烯烃的方法。The invention relates to the technical field of organic compound synthesis, in particular to a method for synthesizing olefins through selective desaturation of inert carbon-carbon bonds.

背景技术Background technique

烯烃是有机合成中应用最广泛的官能团之一,广泛存在于各种生物活性分子和天然产物中,作为构建其他官能团化合物强有力的前体,是种多用途的合成材料及其衍生物。作为前体,烯烃在生物化学等方面都有很多应用,同时其也是一种稳定、有效、廉价的原始材料。不同烯烃具有特定的骨架,其中的化学单元(C=C双键、双键C-1位置的芳基或其他取代基)给参与不同大小的杂环化合物的构造提供了有利条件。此外,其不对称合成为直接组装手性杂环提供了便利。Alkenes are one of the most widely used functional groups in organic synthesis. They are widely found in various bioactive molecules and natural products. As powerful precursors for the construction of other functional group compounds, olefins are versatile synthetic materials and their derivatives. As a precursor, alkenes have many applications in biochemistry and other fields, and at the same time, they are also a stable, effective and cheap raw material. Different alkenes have specific skeletons, and the chemical units (C=C double bond, aryl group at the C-1 position of the double bond or other substituents) provide favorable conditions for participating in the construction of heterocyclic compounds of different sizes. Furthermore, its asymmetric synthesis provides convenience for the direct assembly of chiral heterocycles.

遗憾的是,通过脂肪链直接去饱和合成烯烃的方法还很少被探索。这主要是由于激活动力学惰性的C(sp3)-H键的固有困难。尽管在通过过渡金属催化将未激活的碳氢键转化为有价值的碳碳键和碳杂原子键方面已经取得了相当大的进展,选择性位点控制的脂肪烃去饱和转化为烯烃的方法仍需要开发。现代催化的方法通常通过直接转移-氢化过程或定向协同金属化去质子化途径运作,在这两种途径之间,后一种方法更具有优势,因为它的稳定性较高。然而,该方法的选择性和效率低,底物范围有限,反应条件苛刻。Unfortunately, the synthesis of alkenes via direct desaturation of aliphatic chains has been poorly explored. This is mainly due to the inherent difficulty in activating the kinetically inert C( sp3 )-H bond. Although considerable progress has been made in transition metal-catalyzed conversion of unactivated C-H bonds to valuable C-C and C-heteroatom bonds, selective site-controlled desaturation of aliphatic hydrocarbons into alkenes Still needs development. Among the modern catalyzed approaches that usually operate via a direct transfer-hydrogenation process or a directed cooperative metallation-deprotonation pathway, the latter approach is more advantageous because of its higher stability. However, this method suffers from low selectivity and efficiency, limited substrate range, and harsh reaction conditions.

发明内容Contents of the invention

针对现有技术中的不足之处,本发明目的在于利用钌催化剂,以氯代酰胺作为底物,通过可见光促进的1,5-HAT过程,准确掘取δ-碳上的氢原子,生成的自由基中间体进一步在钌的作用下发生β-H消除,最终得到烯烃化合物,该方法具有很高的区域选择性和立体选择性。Aiming at the deficiencies in the prior art, the purpose of the present invention is to utilize ruthenium catalyst, use chlorinated amide as a substrate, and accurately excavate the hydrogen atom on the δ-carbon through the 1,5-HAT process promoted by visible light, and generate the The free radical intermediate is further eliminated by β-H under the action of ruthenium, and finally alkene compounds are obtained. This method has high regioselectivity and stereoselectivity.

为实现上述目的,本发明提供如下技术方案:To achieve the above object, the present invention provides the following technical solutions:

一种惰性碳碳键选择性去饱和化合成烯烃的方法,在有机溶剂体系中,以式1)所示氯代酰胺类化合物为原料,在可见光、钌催化剂和配体存在条件下合成,反应液经后处理得到式2)所示远程烯基酰胺化合物;A method for the selective desaturation of inert carbon-carbon bonds to synthesize olefins. In an organic solvent system, the chlorinated amides compound shown in formula 1) is used as a raw material and synthesized under the conditions of visible light, a ruthenium catalyst and a ligand. The reaction After post-treatment of the liquid, the remote alkenyl amide compound shown in formula 2) is obtained;

在上述方案中,式1)和式2)的虚线表示一个碳碳键,根据所述式1) 中虚线键是否存在的情况,式1)的两种结构式又分别有两种情形,从而分别可得到两种不同双键位置的烯烃,可用如下四组方程式表示:In the above scheme, the dotted line of formula 1) and formula 2) represents a carbon-carbon bond, according to the situation whether the dotted line bond exists in the described formula 1), the two structural formulas of formula 1) have two kinds of situations respectively, thereby respectively Alkenes with two different double bond positions can be obtained, which can be represented by the following four sets of equations:

其中,R1任意选自叔丁基、金刚烷基、卤代烷基、苄基、环己基、酯基、环烷基、杂环烷基、叔丁氧羰基或大分子烷基;Wherein, R is arbitrarily selected from tert-butyl, adamantyl, haloalkyl, benzyl, cyclohexyl, ester group, cycloalkyl, heterocycloalkyl, tert-butoxycarbonyl or macromolecule alkyl;

R2任意选自4-溴苯基、4-甲基苯基、4-甲氧基苯基或噻吩;R is arbitrarily selected from 4-bromophenyl, 4-methylphenyl, 4-methoxyphenyl or thiophene;

R3任意选自氢、烯基或烷基,烷基可与苯环相连形成闭环; R3 is arbitrarily selected from hydrogen, alkenyl or alkyl, and the alkyl can be connected with the benzene ring to form a closed ring;

n=0、1或2。n=0, 1 or 2.

进一步地,所述的钌催化剂为[RuCl2(p-cymene)]2、RuCl(p-cymene)(ppy)、 RuOAc(p-cymene)(ppy)或Ru(MeCN)4(ppy)PF6,更优选为[RuCl2(p-cymene)]2;所述的配体为苯基吡啶类化合物,优选为2-苯基吡啶、2-苯基-4叔丁基吡啶或2-苯基-4甲基吡啶。Further, the ruthenium catalyst is [RuCl 2 (p-cymene)] 2 , RuCl(p-cymene)(ppy), RuOAc(p-cymene)(ppy) or Ru(MeCN) 4 (ppy)PF 6 , more preferably [RuCl 2 (p-cymene)] 2 ; the ligand is a phenylpyridine compound, preferably 2-phenylpyridine, 2-phenyl-4-tert-butylpyridine or 2-phenyl -4 methylpyridine.

进一步地,所述合成具体条件为在密封管中加入氯代酰胺类化合物、钌催化剂、配体、碱、水和有机溶剂,在惰性气体氛围下反应48h。Further, the specific synthesis conditions are as follows: add chlorinated amide compound, ruthenium catalyst, ligand, alkali, water and organic solvent into a sealed tube, and react for 48 hours under an inert gas atmosphere.

进一步地,所述氯代酰胺、钌催化剂、配体、碱、水的用量摩尔比为1: 1:0.05~0.1:0.1~0.2:1.5-2:0-20。Further, the molar ratio of the chloroamide, ruthenium catalyst, ligand, base, and water is 1:1:0.05~0.1:0.1~0.2:1.5-2:0-20.

进一步地,所述有机溶剂为1,2-二氯乙烷、四氢呋喃、乙腈或二氯甲烷,更优选为1,2-二氯乙烷;所述碱优选为醋酸钾。Further, the organic solvent is 1,2-dichloroethane, tetrahydrofuran, acetonitrile or dichloromethane, more preferably 1,2-dichloroethane; the base is preferably potassium acetate.

进一步地,所述后处理方法为薄层层析、柱层析或重结晶方法进行纯化。Further, the post-processing method is thin layer chromatography, column chromatography or recrystallization method for purification.

进一步地,所述后处理的方法为薄层层析或柱层析提纯法时,所用展开剂为乙酸乙酯-石油醚的混合溶剂;所述后处理的方法为重结晶提纯法时,所用溶剂为二氯甲烷-正己烷混合溶剂。Further, when the post-processing method is thin layer chromatography or column chromatography purification method, the developer used is a mixed solvent of ethyl acetate-petroleum ether; when the post-processing method is recrystallization purification method, the used The solvent is dichloromethane-n-hexane mixed solvent.

进一步地,所述可见光可以是白炽灯或蓝光灯,优选为38W 460nm的蓝光灯。Further, the visible light can be an incandescent lamp or a blue light, preferably a 38W 460nm blue light.

本发明的有益效果是:本发明在钌催化剂和苯基吡啶配体存在下成功实现了酰胺化合物的分子内碳氢键活化,合成了远程烯烃化合物;该方法使用简单易得的氯代酰胺作为原料,底物适用范围广,反应效率高;在自由基迁移过程中总是发生1,5迁移并伴随β-H消除,且以端烯和形成共轭双键为主要产物,具有较好的区域选择性;所得的烯烃化合物E/Z值最高大于20:1,立体选择性好;并且,通过本方法制得化合物中的双键可进一步转化成其他官能团,如单羟基化、双羟基化、环丙烷化等,本案通过先去饱和化再结合加成的方法可实现在惰性的饱和烃上轻易的修饰上其他官能团,转化过程简单,得到的衍生物可作为医药中间体,潜在应用价值高。The beneficial effects of the present invention are: the present invention successfully realizes the intramolecular carbon-hydrogen bond activation of amide compounds in the presence of ruthenium catalysts and phenylpyridine ligands, and synthesizes remote olefin compounds; the method uses simple and easy-to-obtain chlorinated amides as Raw materials and substrates have a wide range of applications and high reaction efficiency; in the process of free radical migration, 1,5 migration always occurs with β-H elimination, and the main products are terminal alkenes and the formation of conjugated double bonds, which have good Regioselectivity; the highest E/Z value of the obtained olefin compound is greater than 20:1, and the stereoselectivity is good; and, the double bond in the compound prepared by this method can be further converted into other functional groups, such as monohydroxylation and dihydroxylation , cyclopropanation, etc. In this case, through the method of first desaturation and then combined with addition, other functional groups can be easily modified on inert saturated hydrocarbons. The conversion process is simple, and the obtained derivatives can be used as pharmaceutical intermediates, with potential application value high.

具体实施方式Detailed ways

下面将结合实施例对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions of the present invention will be clearly and completely described below in conjunction with the embodiments. Obviously, the described embodiments are part of the embodiments of the present invention, but not all of them. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the protection scope of the present invention.

此外,下面所描述的本发明不同实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。In addition, the technical features involved in the different embodiments of the present invention described below may be combined with each other as long as there is no conflict with each other.

本案所用化学试剂、药品如无特殊说明均可通过市场购得。The chemical reagents and drugs used in this case can be purchased from the market unless otherwise specified.

以下实施例中所用氯代酰胺类化合物的合成方法参照文献J.Am.Chem.Soc.2019,141,19941-19949,本案合成了以下具体结构式的氯代酰胺类化合物。The synthesis method of chloroamide compounds used in the following examples refers to the document J.Am.Chem.Soc.2019, 141, 19941-19949. In this case, chloroamide compounds with the following specific structural formulas were synthesized.

