CN113155163A - 基于双毛细管封装光纤温度压力传感器 - Google Patents
基于双毛细管封装光纤温度压力传感器 Download PDFInfo
- Publication number
- CN113155163A CN113155163A CN202011091793.4A CN202011091793A CN113155163A CN 113155163 A CN113155163 A CN 113155163A CN 202011091793 A CN202011091793 A CN 202011091793A CN 113155163 A CN113155163 A CN 113155163A
- Authority
- CN
- China
- Prior art keywords
- glass tube
- capillary
- fiber
- capillary glass
- photonic crystal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000013307 optical fiber Substances 0.000 title claims abstract description 32
- 238000004806 packaging method and process Methods 0.000 title description 4
- 239000000835 fiber Substances 0.000 claims abstract description 100
- 239000011521 glass Substances 0.000 claims abstract description 90
- 230000008929 regeneration Effects 0.000 claims abstract description 70
- 238000011069 regeneration method Methods 0.000 claims abstract description 70
- 239000004038 photonic crystal Substances 0.000 claims abstract description 43
- 239000003292 glue Substances 0.000 claims abstract description 14
- 238000005538 encapsulation Methods 0.000 claims abstract description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 11
- 230000009977 dual effect Effects 0.000 claims description 10
- 229910052594 sapphire Inorganic materials 0.000 claims description 6
- 239000010980 sapphire Substances 0.000 claims description 6
- 239000010453 quartz Substances 0.000 claims description 5
- 240000000560 Citrus x paradisi Species 0.000 claims description 4
- 239000005388 borosilicate glass Substances 0.000 claims description 4
- 239000013078 crystal Substances 0.000 claims description 4
- 238000005253 cladding Methods 0.000 claims description 3
- 230000001788 irregular Effects 0.000 claims description 3
- 238000012544 monitoring process Methods 0.000 abstract description 3
- 238000000691 measurement method Methods 0.000 abstract 1
- 239000011162 core material Substances 0.000 description 15
- 239000000919 ceramic Substances 0.000 description 10
- 230000008859 change Effects 0.000 description 10
- 230000035945 sensitivity Effects 0.000 description 8
- 238000012360 testing method Methods 0.000 description 6
- 239000011148 porous material Substances 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 4
