CN113140657B - Ultraviolet LED epitaxial structure and preparation method thereof - Google Patents
Ultraviolet LED epitaxial structure and preparation method thereof Download PDFInfo
- Publication number
- CN113140657B CN113140657B CN202110523507.5A CN202110523507A CN113140657B CN 113140657 B CN113140657 B CN 113140657B CN 202110523507 A CN202110523507 A CN 202110523507A CN 113140657 B CN113140657 B CN 113140657B
- Authority
- CN
- China
- Prior art keywords
- layer
- region
- quantum well
- superlattice
- thickness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000002360 preparation method Methods 0.000 title claims description 8
- 229910002704 AlGaN Inorganic materials 0.000 claims abstract description 132
- 239000000758 substrate Substances 0.000 claims abstract description 31
- 238000000034 method Methods 0.000 claims abstract description 12
- 230000004888 barrier function Effects 0.000 claims description 58
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 6
- 229910052710 silicon Inorganic materials 0.000 claims description 6
- 239000010703 silicon Substances 0.000 claims description 6
- 229910052594 sapphire Inorganic materials 0.000 claims description 5
- 239000010980 sapphire Substances 0.000 claims description 5
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 abstract description 29
- 229910000077 silane Inorganic materials 0.000 abstract description 28
- 238000013461 design Methods 0.000 abstract description 4
- 230000010354 integration Effects 0.000 abstract description 4
- 238000004806 packaging method and process Methods 0.000 abstract description 3
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 15
- 229910052749 magnesium Inorganic materials 0.000 description 15
- 239000011777 magnesium Substances 0.000 description 15
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 14
- JLTRXTDYQLMHGR-UHFFFAOYSA-N trimethylaluminium Chemical compound C[Al](C)C JLTRXTDYQLMHGR-UHFFFAOYSA-N 0.000 description 11
- 238000010586 diagram Methods 0.000 description 10
- 239000000463 material Substances 0.000 description 10
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- XCZXGTMEAKBVPV-UHFFFAOYSA-N trimethylgallium Chemical compound C[Ga](C)C XCZXGTMEAKBVPV-UHFFFAOYSA-N 0.000 description 7
- RGGPNXQUMRMPRA-UHFFFAOYSA-N triethylgallium Chemical compound CC[Ga](CC)CC RGGPNXQUMRMPRA-UHFFFAOYSA-N 0.000 description 5
- 229910021529 ammonia Inorganic materials 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- LALRXNPLTWZJIJ-UHFFFAOYSA-N triethylborane Chemical compound CCB(CC)CC LALRXNPLTWZJIJ-UHFFFAOYSA-N 0.000 description 4
- 230000008569 process Effects 0.000 description 3
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 239000012159 carrier gas Substances 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 229910052733 gallium Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 229910000069 nitrogen hydride Inorganic materials 0.000 description 2
- 238000004659 sterilization and disinfection Methods 0.000 description 2
- 230000006978 adaptation Effects 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000000407 epitaxy Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 150000002902 organometallic compounds Chemical class 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- -1 trimethylaluminum Aluminum Chemical compound 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/811—Bodies having quantum effect structures or superlattices, e.g. tunnel junctions
- H10H20/812—Bodies having quantum effect structures or superlattices, e.g. tunnel junctions within the light-emitting regions, e.g. having quantum confinement structures
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/01—Manufacture or treatment
- H10H20/011—Manufacture or treatment of bodies, e.g. forming semiconductor layers
- H10H20/013—Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials
- H10H20/0133—Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials with a substrate not being Group III-V materials
- H10H20/01335—Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials with a substrate not being Group III-V materials the light-emitting regions comprising nitride materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/813—Bodies having a plurality of light-emitting regions, e.g. multi-junction LEDs or light-emitting devices having photoluminescent regions within the bodies
Landscapes
- Led Devices (AREA)
Abstract
本发明公开了一种紫外LED外延结构,包括衬底、及从下至上依次位于衬底上的低温AlN层、高温AlN层、本征AlGaN层、掺杂硅烷的n型AlGaN层、掺杂硅烷的n掺杂AlGaN/AlN超晶格层、量子阱区‑1、超晶格SL区‑1、量子阱区‑2、超晶格SL区‑2、量子阱区‑3、超晶格SL区‑3、量子阱区‑n、超晶格SL区‑n、p型AlGaN层和掺杂镁的p++型BAlGaN层,通过本发明的设计和生长方法,能够满足现实应用中对于各种紫外波段需求的集成统一,很大程度简化了后续封装步骤,并且提高了芯片的整体可靠性,实现了一芯多用的功能。
The invention discloses an ultraviolet LED epitaxial structure, comprising a substrate, and a low-temperature AlN layer, a high-temperature AlN layer, an intrinsic AlGaN layer, a silane-doped n-type AlGaN layer, and a silane-doped silane layer, which are sequentially located on the substrate from bottom to top. n-doped AlGaN/AlN superlattice layer, quantum well region-1, superlattice SL region-1, quantum well region-2, superlattice SL region-2, quantum well region-3, superlattice SL Region-3, quantum well region-n, superlattice SL region-n, p-type AlGaN layer and magnesium-doped p++-type BAlGaN layer, through the design and growth method of the present invention, can meet the requirements for various ultraviolet The integration and unification of band requirements greatly simplifies the subsequent packaging steps, improves the overall reliability of the chip, and realizes the multi-purpose function of one core.
Description
技术领域technical field
本发明涉及半导体电子信息技术领域,更具体的说是涉及一种紫外LED外延结构及其制备方法。The invention relates to the technical field of semiconductor electronic information, and more particularly to an ultraviolet LED epitaxial structure and a preparation method thereof.
背景技术Background technique
随着科技进步和新型能源发展,固态LED照明将成为未来世界发光的趋势,由于LED由于具有节能、环保、安全、寿命长、低耗、低热等优点,已经大面积的应用于交通指示灯、交通信号灯、景观装饰灯、显示屏、汽车尾灯、手机背光源、杀菌消毒等领域。目前市场上的LED等主要以蓝绿光为主,红黄光次之,紫光及深紫外紫外的LED产品比较少,主要由于大功率深紫外LED制造难度大、发光效率低。随着LED应用的发展,紫外LED的市场需求越来越大,普遍应用于医疗器械,医学测量,卫生消毒,验钞点钞检验设备,防伪行业,生物统计安全性检测,涵盖医疗,卫生,金融,生物,检测,公共安全等各个方面。在目前的LED背景下,紫光市场前景非常广阔。With the progress of science and technology and the development of new energy sources, solid-state LED lighting will become the trend of future lighting in the world. Because LED has the advantages of energy saving, environmental protection, safety, long life, low consumption and low heat, it has been widely used in traffic lights, Traffic signal lights, landscape decorative lights, display screens, car tail lights, mobile phone backlights, sterilization and other fields. At present, the LEDs on the market are mainly blue-green light, followed by red and yellow light, and there are few LED products of violet light and deep ultraviolet light, mainly due to the difficulty of manufacturing high-power deep ultraviolet LEDs and low luminous efficiency. With the development of LED applications, the market demand for UV LEDs is increasing, and they are widely used in medical equipment, medical measurement, sanitation and disinfection, currency detection and counting inspection equipment, anti-counterfeiting industry, biometric security testing, covering medical, health, Finance, biology, detection, public safety and other aspects. Under the current LED background, the purple light market has a very broad prospect.
目前紫光LED外延生长技术还不够成熟,一方面受制于紫外光生长材料特性,另一方面是紫外光LED能带结构和设计结构的影响,还有受制于制备和生长方法的影响。随着市场对紫外芯片产品的需求多样性,200-280nm、350-360nm、380-395nm等各个波长的紫外芯片都有明显的增长需求,传统应用是将多个不同芯片波长封装在一起,起到混合效果,多个波长芯片封装提升了成本也降低了可靠性,因此如何制备高功率的复合波长紫外LED芯片成为非常迫切的需求。At present, the epitaxial growth technology of violet LEDs is not mature enough. On the one hand, it is limited by the characteristics of ultraviolet light growth materials, on the other hand, it is affected by the energy band structure and design structure of ultraviolet LEDs, and it is also affected by the influence of preparation and growth methods. With the diversity of market demand for UV chip products, UV chips with various wavelengths such as 200-280nm, 350-360nm, and 380-395nm have a significant increase in demand. The traditional application is to package multiple different chip wavelengths together. To the mixed effect, the multi-wavelength chip package increases the cost and reduces the reliability, so how to prepare high-power composite wavelength UV LED chips has become a very urgent requirement.