以下实施例中所用钌催化剂参照文献合成,[RuCl2(p-cymene)]2(CAS: 100928-22-1)、RuCl(p-cymene)(ppy)(Chang,S.Org.Lett.2014,16,2022–2025)、RuOAc(p-cymene)(ppy)(Jutand,A.J.Am.Chem.Soc.2011,133,10161–10170) 和Ru(MeCN)4(ppy)PF6(Ackermann,L.Angew.Chem.Int.Ed.2020,59, 18103–18109)。The ruthenium catalyst used in the following examples was synthesized with reference to the literature, [RuCl 2 (p-cymene)] 2 (CAS: 100928-22-1), RuCl (p-cymene) (ppy) (Chang, S.Org.Lett.2014 ,16,2022–2025), RuOAc(p-cymene)(ppy)(Jutand,AJAm.Chem.Soc.2011,133,10161–10170) and Ru(MeCN) 4 (ppy)PF 6 (Ackermann,L. Angew. Chem. Int. Ed. 2020, 59, 18103–18109).

以下实施例中采用配体的结构式如下:In the following examples, the structural formula of the ligand is as follows:

本发明远程烯烃化合物的具体合成过程为:向装有磁力搅拌子的10mL Schlenk型密封管中加入0.2mmol氯代酰胺1、钌催化剂(10mol%,12.8mg),配体L(20mol%)、KOAc(0.4mmol,40mg)、H2O(1mmol,18mg),加入1,2-二氯乙烷(4mL)进行冻干除氧,氮气保护。将管密封,无特殊说明时,采用38W 460nm蓝光灯照射下反应48小时。反应结束后,将反应混合物浓缩,得到粗产物,将其通过柱层析法纯化,得到烯烃类化合物2。The specific synthesis process of the remote olefin compound of the present invention is: add 0.2mmol chloroamide 1, ruthenium catalyst (10mol%, 12.8mg), ligand L (20mol%), KOAc (0.4mmol, 40mg), H 2 O (1mmol, 18mg), was added with 1,2-dichloroethane (4mL) for lyophilization and deoxygenation, under nitrogen protection. Seal the tube, and react for 48 hours under the irradiation of 38W 460nm blue light unless otherwise specified. After the reaction, the reaction mixture was concentrated to obtain a crude product, which was purified by column chromatography to obtain olefinic compound 2.

合成 Depend on synthesis

实施例1:向装有磁力搅拌子的10mL Schlenk型密封管中加入0.2mmol 氯代酰胺1a、[RuCl2(p-cymene)]2(10mol%,12.8mg),配体L1(20mol%)、KOAc(0.4mmol,40mg)、H2O(1mmol,18mg),加入1,2-二氯乙烷(4mL) 进行冻干除氧,氮气保护。将管密封,无特殊说明时,采用38W 460nm蓝光灯照射下下反应48小时。反应结束后,将反应混合物浓缩,得到粗产物,将其通过柱层析法纯化,得到烯烃类化合物2a。产率58%yield,E/Z≧20/1, E/Z比值由粗产物的核磁氢谱中异构体烯烃氢原子特征信号峰的积分比值得到。Example 1: Add 0.2mmol chloroamide 1a, [RuCl 2 (p-cymene)] 2 (10mol%, 12.8mg) to a 10mL Schlenk type sealed tube equipped with a magnetic stirrer, ligand L1 (20mol%) , KOAc (0.4mmol, 40mg), H 2 O (1mmol, 18mg), and 1,2-dichloroethane (4mL) were added for lyophilization and deoxygenation, under nitrogen protection. Seal the tube, and react under the irradiation of 38W 460nm blue light for 48 hours unless otherwise specified. After the reaction, the reaction mixture was concentrated to obtain a crude product, which was purified by column chromatography to obtain olefinic compound 2a. The yield is 58% yield, E/Z≧20/1, and the E/Z ratio is obtained from the integral ratio of the isomer olefin hydrogen atom characteristic signal peaks in the H NMR spectrum of the crude product.

1H NMR(400MHz,CDCl3)δ7.38(d,J=7.4Hz,2H),7.32(t,J=7.4Hz,2H), 7.23(d,J=7.2Hz,1H),6.50(d,J=15.9Hz,1H),6.29(dt,J=15.8,7.3Hz,1H),5.42(s,1H),3.07(d,J=8.4Hz,2H),1.35(s,9H). 1 H NMR (400MHz, CDCl 3 ) δ7.38(d, J=7.4Hz, 2H), 7.32(t, J=7.4Hz, 2H), 7.23(d, J=7.2Hz, 1H), 6.50(d ,J=15.9Hz,1H),6.29(dt,J=15.8,7.3Hz,1H),5.42(s,1H),3.07(d,J=8.4Hz,2H),1.35(s,9H).

13C NMR(101MHz,CDCl3)δ169.9,136.7,134.1,128.6,127.6,126.3, 123.0,51.3,41.9,28.8. 13 C NMR (101MHz, CDCl 3 ) δ169.9, 136.7, 134.1, 128.6, 127.6, 126.3, 123.0, 51.3, 41.9, 28.8.

IR(film):ν(cm-1)3310,2972,2926,1668,1640,1546,1452,1389,1252, 1177,963,757,691.IR(film):ν(cm -1 )3310,2972,2926,1668,1640,1546,1452,1389,1252, 1177,963,757,691.

HRMS(ESI,m/z)calcd for C14H19NONa[M+Na]+:240.1359,found: 240.1364.HRMS(ESI,m/z)calcd for C 14 H 19 NONa[M+Na] + :240.1359,found: 240.1364.

实施例2:在实施例1的基础上,将其中的L1(20mol%)替换为L2(20 mol%),其余与实施例1相同,合成化合物2a,产率26%,E/Z≧20/1。Example 2: On the basis of Example 1, L1 (20 mol%) was replaced by L2 (20 mol%), and the rest were the same as in Example 1 to synthesize compound 2a with a yield of 26%, E/Z≧20 /1.

实施例3:在实施例1的基础上,将其中的L1(20mol%)替换为L3(20 mol%),其余与实施例1相同,合成化合物2a,产率49%,E/Z≧20/1。Example 3: On the basis of Example 1, L1 (20 mol%) was replaced by L3 (20 mol%), and the rest were the same as in Example 1 to synthesize compound 2a with a yield of 49%, E/Z≧20 /1.

实施例4:在实施例1的基础上,将其中的L1(20mol%)替换为L4(20 mol%),其余与实施例1相同,合成化合物2a(0%yield)。Example 4: On the basis of Example 1, L1 (20 mol%) was replaced with L4 (20 mol%), and the rest were the same as Example 1 to synthesize compound 2a (0% yield).

实施例5:在实施例1的基础上,将其中的L1(20mol%)替换为L5(20 mol%),其余与实施例1相同,合成化合物2a(0%yield)。Example 5: On the basis of Example 1, L1 (20 mol%) was replaced by L5 (20 mol%), and the rest were the same as Example 1 to synthesize compound 2a (0% yield).

实施例6:在实施例1的基础上,将其中的L1(20mol%)替换为L6(20 mol%),其余与实施例1相同,合成化合物2a(0%yield)。Example 6: On the basis of Example 1, L1 (20 mol%) was replaced by L6 (20 mol%), and the rest were the same as in Example 1 to synthesize compound 2a (0% yield).

实施例7:在实施例1的基础上,将其中的L1(20mol%)替换为L7(20 mol%),其余与实施例1相同,合成化合物2a(0%yield)。Example 7: On the basis of Example 1, L1 (20 mol%) was replaced with L7 (20 mol%), and the rest were the same as Example 1 to synthesize compound 2a (0% yield).

实施例8:在实施例1的基础上,将其中的L1(20mol%)替换为L8(20 mol%),其余与实施例1相同,合成化合物2a(0%yield)。Example 8: On the basis of Example 1, L1 (20 mol%) was replaced by L8 (20 mol%), and the rest were the same as in Example 1 to synthesize compound 2a (0% yield).

当催化剂等条件不变,只改变配体结构时,实施例1-3的苯基吡啶可用于合成化合物2a,而实施例4-8却未能得到化合物2a,说明化合物L4-L8不适宜作为配体用于本案的合成。When the catalyst and other conditions are constant and only the ligand structure is changed, the phenylpyridines of Examples 1-3 can be used to synthesize compound 2a, while Examples 4-8 fail to obtain compound 2a, indicating that compounds L4-L8 are not suitable as Ligands were used for the synthesis of this case.

实施例9:在实施例1的基础上,将其中的1,2-二氯乙烷(2mL)替换为四氢呋喃(2mL),其余与实施例1相同,得到化合物2a,产率27%,E/Z ≧20/1。Example 9: On the basis of Example 1, 1,2-dichloroethane (2 mL) was replaced with tetrahydrofuran (2 mL), and the rest was the same as Example 1 to obtain compound 2a with a yield of 27%, E /Z≧20/1.

实施例10:在实施例1的基础上,将其中的1,2-二氯乙烷(2mL)替换为乙腈(2mL),其余与实施例1相同,得到化合物2a,产率26%,E/Z≧20/1。Example 10: On the basis of Example 1, 1,2-dichloroethane (2 mL) was replaced by acetonitrile (2 mL), and the rest was the same as Example 1 to obtain compound 2a with a yield of 26%, E /Z≧20/1.

实施例11:在实施例1的基础上,将其中的1,2-二氯乙烷(2mL)替换为1,2-二氯乙烷(4mL),其余与实施例1相同,得到化合物2a,产率75%, E/Z≧20/1。Example 11: On the basis of Example 1, 1,2-dichloroethane (2 mL) was replaced with 1,2-dichloroethane (4 mL), and the rest was the same as in Example 1 to obtain compound 2a , yield 75%, E/Z≧20/1.

比对实施例1和实施例9-10,可以发现一般有机溶剂对于本案的合成方法均适用,但用1,2-二氯乙烷时,化合物2a的产率更高。Comparing Example 1 and Examples 9-10, it can be found that general organic solvents are suitable for the synthesis method of this case, but when 1,2-dichloroethane is used, the yield of compound 2a is higher.

实施例12:在实施例11的基础上,将其中的[RuCl2(p-cymene)]2(10mol%, 14mg)替换为RuCl(p-cymene)(ppy)(10mol%,8.5mg),其余与实施例11相同,得到化合物2a,产率65%,E/Z≧20/1。Example 12: On the basis of Example 11, replace [RuCl 2 (p-cymene)] 2 (10mol%, 14mg) with RuCl(p-cymene) (ppy) (10mol%, 8.5mg), The rest was the same as in Example 11 to obtain compound 2a with a yield of 65% and E/Z≧20/1.

实施例13:在实施例11的基础上,将其中的[RuCl2(p-cymene)]2(10mol%, 14mg)替换为RuOAc(p-cymene)(ppy)(10mol%,9.0mg),其余与实施例11相同,得到化合物2a,产率74%,E/Z≧20/1。Example 13: On the basis of Example 11, [RuCl 2 (p-cymene)] 2 (10mol%, 14mg) was replaced by RuOAc(p-cymene) (ppy) (10mol%, 9.0mg), The rest was the same as in Example 11 to obtain compound 2a with a yield of 74% and E/Z≧20/1.

实施例14:在实施例11的基础上,将其中的[RuCl2(p-cymene)]2(10mol%, 14mg)替换为Ru(MeCN)4(ppy)PF6(10mol%,9.1mg),其余与实施例11相同,得到化合物2a,产率17%,E/Z≧20/1。Example 14: On the basis of Example 11, replace [RuCl 2 (p-cymene)] 2 (10mol%, 14mg) with Ru(MeCN) 4 (ppy)PF 6 (10mol%, 9.1mg) , the rest were the same as in Example 11 to obtain compound 2a with a yield of 17% and E/Z≧20/1.