- 230000001172 regenerating effect Effects 0.000 description 4
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- NAWXUBYGYWOOIX-SFHVURJKSA-N (2s)-2-[[4-[2-(2,4-diaminoquinazolin-6-yl)ethyl]benzoyl]amino]-4-methylidenepentanedioic acid Chemical compound C1=CC2=NC(N)=NC(N)=C2C=C1CCC1=CC=C(C(=O)N[C@@H](CC(=C)C(O)=O)C(O)=O)C=C1 NAWXUBYGYWOOIX-SFHVURJKSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000012938 design process Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/26—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
- G01D5/32—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
- G01D5/34—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
- G01D5/353—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
- G01D5/35338—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using other arrangements than interferometer arrangements
- G01D5/35354—Sensor working in reflection
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/26—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
- G01D5/32—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
- G01D5/34—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
- G01D5/353—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
- G01D5/3537—Optical fibre sensor using a particular arrangement of the optical fibre itself
- G01D5/3538—Optical fibre sensor using a particular arrangement of the optical fibre itself using a particular type of fiber, e.g. fibre with several cores, PANDA fiber, fiber with an elliptic core or the like
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/26—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
- G01D5/32—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
- G01D5/34—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
- G01D5/36—Forming the light into pulses
- G01D5/38—Forming the light into pulses by diffraction gratings
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K11/00—Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
- G01K11/32—Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L1/00—Measuring force or stress, in general
- G01L1/24—Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet
- G01L1/242—Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet the material being an optical fibre
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/02—Optical fibres with cladding with or without a coating