发明内容SUMMARY OF THE INVENTION
有鉴于此,本发明提供了一种紫外LED外延结构及其制备方法,通过本发明的设计和制备方法,能够满足现实应用中对于各种紫外波段需求的集成统一,很大程度简化了后续封装步骤,并且提高了芯片的整体可靠性,实现了一芯多用的功能,提升了紫外LED芯片的综合功能和竞争力,能够大规模满足工业级应用。In view of this, the present invention provides an ultraviolet LED epitaxial structure and a preparation method thereof. Through the design and preparation method of the present invention, the integration and unification of various ultraviolet band requirements in practical applications can be met, and subsequent packaging is greatly simplified. It also improves the overall reliability of the chip, realizes the multi-purpose function of one chip, improves the comprehensive function and competitiveness of the ultraviolet LED chip, and can meet industrial-grade applications on a large scale.
为了达到上述目的,本发明采用如下技术方案:In order to achieve the above object, the present invention adopts the following technical solutions:
一种紫外LED外延结构,包括衬底、及从下至上依次位于衬底上的本征AlGaN层、n型AlGaN层、n掺杂AlGaN/AlN超晶格层、量子阱区、超晶格SL区、p型AlGaN层和p++型BAlGaN层。An ultraviolet LED epitaxial structure, comprising a substrate, an intrinsic AlGaN layer, an n-type AlGaN layer, an n-doped AlGaN/AlN superlattice layer, a quantum well region, and a superlattice SL which are sequentially located on the substrate from bottom to top region, p-type AlGaN layer and p++-type BAlGaN layer.
优选的,上述衬底为蓝宝石衬底或硅衬底。Preferably, the above-mentioned substrate is a sapphire substrate or a silicon substrate.
优选的,上述紫外LED外延结构还包括设置于衬底层和本征AlGaN层之间的AlN层;Preferably, the above-mentioned ultraviolet LED epitaxial structure further includes an AlN layer disposed between the substrate layer and the intrinsic AlGaN layer;
AlN层包括低温AlN层和高温AlN层;高温AlN层位于低温AlN层上方;低温AlN层的厚度为10nm;高温AlN层的厚度为200nm。The AlN layer includes a low temperature AlN layer and a high temperature AlN layer; the high temperature AlN layer is located above the low temperature AlN layer; the thickness of the low temperature AlN layer is 10 nm; and the thickness of the high temperature AlN layer is 200 nm.
优选的,上述本征AlGaN层厚度为100nm;n型AlGaN层厚度为100-300nm。Preferably, the thickness of the above-mentioned intrinsic AlGaN layer is 100 nm; the thickness of the n-type AlGaN layer is 100-300 nm.
进一步的,上述的n型AlGaN层为掺杂硅烷的n型AlGaN层;硅烷掺杂量为1020±1cm3。Further, the above-mentioned n-type AlGaN layer is an n-type AlGaN layer doped with silane; the doping amount of silane is 10 20±1 cm 3 .
优选的,上述n掺杂AlGaN/AlN超晶格层由AlGaN和AlN重复交替生长10-15个周期组成;其中每层AlGaN厚度为2-5nm,每层AlN厚度为2nm。Preferably, the above-mentioned n-doped AlGaN/AlN superlattice layer is composed of AlGaN and AlN growing alternately for 10-15 cycles; wherein the thickness of each layer of AlGaN is 2-5nm, and the thickness of each layer of AlN is 2nm.
进一步的,上述n掺杂AlGaN/AlN超晶格层为掺杂硅烷的n掺杂AlGaN/AlN超晶格层;硅烷掺杂量为1020±1cm3。Further, the above-mentioned n-doped AlGaN/AlN superlattice layer is an n-doped AlGaN/AlN superlattice layer doped with silane; the silane doping amount is 10 20±1 cm 3 .
优选的,所述量子阱区和所述超晶格SL区分别设置有n层,n≥3,且所述量子阱区和超晶格SL区交替层叠设置。Preferably, the quantum well region and the superlattice SL region are respectively provided with n layers, n≥3, and the quantum well region and the superlattice SL region are alternately stacked.
优选的,上述量子阱区包括量子阱区-1、量子阱区-2、量子阱区-3和量子阱区-n;Preferably, the quantum well region includes quantum well region-1, quantum well region-2, quantum well region-3 and quantum well region-n;
量子阱区-1包括3-4个周期的量子阱区-a;量子阱区-a包括两层AlxGa1-xN量子垒层和位于两层AlxGa1-xN量子垒层之间的InGaN量子阱层,0<x<1;AlxGa1-xN量子垒层的厚度为12-15nm;InGaN量子阱层的厚度为2-3nm;The quantum well region-1 includes a quantum well region-a of 3-4 periods; the quantum well region-a includes two layers of Al x Ga 1-x N quantum barrier layers and two layers of Al x Ga 1-x N quantum barrier layers. The InGaN quantum well layer in between, 0<x<1; the thickness of the AlxGa1 - xN quantum barrier layer is 12-15nm; the thickness of the InGaN quantum well layer is 2-3nm;
量子阱区-2包括3-4个周期的量子阱区-b;量子阱区-b包括两层AlyGa1-yN量子垒层和位于两层AlyGa1-yN量子垒层之间的AlInGaN量子阱层,x<y<1;AlyGa1-yN量子垒层的厚度为12-15nm;AlInGaN量子阱层的厚度为2-3nm;The quantum well region-2 includes a quantum well region-b of 3-4 periods; the quantum well region-b includes two layers of AlyGa1 -yN quantum barrier layers and two layers of AlyGa1 -yN quantum barrier layers. The AlInGaN quantum well layer between them, x<y<1; the thickness of the AlyGa 1-yN quantum barrier layer is 12-15nm; the thickness of the AlInGaN quantum well layer is 2-3nm;
量子阱区-3包括3-4个周期的量子阱区-c;量子阱区-c包括两层BAlGaN量子垒层和位于两层BAlGaN量子垒层之间的AlGaN量子阱层;BAlGaN量子垒层的厚度为12-15nm;AlGaN量子阱层的厚度为2-3nm;Quantum well region-3 includes 3-4 periods of quantum well region-c; quantum well region-c includes two BAlGaN quantum barrier layers and an AlGaN quantum well layer located between the two BAlGaN quantum barrier layers; BAlGaN quantum barrier layer The thickness of the AlGaN quantum well layer is 12-15nm; the thickness of the AlGaN quantum well layer is 2-3nm;
量子阱区-n包括3-4个周期的量子阱区-d;量子阱区-d包括两层BInAlGaN量子垒层和位于两BInAlGaN量子垒层之间的AlInGaN量子阱层;BInAlGaN量子垒层的厚度为12-15nm;AlInGaN量子阱层的厚度为2-3nm。Quantum well region-n includes 3-4 periods of quantum well region-d; quantum well region-d includes two BInAlGaN quantum barrier layers and an AlInGaN quantum well layer located between the two BInAlGaN quantum barrier layers; The thickness is 12-15nm; the thickness of the AlInGaN quantum well layer is 2-3nm.
不同材料的量子阱决定不同的发光波长,几层不同量子阱就有多少不同的波长的光产生,可以实现在同一个外延层和同个芯片中实现多个不同紫外波长的同时激发,实现多个不同紫外波长需求在同一个芯片的集成应用。Quantum wells of different materials determine different light-emitting wavelengths, and several layers of different quantum wells generate light of different wavelengths, which can realize the simultaneous excitation of multiple different ultraviolet wavelengths in the same epitaxial layer and the same chip, and realize multiple The integrated application of different UV wavelengths in the same chip.
优选的,上述超晶格SL区包括超晶格SL区-1、超晶格SL区-2、超晶格SL区-3和超晶格SL区-n;Preferably, the above-mentioned superlattice SL region includes superlattice SL region-1, superlattice SL region-2, superlattice SL region-3 and superlattice SL region-n;
超晶格SL区-1包括4-6个周期的超晶格SL区-a;超晶格SL区-a包括AlyGa1-yN层和位于其上方的AlInGaN层,x<y<1;AlyGa1-yN层的厚度为2-3nm;AlInGaN层的厚度为2-3nm;The superlattice SL region-1 includes a 4-6 period superlattice SL region-a; the superlattice SL region-a includes an AlyGa1 -yN layer and an AlInGaN layer above it, x<y<1; the thickness of the AlyGa1 -yN layer is 2-3nm; the thickness of the AlInGaN layer is 2-3nm;
超晶格SL区-2包括4-6个周期的超晶格SL区-b;超晶格SL区-b包括BAlGaN层和位于其上方的AlGaN层;BAlGaN层的厚度为2-3nm;AlGaN层的厚度为2-3nm;The superlattice SL region-2 includes 4-6 periods of the superlattice SL region-b; the superlattice SL region-b includes a BAlGaN layer and an AlGaN layer above it; the thickness of the BAlGaN layer is 2-3 nm; the AlGaN layer The thickness of the layer is 2-3 nm;
超晶格SL区-3包括4-6个周期的超晶格SL区-c;超晶格SL区-c包括BInAlGaN层和位于其上方的AlInGaN层;BInAlGaN层的厚度为2-3nm;AlInGaN层的厚度为2-3nm;Superlattice SL region-3 includes 4-6 periods of superlattice SL region-c; superlattice SL region-c includes a BInAlGaN layer and an AlInGaN layer above it; the thickness of the BInAlGaN layer is 2-3 nm; AlInGaN The thickness of the layer is 2-3 nm;
超晶格SL区-n包括4-6个周期的超晶格SL区-d;所述超晶格SL区-d包括AlGaN层和位于其上方的AlInGaN层;所述AlGaN层的厚度为2-3nm;所述AlInGaN层的厚度为2-3nm。The superlattice SL region-n includes 4-6 periods of the superlattice SL region-d; the superlattice SL region-d includes an AlGaN layer and an AlInGaN layer above it; the AlGaN layer has a thickness of 2 -3nm; the thickness of the AlInGaN layer is 2-3nm.