实施例15:在实施例11的基础上,将其中的[RuCl2(p-cymene)]2(10mol%, 14mg)替换为CpIrCl2(5mol%,6.6mg),其余与实施例11相同,合成化合物 2a(0%yield)。Example 15: On the basis of Example 11, replace [RuCl 2 (p-cymene)] 2 (10mol%, 14mg) with CpIrCl 2 (5mol%, 6.6mg), and the rest are the same as Example 11, Compound 2a was synthesized (0% yield).

实施例16:在实施例11的基础上,将其中的[RuCl2(p-cymene)]2(10mol%, 14mg)替换为fac-Ir(ppy)3(2mol%,2.6mg),其余与实施例11相同,合成化合物2a(0%yield)。Example 16: On the basis of Example 11, replace [RuCl 2 (p-cymene)] 2 (10mol%, 14mg) with fac-Ir(ppy) 3 (2mol%, 2.6mg), and the rest with Same as in Example 11, compound 2a was synthesized (0% yield).

对比实施例15、16,可以发现非钌催化剂不能用于本案合成方法,起不到催化作用。Comparing Examples 15 and 16, it can be found that non-ruthenium catalysts cannot be used in the synthesis method of this case, and cannot play a catalytic role.

通过对比实施例1-16,可以得出的最佳合成条件是:装有磁力搅拌子的 10mLSchlenk型密封管中加入氯代酰胺1(0.2mmol),[RuCl2(p-cymene)]2(10 mol%,12.8mg),L1(20mol%),KOAc(0.4mmol,40mg),H2O(1mmol,18mg) 加入1,2-二氯乙烷(4mL)进行冻干除氧,氮气保护。将管密封,38W 460nm 蓝光灯照射下下反应48小时。反应结束后,将反应混合物浓缩,得到粗产物,将其通薄层色谱法纯化,石油醚/乙酸乙酯=10:1,Rf=0.3,得到化合物2。By contrasting examples 1-16, the best synthetic conditions that can be drawn are: add chloramide 1 (0.2mmol) in the 10mL Schlenk type sealed tube that magnetic stirring bar is housed, [RuCl 2 (p-cymene)] 2 ( 10 mol%, 12.8mg), L1 (20mol%), KOAc (0.4mmol, 40mg), H 2 O (1mmol, 18mg), add 1,2-dichloroethane (4mL) to freeze-dry and deoxygenate, nitrogen protection . The tube was sealed and reacted for 48 hours under the irradiation of 38W 460nm blue light. After the reaction, the reaction mixture was concentrated to obtain a crude product, which was purified by thin layer chromatography (petroleum ether/ethyl acetate=10:1, Rf=0.3) to obtain compound 2.

以化合物2a为例,其合成机理如下所示:Taking compound 2a as an example, its synthesis mechanism is as follows:

对伞花烃钌([RuCl2(p-cymene)]2)和苯基吡啶在碱条件下配位原位形成复合催化剂,该复合催化剂既充当光催化剂给出电子,形成氮自由基,由于氮自由基本身能量高,可发生分子内1,5-氢转移;又为脱氢步骤起作用,消去β-H从而形成碳碳双键,且以形成端双键或共轭双键为主要产物,具有较好的区域选择性。Ruthenium p-cymene ([RuCl 2 (p-cymene)] 2 ) and phenylpyridine form a composite catalyst in situ under alkaline conditions. The composite catalyst acts as a photocatalyst and donates electrons to form nitrogen radicals. Nitrogen free radicals have high energy and can undergo intramolecular 1,5-hydrogen transfer; they also play a role in the dehydrogenation step, eliminating β-H to form carbon-carbon double bonds, and mainly to form terminal double bonds or conjugated double bonds products with good regioselectivity.

更改氯代酰胺1的结构式,可得到P2-P26的具体结构式的远程烯基酰胺化合物。By changing the structural formula of chloroamide 1, remote alkenyl amide compounds with specific structural formulas of P2-P26 can be obtained.

P2P2

由1b出发合成 Synthesized from 1b

得到白色固体,36.8mg,0.142mmol,yield:71%,E/Z>20:1。A white solid was obtained, 36.8 mg, 0.142 mmol, yield: 71%, E/Z>20:1.

1H NMR(400MHz,CDCl3)δ7.37(d,J=7.0Hz,2H),7.32(dd,J=8.2,6.7Hz, 2H),7.28-7.23(m,3H),7.16(t,J=8.6Hz,3H),6.50(d,J=15.8Hz,1H),6.30-6.19 (m,1H),5.62(s,1H),3.30(q,J=6.9Hz,2H),3.11(dd,J=7.3,1.1Hz,2H),2.64(t,J=7.6Hz,2H),1.84(q,J=7.4Hz,2H). 1 H NMR (400MHz, CDCl 3 ) δ7.37(d, J=7.0Hz, 2H), 7.32(dd, J=8.2, 6.7Hz, 2H), 7.28-7.23(m, 3H), 7.16(t, J=8.6Hz, 3H), 6.50(d, J=15.8Hz, 1H), 6.30-6.19 (m, 1H), 5.62(s, 1H), 3.30(q, J=6.9Hz, 2H), 3.11( dd,J=7.3,1.1Hz,2H),2.64(t,J=7.6Hz,2H),1.84(q,J=7.4Hz,2H).

13C NMR(101MHz,CDCl3)δ170.52,141.33,136.51,134.74,128.61, 128.44,128.30,127.79,126.28,125.99,122.38,40.88,39.35,33.29,31.06. 13 C NMR (101MHz, CDCl 3 ) δ170.52, 141.33, 136.51, 134.74, 128.61, 128.44, 128.30, 127.79, 126.28, 125.99, 122.38, 40.88, 39.35, 33.29, 31.06.

IR(film):ν(cm-1)3310,3029,2969,2923,1634,1546,1493,1358,1248, 1181,963,748,691.IR(film):ν(cm -1 )3310,3029,2969,2923,1634,1546,1493,1358,1248, 1181,963,748,691.

HRMS(ESI,m/z)calcd for C19H21NONa[M+Na]+:302.1515,found: 302.1516.HRMS(ESI,m/z)calcd for C 19 H 21 NONa[M+Na] + :302.1515,found: 302.1516.

P3P3

由1c出发合成 synthesized from 1c

得到黄色固体,23.3mg,0.104mmol,yield:52%,E/Z>20:1。A yellow solid was obtained, 23.3 mg, 0.104 mmol, yield: 52%, E/Z>20:1.

1H NMR(400MHz,CDCl3)δ7.41-7.35(dd,2H),7.35-7.29(dd,2H), 7.27-7.25(m,1H),6.56(d,J=15.9Hz,1H),6.28(dt,J=15.8,7.3Hz,1H),6.06(s,1H),3.61(t,J=3.4Hz,2H),3.18(dd,J=7.3,1.2Hz,2H). 1 H NMR (400MHz, CDCl 3 )δ7.41-7.35(dd,2H),7.35-7.29(dd,2H), 7.27-7.25(m,1H),6.56(d,J=15.9Hz,1H), 6.28(dt,J=15.8,7.3Hz,1H),6.06(s,1H),3.61(t,J=3.4Hz,2H),3.18(dd,J=7.3,1.2Hz,2H).

13C NMR(101MHz,CDCl3)δ170.90,136.47,135.02,128.63,127.87, 126.33,121.90,43.89,41.29,40.67. 13 C NMR (101MHz, CDCl 3 ) δ170.90, 136.47, 135.02, 128.63, 127.87, 126.33, 121.90, 43.89, 41.29, 40.67.

IR(film):ν(cm-1)3310,3055,2921,2621,1740,1644,1544,1450,1407, 1358,1218,1175,1150,1087,1026,999,916,742,691.IR(film):ν(cm -1 )3310,3055,2921,2621,1740,1644,1544,1450,1407, 1358,1218,1175,1150,1087,1026,999,916,742,691.

HRMS(ESI,m/z)calcd for C12H14NONa[M+Na-Cl]+:206.1176,found: 206.1172.HRMS(ESI,m/z)calcd for C 12 H 14 NONa[M+Na-Cl] + :206.1176,found: 206.1172.

P4P4

由1d出发合成 synthesized from 1d

得到白色固体,28.0mg,0.084mmol,yield:42%,E/Z>20:1。A white solid was obtained, 28.0 mg, 0.084 mmol, yield: 42%, E/Z>20:1.

1H NMR(400MHz,CDCl3)δ7.76(dd,J=5.3,3.2Hz,2H),7.67(dd,J=5.5, 3.0Hz,2H),7.35(d,J=7.2Hz,2H),7.29(t,J=7.3Hz,2H),7.23(t,J=3.2Hz,1H),6.48(d,J=15.9Hz,1H),6.20(dd,J=15.8,7.4Hz,1H),6.11(s,1H),3.86(dd, J=6.4,4.4Hz,2H),3.58-3.53(m,2H),3.09(d,J=7.4Hz,2H). 1 H NMR (400MHz, CDCl 3 ) δ7.76(dd, J=5.3, 3.2Hz, 2H), 7.67(dd, J=5.5, 3.0Hz, 2H), 7.35(d, J=7.2Hz, 2H) ,7.29(t,J=7.3Hz,2H),7.23(t,J=3.2Hz,1H),6.48(d,J=15.9Hz,1H),6.20(dd,J=15.8,7.4Hz,1H) ,6.11(s,1H),3.86(dd, J=6.4,4.4Hz,2H),3.58-3.53(m,2H),3.09(d,J=7.4Hz,2H).

13C NMR(101MHz,CDCl3)δ171.18,168.51,136.70,134.52,134.03, 132.00,128.48,127.59,126.33,123.30,122.33,40.69,39.10,37.45. 13 C NMR (101MHz, CDCl 3 ) δ171.18, 168.51, 136.70, 134.52, 134.03, 132.00, 128.48, 127.59, 126.33, 123.30, 122.33, 40.69, 39.10, 37.45.

IR(film):ν(cm-1)3547,3306,3036,1740,1699,1644,1577,1450,1383, 1281,1209,1187,1105,1065,985,912,850,763,689.IR(film):ν(cm -1 )3547,3306,3036,1740,1699,1644,1577,1450,1383, 1281,1209,1187,1105,1065,985,912,850,763,689.

HRMS(ESI,m/z)calcd for C20H18N2O3Na[M+Na]+:357.1022, found:357.1025.HRMS(ESI,m/z)calcd for C 20 H 18 N 2 O 3 Na[M+Na] + :357.1022, found:357.1025.

P5P5

由1e出发合成 synthesized from 1e

得到白色固体,40.1mg,0.136mmol,yield:68%,E/Z>20:1。A white solid was obtained, 40.1 mg, 0.136 mmol, yield: 68%, E/Z>20:1.