- G02B6/02057—Optical fibres with cladding with or without a coating comprising gratings
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/02—Optical fibres with cladding with or without a coating
- G02B6/02295—Microstructured optical fibre
- G02B6/02314—Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
- G02B6/02319—Plurality of longitudinal structures extending along optical fibre axis, e.g. holes characterised by core or core-cladding interface features
- G02B6/02323—Core having lower refractive index than cladding, e.g. photonic band gap guiding
- G02B6/02328—Hollow or gas filled core
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Measuring Temperature Or Quantity Of Heat (AREA)
Abstract
一种基于双毛细管封装光纤温度压力传感器,第一毛细玻璃管内用高温胶密封封装有单模光纤,单模光纤的纤芯上刻写有第一热再生光栅,单模光纤两端伸出第一毛细玻璃管外,其中一端熔接有光子晶体光纤,光子晶体光纤上套设有第二毛细玻璃管,位于第二毛细玻璃管内光子晶体光纤纤芯上刻写有第二热再生光栅,第一毛细玻璃管靠近光子晶体光纤的一端套嵌在第二毛细玻璃管内,第一毛细玻璃管与第二毛细玻璃管之间用高温胶密封固定。本发明克服传统电学类测量方式需要分别测量且无法长时间在高温环境下精确测量的局限性,具有体积更小更适合在密封狭窄的结构元件内监测的优点。
Description
技术领域
本发明属于光纤传感技术领域,具体涉及到一种基于双毛细管封装光纤温度压力传感器。
背景技术
发动机是一种能够把其它形式的能转化为机械能的机器,既适用于动力发生装置,也可指包括动力装置的整个机器(如:汽油发动机、航空发动机)。以航空发动机为例,其工作时,内部通常包括高温、高压、并伴随着高负荷、高转速剧烈振动,是涉及多学科的综合性系统工程,因此造成了巨大的设计与制造难度。随着发动机向高推重比、高涵道比、高涡轮进口温度方向发展,发动机热端部件的工作温度越来越高,发动机的机体表面温度在50~600℃之间,而燃烧室中的燃气温度已超过1650℃。众所周知,确定被检对象在实际运行过程中热变化程度和异常过热,往往是判断其可靠性和实际工作性能的重要依据。发动机的各部组件在设计与制造过程中,长时间运行测试,在不同的极端高温、高压环境中工作存在易燃易爆的危险,因此,对生产过程中的设备的检测与监测是非常必要的。
发明内容
本发明所要解决的技术问题在于提供一种设计合理、结构简单、体积小、能够长期在高温压力环境下连续准确区分测量温度和压力的基于双毛细管封装光纤温度压力传感器。
解决上述技术问题所采用的技术方案是:一种基于双毛细管封装光纤温度压力传感器,第一毛细玻璃管内用高温胶密封封装有单模光纤,单模光纤的纤芯上刻写有第一热再生光栅,单模光纤两端伸出第一毛细玻璃管外,其中一端熔接有光子晶体光纤,光子晶体光纤上套设有第二毛细玻璃管,位于第二毛细玻璃管内光子晶体光纤纤芯上刻写有第二热再生光栅,第一毛细玻璃管靠近光子晶体光纤的一端套嵌在第二毛细玻璃管内,第一毛细玻璃管与第二毛细玻璃管之间用高温胶密封固定。
作为一种优选的技术方案,所述的第一热再生光栅与第二热再生光栅的栅区长度相等,两栅区之间距离为2~3cm,所述第一热再生光栅的中心波长>第二热再生光栅的中心波长。
作为一种优选的技术方案,所述的第一热再生光栅的栅区长度为5~15mm、中心波长为1533~1573nm,所述的第一热再生光栅的中心波长与第二热再生光栅的中心波长差为3~10nm。
作为一种优选的技术方案,所述的第一毛细玻璃管外径与第二毛细玻璃管内径之差为40~60μm。
作为一种优选的技术方案,所述的第一毛细玻璃管长度为1~3cm、内径为150~200μm、外径为258~300μm,所述的第二毛细玻璃管长度为2~4cm、内径为318~368μm、外径为449~499μm。
作为一种优选的技术方案,所述的第一毛细玻璃管和第二毛细玻璃管均为石英毛细玻璃管或硼硅玻璃毛细管。
作为一种优选的技术方案,所述的第一毛细玻璃管和第二毛细玻璃管还可以是蓝宝石晶体毛细管。
作为一种优选的技术方案,所述的光子晶体光纤为柚子型光子晶体光纤,所述的柚子型光子晶体光纤的包层直径为125μm,纤芯为不规则六边形,纤芯周围环绕有6个均匀分布的气孔a相邻两气孔的孔心距为7.7μm,所述的气孔横向孔径为19.7μm、纵向孔径为15μm。
作为一种优选的技术方案,所述的单模光纤为石英光纤。