不同材料的量子阱中间设置不同超晶格是为了减小不同量子阱材料的晶格失配和减小应变力,有利于不同层材料更好的衔接和材料匹配。The purpose of setting different superlattices in the middle of quantum wells of different materials is to reduce lattice mismatch and strain force of different quantum well materials, which is conducive to better connection and material matching of different layers of materials.
优选的,上述p型AlGaN层厚度为500nm;p++型BAlGaN层厚度为3-5nm。Preferably, the thickness of the p-type AlGaN layer is 500 nm; the thickness of the p++-type BAlGaN layer is 3-5 nm.
进一步的,上述p型AlGaN层为掺杂镁的p型AlGaN层,镁掺杂量为1019±1cm3;上述p++型BAlGaN层为掺杂镁的p++型BAlGaN层,镁的掺杂量为1021±1cm3。Further, the above-mentioned p-type AlGaN layer is a magnesium-doped p-type AlGaN layer, and the magnesium doping amount is 10 19±1 cm 3 ; the above-mentioned p++-type BAlGaN layer is a magnesium-doped p++-type BAlGaN layer, and the doping amount of magnesium is is 10 21 ± 1 cm 3 .
本发明的另一个目的在于提供上述的一种紫外LED外延结构的制备方法,采用蓝宝石或者硅衬底及其他材料衬底作为生长基底,进行异质外延生长,运用MOCVD(金属有机物化学气相沉积)技术来完成整个外延过程;Another object of the present invention is to provide a method for preparing the above-mentioned ultraviolet LED epitaxial structure, using sapphire or silicon substrate and other material substrates as growth substrates, performing heteroepitaxial growth, using MOCVD (metal organic chemical vapor deposition) technology to complete the entire epitaxy process;
具体方法如下:The specific method is as follows:
(1)在衬底上生长一层低温AlN层;(1) A layer of low-temperature AlN layer is grown on the substrate;
(2)在低温AlN层上生长一层高温AlN层;(2) growing a high temperature AlN layer on the low temperature AlN layer;
(3)在高温AlN层上生长一层本征AlGaN层;(3) growing an intrinsic AlGaN layer on the high temperature AlN layer;
(4)在本征AlGaN层上生长一层n型AlGaN层;(4) growing an n-type AlGaN layer on the intrinsic AlGaN layer;
(5)在n型AlGaN层上生长一层n掺杂AlGaN/AlN超晶格层;(5) growing an n-doped AlGaN/AlN superlattice layer on the n-type AlGaN layer;
(6)在n掺杂AlGaN/AlN超晶格层上生长一层量子阱区-1(6) Growth of a quantum well region-1 on the n-doped AlGaN/AlN superlattice layer
(7)在量子阱区-1上生长一层超晶格SL-1;(7) A layer of superlattice SL-1 is grown on the quantum well region-1;
(8)在超晶格SL-1上生长一层量子阱区-2;(8) A layer of quantum well region-2 is grown on the superlattice SL-1;
(9)在量子阱区-2上生长一层超晶格SL-2;(9) growing a layer of superlattice SL-2 on the quantum well region-2;
(10)在超晶格SL-2上生长一层量子阱区-3;(10) A layer of quantum well region-3 is grown on the superlattice SL-2;
(11)在量子阱区-3上生长一层超晶格SL-3;(11) A layer of superlattice SL-3 is grown on the quantum well region-3;
(12)在超晶格SL-3上生长一层量子阱区-n;(12) A layer of quantum well region-n is grown on the superlattice SL-3;
(13)在量子阱区-n上生长一层超晶格SL-n;(13) growing a layer of superlattice SL-n on the quantum well region-n;
(14)在超晶格SL-n上生长一层p型AlGaN层;(14) growing a p-type AlGaN layer on the superlattice SL-n;
(15)在p型AlGaN层上生长一层p++型BAlGaN层。(15) A p++-type BAlGaN layer is grown on the p-type AlGaN layer.
优选的,在本发明中采用三甲基镓(TMGa),三乙基镓(TEGa),三乙基硼(TEB),三甲基铝(TMAl)和氨气(NH3)硅烷(SiH4)和二茂镁(Cp2Mg),氮气,氢气分别提供生长所需要的镓源,铝源,硼源,和氮源,硅源,镁源以及载气。Preferably, in the present invention, trimethylgallium (TMGa), triethylgallium (TEGa), triethylboron (TEB), trimethylaluminum (TMAl) and ammonia ( NH3 ) silane (SiH4) are used And magnesium locene (Cp2Mg), nitrogen, hydrogen provide gallium source, aluminum source, boron source, and nitrogen source, silicon source, magnesium source and carrier gas required for growth respectively.
经由上述的技术方案可知,与现有技术相比,本发明具有如下有益效果:As can be seen from the above-mentioned technical solutions, compared with the prior art, the present invention has the following beneficial effects:
1.通过本发明的设计和生长方法,能够满足现实应用中对于各种紫外波段需求的集成统一,很大程度简化了后续封装步骤,并且提高了芯片的整体可靠性,实现了一芯多用的功能;1. Through the design and growth method of the present invention, the integration and unification of various ultraviolet band requirements in practical applications can be met, the subsequent packaging steps are simplified to a great extent, and the overall reliability of the chip is improved. Function;
2.通过量子阱-1区、量子阱-2区及量子阱-3区或者更多的通过量子阱-n区,通过不通过的量子阱材料,可以实现不同的波长复合发光;通过加入不同周期材料SL(超晶格)可以减小各种量子阱区的材料适配问题,提升整体的发光区晶体质量,实现了同一个外延结构;2. Through the quantum well-1 area, the quantum well-2 area and the quantum well-3 area or more through the quantum well-n area, through the quantum well material that does not pass through, different wavelengths can be combined to emit light; by adding different wavelengths The periodic material SL (superlattice) can reduce the material adaptation problem of various quantum well regions, improve the overall crystal quality of the light-emitting region, and realize the same epitaxial structure;
3.可以同时实现不同波长的发射,尤其是200-250nm、260-280nm、350-370nm、380-395nm..这些应用比较多的范围波长,且经常需要两种以上波长同时适用的情况,能够减小后续不同波长芯片封装的工序,实现芯片的集成化。3. The emission of different wavelengths can be realized at the same time, especially 200-250nm, 260-280nm, 350-370nm, 380-395nm.. These applications have a wide range of wavelengths, and often need more than two wavelengths at the same time. The process of encapsulating subsequent chips with different wavelengths is reduced, and the integration of chips is realized.
附图说明Description of drawings
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。In order to explain the embodiments of the present invention or the technical solutions in the prior art more clearly, the following briefly introduces the accompanying drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description are only It is an embodiment of the present invention. For those of ordinary skill in the art, other drawings can also be obtained according to the provided drawings without creative work.
图1附图为本发明紫外光LED的外延整体结构图结构示意图;1 is a schematic structural diagram of an epitaxial overall structure diagram of an ultraviolet LED of the present invention;
图2附图为本发明量子阱区-1结构示意图;2 is a schematic structural diagram of the quantum well region-1 of the present invention;
图3附图为本发明量子阱区-2结构示意图;Fig. 3 accompanying drawing is the structure schematic diagram of quantum well region-2 of the present invention;
图4附图为本发明量子阱区-3结构示意图;4 is a schematic structural diagram of the quantum well region-3 of the present invention;
图5附图为本发明量子阱区-n结构示意图;Figure 5 is a schematic diagram of the quantum well region-n structure of the present invention;
图6附图为本发明超晶格SL-1区结构示意图;6 is a schematic diagram of the structure of the superlattice SL-1 region of the present invention;
图7附图为本发明超晶格SL-2区结构示意图;7 is a schematic diagram of the structure of the superlattice SL-2 region of the present invention;
图8附图为本发明超晶格SL-3区结构示意图;8 is a schematic diagram of the structure of the superlattice SL-3 region of the present invention;
图9附图为本发明超晶格SL-n区结构示意图。FIG. 9 is a schematic diagram of the structure of the superlattice SL-n region of the present invention.