1H NMR(400MHz,CDCl3)δ7.39-7.34(m,2H),7.30(t,J=7.5Hz,2H), 7.25-7.20(m,1H),6.49(d,J=15.9Hz,1H),6.27(dt,J=15.8,7.2Hz,1H),5.27(s, 1H),3.05(dd,J=7.2,1.2Hz,2H),2.05(s,3H),1.98(d,J=2.6Hz,6H),1.66(s, 6H). 1 H NMR (400MHz, CDCl 3 ) δ7.39-7.34(m, 2H), 7.30(t, J=7.5Hz, 2H), 7.25-7.20(m, 1H), 6.49(d, J=15.9Hz, 1H), 6.27(dt, J=15.8, 7.2Hz, 1H), 5.27(s, 1H), 3.05(dd, J=7.2, 1.2Hz, 2H), 2.05(s, 3H), 1.98(d, J =2.6Hz,6H),1.66(s,6H).

13C NMR(101MHz,CDCl3)δ169.68,136.79,134.10,128.57,127.62, 126.27,123.12,51.98,42.03,41.60,36.31,29.41. 13 C NMR (101MHz, CDCl 3 ) δ169.68, 136.79, 134.10, 128.57, 127.62, 126.27, 123.12, 51.98, 42.03, 41.60, 36.31, 29.41.

IR(film):ν(cm-1)3299,2906,2851,1689,1638,1540,1450,1362,1307, 1275,1238,1167,1142,965,734,693.IR(film):ν(cm -1 )3299,2906,2851,1689,1638,1540,1450,1362,1307, 1275,1238,1167,1142,965,734,693.

HRMS(ESI,m/z)calcd for C20H25NONa[M+Na]+:318.1828, found:318.1829.HRMS(ESI,m/z)calcd for C 20 H 25 NONa[M+Na] + :318.1828, found:318.1829.

P6P6

由1f出发合成 synthesized from 1f

得到白色固体,34.6mg,0.101mmol,yield:50%,E/Z>20:1。A white solid was obtained, 34.6 mg, 0.101 mmol, yield: 50%, E/Z>20:1.

1H NMR(400MHz,CDCl3)δ7.64-7.47(m,1H),7.32-7.26(m,2H),7.24(d, J=7.8Hz,1H),7.21-7.14(m,1H),6.44(d,J=15.8Hz,1H),6.23(dt,J=15.8,7.2 Hz,1H),6.11(d,J=7.8Hz,1H),3.97(s,2H),3.91–3.87(dp,J=11.2,3.7Hz,1H),3.08(dd,J=7.2,1.4Hz,2H)2.78(t,J=11.8Hz,2H),1.89-1.77(m,2H),1.39(s, 9H),1.30-1.19(ddd,J=26.16,12.32,3.88 2H). 1 H NMR (400MHz, CDCl 3 )δ7.64-7.47(m,1H),7.32-7.26(m,2H),7.24(d, J=7.8Hz,1H),7.21-7.14(m,1H), 6.44(d, J=15.8Hz, 1H), 6.23(dt, J=15.8, 7.2 Hz, 1H), 6.11(d, J=7.8Hz, 1H), 3.97(s, 2H), 3.91–3.87(dp ,J=11.2,3.7Hz,1H),3.08(dd,J=7.2,1.4Hz,2H),2.78(t,J=11.8Hz,2H),1.89-1.77(m,2H),1.39(s,9H ), 1.30-1.19 (ddd, J=26.16, 12.32, 3.88 2H).

13C NMR(101MHz,CDCl3)δ170.13,154.61,136.61,134.13,132.05, 128.56,127.67,126.24,122.60,79.58,46.75,42.46,40.79,31.92,28.39. 13 C NMR (101MHz, CDCl 3 ) δ170.13, 154.61, 136.61, 134.13, 132.05, 128.56, 127.67, 126.24, 122.60, 79.58, 46.75, 42.46, 40.79, 31.92, 28.39.

IR(film):ν(cm-1)3267,2932,1687,1640,1546,1475,1424,1364,1311, 1275,1236,1167,1081,969,763,698IR(film):ν(cm -1 )3267,2932,1687,1640,1546,1475,1424,1364,1311, 1275,1236,1167,1081,969,763,698

HRMS(ESI,m/z)calcd for C20H25NONa[M+Na]+:367.1992, found:367.1995.HRMS(ESI,m/z)calcd for C 20 H 25 NONa[M+Na] + :367.1992, found:367.1995.

P7P7

由1g出发合成 Synthesized from 1g

得到黄色油状物,32.7mg,0.135mmol,yield:67%,E/Z>20:1。A yellow oil was obtained, 32.7 mg, 0.135 mmol, yield: 67%, E/Z>20:1.

1H NMR(400MHz,CDCl3)δ7.37(d,J=7.8Hz,2H),7.31(dd,J=7.5Hz, 2H),7.25(dd,J=4.2Hz,1H),6.52(d,J=15.9Hz,1H),6.27(dt,J=14.9,7.3Hz,1H),5.56(s,1H),4.00(ddt,J=14.8,7.1,3.6Hz,1H),3.92(dt,J=11.4Hz,2H), 3.50-3.40(dt,2H),3.13(d,J=7.3Hz,2H),1.91-1.83(dd,2H),1.43(qd,J=11.9,4.3Hz,2H). 1 H NMR (400MHz, CDCl 3 ) δ7.37(d, J=7.8Hz, 2H), 7.31(dd, J=7.5Hz, 2H), 7.25(dd, J=4.2Hz, 1H), 6.52(d ,J=15.9Hz,1H),6.27(dt,J=14.9,7.3Hz,1H),5.56(s,1H),4.00(ddt,J=14.8,7.1,3.6Hz,1H),3.92(dt, J=11.4Hz, 2H), 3.50-3.40(dt, 2H), 3.13(d, J=7.3Hz, 2H), 1.91-1.83(dd, 2H), 1.43(qd, J=11.9, 4.3Hz, 2H ).

13C NMR(101MHz,CDCl3)δ169.96,136.52,134.68,128.64,127.84, 126.30,122.25,66.74,45.82,40.94,33.09. 13 C NMR (101MHz, CDCl 3 ) δ169.96, 136.52, 134.68, 128.64, 127.84, 126.30, 122.25, 66.74, 45.82, 40.94, 33.09.

P8P8

由1h出发合成 Synthesized from 1h

得到白色固体,33.8mg,0.140mmol,yield:70%,E/Z>20:1。A white solid was obtained, 33.8 mg, 0.140 mmol, yield: 70%, E/Z>20:1.

1H NMR(400MHz,CDCl3)δ7.37(d,J=7.3Hz,2H),7.31(dd,J=7.6Hz, 2H),7.23(dd,J=7.6Hz,1H),6.51(d,J=15.9Hz,1H),6.27(dt,J=15.6,7.3Hz, 1H),5.48(s,1H),3.77(ddt,J=14.4,6.3,3.6Hz,1H),3.11(dd,J=7.3,1.3Hz,2H),1.89(dt,J=12.6,4.0Hz,2H),1.73-1.53(m,4H),1.33(tt,J=24.7,10.9Hz,3H), 1.19-1.02(tt,3H). 1 H NMR (400MHz, CDCl 3 ) δ7.37(d, J=7.3Hz, 2H), 7.31(dd, J=7.6Hz, 2H), 7.23(dd, J=7.6Hz, 1H), 6.51(d ,J=15.9Hz,1H),6.27(dt,J=15.6,7.3Hz,1H),5.48(s,1H),3.77(ddt,J=14.4,6.3,3.6Hz,1H),3.11(dd, J=7.3,1.3Hz,2H),1.89(dt,J=12.6,4.0Hz,2H),1.73-1.53(m,4H),1.33(tt,J=24.7,10.9Hz,3H), 1.19-1.02 (tt,3H).

13C NMR(101MHz,CDCl3)δ169.64,136.65,134.48,128.61,127.74, 126.29,122.64,48.31,41.07,33.13,25.47,24.84. 13 C NMR (101MHz, CDCl 3 ) δ169.64, 136.65, 134.48, 128.61, 127.74, 126.29, 122.64, 48.31, 41.07, 33.13, 25.47, 24.84.

IR(film):ν(cm-1)3547,3306,3036,1740,1699,1644,1577,1450,1383, 1281,1209,1187,1105,1065,985,912,850,763,689.IR(film):ν(cm -1 )3547,3306,3036,1740,1699,1644,1577,1450,1383, 1281,1209,1187,1105,1065,985,912,850,763,689.

HRMS(ESI,m/z)calcd for C16H21NONa[M+Na]+:266.1515, found:266.1514.HRMS(ESI,m/z)calcd for C 16 H 21 NONa[M+Na] + :266.1515, found:266.1514.

P9P9

由1i出发合成 synthesized from 1i

得到黄色固体,19.9mg,0.082mmol,yield:41%,E/Z>20:1。A yellow solid was obtained, 19.9 mg, 0.082 mmol, yield: 41%, E/Z>20:1.

1H NMR(400MHz,CDCl3)δ7.40-7.36(m,2H),7.34-7.29(m,2H),7.26(d, J=1.6Hz,1H),6.53(d,J=15.8Hz,1H),6.30(dt,J=15.8,7.3Hz,1H),5.74(s,1H),3.17-3.09(m,4H),0.93(ddt,J=12.4,7.6,3.7Hz,1H),0.51-0.46(m,2H),0.18(q, J=5.6,5.1Hz,2H). 1 H NMR (400MHz, CDCl 3 ) δ7.40-7.36(m, 2H), 7.34-7.29(m, 2H), 7.26(d, J=1.6Hz, 1H), 6.53(d, J=15.8Hz, 1H), 6.30(dt, J=15.8, 7.3Hz, 1H), 5.74(s, 1H), 3.17-3.09(m, 4H), 0.93(ddt, J=12.4, 7.6, 3.7Hz, 1H), 0.51 -0.46(m,2H),0.18(q, J=5.6,5.1Hz,2H).

13C NMR(101MHz,CDCl3)δ170.51,136.63,134.56,128.61,127.76, 126.30,122.51,44.50,40.89,10.64,3.38. 13 C NMR (101MHz, CDCl 3 ) δ170.51, 136.63, 134.56, 128.61, 127.76, 126.30, 122.51, 44.50, 40.89, 10.64, 3.38.

IR(film):ν(cm-1)3236,3073,3036,1740,1699,1644,1577,1450,1383, 1281,1209,1187,1105,1065,985,912,850,763,689.IR(film):ν(cm -1 )3236,3073,3036,1740,1699,1644,1577,1450,1383, 1281,1209,1187,1105,1065,985,912,850,763,689.

HRMS(ESI,m/z)calcd for C14H17NONa[M+Na]+:238.1202, found:238.1201.HRMS(ESI,m/z) calcd for C 14 H 17 NONa[M+Na] + :238.1202, found:238.1201.

P10P10

由1j出发合成 synthesized from 1j

得到白色固体,41.0mg,0.990mmol,yield:50%,E/Z>20:1。A white solid was obtained, 41.0 mg, 0.990 mmol, yield: 50%, E/Z>20:1.