作为一种优选的技术方案,所述的单模光纤还可以是蓝宝石光纤或光子晶体光纤。
本发明的有益效果如下:
本发明将第一热再生光纤光栅位于第一毛细玻璃管内的单模光纤上,第二热再生光纤光栅位于第二毛细玻璃管内的光子晶体光纤上,而且第一毛细玻璃管与第二毛细玻璃管之间用高温陶瓷胶密封固定,当本发明处于温度压力环境中,第一热再生光纤光栅只会受到温度影响,第二热再生光纤光栅会同时受到温度压力同时影响,通过双波长矩阵分别计算出温度压力,从而实现温度压力区分测量。本发明克服传统电学类测量方式需要分别测量且无法长时间在高温环境下精确测量的局限性,具有体积更小更适合在密封狭窄的结构元件内监测的优点。
附图说明
图1是本发明的结构示意图。
图2是本发明实施例1在0~900℃反射谱图。
图3是本发明实施例1在800℃环境下进行压力测试波长与强度图。
图4是本发明实施例1在800℃环境下波长与压力的拟合图。
具体实施方式
下面结合附图和实施例对本发明进一步详细说明,但本发明不限于下述的实施方式。
实施例1
在图1中,本实施例的一种基于双毛细管封装光纤温度压力传感器由第一毛细玻璃管1、单模光纤2、第二毛细玻璃管3、光子晶体光纤4连接构成。
第一毛细玻璃管1长度为2cm、内径为170μm、外径为270μm,第一毛细玻璃管1内用高温陶瓷胶密封封装有单模光纤2,该单模光纤2为石英光纤,单模光纤2的纤芯上刻写有第一热再生光栅5,第一热再生光栅5的栅区长度为10mm、中心波长为1553nm,单模光纤2左右两端伸出第一毛细玻璃管1外,单模光纤2右端熔接有光子晶体光纤4,该光子晶体光纤4为柚子型光子晶体光纤4,柚子型光子晶体光纤4的包层直径为125μm,纤芯为不规则六边形,纤芯周围环绕有6个均匀分布的气孔a,相邻两气孔a的孔心距为7.7μm,气孔a横向孔径为19.7μm、纵向孔径为15μm,光子晶体光纤4上套装有第二毛细玻璃管3,第二毛细玻璃管3的长度为3cm、内径为330μm、外径为479μm,位于第二毛细玻璃管3内光子晶体光纤4纤芯上刻写有第二热再生光栅6,第二热再生光栅6与第一热再生光栅5的栅区长度相等,两栅区之间距离为2.5cm,第二热再生光栅6的中心波长为1547nm,第一毛细玻璃管1靠近光子晶体光纤4的一端套嵌在第二毛细玻璃管3内,第一毛细玻璃管1与第二毛细玻璃管3之间用高温陶瓷胶密封固定。由于第一热再生光纤光栅位于第一毛细玻璃管1内的单模光纤2上,第二热再生光纤光栅位于第二毛细玻璃管3内的光子晶体光纤4上,而且第一毛细玻璃管1与第二毛细玻璃管3之间用高温陶瓷胶密封固定,当本发明处于温度压力环境中,第一热再生光纤光栅只会受到温度影响,第二热再生光纤光栅会同时受到温度压力同时影响,通过双波长矩阵分别计算出温度压力,从而实现温度压力区分测量。
实施例2
在本实施例中,第一毛细玻璃管1长度为1cm、内径为150μm、外径为258μm,第一毛细玻璃管1为石英毛细玻璃管,也可以为硼硅玻璃毛细管,第一毛细玻璃管1内用高温陶瓷胶密封封装有单模光纤2,该单模光纤2为石英光纤,单模光纤2的纤芯上刻写有第一热再生光栅5,第一热再生光栅5的栅区长度为5mm、中心波长为1533nm,单模光纤2左右两端伸出第一毛细玻璃管1外,单模光纤2右端熔接有光子晶体光纤4,该光子晶体光纤4为柚子型光子晶体光纤4,光子晶体光纤4上套装有第二毛细玻璃管3,第二毛细玻璃管3的长度为2cm、内径为318μm、外径为449μm,第二毛细玻璃管3为石英毛细玻璃管,也可以为硼硅玻璃毛细管,位于第二毛细玻璃管3内光子晶体光纤4纤芯上刻写有第二热再生光栅6,第二热再生光栅6与第一热再生光栅5的栅区长度相等,两栅区之间距离为2cm,第二热再生光栅6的中心波长为1530nm,第一毛细玻璃管1靠近光子晶体光纤4的一端套嵌在第二毛细玻璃管3内,第一毛细玻璃管1与第二毛细玻璃管3之间用高温陶瓷胶密封固定。其他零部件及零部件的连接关系与实施例1相同。
实施例3
在本实施例中,第一毛细玻璃管1长度为3cm、内径为200μm、外径为300μm,第一毛细玻璃管1内用高温陶瓷胶密封封装有单模光纤2,该单模光纤2为石英光纤,单模光纤2的纤芯上刻写有第一热再生光栅5,第一热再生光栅5的栅区长度为15mm、中心波长为1573nm,单模光纤2左右两端伸出第一毛细玻璃管1外,单模光纤2右端熔接有光子晶体光纤4,该光子晶体光纤4为柚子型光子晶体光纤4,光子晶体光纤4上套装有第二毛细玻璃管3,第二毛细玻璃管3的长度为4cm、内径为360μm、外径为499μm,位于第二毛细玻璃管3内光子晶体光纤4纤芯上刻写有第二热再生光栅6,第二热再生光栅6与第一热再生光栅5的栅区长度相等,两栅区之间距离为3cm,第二热再生光栅6的中心波长为1563nm,第一毛细玻璃管1靠近光子晶体光纤4的一端套嵌在第二毛细玻璃管3内,第一毛细玻璃管1与第二毛细玻璃管3之间用高温陶瓷胶密封固定。其他零部件及零部件的连接关系与实施例1相同。
实施例4
在上述实施例1~3中,第一毛细玻璃管1和第二毛细玻璃管3用蓝宝石晶体毛细管代替,单模光纤2用蓝宝石光纤或光子晶体光纤4代替。其他零部件及零部件的连接关系与相应实施例相同。
本发明的工作原理如下:
热再生光栅温度传感机理:热再生光栅的波长漂移会受到温度变化的影响,热再生光栅中心波长产生漂移则是受到有效折射率和热再生光栅周期而影响,当外界均匀压力以及轴向应力场均保持恒定不变的时候,可以得到由热再生光栅周期变化引起的热膨胀效应为:
ΔΛ=α·Λ·ΔT (1)