其中,图中:Among them, in the figure:
1-AlXGa1-XN量子垒层;2-InGaN量子阱层;3-AlyGa1-yN量子垒层(y>x);4-AlInGaN量子阱层;5-BAlGaN量子垒层;6-AlGaN量子阱层;7-BInAlGaN量子垒层;8-AlyGa1-yN层;9-AlInGaN层;10-BAlGaN层;11-AlGaN层;12-BInAlGaN层。1-AlxGa1 - XN quantum barrier layer; 2-InGaN quantum well layer; 3- AlyGa1 -yN quantum barrier layer (y>x); 4-AlInGaN quantum well layer; 5-BAlGaN quantum barrier 6-AlGaN quantum well layer; 7-BInAlGaN quantum barrier layer; 8- AlyGa1 -yN layer; 9-AlInGaN layer; 10-BAlGaN layer; 11-AlGaN layer; 12-BInAlGaN layer.
具体实施方式Detailed ways
下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions in the embodiments of the present invention will be described clearly and completely below. Obviously, the described embodiments are only a part of the embodiments of the present invention, rather than all the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.
本发明实施例公开了一种紫外LED外延结构,包括衬底、及从下至上依次位于衬底上的本征AlGaN层、n型AlGaN层、n掺杂AlGaN/AlN超晶格层、量子阱区、超晶格SL区、p型AlGaN层和p++型BAlGaN层。The embodiment of the present invention discloses an ultraviolet LED epitaxial structure, which includes a substrate, an intrinsic AlGaN layer, an n-type AlGaN layer, an n-doped AlGaN/AlN superlattice layer, and a quantum well that are sequentially located on the substrate from bottom to top. region, superlattice SL region, p-type AlGaN layer and p++-type BAlGaN layer.
为了进一步优化上述技术方案,衬底为蓝宝石衬底或硅衬底;In order to further optimize the above technical solution, the substrate is a sapphire substrate or a silicon substrate;
为了进一步优化上述技术方案,紫外LED外延结构还包括设置于衬底层和本征AlGaN层之间的AlN层;In order to further optimize the above technical solution, the ultraviolet LED epitaxial structure further includes an AlN layer disposed between the substrate layer and the intrinsic AlGaN layer;
其中,AlN层包括低温AlN层和高温AlN层;高温AlN层位于低温AlN层上方;低温AlN层的厚度为10nm;高温AlN层的厚度为200nm;The AlN layer includes a low-temperature AlN layer and a high-temperature AlN layer; the high-temperature AlN layer is located above the low-temperature AlN layer; the thickness of the low-temperature AlN layer is 10 nm; the thickness of the high-temperature AlN layer is 200 nm;
为了进一步优化上述技术方案,本征AlGaN层厚度为100nm;n型AlGaN层厚度为100-300nm;In order to further optimize the above technical scheme, the thickness of the intrinsic AlGaN layer is 100nm; the thickness of the n-type AlGaN layer is 100-300nm;
为了进一步优化上述技术方案,n型AlGaN层为掺杂硅烷的n型AlGaN层;硅烷掺杂量为1020±1cm3;In order to further optimize the above technical solution, the n-type AlGaN layer is an n-type AlGaN layer doped with silane; the doping amount of silane is 10 20±1 cm 3 ;
为了进一步优化上述技术方案,n掺杂AlGaN/AlN超晶格层由AlGaN和AlN重复交替生长10-15个周期组成;其中每层AlGaN厚度为2-5nm,每层AlN厚度为2nm;In order to further optimize the above technical scheme, the n-doped AlGaN/AlN superlattice layer is composed of AlGaN and AlN alternately grown for 10-15 cycles; the thickness of each layer of AlGaN is 2-5nm, and the thickness of each layer of AlN is 2nm;
为了进一步优化上述技术方案,上述n掺杂AlGaN/AlN超晶格层为掺杂硅烷的n掺杂AlGaN/AlN超晶格层;硅烷掺杂量为1020±1cm3;In order to further optimize the above technical solution, the above n-doped AlGaN/AlN superlattice layer is an n-doped AlGaN/AlN superlattice layer doped with silane; the silane doping amount is 10 20±1 cm 3 ;
为了进一步优化上述技术方案,量子阱区和超晶格SL区分别设置有n层,n≥3,且量子阱区和超晶格SL区交替层叠设置;In order to further optimize the above technical solution, the quantum well region and the superlattice SL region are respectively provided with n layers, n≥3, and the quantum well region and the superlattice SL region are alternately stacked;
为了进一步优化上述技术方案,量子阱区包括量子阱区-1、量子阱区-2、量子阱区-3和量子阱区-n;In order to further optimize the above technical solution, the quantum well region includes quantum well region-1, quantum well region-2, quantum well region-3 and quantum well region-n;
量子阱区-1包括3-4个周期的量子阱区-a;量子阱区-a包括两层AlxGa1-xN量子垒层和位于两层AlxGa1-xN量子垒层之间的InGaN量子阱层,0<x<1;AlxGa1-xN量子垒层的厚度为12-15nm;InGaN量子阱层的厚度为2-3nm;The quantum well region-1 includes a quantum well region-a of 3-4 periods; the quantum well region-a includes two layers of Al x Ga 1-x N quantum barrier layers and two layers of Al x Ga 1-x N quantum barrier layers. The InGaN quantum well layer in between, 0<x<1; the thickness of the AlxGa1 - xN quantum barrier layer is 12-15nm; the thickness of the InGaN quantum well layer is 2-3nm;
量子阱区-2包括3-4个周期的量子阱区-b;量子阱区-b包括两层AlyGa1-yN量子垒层和位于两层AlyGa1-yN量子垒层之间的AlInGaN量子阱层,x<y<1;AlyGa1-yN量子垒层的厚度为12-15nm;AlInGaN量子阱层的厚度为2-3nm;The quantum well region-2 includes a quantum well region-b of 3-4 periods; the quantum well region-b includes two layers of AlyGa1 -yN quantum barrier layers and two layers of AlyGa1 -yN quantum barrier layers. The AlInGaN quantum well layer between them, x<y<1; the thickness of the AlyGa 1-yN quantum barrier layer is 12-15nm; the thickness of the AlInGaN quantum well layer is 2-3nm;
量子阱区-3包括3-4个周期的量子阱区-c;量子阱区-c包括两层BAlGaN量子垒层和位于两层BAlGaN量子垒层之间的AlGaN量子阱层;BAlGaN量子垒层的厚度为12-15nm;AlGaN量子阱层的厚度为2-3nm;Quantum well region-3 includes 3-4 periods of quantum well region-c; quantum well region-c includes two BAlGaN quantum barrier layers and an AlGaN quantum well layer located between the two BAlGaN quantum barrier layers; BAlGaN quantum barrier layer The thickness of the AlGaN quantum well layer is 12-15nm; the thickness of the AlGaN quantum well layer is 2-3nm;
量子阱区-n包括3-4个周期的量子阱区-d;量子阱区-d包括两层BInAlGaN量子垒层和位于两BInAlGaN量子垒层之间的AlInGaN量子阱层;BInAlGaN量子垒层的厚度为12-15nm;AlInGaN量子阱层的厚度为2-3nm;Quantum well region-n includes 3-4 periods of quantum well region-d; quantum well region-d includes two BInAlGaN quantum barrier layers and an AlInGaN quantum well layer located between the two BInAlGaN quantum barrier layers; The thickness is 12-15nm; the thickness of the AlInGaN quantum well layer is 2-3nm;
为了进一步优化上述技术方案,超晶格SL区包括超晶格SL区-1、超晶格SL区-2、超晶格SL区-3和超晶格SL区-n;In order to further optimize the above technical solution, the superlattice SL region includes superlattice SL region-1, superlattice SL region-2, superlattice SL region-3 and superlattice SL region-n;
超晶格SL区-1包括4-6个周期的超晶格SL区-a;超晶格SL区-a包括AlyGa1-yN层和位于其上方的AlInGaN层,x<y<1;AlyGa1-yN层的厚度为2-3nm;AlInGaN层的厚度为2-3nm;The superlattice SL region-1 includes a 4-6 period superlattice SL region-a; the superlattice SL region-a includes an AlyGa1 -yN layer and an AlInGaN layer above it, x<y<1; the thickness of the AlyGa1 -yN layer is 2-3nm; the thickness of the AlInGaN layer is 2-3nm;
超晶格SL区-2包括4-6个周期的超晶格SL区-b;超晶格SL区-b包括BAlGaN层和位于其上方的AlGaN层;BAlGaN层的厚度为2-3nm;AlGaN层的厚度为2-3nm;The superlattice SL region-2 includes 4-6 periods of the superlattice SL region-b; the superlattice SL region-b includes a BAlGaN layer and an AlGaN layer above it; the thickness of the BAlGaN layer is 2-3 nm; the AlGaN layer The thickness of the layer is 2-3 nm;
超晶格SL区-3包括4-6个周期的超晶格SL区-c;超晶格SL区-c包括BInAlGaN层和位于其上方的AlInGaN层;BInAlGaN层的厚度为2-3nm;AlInGaN层的厚度为2-3nm;Superlattice SL region-3 includes 4-6 periods of superlattice SL region-c; superlattice SL region-c includes a BInAlGaN layer and an AlInGaN layer above it; the thickness of the BInAlGaN layer is 2-3 nm; AlInGaN The thickness of the layer is 2-3 nm;
超晶格SL区-n包括4-6个周期的超晶格SL区-d;所述超晶格SL区-d包括AlGaN层和位于其上方的AlInGaN层;所述AlGaN层的厚度为2-3nm;所述AlInGaN层的厚度为2-3nm。The superlattice SL region-n includes 4-6 periods of the superlattice SL region-d; the superlattice SL region-d includes an AlGaN layer and an AlInGaN layer above it; the AlGaN layer has a thickness of 2 -3nm; the thickness of the AlInGaN layer is 2-3nm.