1H NMR(400MHz,CDCl3)δ7.35(d,J=7.6Hz,2H),7.29(t,J=7.5Hz,2H), 7.22(t,J=7.2Hz,1H),6.50(d,J=15.9Hz,1H),6.28(dt,J=15.3,7.3Hz,1H),5.85(s,1H),5.50-5.21(m,2H),3.24-3.18(m,2H),3.13(d,J=7.2Hz,2H),1.98(ddt, J=15.7,12.1,5.8Hz,4H),1.45(dt,J=14.6,7.3Hz,3H),1.33-1.20(m,28H),0.86 (q,J=5.9Hz,5H). 1 H NMR (400MHz, CDCl 3 ) δ7.35(d, J=7.6Hz, 2H), 7.29(t, J=7.5Hz, 2H), 7.22(t, J=7.2Hz, 1H), 6.50(d ,J=15.9Hz,1H),6.28(dt,J=15.3,7.3Hz,1H),5.85(s,1H),5.50-5.21(m,2H),3.24-3.18(m,2H),3.13( d,J=7.2Hz,2H),1.98(ddt,J=15.7,12.1,5.8Hz,4H),1.45(dt,J=14.6,7.3Hz,3H),1.33-1.20(m,28H),0.86 (q,J=5.9Hz,5H).

13C NMR(101MHz,CDCl3)δ170.57,136.62,134.45,129.93,129.75, 128.59,127.72,126.26,122.63,40.88,39.74,31.89,29.76,29.73,29.69,29.67,29.65,29.59,29.53,29.51,29.43,29.31,29.26,29.21,27.18,26.90,22.67,14.11. 13 C NMR (101MHz, CDCl 3 ) δ170.57, 136.62, 134.45, 129.93, 129.75, 128.59, 127.72, 126.26, 122.63, 40.88, 39.74, 31.89, 29.76, 29.73, 29.69, 29. 67,29.65,29.59,29.53,29.51,29.43 ,29.31,29.26,29.21,27.18,26.90,22.67,14.11.

IR(film):ν(cm-1)3250,3069,2919,2851,1628,1560,1466,1422,1248, 963,753,716,689.IR(film):ν(cm -1 )3250,3069,2919,2851,1628,1560,1466,1422,1248, 963,753,716,689.

HRMS(ESI,m/z)calcd for C28H45NONa[M+Na]+:434.3393, found:434.3386.HRMS(ESI,m/z) calcd for C 28 H 45 NONa[M+Na] + :434.3393, found:434.3386.

P11P11

由1k出发合成 Synthesized from 1k

得到白色固体,30.0mg,0.104mmol,yield:57%,E/Z>20:1。A white solid was obtained, 30.0 mg, 0.104 mmol, yield: 57%, E/Z>20:1.

1H NMR(400MHz,CDCl3)δ7.35(d,J=7.3Hz,2H),7.28(dd,J=7.3Hz, 2H),7.24-7.17(dd,1H),6.51(d,J=15.8Hz,1H),6.38(s,1H),6.28(dt,J=15.4,7.2Hz,1H),4.59(q,J=7.1Hz,1H),3.70(s,3H),3.16(d,J=7.1Hz,2H),1.38(d, J=7.1Hz,3H). 1 H NMR (400MHz, CDCl 3 ) δ7.35(d, J=7.3Hz, 2H), 7.28(dd, J=7.3Hz, 2H), 7.24-7.17(dd, 1H), 6.51(d, J= 15.8Hz, 1H), 6.38(s, 1H), 6.28(dt, J=15.4, 7.2Hz, 1H), 4.59(q, J=7.1Hz, 1H), 3.70(s, 3H), 3.16(d, J=7.1Hz, 2H), 1.38(d, J=7.1Hz, 3H).

13C NMR(101MHz,CDCl3)δ173.47,170.34,136.64,134.52,128.56, 127.69,126.32,122.10,52.44,48.06,40.49,18.34. 13 C NMR (101MHz, CDCl 3 ) δ173.47, 170.34, 136.64, 134.52, 128.56, 127.69, 126.32, 122.10, 52.44, 48.06, 40.49, 18.34.

IR(film):ν(cm-1)3547,3306,3255,3036,2957,1740,1644,1577,1497, 1434,1383,1209,1081,985,912,850,763,689.IR(film):ν(cm -1 )3547,3306,3255,3036,2957,1740,1644,1577,1497, 1434,1383,1209,1081,985,912,850,763,689.

HRMS(ESI,m/z)calcd for C15H19NO3Na[M+Na]+:286.1047, found:286.1045.HRMS(ESI,m/z)calcd for C 15 H 19 NO 3 Na[M+Na] + :286.1047, found:286.1045.

P12P12

由1l出发合成 Synthesized from 1l

得到黄色油状物,44.0mg,0.122mmol,yield:61%,E/Z>20:1。A yellow oil was obtained, 44.0 mg, 0.122 mmol, yield: 61%, E/Z>20:1.

1H NMR(400MHz,CDCl3)δ7.38-7.33(m,2H),7.29(td,J=6.7,6.2,1.6Hz, 2H),7.24-7.19(m,1H),6.54(d,J=15.9Hz,1H),6.34-6.26(td,J=15.88,7.2 1H),6.24(s,1H),4.59(dd,J=8.6,4.9Hz,1H),4.21-4.12(m,2H),1.88(dqd,J=9.4,4.8, 2.6Hz,1H),1.46-1.39(m,1H),1.25(t,J=7.1Hz,3H),1.19-1.11(m,1H),0.90(t,J=7.2Hz,6H). 1 H NMR (400MHz, CDCl 3 )δ7.38-7.33(m,2H),7.29(td,J=6.7,6.2,1.6Hz,2H),7.24-7.19(m,1H),6.54(d,J =15.9Hz, 1H), 6.34-6.26(td, J=15.88, 7.2 1H), 6.24(s, 1H), 4.59(dd, J=8.6, 4.9Hz, 1H), 4.21-4.12(m, 2H) ,1.88(dqd,J=9.4,4.8,2.6Hz,1H),1.46-1.39(m,1H),1.25(t,J=7.1Hz,3H),1.19-1.11(m,1H),0.90(t ,J=7.2Hz,6H).

13C NMR(101MHz,CDCl3)δ171.95,170.40,136.68,134.50,128.56, 127.67,126.31,122.24,61.21,56.37,40.65,37.98,25.24,15.37,14.17,11.58. 13 C NMR (101MHz, CDCl 3 ) δ171.95, 170.40, 136.68, 134.50, 128.56, 127.67, 126.31, 122.24, 61.21, 56.37, 40.65, 37.98, 25.24, 15.37, 14.17, 11.5 8.

IR(film):ν(cm-1)3301,2961,2901,31736,1642,1540,1454,1371,1244, 1191,1095,1024,965,736,691.IR(film):ν(cm -1 )3301,2961,2901,31736,1642,1540,1454,1371,1244, 1191,1095,1024,965,736,691.

HRMS(ESI,m/z)calcd for C17H23NO3Na[M+Na]+:312.1570,found: 312.1570.HRMS(ESI,m/z)calcd for C 17 H 23 NO 3 Na[M+Na] + :312.1570,found: 312.1570.

P13P13

由1m出发合成 Synthesized from 1m

得到白色固体,36.5mg,0.126mmol,yield:63%,E/Z>20:1。A white solid was obtained, 36.5 mg, 0.126 mmol, yield: 63%, E/Z>20:1.

1H NMR(400MHz,CDCl3)δ7.37-7.32(m,2H),7.28(t,J=7.5Hz,2H),7.21 (td,J=6.0,4.9,3.1Hz,1H),6.54(dt,J=15.8,1.5Hz,1H),6.33-6.28(m,1H),6.26(s,1H),4.48(d,J=9.4Hz,1H),3.69(s,3H),3.18(dd,J=7.2,1.2Hz,2H),0.94(s, 9H). 1 H NMR (400MHz, CDCl 3 ) δ7.37-7.32 (m, 2H), 7.28 (t, J = 7.5Hz, 2H), 7.21 (td, J = 6.0, 4.9, 3.1Hz, 1H), 6.54 ( dt,J=15.8,1.5Hz,1H),6.33-6.28(m,1H),6.26(s,1H),4.48(d,J=9.4Hz,1H),3.69(s,3H),3.18(dd ,J=7.2,1.2Hz,2H),0.94(s, 9H).

13C NMR(101MHz,CDCl3)δ172.07,170.37,136.66,134.55,128.57, 127.69,126.29,122.23,59.88,51.79,40.64,34.72,26.52. 13 C NMR (101MHz, CDCl 3 ) δ172.07, 170.37, 136.66, 134.55, 128.57, 127.69, 126.29, 122.23, 59.88, 51.79, 40.64, 34.72, 26.52.

IR(film):ν(cm-1)3314,2967,1740,1648,1532,1475,1438,1368,1216, 1158,981,738,693.IR(film):ν(cm -1 )3314,2967,1740,1648,1532,1475,1438,1368,1216, 1158,981,738,693.

HRMS(ESI,m/z)calcd for C17H23NO3Na[M+Na]+:312.1570, found:312.1570.HRMS(ESI,m/z) calcd for C 17 H 23 NO 3 Na[M+Na] + :312.1570, found:312.1570.

P14P14

由1n出发合成 synthesized from 1n

得到黄色固体,39.4mg,0.122mmol,yield:61%,E/Z>20:1。A yellow solid was obtained, 39.4 mg, 0.122 mmol, yield: 61%, E/Z>20:1.

1H NMR(400MHz,CDCl3)δ7.38-7.34(m,2H),7.34-7.31(m,2H),7.30 (dd,J=6.1,2.8Hz,4H),7.26(dt,J=4.4,1.6Hz,1H),6.51(d,J=15.9Hz,1H),6.29(dt,J=15.8,7.2Hz,1H),5.97(s,1H),5.15(q,J=7.0Hz,1H),3.17-3.12(m,2H), 1.48(s,3H). 1 H NMR (400MHz, CDCl 3 ) δ7.38-7.34(m, 2H), 7.34-7.31(m, 2H), 7.30 (dd, J=6.1, 2.8Hz, 4H), 7.26(dt, J=4.4 ,1.6Hz,1H),6.51(d,J=15.9Hz,1H),6.29(dt,J=15.8,7.2Hz,1H),5.97(s,1H),5.15(q,J=7.0Hz,1H ),3.17-3.12(m,2H), 1.48(s,3H).

13C NMR(101MHz,CDCl3)δ169.74,143.06,136.62,134.53,128.69, 128.61,127.75,127.38,126.32,126.14,122.40,48.80,40.89,21.76. 13 C NMR (101MHz, CDCl 3 ) δ169.74, 143.06, 136.62, 134.53, 128.69, 128.61, 127.75, 127.38, 126.32, 126.14, 122.40, 48.80, 40.89, 21.76.

IR(film):ν(cm-1)3301,3034,2950,1740,1646,1536,1499,1440,1366, 1273,1175,969.IR(film):ν(cm -1 )3301,3034,2950,1740,1646,1536,1499,1440,1366, 1273,1175,969.

HRMS(ESI,m/z)calcd for C20H21NO3Na[M+Na]+:346.1414, found:346.1416.HRMS(ESI,m/z)calcd for C 20 H 21 NO 3 Na[M+Na] + :346.1414, found:346.1416.

P15P15

由1o出发合成 synthesized from 1o

得到黄色固体,48.5mg,0.183mmol,yield:92%,E/Z>20:1。A yellow solid was obtained, 48.5 mg, 0.183 mmol, yield: 92%, E/Z>20:1.