式中ΔΛ为热再生光栅周期变化量,α为光纤的热膨胀系数,Λ为热再生光栅周期,ΔT为温度变化量;
由热光效应引起的有效折射率变化为:
Δneff=ξ·neff·ΔT (2)
式中Δneff为纤芯有效折射率随温度的变化率,ξ为光纤的热光系数,neff为纤芯有效折射率,所以,温度对热再生光栅总的波长漂移量为:
式中ΔλB为热再生光栅中心波长的漂移量,λB为热再生光栅中心波长;
热再生光栅的温度灵敏度系数KT为:
当温度变化不是太大时,普遍认为ξ为一个常数,其关系式为
ΔλB=KT·λB·ΔT (5)
热再生光栅压力传感机理:当热再生光栅受受到的径向压力作用时热再生光栅会产生正的轴向应变,热再生光栅周期发生改变,轴向应变引起的热再生光栅中心波长的变化为:
式中P11为单模光纤的弹光系数,P12为光子晶体光纤的弹光系数,ν为光纤纤芯材料泊松比,neff为纤芯有效折射率,Pe为有效弹光系数。
为了验证本发明的有益效果,以实施例1的基于双毛细管封装光纤温度压力传感器在800℃环境下进行压力测试:
将基于双毛细管封装光纤温度压力传感器的单模光纤左端与SM125光学解调仪的一端相连,SM125光学解调仪发出宽带光由单模光纤的左端进入,经过第一热再生光栅和第二热再生光栅反射后由单模光纤左端传出到SM125光学解调仪,SM125光学解调仪将接收到的反射宽带光解调成反射宽带光的反射光谱曲线,实施例1基于双毛细管封装光纤温度压力传感器在0~900℃反射谱,如图2。
当外界环境的压力和温度同时变化时,第一热再生光栅5和第二热再生光栅6的波长飘移分别为:
Δλ1=k1T·ΔT+k1P·ΔP (8)
Δλ2=k2T·ΔT+k2p·ΔP (9)
式中Δλ1为第一热再生光栅5的波长飘移,Δλ2为第一热再生光栅5的波长飘移,ΔP为压力变化量,ΔT为温度的变化量,k1T为第一热再生光栅5的温度灵敏度,k2T为第二热再生光栅6的温度灵敏度,k1p为第一热再生光栅5的压力灵敏度,k2p为第二热再生光栅6的压力灵敏度;
温度补偿的系数矩阵为:
由于第一热再生光栅5隔绝压力影响,故k1P=0。
实验结果及分析
图2为热重生过后的传感器结构在800℃环境下进行压力测试,该图中左侧波峰为受毛细玻璃管和高温胶保护的第一热再生光栅,由于毛细玻璃管和高温胶隔绝压力的作用,该反射峰只受到测试环境温度轻微的扰动,其波峰基本保持不变,而与此相反,右侧波峰为不受毛细玻璃管保护的第二热再生光栅,在0-5MPa的压力测试下保持向短波长方向漂移,经过图3的拟合,测得在800℃环境下,本发明实施例1结构的压力灵敏度为165.9pm/Mpa,通过测量不同温度下第一、第二热重生光栅波峰的漂移,得到对应的温度灵敏度,将其对应的带入公式(10),即可得到此时对应温度压力。
由于该传感器受到高温陶瓷胶的限制,温度的响应范围随高温陶瓷胶的最低耐受温度而发生变化,且不同的温度下该类型的结构都可以参照1000℃下的温度压力测试方法,实现不同温度下的压力的精确测量。
Claims (10)
1.一种基于双毛细管封装光纤温度压力传感器,其特征在于:第一毛细玻璃管(1)内用高温胶密封封装有单模光纤(2),单模光纤(2)的纤芯上刻写有第一热再生光栅(5),单模光纤(2)两端伸出第一毛细玻璃管(1)外,其中一端熔接有光子晶体光纤(4),光子晶体光纤(4)上套设有第二毛细玻璃管(3),位于第二毛细玻璃管(3)内光子晶体光纤(4)纤芯上刻写有第二热再生光栅(6),第一毛细玻璃管(1)靠近光子晶体光纤(4)的一端套嵌在第二毛细玻璃管(3)内,第一毛细玻璃管(1)与第二毛细玻璃管(3)之间用高温胶密封固定。
2.根据权利要求1所述的基于双毛细管封装光纤温度压力传感器,其特征在于:所述的第一热再生光栅(5)与第二热再生光栅(6)的栅区长度相等,两栅区之间距离为2~3cm,所述第一热再生光栅(5)的中心波长>第二热再生光栅(6)的中心波长。
3.根据权利要求2所述的基于双毛细管封装光纤温度压力传感器,其特征在于:所述的第一热再生光栅(5)的栅区长度为5~15mm、中心波长为1533~1573nm,所述的第一热再生光栅(5)的中心波长与第二热再生光栅(6)的中心波长差为3~10nm。
4.根据权利要求1所述的基于双毛细管封装光纤温度压力传感器,其特征在于:所述的第一毛细玻璃管(1)外径与第二毛细玻璃管(3)内径之差为40~60μm。
5.根据权利要求1或4所述的基于双毛细管封装光纤温度压力传感器,其特征在于:所述的第一毛细玻璃管(1)长度为1~3cm、内径为150~200μm、外径为258~300μm,所述的第二毛细玻璃管(3)长度为2~4cm、内径为318~368μm、外径为449~499μm。
6.根据权利要求1或4所述的基于双毛细管封装光纤温度压力传感器,其特征在于:所述的第一毛细玻璃管(1)和第二毛细玻璃管(3)均为石英毛细玻璃管或硼硅玻璃毛细管。
7.根据权利要求6所述的基于双毛细管封装光纤温度压力传感器,其特征在于:所述的第一毛细玻璃管(1)和第二毛细玻璃管(3)还可以是蓝宝石晶体毛细管。
8.根据权利要求1所述的基于双毛细管封装光纤温度压力传感器,其特征在于:所述的光子晶体光纤(4)为柚子型光子晶体光纤,所述的柚子型光子晶体光纤的包层直径为125μm,纤芯为不规则六边形,纤芯周围环绕有6个均匀分布的气孔(a),相邻两气孔的孔心距为7.7μm,所述的气孔横向孔径为19.7μm、纵向孔径为15μm。