为了进一步优化上述技术方案,上述p型AlGaN层厚度为500nm;p++型BAlGaN层厚度为3-5nm;In order to further optimize the above technical solution, the thickness of the p-type AlGaN layer is 500nm; the thickness of the p++-type BAlGaN layer is 3-5nm;
为了进一步优化上述技术方案,上述p型AlGaN层为掺杂镁的p型AlGaN层,镁掺杂量为1019±1cm3;上述p++型BAlGaN层为掺杂镁的p++型BAlGaN层,镁掺杂量为1021±1cm3。In order to further optimize the above technical solution, the p-type AlGaN layer is a magnesium-doped p-type AlGaN layer, and the magnesium doping amount is 10 19±1 cm 3 ; the p++-type BAlGaN layer is a magnesium-doped p++-type BAlGaN layer, and the magnesium The doping amount was 10 21±1 cm 3 .
实施例1Example 1
参见图1,本实施例提供了一种紫外LED外延结构,包括衬底、及从下至上依次位于衬底上的低温AlN层、高温AlN层、本征AlGaN层、掺杂硅烷的n型AlGaN层、掺杂硅烷的n掺杂AlGaN/AlN超晶格层、量子阱区-1、超晶格SL区-1、量子阱区-2、超晶格SL区-2、量子阱区-3、超晶格SL区-3、量子阱区-n、超晶格SL区-n、p型AlGaN层和掺杂镁的p++型BAlGaN层。Referring to FIG. 1 , this embodiment provides an ultraviolet LED epitaxial structure, including a substrate, and a low-temperature AlN layer, a high-temperature AlN layer, an intrinsic AlGaN layer, and a silane-doped n-type AlGaN layer on the substrate sequentially from bottom to top layer, silane-doped n-doped AlGaN/AlN superlattice layer, quantum well region-1, superlattice SL region-1, quantum well region-2, superlattice SL region-2, quantum well region-3 , a superlattice SL region-3, a quantum well region-n, a superlattice SL region-n, a p-type AlGaN layer and a magnesium-doped p++-type BAlGaN layer.
在本实施例中,低温AlN层的厚度为10nm;高温AlN层的厚度为200nm;In this embodiment, the thickness of the low temperature AlN layer is 10 nm; the thickness of the high temperature AlN layer is 200 nm;
征AlGaN层厚度为100nm;掺杂硅烷的n型AlGaN层厚度为200nm;硅烷掺杂量为1020 ±1cm3;The thickness of the AlGaN layer is 100 nm; the thickness of the n-type AlGaN layer doped with silane is 200 nm; the doping amount of silane is 10 20 ±1 cm 3 ;
掺杂硅烷的n掺杂AlGaN/AlN超晶格层由AlGaN和AlN重复交替生长10个周期组成;其中每层AlGaN厚度为2nm,每层AlN厚度为2nm;硅烷掺杂量为1020±1cm3;The n-doped AlGaN/AlN superlattice layer doped with silane is composed of AlGaN and AlN alternately grown for 10 cycles; the thickness of each layer of AlGaN is 2nm, and the thickness of each layer of AlN is 2nm; the doping amount of silane is 10 20±1 cm3 ;
量子阱区-1包括4个周期的量子阱区-a,AlxGa1-xN量子垒层的厚度为12nm;InGaN量子阱层的厚度为2nm,0<x<1;The quantum well region-1 includes 4 periods of quantum well region-a, the thickness of the Al x Ga 1-x N quantum barrier layer is 12 nm; the thickness of the InGaN quantum well layer is 2 nm, 0<x<1;
量子阱区-2包括4个周期的量子阱区-b,AlyGa1-yN量子垒层的厚度为12nm;AlInGaN量子阱层的厚度为2nm,x<y<1;The quantum well region-2 includes 4 periods of quantum well region-b, the thickness of the AlyGa1 -yN quantum barrier layer is 12nm; the thickness of the AlInGaN quantum well layer is 2nm, x<y<1;
量子阱区-3包括4个周期的量子阱区-c,BAlGaN量子垒层的厚度为12nm;AlGaN量子阱层的厚度为2nm;The quantum well region-3 includes 4 periods of quantum well region-c, the thickness of the BAlGaN quantum barrier layer is 12 nm; the thickness of the AlGaN quantum well layer is 2 nm;
量子阱区-n包括4个周期的量子阱区-d,BInAlGaN量子垒层的厚度为12nm;AlInGaN量子阱层的厚度为2nm;The quantum well region-n includes 4 periods of quantum well region-d, the thickness of the BInAlGaN quantum barrier layer is 12nm; the thickness of the AlInGaN quantum well layer is 2nm;
超晶格SL区-1包括6个周期的超晶格SL区-a,AlyGa1-yN层的厚度为2nm,x<y<1;AlInGaN层的厚度为2nm;The superlattice SL region-1 includes a 6-period superlattice SL region-a, the thickness of the AlyGa1 -yN layer is 2nm, x<y<1; the thickness of the AlInGaN layer is 2nm;
超晶格SL区-2包括6个周期的超晶格SL区-b,BAlGaN层的厚度为2nm;AlGaN层的厚度为2nm;The superlattice SL region-2 includes 6 periods of the superlattice SL region-b, and the thickness of the BAlGaN layer is 2 nm; the thickness of the AlGaN layer is 2 nm;
超晶格SL区-3包括6个周期的超晶格SL区-c,BInAlGaN层的厚度为2nm;AlInGaN层的厚度为2nm;The superlattice SL region-3 includes 6 periods of the superlattice SL region-c, and the thickness of the BInAlGaN layer is 2 nm; the thickness of the AlInGaN layer is 2 nm;
超晶格SL区-n包括6个周期的超晶格SL区-d,AlGaN层的厚度为2nm;AlInGaN层的厚度为2nm;The superlattice SL region-n includes 6 periods of the superlattice SL region-d, and the thickness of the AlGaN layer is 2 nm; the thickness of the AlInGaN layer is 2 nm;
掺杂镁的p型AlGaN层厚度为500nm,镁掺杂量为1019±1cm3;掺杂镁的p++型BAlGaN层厚度为3nm,镁掺杂量为1021±1cm3。The thickness of the magnesium-doped p-type AlGaN layer is 500 nm, and the magnesium doping amount is 10 19±1 cm 3 ; the thickness of the magnesium-doped p++ type BAlGaN layer is 3 nm, and the magnesium doping amount is 10 21 ± 1 cm 3 .
实施例2Example 2
本实施例提供了一种紫外LED外延结构,包括衬底、及从下至上依次位于衬底上的低温AlN层、高温AlN层、本征AlGaN层、掺杂硅烷的n型AlGaN层、掺杂硅烷的n掺杂AlGaN/AlN超晶格层、量子阱区-1、超晶格SL区-1、量子阱区-2、超晶格SL区-2、量子阱区-3、超晶格SL区-3、量子阱区-n、超晶格SL区-n、p型AlGaN层和掺杂镁的p++型BAlGaN层。This embodiment provides an ultraviolet LED epitaxial structure, including a substrate, and a low-temperature AlN layer, a high-temperature AlN layer, an intrinsic AlGaN layer, a silane-doped n-type AlGaN layer, a doped silane layer, and a low-temperature AlN layer on the substrate in order from bottom to top Silane n-doped AlGaN/AlN superlattice layer, quantum well region-1, superlattice SL region-1, quantum well region-2, superlattice SL region-2, quantum well region-3, superlattice SL region-3, quantum well region-n, superlattice SL region-n, p-type AlGaN layer and magnesium-doped p++-type BAlGaN layer.