1H NMR(400MHz,CDCl3)δ7.35(d,J=7.3Hz,2H),7.28(t,J=7.3Hz,2H), 7.24-7.18(m,1H),6.51(d,J=15.8Hz,1H),6.38(s,1H),6.28(dt,J=15.4,7.2Hz,1H),4.59(q,J=7.1Hz,1H),3.70(s,3H),3.16(d,J=7.1Hz,2H),1.38(d,J=7.1 Hz,3H). 1 H NMR (400MHz, CDCl 3 ) δ7.35(d, J=7.3Hz, 2H), 7.28(t, J=7.3Hz, 2H), 7.24-7.18(m, 1H), 6.51(d, J= 15.8Hz, 1H), 6.38(s, 1H), 6.28(dt, J=15.4, 7.2Hz, 1H), 4.59(q, J=7.1Hz, 1H), 3.70(s, 3H), 3.16(d, J=7.1Hz, 2H), 1.38(d, J=7.1Hz, 3H).

13C NMR(101MHz,CDCl3)δ173.47,170.34,136.64,134.52,128.56, 127.69,126.32,122.10,52.44,48.06,40.49,18.34. 13 C NMR (101MHz, CDCl 3 ) δ173.47, 170.34, 136.64, 134.52, 128.56, 127.69, 126.32, 122.10, 52.44, 48.06, 40.49, 18.34.

IR(film):ν(cm-1)3296,3032,2918,1634,1540,1491,1444,1428,1160, 969.IR(film):ν(cm -1 )3296,3032,2918,1634,1540,1491,1444,1428,1160, 969.

HRMS(ESI,m/z)calcd for C18H19NONa[M+Na]+:288.1359, found:288.1359.HRMS(ESI,m/z)calcd for C 18 H 19 NONa[M+Na] + :288.1359, found:288.1359.

P16P16

由1p出发合成 synthesized from 1p

得到黄色固体,19.8mg,0.080mmol,yield:40%,E/Z>20:1。A yellow solid was obtained, 19.8 mg, 0.080 mmol, yield: 40%, E/Z>20:1.

1H NMR(400MHz,CDCl3)δ7.30(d,J=8.7Hz,2H),6.84(d,J=8.7Hz,2H), 6.43(dt,J=15.7,1.5Hz,1H),6.11(dt,J=15.7,7.3Hz,1H),5.39(s,1H),3.79(s,3H),3.03(dd,J=7.3,1.2Hz,2H),1.33(s,9H). 1 H NMR (400MHz, CDCl 3 ) δ7.30(d, J=8.7Hz, 2H), 6.84(d, J=8.7Hz, 2H), 6.43(dt, J=15.7, 1.5Hz, 1H), 6.11 (dt,J=15.7,7.3Hz,1H),5.39(s,1H),3.79(s,3H),3.03(dd,J=7.3,1.2Hz,2H),1.33(s,9H).

13C NMR(101MHz,CDCl3)δ170.22,159.24,133.66,129.55,127.44, 120.65,113.98,55.27,51.24,41.91,28.76. 13 C NMR (101MHz, CDCl 3 ) δ170.22, 159.24, 133.66, 129.55, 127.44, 120.65, 113.98, 55.27, 51.24, 41.91, 28.76.

IR(film):ν(cm-1)3318,2972,1670,1642,1607,1544,1509,1454,1419, 1391,1362,1297,1248,1224,1175,1032,963,830,808.IR(film):ν(cm -1 )3318,2972,1670,1642,1607,1544,1509,1454,1419, 1391,1362,1297,1248,1224,1175,1032,963,830,808.

HRMS(ESI,m/z)calcd for C15H21NO2Na[M+Na]+:270.1465, found:270.1463.HRMS(ESI,m/z) calcd for C 15 H 21 NO 2 Na[M+Na] + :270.1465, found:270.1463.

P17P17

由1q出发合成 synthesized from 1q

得到黄色固体,25.2mg,0.121mmol,yield:55%,E/Z>20:1。A yellow solid was obtained, 25.2 mg, 0.121 mmol, yield: 55%, E/Z>20:1.

1H NMR(400MHz,CDCl3)δ7.26(d,J=8.2Hz,2H),7.12(d,J=8.0Hz,2H), 6.46(d,J=15.8Hz,1H),6.21(dt,J=15.8,7.3Hz,1H),5.43(s,1H),3.05(dd,J=7.3,1.2Hz,2H),2.32(s,3H),1.33(s,9H). 1 H NMR (400MHz, CDCl 3 ) δ7.26(d, J=8.2Hz, 2H), 7.12(d, J=8.0Hz, 2H), 6.46(d, J=15.8Hz, 1H), 6.21(dt ,J=15.8,7.3Hz,1H),5.43(s,1H),3.05(dd,J=7.3,1.2Hz,2H),2.32(s,3H),1.33(s,9H).

13C NMR(101MHz,CDCl3)δ170.13,137.53,134.15,129.27,126.19, 125.32,121.85,51.27,41.94,28.76,21.16. 13 C NMR (101MHz, CDCl 3 ) δ170.13, 137.53, 134.15, 129.27, 126.19, 125.32, 121.85, 51.27, 41.94, 28.76, 21.16.

IR(film):ν(cm-1)3310,2976,2921,1670,1640,1546,1454,1391,1360, 1252,1224,1177,965,940,799.IR(film):ν(cm -1 )3310,2976,2921,1670,1640,1546,1454,1391,1360, 1252,1224,1177,965,940,799.

HRMS(ESI,m/z)calcd for C15H21NONa[M+Na]+:254.1515, found:254.1514.HRMS(ESI,m/z) calcd for C 15 H 21 NONa[M+Na] + :254.1515, found:254.1514.

P18P18

由1r出发合成 synthesized from 1r

得到白色固体,53.9mg,0.182mmol,yield:91%,E/Z>20:1。A white solid was obtained, 53.9 mg, 0.182 mmol, yield: 91%, E/Z>20:1.

1H NMR(400MHz,CDCl3)δ7.42(dt,J=9.1,2.4Hz,2H),7.22(dd,J=8.7, 2.2Hz,2H),6.42(d,J=15.9Hz,1H),6.28(dt,J=15.8,7.1Hz,1H),5.35(s,1H),3.04(dd,J=7.1,1.2Hz,2H),1.33(s,9H). 1 H NMR (400MHz, CDCl 3 ) δ7.42(dt, J=9.1, 2.4Hz, 2H), 7.22(dd, J=8.7, 2.2Hz, 2H), 6.42(d, J=15.9Hz, 1H) ,6.28(dt,J=15.8,7.1Hz,1H),5.35(s,1H),3.04(dd,J=7.1,1.2Hz,2H),1.33(s,9H).

13C NMR(101MHz,CDCl3)δ169.60,135.72,132.73,131.66,127.79, 123.94,121.36,51.38,41.76,28.77. 13 C NMR (101MHz, CDCl 3 ) δ169.60, 135.72, 132.73, 131.66, 127.79, 123.94, 121.36, 51.38, 41.76, 28.77.

IR(film):ν(cm-1)3310,2979,1670,1638,1544,1481,1454,1393,1360, 1222,1175,1069,1005,963,940,822.IR(film):ν(cm -1 )3310,2979,1670,1638,1544,1481,1454,1393,1360, 1222,1175,1069,1005,963,940,822.

HRMS(ESI,m/z)calcd for C14H18BrNONa[M+Na]+:318.0464, found:318.0464.HRMS(ESI,m/z)calcd for C 14 H 18 BrNONa[M+Na] + :318.0464, found:318.0464.

P19P19

由1s出发合成 Synthesized from 1s

得到白色固体,24.1mg,0.108mmol,yield:54%,E/Z>20:1。A white solid was obtained, 24.1 mg, 0.108 mmol, yield: 54%, E/Z>20:1.

1H NMR(400MHz,CDCl3)δ7.16-7.09(m,1H),6.94(d,J=4.7Hz,2H), 6.61(d,J=15.7Hz,1H),6.09(dt,J=15.6,7.3Hz,1H),5.39(s,1H),3.02(dd,J=7.3, 1.3Hz,2H),1.33(s,9H). 1 H NMR (400MHz, CDCl 3 ) δ7.16-7.09(m, 1H), 6.94(d, J=4.7Hz, 2H), 6.61(d, J=15.7Hz, 1H), 6.09(dt, J= 15.6,7.3Hz,1H),5.39(s,1H),3.02(dd,J=7.3,1.3Hz,2H),1.33(s,9H).

13C NMR(101MHz,CDCl3)δ169.67,141.76,127.31,127.23,125.51, 124.22,122.49,51.34,41.64,28.75. 13 C NMR (101MHz, CDCl 3 ) δ169.67, 141.76, 127.31, 127.23, 125.51, 124.22, 122.49, 51.34, 41.64, 28.75.

IR(film):ν(cm-1)3318,2972,2928,1640,1609,1544,1454,1419,1391, 1360,1322,1297,1250,1222,1175,1034,963,810.IR(film):ν(cm -1 )3318,2972,2928,1640,1609,1544,1454,1419,1391, 1360,1322,1297,1250,1222,1175,1034,963,810.

HRMS(ESI,m/z)calcd for C12H17NOSNa[M+Na]+:246.0923, found:246.092.HRMS(ESI,m/z) calcd for C 12 H 17 NOSNa[M+Na] + :246.0923, found:246.092.

P20P20

由1t出发合成 Synthesized from 1t

得到白色固体,30.4mg,0.140mmol,yield:70%,E/Z>20:1。A white solid was obtained, 30.4 mg, 0.140 mmol, yield: 70%, E/Z>20:1.

1H NMR(400MHz,CDCl3)δ7.45-7.41(m,2H),7.36-7.31(m,2H), 7.31-7.27(m,1H),5.60(d,J=1.1Hz,1H),5.49(s,1H),5.24(d,J=1.0Hz,1H),3.36(s,2H),1.20(s,9H).1H NMR (400MHz, CDCl3) δ7.45-7.41(m, 2H), 7.36-7.31(m, 2H), 7.31-7.27(m, 1H), 5.60(d, J=1.1Hz, 1H), 5.49( s,1H),5.24(d,J=1.0Hz,1H),3.36(s,2H),1.20(s,9H).

13C NMR(101MHz,CDCl3)δ169.48,142.88,139.22,128.55,128.10, 125.79,116.49,51.05,45.31,28.44.13C NMR (101MHz, CDCl3) δ169.48, 142.88, 139.22, 128.55, 128.10, 125.79, 116.49, 51.05, 45.31, 28.44.

IR(film):ν(cm-1)3284,2921,1638,1550,1450,1356,1258,1226,897, 799,777,700,602.IR(film):ν(cm-1)3284,2921,1638,1550,1450,1356,1258,1226,897,799,777,700,602.

HRMS(ESI,m/z)calcd for C14H19NONa[M+Na]+:240.1359,found:240.1354.HRMS(ESI,m/z)calcd for C14H19NONa[M+Na]+:240.1359,found:240.1354.

P21P21

由1u出发合成 Synthesized from 1u

得到黄色固体,17.1mmg,0.084mmol,yield:42%,E/Z>20:1。A yellow solid was obtained, 17.1 mmg, 0.084 mmol, yield: 42%, E/Z>20:1.

1H NMR(400MHz,CDCl3)δ7.53(d,J=7.8Hz,1H),7.42–7.31(m,2H), 7.27(d,J=8.5Hz,1H),7.01(dd,J=17.5,11.0Hz,1H),5.70(dd,J=17.5,1.0Hz,1H),5.58(s,1H),5.34(dd,J=11.0,1.0Hz,1H),1.45(s,9H).1H NMR (400MHz, CDCl3) δ7.53(d, J=7.8Hz, 1H), 7.42–7.31(m, 2H), 7.27(d, J=8.5Hz, 1H), 7.01(dd, J=17.5, 11.0Hz, 1H), 5.70(dd, J=17.5, 1.0Hz, 1H), 5.58(s, 1H), 5.34(dd, J=11.0, 1.0Hz, 1H), 1.45(s, 9H).