9.根据权利要求1所述的基于双毛细管封装光纤温度压力传感器,其特征在于:所述的单模光纤(2)为石英光纤。
10.根据权利要求1所述的基于双毛细管封装光纤温度压力传感器,其特征在于:所述的单模光纤(2)还可以是蓝宝石光纤或光子晶体光纤。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011091793.4A CN113155163A (zh) | 2020-10-13 | 2020-10-13 | 基于双毛细管封装光纤温度压力传感器 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011091793.4A CN113155163A (zh) | 2020-10-13 | 2020-10-13 | 基于双毛细管封装光纤温度压力传感器 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN113155163A true CN113155163A (zh) | 2021-07-23 |
Family
ID=76882268
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011091793.4A Pending CN113155163A (zh) | 2020-10-13 | 2020-10-13 | 基于双毛细管封装光纤温度压力传感器 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113155163A (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114322814A (zh) * | 2021-12-28 | 2022-04-12 | 中国人民解放军国防科技大学 | 一种蓝宝石光纤光栅金属浇铸的抗冲刷型高温应变传感器 |
CN114544070A (zh) * | 2022-01-11 | 2022-05-27 | 北京航空航天大学 | 基于双层毛细管的光子晶体光纤压力传感器及其制作方法 |
CN116256861A (zh) * | 2023-05-09 | 2023-06-13 | 山东省科学院激光研究所 | 一种光纤f-p腔温度传感器及封装保护结构 |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1134566A1 (de) * | 2000-03-14 | 2001-09-19 | MASCHINENFABRIK REINHAUSEN GmbH | Verfahren zur faseroptischen Temperaturmessung und faseroptischer Temperatursensor |
WO2010086178A2 (de) * | 2009-02-02 | 2010-08-05 | Draka Industrial Cable Gmbh | Faseroptische messvorrichtung |
CN203083528U (zh) * | 2012-11-16 | 2013-07-24 | 中国计量学院 | 基于光子晶体光纤长周期光栅的微位移传感装置 |
WO2015181419A1 (es) * | 2014-05-30 | 2015-12-03 | Universitat Politècnica De València | Procedimiento de fabricación de rfgb y sensor que incorpora una rfgb obtenida mediante dicho procedimiento |
CN107014520A (zh) * | 2017-05-18 | 2017-08-04 | 中国航空工业集团公司北京长城计量测试技术研究所 | 一种毛细管式光纤光栅高温温度传感器及其制作方法 |
CN108106751A (zh) * | 2017-12-13 | 2018-06-01 | 俞婷 | 蓝宝石光子晶体光纤光栅超高温分布式传感器的制备工艺 |
CN108225657A (zh) * | 2017-09-28 | 2018-06-29 | 南京邮电大学 | 一种具有光学游标效应的光纤fp气压传感器及其制备方法 |
US20180275048A1 (en) * | 2017-03-23 | 2018-09-27 | Lakehead University | Gas Cell Based on Hollow-Core Photonic Crystal Fiber and its Application for the Detection of Greenhouse Gas: Nitrous Oxide |
US20190049272A1 (en) * | 2016-02-16 | 2019-02-14 | National Research Council Of Canada | Low Insertion Loss High Temperature Stable Fiber Bragg Grating Sensor and Method for Producing Same |