在本实施例中,低温AlN层的厚度为10nm;高温AlN层的厚度为200nm;In this embodiment, the thickness of the low temperature AlN layer is 10 nm; the thickness of the high temperature AlN layer is 200 nm;
征AlGaN层厚度为100nm;掺杂硅烷的n型AlGaN层厚度为100nm;硅烷掺杂量为1020 ±1cm3;The thickness of the characteristic AlGaN layer is 100 nm; the thickness of the n-type AlGaN layer doped with silane is 100 nm; the doping amount of silane is 10 20 ±1 cm 3 ;
掺杂硅烷的n掺杂AlGaN/AlN超晶格层由AlGaN和AlN重复交替生长10个周期组成;其中每层AlGaN厚度为5nm,每层AlN厚度为2nm;硅烷掺杂量为1020±1cm3;The n-doped AlGaN/AlN superlattice layer doped with silane is composed of AlGaN and AlN alternately grown for 10 cycles; the thickness of each layer of AlGaN is 5nm, and the thickness of each layer of AlN is 2nm; the doping amount of silane is 10 20±1 cm3 ;
量子阱区-1包括3个周期的量子阱区-a,AlxGa1-xN量子垒层的厚度为15nm;InGaN量子阱层的厚度为2nm,0<x<1;The quantum well region-1 includes three periods of quantum well region-a, the thickness of the Al x Ga 1-x N quantum barrier layer is 15 nm; the thickness of the InGaN quantum well layer is 2 nm, 0<x<1;
量子阱区-2包括3个周期的量子阱区-b,AlyGa1-yN量子垒层的厚度为15nm;AlInGaN量子阱层的厚度为2nm,x<y<1;The quantum well region-2 includes three periods of quantum well region-b, the thickness of the AlyGa1 -yN quantum barrier layer is 15nm; the thickness of the AlInGaN quantum well layer is 2nm, x<y<1;
量子阱区-3包括3个周期的量子阱区-c,BAlGaN量子垒层的厚度为15nm;AlGaN量子阱层的厚度为2nm;The quantum well region-3 includes three periods of quantum well region-c, the thickness of the BAlGaN quantum barrier layer is 15nm; the thickness of the AlGaN quantum well layer is 2nm;
量子阱区-n包括3个周期的量子阱区-d,BInAlGaN量子垒层的厚度为15nm;AlInGaN量子阱层的厚度为2nm;The quantum well region-n includes three periods of quantum well region-d, the thickness of the BInAlGaN quantum barrier layer is 15nm; the thickness of the AlInGaN quantum well layer is 2nm;
超晶格SL区-1包括4个周期的超晶格SL区-a,AlyGa1-yN层的厚度为3nm,x<y<1;AlInGaN层的厚度为3nm;The superlattice SL region-1 includes a 4-period superlattice SL region-a, the thickness of the AlyGa1 -yN layer is 3 nm, and x<y<1; the thickness of the AlInGaN layer is 3 nm;
超晶格SL区-2包括4个周期的超晶格SL区-b,BAlGaN层的厚度为3nm;AlGaN层的厚度为3nm;The superlattice SL region-2 includes 4 periods of the superlattice SL region-b, and the thickness of the BAlGaN layer is 3 nm; the thickness of the AlGaN layer is 3 nm;
超晶格SL区-3包括4个周期的超晶格SL区-c,BInAlGaN层的厚度为3nm;AlInGaN层的厚度为3nm;The superlattice SL region-3 includes 4 periods of the superlattice SL region-c, and the thickness of the BInAlGaN layer is 3 nm; the thickness of the AlInGaN layer is 3 nm;
超晶格SL区-n包括4个周期的超晶格SL区-d,AlGaN层的厚度为3nm;AlInGaN层的厚度为3nm;The superlattice SL region-n includes 4 periods of the superlattice SL region-d, and the thickness of the AlGaN layer is 3 nm; the thickness of the AlInGaN layer is 3 nm;
掺杂镁的p型AlGaN层厚度为500nm,镁掺杂量为1019±1cm3;掺杂镁的p++型BAlGaN层厚度为5nm,镁掺杂量为1021±1cm3。The thickness of the magnesium-doped p-type AlGaN layer is 500 nm, and the magnesium doping amount is 10 19±1 cm 3 ; the thickness of the magnesium-doped p++ type BAlGaN layer is 5 nm, and the magnesium doping amount is 10 21 ± 1 cm 3 .
实施例3Example 3
本实施例提供了一种紫外LED外延结构,包括衬底、及从下至上依次位于衬底上的低温AlN层、高温AlN层、本征AlGaN层、掺杂硅烷的n型AlGaN层、掺杂硅烷的n掺杂AlGaN/AlN超晶格层、量子阱区-1、超晶格SL区-1、量子阱区-2、超晶格SL区-2、量子阱区-3、超晶格SL区-3、量子阱区-n、超晶格SL区-n、p型AlGaN层和掺杂镁的p++型BAlGaN层。This embodiment provides an ultraviolet LED epitaxial structure, including a substrate, and a low-temperature AlN layer, a high-temperature AlN layer, an intrinsic AlGaN layer, a silane-doped n-type AlGaN layer, a doped silane layer, and a low-temperature AlN layer on the substrate in order from bottom to top Silane n-doped AlGaN/AlN superlattice layer, quantum well region-1, superlattice SL region-1, quantum well region-2, superlattice SL region-2, quantum well region-3, superlattice SL region-3, quantum well region-n, superlattice SL region-n, p-type AlGaN layer and magnesium-doped p++-type BAlGaN layer.
在本实施例中,低温AlN层的厚度为10nm;高温AlN层的厚度为200nm;In this embodiment, the thickness of the low temperature AlN layer is 10 nm; the thickness of the high temperature AlN layer is 200 nm;
征AlGaN层厚度为100nm;掺杂硅烷的n型AlGaN层厚度为300nm;硅烷掺杂量为1020 ±1cm3;The thickness of the AlGaN layer is 100 nm; the thickness of the n-type AlGaN layer doped with silane is 300 nm; the doping amount of silane is 10 20 ±1 cm 3 ;
掺杂硅烷的n掺杂AlGaN/AlN超晶格层由AlGaN和AlN重复交替生长10个周期组成;其中每层AlGaN厚度为2nm,每层AlN厚度为2nm;硅烷掺杂量为1020±1cm3;The n-doped AlGaN/AlN superlattice layer doped with silane is composed of AlGaN and AlN alternately grown for 10 cycles; the thickness of each layer of AlGaN is 2nm, and the thickness of each layer of AlN is 2nm; the doping amount of silane is 10 20±1 cm3 ;
量子阱区-1包括4个周期的量子阱区-a,AlxGa1-xN量子垒层的厚度为13nm;InGaN量子阱层的厚度为2nm,0<x<1;The quantum well region-1 includes 4 periods of quantum well region-a, the thickness of the Al x Ga 1-x N quantum barrier layer is 13 nm; the thickness of the InGaN quantum well layer is 2 nm, 0<x<1;
量子阱区-2包括4个周期的量子阱区-b,AlyGa1-yN量子垒层的厚度为13nm;AlInGaN量子阱层的厚度为2nm,x<y<1;The quantum well region-2 includes 4 periods of quantum well region-b, the thickness of the AlyGa1 -yN quantum barrier layer is 13nm; the thickness of the AlInGaN quantum well layer is 2nm, x<y<1;
量子阱区-3包括4个周期的量子阱区-c,BAlGaN量子垒层的厚度为14nm;AlGaN量子阱层的厚度为2nm;The quantum well region-3 includes 4 periods of quantum well region-c, the thickness of the BAlGaN quantum barrier layer is 14 nm; the thickness of the AlGaN quantum well layer is 2 nm;
量子阱区-n包括4个周期的量子阱区-d,BInAlGaN量子垒层的厚度为14nm;AlInGaN量子阱层的厚度为2nm;The quantum well region-n includes 4 periods of quantum well region-d, the thickness of the BInAlGaN quantum barrier layer is 14nm; the thickness of the AlInGaN quantum well layer is 2nm;
超晶格SL区-1包括5个周期的超晶格SL区-a,AlyGa1-yN层的厚度为3nm,x<y<1;AlInGaN层的厚度为2nm;The superlattice SL region-1 includes 5 periods of the superlattice SL region-a, the thickness of the AlyGa1 -yN layer is 3 nm, x<y<1; the thickness of the AlInGaN layer is 2 nm;
超晶格SL区-2包括5个周期的超晶格SL区-b,BAlGaN层的厚度为3nm;AlGaN层的厚度为2nm;The superlattice SL region-2 includes 5 periods of the superlattice SL region-b, and the thickness of the BAlGaN layer is 3 nm; the thickness of the AlGaN layer is 2 nm;
超晶格SL区-3包括5个周期的超晶格SL区-c,BInAlGaN层的厚度为3nm;AlInGaN层的厚度为2nm;The superlattice SL region-3 includes 5 periods of the superlattice SL region-c, and the thickness of the BInAlGaN layer is 3 nm; the thickness of the AlInGaN layer is 2 nm;
超晶格SL区-n包括5个周期的超晶格SL区-d,AlGaN层的厚度为3nm;AlInGaN层的厚度为2nm;The superlattice SL region-n includes 5 periods of the superlattice SL region-d, and the thickness of the AlGaN layer is 3 nm; the thickness of the AlInGaN layer is 2 nm;
掺杂镁的p型AlGaN层厚度为500nm,镁掺杂量为1019±1cm3;掺杂镁的p++型BAlGaN层厚度为4nm,镁掺杂量为1021±1cm3。The thickness of the magnesium-doped p-type AlGaN layer is 500 nm, and the magnesium doping amount is 10 19±1 cm 3 ; the thickness of the magnesium-doped p++ type BAlGaN layer is 4 nm, and the magnesium doping amount is 10 21 ± 1 cm 3 .
实施例4Example 4
上述实施例1-3中紫外LED外延结构的制备方法,运用金属有机化合物化学气相沉淀(MOCVD)外延生长技术,采用三甲基镓(TMGa),三乙基镓(TEGa),三乙基硼(TEB),三甲基铝(TMAl)和氨气(NH3)硅烷(SiH4)和二茂镁(Cp2Mg),氮气,氢气分别提供生长所需要的镓源,铝源,硼源,和氮源,硅源,镁源以及载气,具体制备方法如下:The preparation method of the ultraviolet LED epitaxial structure in the above-mentioned embodiments 1-3 adopts the metal organic compound chemical vapor deposition (MOCVD) epitaxial growth technology, and adopts trimethyl gallium (TMGa), triethyl gallium (TEGa), triethyl boron (TEB), trimethylaluminum (TMAl) and ammonia (NH 3 ) silane (SiH 4 ) and magnesium dimethylocene (Cp2Mg), nitrogen, hydrogen provide the sources of gallium, aluminum, boron, and Nitrogen source, silicon source, magnesium source and carrier gas, the specific preparation method is as follows:
(1)将蓝宝石衬底清洗处理后,放入MOCVD设备在1200℃烘烤15min;(1) After cleaning the sapphire substrate, put it into MOCVD equipment and bake at 1200°C for 15min;
(2)降温到600℃,通过通入三甲基铝(TMAl)和氨气(NH3),生长一层低温AlN层,生长压力为220torr,然后升温到1060℃,持续通入三甲基铝(TMAl)和氨气(NH3),生长一层高温AlN层,生长压力为220torr;(2) Cool down to 600°C, grow a low-temperature AlN layer by feeding trimethylaluminum (TMAl) and ammonia gas (NH 3 ), the growth pressure is 220torr, then heat up to 1060°C, and continuously feed trimethylaluminum Aluminum (TMAl) and ammonia (NH 3 ), grow a high temperature AlN layer, and the growth pressure is 220torr;
(3)升温至1070℃,在250torr下,通入三甲基镓(TMGa)、三甲基铝(TMAl)和氨气(NH3)生长一层本征低温GaAlN层;(3) the temperature is raised to 1070°C, and at 250torr, trimethylgallium (TMGa), trimethylaluminum (TMAl) and ammonia gas ( NH3 ) are introduced to grow an intrinsic low temperature GaAlN layer;
(4)保持温度不变,继续生长一层掺杂硅烷的n型AlGaN层,生长压力为150torr;(4) Keep the temperature unchanged, continue to grow a layer of n-type AlGaN layer doped with silane, and the growth pressure is 150torr;
(5)降温至1060℃,在150torr下,通入三乙基镓(TMGa)、三甲基铝(TMAl)和氨气(NH3)生长一层掺杂硅烷的n型AlGaN/AlN超晶格层,根据需要,重复生长多个周期的AlGaN/AlN超晶格结构;(5) Cool down to 1060°C, and at 150torr, feed triethylgallium (TMGa), trimethylaluminum (TMAl) and ammonia (NH 3 ) to grow a layer of silane-doped n-type AlGaN/AlN supercrystal Lattice layer, according to needs, repeat the growth of multiple cycles of AlGaN/AlN superlattice structure;
(6)降温至1050℃左右,在300torr下,生长一层AlXGa1-XN量子垒层,然后降温到800-900℃,生长一层InGaN量子阱层,再生长一层AlXGa1-XN量子垒层,根据需要,重复生长多个周期,完成量子阱区-1生长;(6) Cool down to about 1050 °C, grow a layer of Al X Ga 1-X N quantum barrier layer at 300 torr, then cool down to 800-900 ° C, grow a layer of InGaN quantum well layer, and then grow a layer of Al X Ga 1-X N quantum barrier layer, repeat the growth for multiple cycles as needed to complete the growth of quantum well region-1;
(7)保持温度不变,在260torr下,生长一层AlyGa1-yN层,然后降温到1045℃,生长一层AlInGaN层,根据需要,重复生长多个周期,形成超晶格SL-1区;(7) Keeping the temperature unchanged, at 260torr, grow an AlyGa1 -yN layer, then cool down to 1045°C, grow an AlInGaN layer, and repeat the growth for multiple cycles as needed to form a superlattice SL -
(8)保持温度不远,在300torr下,生长一层AlyGa1-yN量子垒层,然后降温到800-1000℃,生长一层AlInGaN量子阱层,再生长一层AlyGa1-yN量子垒层,根据需要,重复生长多个周期,完成量子阱区-2生长;(8) Keep the temperature not far, at 300torr, grow a layer of AlyGa1 -yN quantum barrier layer, then cool down to 800-1000℃, grow a layer of AlInGaN quantum well layer, and then grow a layer of AyGa1 -y N quantum barrier layer, repeat the growth for multiple cycles as needed to complete the growth of quantum well region-2;
(9)升温至1060℃,在300torr下,生长一层BAlGaN层,然后生长一层AlGaN层,根据需要,重复生长多个周期,形成超晶格SL-2区;(9) Raising the temperature to 1060°C, at 300torr, grow a layer of BAlGaN layer, then grow a layer of AlGaN layer, and repeat the growth for multiple cycles as needed to form a superlattice SL-2 region;
(10)升温至1070℃左右,在300torr下,生长一层BAlGaN量子垒层,然后生长一层AlGaN量子阱层,再生长一层BAlGaN量子垒层,根据需要,重复生长多个周期,完成量子阱区-3生长;(10) The temperature is raised to about 1070°C, and at 300torr, a layer of BAlGaN quantum barrier layer is grown, then a layer of AlGaN quantum well layer is grown, and then a layer of BAlGaN quantum barrier layer is grown, and repeated growth cycles as needed to complete the quantum Well region-3 growth;
(11)升温至1080℃,在300torr下,生长一层BInAlGaN层,然后生长一层AlInGaN层,根据需要,重复生长多个周期,形成超晶格SL-3区;(11) Raising the temperature to 1080°C, at 300torr, grow a BInAlGaN layer, then grow an AlInGaN layer, and repeat the growth for multiple cycles as needed to form a superlattice SL-3 region;
(12)降温至1070℃左右,在300torr下,生长一层BInAlGaN量子垒层,然后生长一层AlInGaN量子阱层,再生长一层BInAlGaN量子垒层,根据需要,重复生长多个周期,完成量子阱区-n生长;(12) Cool down to about 1070°C, and at 300torr, grow a BInAlGaN quantum barrier layer, then grow an AlInGaN quantum well layer, and then grow a BInAlGaN quantum barrier layer, and repeat the growth for multiple cycles as needed to complete the quantum Well region-n growth;
(13)在温1070℃,在300torr下,生长一层AlGaN层,然后生长一层AlInGaN层,根据需要,重复生长多个周期,形成超晶格SL-n区;(13) At a temperature of 1070 °C and 300 torr, grow an AlGaN layer, then grow an AlInGaN layer, and repeat the growth for multiple cycles as needed to form a superlattice SL-n region;
(14)降温至1030℃,在150torr下,生长一层掺杂镁的p型AlGaN层。(14) The temperature is lowered to 1030° C., and a p-type AlGaN layer doped with magnesium is grown at 150 torr.
(15)保持温度不变,生长一层掺杂镁p++型BAlGaN。(15) Keeping the temperature unchanged, a layer of magnesium-doped p++ type BAlGaN is grown.
(16)在氮气氛围下,退火20min,此生长过程结束。(16) In a nitrogen atmosphere, annealing for 20min, the growth process is over.
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的装置而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。The various embodiments in this specification are described in a progressive manner, and each embodiment focuses on the differences from other embodiments, and the same and similar parts between the various embodiments can be referred to each other. As for the device disclosed in the embodiment, since it corresponds to the method disclosed in the embodiment, the description is relatively simple, and the relevant part can be referred to the description of the method.
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。The above description of the disclosed embodiments enables any person skilled in the art to make or use the present invention. Various modifications to these embodiments will be readily apparent to those skilled in the art, and the generic principles defined herein may be implemented in other embodiments without departing from the spirit or scope of the invention. Thus, the present invention is not intended to be limited to the embodiments shown herein, but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110523507.5A CN113140657B (en) | 2021-05-13 | 2021-05-13 | Ultraviolet LED epitaxial structure and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110523507.5A CN113140657B (en) | 2021-05-13 | 2021-05-13 | Ultraviolet LED epitaxial structure and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113140657A CN113140657A (en) | 2021-07-20 |
CN113140657B true CN113140657B (en) | 2022-04-19 |
Family
ID=76817398
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110523507.5A Active CN113140657B (en) | 2021-05-13 | 2021-05-13 | Ultraviolet LED epitaxial structure and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113140657B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115863503B (en) * | 2023-02-28 | 2023-05-12 | 江西兆驰半导体有限公司 | Deep ultraviolet LED epitaxial wafer, preparation method thereof and deep ultraviolet LED |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001168384A (en) * | 1999-12-08 | 2001-06-22 | Nichia Chem Ind Ltd | Nitride semiconductor light emitting element |
CN1790756A (en) * | 2004-09-09 | 2006-06-21 | 蓝波光电股份有限公司 | Monolithic multi-color, multi-quantum well semiconductor LED |
CN102867895A (en) * | 2012-09-17 | 2013-01-09 | 聚灿光电科技(苏州)有限公司 | Epitaxial structure for effectively increasing side light emitting efficiency of LED and manufacture method of epitaxial structure |
KR20130097362A (en) * | 2012-02-24 | 2013-09-03 | 삼성전자주식회사 | Semiconductor light emitting device |
CN103474539A (en) * | 2013-09-25 | 2013-12-25 | 湘能华磊光电股份有限公司 | Method for epitaxial growth of LED structure containing superlattice layers and LED structure |
CN103840045A (en) * | 2012-11-21 | 2014-06-04 | 晶元光电股份有限公司 | Light emitting device with multiple light emitting stacks |
CN103887381A (en) * | 2014-03-28 | 2014-06-25 | 西安神光皓瑞光电科技有限公司 | Growth method for improving crystal quality of ultraviolet LED epitaxial materials |
CN105957929A (en) * | 2016-06-01 | 2016-09-21 | 聚灿光电科技股份有限公司 | Wide frequency spectrum GaN-based LED epitaxial structure and manufacturing method thereof |
CN109585616A (en) * | 2018-12-05 | 2019-04-05 | 马鞍山杰生半导体有限公司 | Ultraviolet LED epitaxial preparation method and ultraviolet LED |
CN110337730A (en) * | 2017-02-24 | 2019-10-15 | 欧司朗光电半导体有限公司 | Optoelectronic Semiconductor Chips |
CN111725366A (en) * | 2020-07-22 | 2020-09-29 | 福建兆元光电有限公司 | A kind of color mixing epitaxial structure and manufacturing method |
CN112018219A (en) * | 2020-09-04 | 2020-12-01 | 广东省科学院半导体研究所 | Ultraviolet light-emitting chip, preparation method and application thereof |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4116260B2 (en) * | 2001-02-23 | 2008-07-09 | 株式会社東芝 | Semiconductor light emitting device |
KR100691444B1 (en) * | 2005-11-19 | 2007-03-09 | 삼성전기주식회사 | Nitride semiconductor light emitting device |
US9024292B2 (en) * | 2012-06-02 | 2015-05-05 | Xiaohang Li | Monolithic semiconductor light emitting devices and methods of making the same |
-
2021
- 2021-05-13 CN CN202110523507.5A patent/CN113140657B/en active Active
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001168384A (en) * | 1999-12-08 | 2001-06-22 | Nichia Chem Ind Ltd | Nitride semiconductor light emitting element |
CN1790756A (en) * | 2004-09-09 | 2006-06-21 | 蓝波光电股份有限公司 | Monolithic multi-color, multi-quantum well semiconductor LED |
KR20130097362A (en) * | 2012-02-24 | 2013-09-03 | 삼성전자주식회사 | Semiconductor light emitting device |
CN102867895A (en) * | 2012-09-17 | 2013-01-09 | 聚灿光电科技(苏州)有限公司 | Epitaxial structure for effectively increasing side light emitting efficiency of LED and manufacture method of epitaxial structure |
CN103840045A (en) * | 2012-11-21 | 2014-06-04 | 晶元光电股份有限公司 | Light emitting device with multiple light emitting stacks |
CN103474539A (en) * | 2013-09-25 | 2013-12-25 | 湘能华磊光电股份有限公司 | Method for epitaxial growth of LED structure containing superlattice layers and LED structure |
CN103887381A (en) * | 2014-03-28 | 2014-06-25 | 西安神光皓瑞光电科技有限公司 | Growth method for improving crystal quality of ultraviolet LED epitaxial materials |
CN105957929A (en) * | 2016-06-01 | 2016-09-21 | 聚灿光电科技股份有限公司 | Wide frequency spectrum GaN-based LED epitaxial structure and manufacturing method thereof |
CN110337730A (en) * | 2017-02-24 | 2019-10-15 | 欧司朗光电半导体有限公司 | Optoelectronic Semiconductor Chips |
CN109585616A (en) * | 2018-12-05 | 2019-04-05 | 马鞍山杰生半导体有限公司 | Ultraviolet LED epitaxial preparation method and ultraviolet LED |
CN111725366A (en) * | 2020-07-22 | 2020-09-29 | 福建兆元光电有限公司 | A kind of color mixing epitaxial structure and manufacturing method |
CN112018219A (en) * | 2020-09-04 | 2020-12-01 | 广东省科学院半导体研究所 | Ultraviolet light-emitting chip, preparation method and application thereof |
Also Published As
Publication number | Publication date |
---|---|
CN113140657A (en) | 2021-07-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103824909B (en) | A kind of epitaxy method improving GaN base LED luminosity | |
CN103887380B (en) | A kind of epitaxial growth method of purple LED | |
CN106229390B (en) | Growth method of GaN-based light emitting diode chip | |
CN103811601B (en) | A kind of GaN base LED multi-level buffer layer growth method with Sapphire Substrate as substrate | |
CN105355737B (en) | SQW combination LED epitaxial structure of high-luminous-efficiency and preparation method thereof | |
CN106935690B (en) | Epitaxial structure for improving light output power of ultraviolet LED | |
CN104051586A (en) | A GaN-based light-emitting diode epitaxial structure and its preparation method | |
CN108550665A (en) | A kind of LED epitaxial structure growing method | |
CN104576852A (en) | Stress regulation method for luminous quantum wells of GaN-based LED epitaxial structure | |
CN109860345B (en) | LED epitaxial structure growth method | |
CN110993753A (en) | Light emitting diode epitaxial wafer and manufacturing method thereof | |
CN115863503B (en) | Deep ultraviolet LED epitaxial wafer, preparation method thereof and deep ultraviolet LED | |
CN107946416B (en) | A LED epitaxial growth method for improving luminous efficiency | |
CN106328780B (en) | The method of light emitting diode substrate epitaxial growth based on AlN templates | |
CN113140657B (en) | Ultraviolet LED epitaxial structure and preparation method thereof | |
CN108574026B (en) | A method for growing LED epitaxial electron blocking layer | |
CN106374021A (en) | LED Epitaxial Growth Method Based on Sapphire Patterned Substrate | |
CN112103375B (en) | Epitaxial growth methods suitable for UV LEDs | |
CN107316925B (en) | Purple LED epitaxial structure and its growing method | |
CN106910802B (en) | Epitaxial structure for realizing short-wavelength ultraviolet LED | |
CN105870269B (en) | Improve the LED epitaxial growing method of hole injection | |
CN109473520B (en) | Light emitting diode epitaxial wafer and manufacturing method thereof | |
CN104037274B (en) | A kind of LED luminescent layers epitaxial growth method and structure | |
CN111952418A (en) | A method for growing LED multiple quantum well layers to improve luminous efficiency | |
CN111697112A (en) | Deep ultraviolet light-emitting diode based on AIN/PSS composite substrate and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20220713 Address after: 721000 room 306, headquarters economic office building, Fengxiang District, Baoji City, Shaanxi Province Patentee after: Shaanxi changruixin Electronic Technology Co.,Ltd. Address before: 1206e, 12th floor, building B, Rongcheng Yungu, No.3 Keji Road, high tech Zone, Xi'an, Shaanxi 710000 Patentee before: Xi'an Ruixin Guangtong Information Technology Co.,Ltd. |
|
CP03 | Change of name, title or address | ||
CP03 | Change of name, title or address |
Address after: Room 518, Chuangye Building, No. 30 Jufu Road, Weibin District, Baoji City, Shaanxi Province, 721000 Patentee after: Juruixin Optoelectronics Co.,Ltd. Address before: 721000 room 306, headquarters economic office building, Fengxiang District, Baoji City, Shaanxi Province Patentee before: Shaanxi changruixin Electronic Technology Co.,Ltd. |