13C NMR(101MHz,CDCl3)δ168.8,136.7,135.43,134.52,129.73, 127.67,127.21,126.12,116.46,51.95,28.81.13C NMR (101MHz, CDCl3) δ168.8, 136.7, 135.43, 134.52, 129.73, 127.67, 127.21, 126.12, 116.46, 51.95, 28.81.

IR(film):ν(cm-1)3310,2969,2926,1644,1544,1452,1391,1360,1222, 895,777,700.IR(film):ν(cm-1)3310,2969,2926,1644,1544,1452,1391,1360,1222, 895,777,700.

HRMS(ESI,m/z)calcd for C13H17NONa[M+Na]+:226.1202,found:226.1197.HRMS(ESI,m/z)calcd for C13H17NONa[M+Na]+:226.1202,found:226.1197.

P22P22

由1v出发合成 Synthesized from 1v

得到白色固体,25.7mg,0.125mmol,yield:56%,E/Z>20:1。A white solid was obtained, 25.7 mg, 0.125 mmol, yield: 56%, E/Z>20:1.

1H NMR(400MHz,CDCl3)δ7.18(dd,J=7.1,1.6Hz,1H),7.13-7.06(m, 2H),6.79(d,J=9.9Hz,1H),6.12(dt,J=9.3,4.5Hz,1H),5.55(s,1H),2.77(t,J=8.2Hz,2H),2.28(tdd,J=7.9,4.5,1.8Hz,2H),1.45(s,9H).1H NMR (400MHz, CDCl3) δ7.18(dd, J=7.1, 1.6Hz, 1H), 7.13-7.06(m, 2H), 6.79(d, J=9.9Hz, 1H), 6.12(dt, J= 9.3,4.5Hz,1H),5.55(s,1H),2.77(t,J=8.2Hz,2H),2.28(tdd,J=7.9,4.5,1.8Hz,2H),1.45(s,9H).

13C NMR(101MHz,CDCl3)δ169.18,136.55,134.59,131.12,130.33, 128.78,126.43,124.87,124.62,51.83,28.85,27.93,22.60.13C NMR (101MHz, CDCl3) δ169.18, 136.55, 134.59, 131.12, 130.33, 128.78, 126.43, 124.87, 124.62, 51.83, 28.85, 27.93, 22.60.

IR(film):ν(cm-1)3310,2923,1640,1521,1452,1389,1358,1307,1287, 1220,771.IR(film):ν(cm-1)3310,2923,1640,1521,1452,1389,1358,1307,1287,1220,771.

HRMS(ESI,m/z)calcd for C15H19NONa[M+Na]+:254.1515,found:254.1512.HRMS(ESI,m/z)calcd for C15H19NONa[M+Na]+:254.1515,found:254.1512.

P23P23

由1w出发合成 Synthesized from 1w

得到白色固体,31.7mg,0.147mmol,yield:73%,E/Z>20:1。A white solid was obtained, 31.7 mg, 0.147 mmol, yield: 73%, E/Z>20:1.

1H NMR(400MHz,CDCl3)δ7.60(dd,J=7.5,1.5Hz,1H),7.30(dtd, J=20.5,7.4,1.5Hz,2H),7.16(dd,J=7.3,1.5Hz,1H),6.04(s,1H),5.21-5.18(m,1H),5.05(s,1H),2.07(s,3H),1.39(s,9H).1H NMR (400MHz, CDCl3) δ7.60 (dd, J = 7.5, 1.5Hz, 1H), 7.30 (dtd, J = 20.5, 7.4, 1.5Hz, 2H), 7.16 (dd, J = 7.3, 1.5Hz, 1H), 6.04(s,1H), 5.21-5.18(m,1H), 5.05(s,1H), 2.07(s,3H), 1.39(s,9H).

13C NMR(101MHz,CDCl3)δ168.20,146.71,141.50,135.12,129.93, 128.75,128.44,127.44,115.63,51.57,28.45,24.50.13C NMR (101MHz, CDCl3) δ168.20, 146.71, 141.50, 135.12, 129.93, 128.75, 128.44, 127.44, 115.63, 51.57, 28.45, 24.50.

IR(film):ν(cm-1)3259,2965,1628,1540,1479,1450,1362,1322,1222, 895,761.IR(film):ν(cm-1)3259,2965,1628,1540,1479,1450,1362,1322,1222, 895,761.

HRMS(ESI,m/z)calcd for C14H19NONa[M+Na]+:240.1359,found:240.1356.HRMS(ESI,m/z)calcd for C14H19NONa[M+Na]+:240.1359,found:240.1356.

P24P24

由1x出发合成 Synthesized from 1x

得到黄色固体,18.4mg,0.080mmol,yield:40%,E/Z>20:1。A yellow solid was obtained, 18.4 mg, 0.080 mmol, yield: 40%, E/Z>20:1.

1H NMR(400MHz,CDCl3)δ7.54(d,J=7.8Hz,1H),7.42-7.29(m,2H), 7.22(d,J=7.5Hz,1H),6.85(d,J=15.7Hz,1H),6.72(dd,J=15.6,10.2Hz,1H),6.50(dt,J=16.9,10.1Hz,1H),5.55(s,1H),5.34(d,J=16.9Hz,1H),5.19(d, J=10.0Hz,1H),1.45(s,9H).1H NMR (400MHz, CDCl3) δ7.54(d, J=7.8Hz, 1H), 7.42-7.29(m, 2H), 7.22(d, J=7.5Hz, 1H), 6.85(d, J=15.7Hz ,1H),6.72(dd,J=15.6,10.2Hz,1H),6.50(dt,J=16.9,10.1Hz,1H),5.55(s,1H),5.34(d,J=16.9Hz,1H) ,5.19(d, J=10.0Hz,1H),1.45(s,9H).

13C NMR(101MHz,CDCl3)δ168.93,137.08,134.69,132.04,129.89, 129.64,127.35,125.96,118.45,51.96,28.83.13C NMR (101MHz, CDCl3) δ168.93, 137.08, 134.69, 132.04, 129.89, 129.64, 127.35, 125.96, 118.45, 51.96, 28.83.

IR(film):ν(cm-1)3247,2967,2921,1632,1597,1536,1473,1391,1360, 1320,1260,1222,1005,893.IR(film):ν(cm-1)3247,2967,2921,1632,1597,1536,1473,1391,1360, 1320,1260,1222,1005,893.

HRMS(ESI,m/z)calcd for C15H19NONa[M+Na]+:252.1359,found:252.1357.HRMS(ESI,m/z)calcd for C15H19NONa[M+Na]+:252.1359,found:252.1357.

P25P25

由1y出发合成 synthesized from 1y

得到白色固体,28.2mg,0.130mmol,yield:65%,E/Z>20:1。A white solid was obtained, 28.2 mg, 0.130 mmol, yield: 65%, E/Z>20:1.

1H NMR(400MHz,CDCl3)δ7.43-7.37(m,2H),7.32(t,J=7.3Hz,2H), 7.27(d,J=6.9Hz,1H),5.28(s,1H),5.14(s,1H),5.09(s,1H),2.83(t,J=7.6Hz, 2H),2.25-2.15(m,2H),1.29(s,9H).1H NMR (400MHz, CDCl3) δ7.43-7.37 (m, 2H), 7.32 (t, J = 7.3Hz, 2H), 7.27 (d, J = 6.9Hz, 1H), 5.28 (s, 1H), 5.14 (s,1H),5.09(s,1H),2.83(t,J=7.6Hz, 2H),2.25-2.15(m,2H),1.29(s,9H).

13C NMR(101MHz,CDCl3)δ171.53,147.21,140.49,128.40,127.57, 126.16,113.16,51.11,36.27,31.28,28.78.13C NMR (101MHz, CDCl3) δ171.53, 147.21, 140.49, 128.40, 127.57, 126.16, 113.16, 51.11, 36.27, 31.28, 28.78.

IR(film):ν(cm-1)3310,2969,1644,1544,1452,1391,1360,1222,895, 777,700.IR(film):ν(cm-1)3310,2969,1644,1544,1452,1391,1360,1222,895,777,700.

HRMS(ESI,m/z)calcd for C15H21NONa[M+Na]+:254.1515,found:254.1512.HRMS(ESI,m/z)calcd for C15H21NONa[M+Na]+:254.1515,found:254.1512.

P26P26

由1z出发合成 Synthesized from 1z

得到白色固体,13.9mg,0.060mmol,yield:30%,E/Z>20:1。A white solid was obtained, 13.9 mg, 0.060 mmol, yield: 30%, E/Z>20:1.

1H NMR(400MHz,CDCl3)δ7.31(d,J=7.0Hz,2H),7.28(s,2H), 7.21-7.16(m,1H),6.42(d,J=15.8Hz,1H),6.19(dt,J=15.7,6.9Hz,1H),5.27(s,1H),2.51(q,J=7.3Hz,2H),2.24(t,J=7.4Hz,2H),1.32(s,9H).1H NMR (400MHz, CDCl3) δ7.31 (d, J = 7.0Hz, 2H), 7.28 (s, 2H), 7.21-7.16 (m, 1H), 6.42 (d, J = 15.8Hz, 1H), 6.19 (dt,J=15.7,6.9Hz,1H),5.27(s,1H),2.51(q,J=7.3Hz,2H),2.24(t,J=7.4Hz,2H),1.32(s,9H) .

13C NMR(101MHz,CDCl3)δ171.43,137.41,130.93,128.93,128.49, 127.07,125.98,51.18,37.25,28.83.13C NMR (101MHz, CDCl3) δ171.43, 137.41, 130.93, 128.93, 128.49, 127.07, 125.98, 51.18, 37.25, 28.83.

IR(film):ν(cm-1)3297,2963,2921,1640,1550,1448,1387,1360,1269, 1220,963,738,604.IR(film):ν(cm-1)3297,2963,2921,1640,1550,1448,1387,1360,1269, 1220,963,738,604.

HRMS(ESI,m/z)calcd for C15H21NONa[M+Na]+:254.1515,found:254.1512.HRMS(ESI,m/z)calcd for C15H21NONa[M+Na]+:254.1515,found:254.1512.

以上所得到的P1-P26化合物可进一步转化为-羟基酰胺。以P18为例,利用文献方法(Pollrich,A.Org.Biomol.Chem.,2004,2,1116-1124),在 Co(acac)2和SiH3存在条件下,2r可以56%的收率转化为3。The P1-P26 compound obtained above can be further converted into -Hydroxyamides. Taking P18 as an example, using the literature method (Pollrich, A.Org.Biomol.Chem., 2004, 2, 1116-1124), in the presence of Co(acac) 2 and SiH 3 , 2r can be converted in 56% yield for 3.