US20190301960A1 (en) * | 2018-03-30 | 2019-10-03 | Fbgs Technologies Gmbh | Optical sensing system |
CN110579287A (zh) * | 2019-09-16 | 2019-12-17 | 西北大学 | 一种基于单毛细玻璃管封装光纤传感器及测试方法 |
CN110579288A (zh) * | 2019-09-16 | 2019-12-17 | 西北大学 | 一种基于双毛细玻璃管封装光纤传感器 |
CN111595256A (zh) * | 2020-07-13 | 2020-08-28 | 西北大学 | 耐高温光纤应变传感器 |
CN111609809A (zh) * | 2020-07-13 | 2020-09-01 | 西北大学 | 基于应变增敏结构的光纤高温应变测量传感器 |
-
2020
- 2020-10-13 CN CN202011091793.4A patent/CN113155163A/zh active Pending
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1134566A1 (de) * | 2000-03-14 | 2001-09-19 | MASCHINENFABRIK REINHAUSEN GmbH | Verfahren zur faseroptischen Temperaturmessung und faseroptischer Temperatursensor |
WO2010086178A2 (de) * | 2009-02-02 | 2010-08-05 | Draka Industrial Cable Gmbh | Faseroptische messvorrichtung |
CN203083528U (zh) * | 2012-11-16 | 2013-07-24 | 中国计量学院 | 基于光子晶体光纤长周期光栅的微位移传感装置 |
WO2015181419A1 (es) * | 2014-05-30 | 2015-12-03 | Universitat Politècnica De València | Procedimiento de fabricación de rfgb y sensor que incorpora una rfgb obtenida mediante dicho procedimiento |
US20190049272A1 (en) * | 2016-02-16 | 2019-02-14 | National Research Council Of Canada | Low Insertion Loss High Temperature Stable Fiber Bragg Grating Sensor and Method for Producing Same |
US20180275048A1 (en) * | 2017-03-23 | 2018-09-27 | Lakehead University | Gas Cell Based on Hollow-Core Photonic Crystal Fiber and its Application for the Detection of Greenhouse Gas: Nitrous Oxide |
CN107014520A (zh) * | 2017-05-18 | 2017-08-04 | 中国航空工业集团公司北京长城计量测试技术研究所 | 一种毛细管式光纤光栅高温温度传感器及其制作方法 |
CN108225657A (zh) * | 2017-09-28 | 2018-06-29 | 南京邮电大学 | 一种具有光学游标效应的光纤fp气压传感器及其制备方法 |
CN108106751A (zh) * | 2017-12-13 | 2018-06-01 | 俞婷 | 蓝宝石光子晶体光纤光栅超高温分布式传感器的制备工艺 |
US20190301960A1 (en) * | 2018-03-30 | 2019-10-03 | Fbgs Technologies Gmbh | Optical sensing system |
CN110579287A (zh) * | 2019-09-16 | 2019-12-17 | 西北大学 | 一种基于单毛细玻璃管封装光纤传感器及测试方法 |
CN110579288A (zh) * | 2019-09-16 | 2019-12-17 | 西北大学 | 一种基于双毛细玻璃管封装光纤传感器 |
CN111595256A (zh) * | 2020-07-13 | 2020-08-28 | 西北大学 | 耐高温光纤应变传感器 |
CN111609809A (zh) * | 2020-07-13 | 2020-09-01 | 西北大学 | 基于应变增敏结构的光纤高温应变测量传感器 |
Non-Patent Citations (4)
Title |
---|
DAVID BARRERA ET.AL: "Packaged Optical Sensors Based on Regenerated Fiber Bragg Gratings for High Temperature Applications", 《IEEE SENSORS JOURNAL》 * |
HANGZHOU YANG ET.AL: "Thermal Regeneration in Etched-Core Fiber Bragg Grating", 《IEEE SENSORS JOURNAL》 * |
任越等: "管式光纤光栅高温传感器封装及温度特性", 《激光与红外》 * |
王于鹏: "基于热重生光纤光栅的超高温传感研究", 《中国优秀硕士学位论文全文库.信息科技辑》 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114322814A (zh) * | 2021-12-28 | 2022-04-12 | 中国人民解放军国防科技大学 | 一种蓝宝石光纤光栅金属浇铸的抗冲刷型高温应变传感器 |
CN114322814B (zh) * | 2021-12-28 | 2024-06-07 | 中国人民解放军国防科技大学 | 一种蓝宝石光纤光栅金属浇铸的抗冲刷型高温应变传感器 |
CN114544070A (zh) * | 2022-01-11 | 2022-05-27 | 北京航空航天大学 | 基于双层毛细管的光子晶体光纤压力传感器及其制作方法 |
CN114544070B (zh) * | 2022-01-11 | 2023-03-10 | 北京航空航天大学 | 基于双层毛细管的光子晶体光纤压力传感器及其制作方法 |
CN116256861A (zh) * | 2023-05-09 | 2023-06-13 | 山东省科学院激光研究所 | 一种光纤f-p腔温度传感器及封装保护结构 |
CN116256861B (zh) * | 2023-05-09 | 2023-07-18 | 山东省科学院激光研究所 | 一种光纤f-p腔温度传感器及封装保护结构 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113155163A (zh) | 基于双毛细管封装光纤温度压力传感器 | |
CN108152220B (zh) | 基于双c型微型空腔的敏感膜内嵌式光纤氢气传感器 | |
CN100533086C (zh) | 一种光纤光栅压强传感器及其使用方法 | |
CN205656129U (zh) | 基于双毛细管的光纤氢气传感器 | |
Reja et al. | Temperature-compensated interferometric high-temperature pressure sensor using a pure silica microstructured optical fiber | |
CN111595256A (zh) | 耐高温光纤应变传感器 | |
CN103411727B (zh) | 用于压气机压力测量的光纤压力传感器及其测量方法 | |
CN102829893A (zh) | 一种通过腐蚀得到不同直径光纤光栅来同时测量温度和应力的方法 | |
CN204718708U (zh) | 一种基于球形和细芯光纤的温度和应变同时测量的传感器 | |
CN110632033A (zh) | 基于fbg解调仪的f-p干涉型多点测量氢气传感器 | |
CN103335958B (zh) | 一种低温环境下快速响应的可复用光纤氢传感器 | |
CN111609809A (zh) | 基于应变增敏结构的光纤高温应变测量传感器 | |
CN102809778B (zh) | 一种液体封装光纤光栅温度补偿方法 | |
CN212206125U (zh) | 温度补偿式光纤法布里珀罗高温压力传感器 | |
Li et al. | A new type of structure of optical fiber pressure sensor based on polarization modulation | |
CN108332878A (zh) | 一种光纤光栅温度传感器及制备方法 | |
CN109932078A (zh) | 一种高灵敏光纤温度传感探头及其制作方法 | |
CN103411643A (zh) | 用于压气机流体多参数测量的光纤传感器及测量方法 | |
CN209689648U (zh) | 一种超高温蓝宝石光纤f-p温度应变复合传感器 | |
CN111964740A (zh) | 一种用于生产测井的热式光纤光栅流量传感器及制作方法 | |
CN205920045U (zh) | 一种基于游标效应的fpi氢气传感器 | |
Feng et al. | An FBG temperature–pressure sensor based on diaphragm and special-shaped bracket structure | |
CN112378429A (zh) | 基于毛细管封装光纤光栅温度压力传感器 | |
Zeng et al. | Multipoint temperature measurement system for aero-engine external piping based on arrayed fiber Bragg grating temperature sensors | |
CN213902404U (zh) | 双套管封装的光纤高温压力传感器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20210723 |