1H NMR(400MHz,CDCl3)δ7.43(d,J=8.4Hz,2H),7.23(s,2H),5.44(s, 1H),4.71(dd,J=7.8,3.8Hz,1H),4.51(s,1H),2.23(t,J=6.5Hz,2H),1.94(td, J=13.7,6.7Hz,2H),1.32(s,9H). 1 H NMR (400MHz, CDCl 3 ) δ7.43(d, J=8.4Hz, 2H), 7.23(s, 2H), 5.44(s, 1H), 4.71(dd, J=7.8, 3.8Hz, 1H) ,4.51(s,1H),2.23(t,J=6.5Hz,2H),1.94(td,J=13.7,6.7Hz,2H),1.32(s,9H).

13C NMR(101MHz,CDCl3)δ173.01,143.80,131.33,127.50,120.83,72.94, 51.48,34.20,33.68,28.70. 13 C NMR (101MHz, CDCl 3 ) δ173.01, 143.80, 131.33, 127.50, 120.83, 72.94, 51.48, 34.20, 33.68, 28.70.

IR(film):ν(cm-1)3312,2925,1642,1548,1487,1454,1424,1395,1362, 1222,1136,1105,1069,1008.IR(film):ν(cm -1 )3312,2925,1642,1548,1487,1454,1424,1395,1362, 1222,1136,1105,1069,1008.

HRMS(ESI,m/z)calcd for C14H20NO2BrNa[M+Na]+:336.057, found:336.0566.HRMS(ESI,m/z)calcd for C 14 H 20 NO 2 BrNa[M+Na] + :336.057, found:336.0566.

尽管本发明的实施方案已公开如上,但其并不仅仅限于说明书和实施方式中所列运用,它完全可以被适用于各种适合本发明的领域,对于熟悉本领域的人员而言,可容易地实现另外的修改,因此在不背离权利要求及等同范围所限定的一般概念下,本发明并不限于特定的细节。Although the embodiment of the present invention has been disclosed as above, it is not limited to the use listed in the specification and implementation, it can be applied to various fields suitable for the present invention, and it can be easily understood by those skilled in the art Therefore, the invention is not limited to the specific details without departing from the general concept defined by the claims and their equivalents.

Claims (4)

1.一种惰性碳碳键选择性去饱和化合成烯烃的方法,其特征在于,在有机溶剂体系中,以式1)所示氯代酰胺类化合物为原料,在可见光、钌催化剂和配体存在条件下合成,反应液经后处理得到式2)所示远程烯基酰胺化合物,反应过程选自如下反应式中任意一种;1. A method for the selective desaturation of inert carbon-carbon bonds to synthesize olefins, characterized in that, in an organic solvent system, the chlorinated amides compound shown in formula 1) is used as a raw material, under visible light, a ruthenium catalyst and a ligand Synthesized under existing conditions, the reaction solution is post-treated to obtain a remote alkenyl amide compound shown in formula 2), and the reaction process is selected from any one of the following reaction formulas; 其中,R1任意选自叔丁基、金刚烷基、卤代烷基、苄基、酯基、环烷基、杂环烷基、叔丁氧羰基中的任意一种;Wherein, R is arbitrarily selected from any one of tert-butyl, adamantyl, haloalkyl, benzyl, ester group, cycloalkyl, heterocycloalkyl, tert-butoxycarbonyl; R2任意选为4-溴苯基、4-甲基苯基、4-甲氧基苯基或噻吩; R is arbitrarily selected as 4-bromophenyl, 4-methylphenyl, 4-methoxyphenyl or thiophene; R3任意选为氢、烯基或烷基; R is optionally selected as hydrogen, alkenyl or alkyl; n=0、1或2;n=0, 1 or 2; 所述的钌催化剂为[RuCl2(p-cymene)]2、RuCl(p-cymene)(ppy)、RuOAc(p-cymene)(ppy)或Ru(MeCN)4(ppy)PF6;所述的配体为苯基吡啶类化合物,结构式选自中的一种;所述可见光为蓝光;具体条件为在密封管中加入氯代酰胺类化合物、钌催化剂、配体、碱、水和有机溶剂,在惰性气体氛围下反应48h。The ruthenium catalyst is [RuCl 2 (p-cymene)] 2 , RuCl (p-cymene) (ppy), RuOAc (p-cymene) (ppy) or Ru(MeCN) 4 (ppy) PF 6 ; the The ligand is a phenylpyridine compound, the structural formula is selected from One of them; the visible light is blue light; the specific condition is to add chlorinated amide compounds, ruthenium catalyst, ligand, alkali, water and organic solvent in a sealed tube, and react for 48h under an inert gas atmosphere. 2.如权利要求1所述的惰性碳碳键选择性去饱和化合成烯烃的方法,其特征在于,所述有机溶剂为1,2-二氯乙烷、四氢呋喃、乙腈或二氯甲烷。2. The method for selective desaturation of inert carbon-carbon bonds to synthesize olefins as claimed in claim 1, wherein the organic solvent is 1,2-dichloroethane, tetrahydrofuran, acetonitrile or dichloromethane. 3.如权利要求1所述的惰性碳碳键选择性去饱和化合成烯烃的方法,其特征在于,所述后处理方法为薄层层析、柱层析或重结晶方法进行纯化。3. The method for selective desaturation of inert carbon-carbon bonds to synthesize olefins as claimed in claim 1, wherein the post-treatment method is purification by thin layer chromatography, column chromatography or recrystallization. 4.如权利要求3所述的惰性碳碳键选择性去饱和化合成烯烃的方法,其特征在于,所述后处理的方法为薄层层析或柱层析提纯法时,所用展开剂为乙酸乙酯-石油醚的混合溶剂;所述后处理的方法为重结晶提纯法时,所用溶剂为二氯甲烷-正己烷混合溶剂。4. the method for selective desaturation of inert carbon-carbon bond as claimed in claim 3 and synthetic olefin, it is characterized in that, when the method for described aftertreatment is thin-layer chromatography or column chromatography purification method, used developing agent is A mixed solvent of ethyl acetate-petroleum ether; when the method of the post-treatment is the recrystallization purification method, the solvent used is a mixed solvent of dichloromethane-n-hexane.
CN202110477262.7A 2021-04-29 2021-04-29 A method for the selective desaturation of inert carbon-carbon bonds to synthesize alkenes Active CN113173862B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110477262.7A CN113173862B (en) 2021-04-29 2021-04-29 A method for the selective desaturation of inert carbon-carbon bonds to synthesize alkenes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110477262.7A CN113173862B (en) 2021-04-29 2021-04-29 A method for the selective desaturation of inert carbon-carbon bonds to synthesize alkenes

Publications (2)

Publication Number Publication Date
CN113173862A CN113173862A (en) 2021-07-27
CN113173862B true CN113173862B (en) 2023-04-25

Family

ID=76925563

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110477262.7A Active CN113173862B (en) 2021-04-29 2021-04-29 A method for the selective desaturation of inert carbon-carbon bonds to synthesize alkenes

Country Status (1)

Country Link
CN (1) CN113173862B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114656369A (en) * 2022-01-19 2022-06-24 大连理工大学 High allylamine compound, synthesis method and application thereof
CN116410126B (en) * 2023-02-20 2025-05-09 河北师范大学 A ligand, a ruthenium complex, a preparation method thereof, and application thereof in catalyzing alkyne semihydrogenation reaction

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106008140A (en) * 2016-05-24 2016-10-12 扬州大学 Simple synthesis method of olefin
CN111704600A (en) * 2020-05-26 2020-09-25 扬州大学 9-, 10-membered ring compound substituted with tert-butylsulfone group containing Z-alkene and its synthesis method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106008140A (en) * 2016-05-24 2016-10-12 扬州大学 Simple synthesis method of olefin
CN111704600A (en) * 2020-05-26 2020-09-25 扬州大学 9-, 10-membered ring compound substituted with tert-butylsulfone group containing Z-alkene and its synthesis method

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
General, Auxiliary-Enabled Photoinduced Pd-Catalyzed Remote Desaturation of Aliphatic Alcohols;Marvin Parasram等;《J.Am.Chem.Soc.》;20171009;第139卷;第14857-14860页 *
General, Mild, and Selective Method for Desaturation of Aliphatic Amines;Padon Chuentragool等;《J.Am.Chem.Soc.》;20180205;第140卷;第2465-2468页 *
Photoinduced Formation of Hybrid Aryl Pd-Radical Species Capable of 1,5-HAT: Selective Catalytic Oxidation of Silyl Ethers into Silyl Enol Ethers;Marvin Parasram等;《J.Am.Chem.Soc.》;20160505;第138卷;第6340-6343页 *
Photostable Polynuclear Ruthenium(II) Photosensitizers Competent for Dehalogenation Photoredox Catalysis at 590 nm;Simon Cerfontaine等;《J.Am.Chem.Soc.》;20200308;第142卷;第5549-5555页 *

Also Published As

Publication number Publication date
CN113173862A (en) 2021-07-27

Similar Documents

Publication Publication Date Title
US8816114B2 (en) Method for manufacturing ruthenium carbene complexes
CN113173862B (en) A method for the selective desaturation of inert carbon-carbon bonds to synthesize alkenes
JP6395714B2 (en) Ruthenium-based metathesis catalysts, precursors for their production and their use
CN111909016B (en) Method for Synthesizing Optically Active Cyclohexene Compounds by Cycloaddition Reaction of 2'-Hydroxy-α, β-Unsaturated Ketones and Dienes
CN114437103B (en) A method for synthesizing chiral tetrahydrobenzoxazepines through gold-catalyzed asymmetric cycloaddition
Liu et al. Ruthenium-Catalyzed C (sp2)–H Bond Bisallylation with Imidazopyridines as Directing Groups
CN114426441A (en) Method for catalyzing chlorination of quinone compounds by iron
CN112142617A (en) Method for synthesizing alpha, beta-unsaturated alkynylamide compound by oxidative carbonylation
CN112679435B (en) A photoredox/copper co-catalyzed alkylation/acylation method
CN111747875A (en) Cyanoalkoxy-substituted tetra-substituted alkene derivatives and their synthesis
CN109970638B (en) Method for catalytically synthesizing chiral quinolinone compound with high enantioselectivity
CN111732508B (en) Synthesis method of spiro compound
CN115286557A (en) The preparation method of 3-alkenyl isoindolin-1-one derivatives and the prepared derivatives
CN110317172B (en) A kind of azafluorenone derivatives and preparation method and application thereof
CN115785104A (en) A kind of synthesis method of spiro[indoline-3,3'-pyrrolidine] derivatives catalyzed by monovalent gold
CN107868095B (en) Chiral trivalent gold complex and preparation method and application thereof
CN116041220B (en) Preparation method of aryl substituted amide compound
CN113861238B (en) Method for synthesizing phosphine chiral center secondary/tertiary phosphine oxide compound through palladium/chiral ligand catalysis
CN106831522B (en) Lactam compound and preparation method thereof
CN112574107B (en) Synthesis method of atropisomeric 1-arylisoquinoline N-oxide and derivatives thereof
CN107987034A (en) Preparation method of dibenzo [ c, e ] [1,2] thiazine-5-oxo series compound with tricyclic system structure
CN110615729B (en) Method for selectively generating cis-olefin by deamination coupling of secondary carbon primary amine and aryl terminal alkyne
CN117903150A (en) A method for synthesizing alkenyl-substituted polycyclic nitrogen heterocycles
JP4011022B2 (en) Polymer-immobilized allene ruthenium complex, its catalyst, and organic synthesis reaction method using the same
CN107082777B (en) Chiral α, γ-diaminodiacid derivatives and synthesis method thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant