CN113139598B - Intrusion detection method and system based on improved intelligent optimization algorithm - Google Patents
Intrusion detection method and system based on improved intelligent optimization algorithm Download PDFInfo
- Publication number
- CN113139598B CN113139598B CN202110434602.8A CN202110434602A CN113139598B CN 113139598 B CN113139598 B CN 113139598B CN 202110434602 A CN202110434602 A CN 202110434602A CN 113139598 B CN113139598 B CN 113139598B
- Authority
- CN
- China
- Prior art keywords
- module
- sub
- population
- individuals
- fitness value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000005457 optimization Methods 0.000 title claims abstract description 58
- 238000001514 detection method Methods 0.000 title claims abstract description 40
- 238000004364 calculation method Methods 0.000 claims abstract description 29
- 238000012549 training Methods 0.000 claims abstract description 23
- 230000000739 chaotic effect Effects 0.000 claims description 36
- 101100328518 Caenorhabditis elegans cnt-1 gene Proteins 0.000 claims description 31
- 230000006870 function Effects 0.000 claims description 27
- 238000000034 method Methods 0.000 claims description 26
- 230000003044 adaptive effect Effects 0.000 claims description 22
- 101100328519 Caenorhabditis elegans cnt-2 gene Proteins 0.000 claims description 20
- 230000008569 process Effects 0.000 claims description 8
- 238000012360 testing method Methods 0.000 claims description 6
- 108090000623 proteins and genes Proteins 0.000 claims description 4
- 239000011159 matrix material Substances 0.000 claims description 3
- 238000009827 uniform distribution Methods 0.000 claims description 3
- 230000008901 benefit Effects 0.000 description 5
- 238000009826 distribution Methods 0.000 description 4
- 230000035772 mutation Effects 0.000 description 4
- 230000006872 improvement Effects 0.000 description 3
- 238000010845 search algorithm Methods 0.000 description 3
- 230000002028 premature Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000004791 biological behavior Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000012804 iterative process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/214—Generating training patterns; Bootstrap methods, e.g. bagging or boosting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F21/00—Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
- G06F21/50—Monitoring users, programs or devices to maintain the integrity of platforms, e.g. of processors, firmware or operating systems
- G06F21/55—Detecting local intrusion or implementing counter-measures
- G06F21/56—Computer malware detection or handling, e.g. anti-virus arrangements
- G06F21/566—Dynamic detection, i.e. detection performed at run-time, e.g. emulation, suspicious activities
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/004—Artificial life, i.e. computing arrangements simulating life
- G06N3/006—Artificial life, i.e. computing arrangements simulating life based on simulated virtual individual or collective life forms, e.g. social simulations or particle swarm optimisation [PSO]
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Software Systems (AREA)
- Artificial Intelligence (AREA)
- Evolutionary Computation (AREA)
- Life Sciences & Earth Sciences (AREA)
- Computer Security & Cryptography (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Health & Medical Sciences (AREA)
- Computer Hardware Design (AREA)
- Bioinformatics & Computational Biology (AREA)
- General Health & Medical Sciences (AREA)
- Evolutionary Biology (AREA)
- Virology (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- Mathematical Physics (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
本发明公开了一种基于改进智能优化算法的入侵检测方法,包括:获取数据集,使用z‑score方法对数据集进行标准化处理,以得到标准化处理后的数据集;通过改进智能优化算法优化核极限学习机模型的惩罚系数C和核系数γ,并得到优化后的核极限学习机模型;对优化后的核极限学习机模型进行训练,以得到训练好的核极限学习机模型,并使用训练好的核极限学习机对数据集进行分类,以得到分类结果。本发明能够解决现有基于单种智能优化算法的入侵检测方法存在的收敛速度慢、容易陷入局部最优陷阱、以及全局搜索能力不强的技术问题;以及现有基于多种智能优化算法的入侵检测方法存在的算法迭代效率低、计算精度差的技术问题。
The invention discloses an intrusion detection method based on an improved intelligent optimization algorithm. The penalty coefficient C and the kernel coefficient γ of the extreme learning machine model are obtained, and the optimized kernel extreme learning machine model is obtained; the optimized kernel extreme learning machine model is trained to obtain the trained kernel extreme learning machine model, and use the training A good kernel extreme learning machine classifies the dataset to get the classification result. The invention can solve the technical problems of the existing intrusion detection methods based on a single intelligent optimization algorithm, such as slow convergence speed, easy to fall into the local optimal trap, and weak global search ability; and the existing intrusion detection methods based on multiple intelligent optimization algorithms. The detection method has the technical problems of low algorithm iteration efficiency and poor calculation accuracy.
Description
技术领域technical field
本发明属于信息安全技术领域,更具体地,涉及一种基于改进智能优化算法的入侵检测方法和系统。The invention belongs to the technical field of information security, and more particularly, relates to an intrusion detection method and system based on an improved intelligent optimization algorithm.
背景技术Background technique
随着网络信息化程度的逐渐提高,网络恶意攻击越来越频繁,网络安全问题已经引起了世界各国研究者的广泛关注。入侵检测方法作为防火墙后的第二道安全防护策略,是一种灵活有效的主动防御方法,它能实时的监测系统中的异常情况,当发现系统中存在恶意攻击或者对计算机设备的非法操作时,能及时发出报警信息,是对防火墙的有效补充。With the gradual improvement of the degree of network informatization, network malicious attacks are becoming more and more frequent, and network security issues have attracted extensive attention from researchers all over the world. As the second security protection strategy behind the firewall, the intrusion detection method is a flexible and effective active defense method. It can monitor abnormal conditions in the system in real time. When malicious attacks or illegal operations on computer equipment are found in the system , can send out alarm information in time, is an effective supplement to the firewall.
近年来,核极限学习机因为具有结构简单、迭代次数少和运行速度较快等优点,被广泛应用于入侵检测方法中。但是,如果没有恰当的选择核极限学习机中的参数,会使得核极限学习机的分类效果大大降低。智能优化算法是通过模拟自然现象或者生物行为来对最优化问题进行求解,是一种较好的优化方法。In recent years, kernel extreme learning machines have been widely used in intrusion detection methods because of their simple structure, fewer iterations and faster running speed. However, if the parameters in the kernel extreme learning machine are not properly selected, the classification effect of the kernel extreme learning machine will be greatly reduced. The intelligent optimization algorithm solves the optimization problem by simulating natural phenomena or biological behavior, and is a better optimization method.
目前主流的智能优化算法主要包括:一、基于单种智能优化算法的入侵检测方法,其优化方法通常采用单种智能优化方法来优化核极限学习机中的参数,比如差分进化方法、人工蜂群算法和禁忌搜索算法等;二、基于多种智能优化算法的入侵检测方法,其优化方法通常将多种智能优化算法结合起来共同进行寻优工作。The current mainstream intelligent optimization algorithms mainly include: 1. Intrusion detection methods based on a single intelligent optimization algorithm, the optimization method usually adopts a single intelligent optimization method to optimize the parameters in the kernel extreme learning machine, such as differential evolution method, artificial bee colony Algorithms and tabu search algorithms, etc.; 2. Intrusion detection methods based on multiple intelligent optimization algorithms. The optimization methods usually combine multiple intelligent optimization algorithms for optimization work.
然而,上述现有的智能优化算法均具有一些不可忽略的缺陷:首先,基于单种智能优化算法的入侵检测方法而言,其优化方法往往存在收敛速度慢、容易陷入局部最优陷阱和全局搜索能力不强的问题;第二,对于基于多种智能优化算法的入侵检测方法而言,其优化方法通常只结合标准智能优化算法,不能很有效的解决算法迭代效率低、计算精度差等问题;第三,对于基于多种智能优化算法的入侵检测方法而言,其优化方法中的初始种群往往采用随机的方法进行生成,通常存在种群分布质量较差、收敛速率差等问题。However, the above-mentioned existing intelligent optimization algorithms all have some shortcomings that cannot be ignored: First, for intrusion detection methods based on a single intelligent optimization algorithm, the optimization methods often have slow convergence speed, easy to fall into the trap of local optimality and global search. Second, for intrusion detection methods based on multiple intelligent optimization algorithms, the optimization methods usually only combine standard intelligent optimization algorithms, and cannot effectively solve the problems of low algorithm iteration efficiency and poor calculation accuracy; Third, for intrusion detection methods based on multiple intelligent optimization algorithms, the initial population in the optimization method is often generated by random methods, and there are usually problems such as poor population distribution quality and poor convergence rate.
发明内容SUMMARY OF THE INVENTION
针对现有技术的以上缺陷或改进需求,本发明提供了一种基于改进智能优化算法的入侵检测方法和系统,其目的在于,解决现有基于单种智能优化算法的入侵检测方法存在的收敛速度慢、容易陷入局部最优陷阱、以及全局搜索能力不强的技术问题;以及现有基于多种智能优化算法的入侵检测方法存在的算法迭代效率低、计算精度差的技术问题,以及种群分布质量较差、收敛速率差的技术问题。In view of the above defects or improvement requirements of the prior art, the present invention provides an intrusion detection method and system based on an improved intelligent optimization algorithm, the purpose of which is to solve the convergence speed of the existing intrusion detection method based on a single intelligent optimization algorithm. It is slow, easy to fall into the local optimal trap, and the technical problems of the global search ability are not strong; and the existing intrusion detection methods based on a variety of intelligent optimization algorithms have the technical problems of low algorithm iteration efficiency, poor calculation accuracy, and the quality of population distribution. Poor technical problems with poor convergence rate.
为实现上述目的,按照本发明的一个方面,提供了一种基于改进智能优化算法的入侵检测方法,包括以下步骤:In order to achieve the above object, according to one aspect of the present invention, an intrusion detection method based on an improved intelligent optimization algorithm is provided, comprising the following steps:
(1)获取数据集,使用z-score方法对数据集进行标准化处理,以得到标准化处理后的数据集;(1) Obtain a data set, and use the z-score method to standardize the data set to obtain a standardized data set;
(2)通过改进智能优化算法优化核极限学习机模型的惩罚系数C和核系数γ,并得到优化后的核极限学习机模型;(2) Optimize the penalty coefficient C and the kernel coefficient γ of the kernel extreme learning machine model by improving the intelligent optimization algorithm, and obtain the optimized kernel extreme learning machine model;
(3)对步骤(2)优化后的核极限学习机模型进行训练,以得到训练好的核极限学习机模型,并使用训练好的核极限学习机对数据集进行分类,以得到分类结果。(3) Train the kernel extreme learning machine model optimized in step (2) to obtain a trained kernel extreme learning machine model, and use the trained kernel extreme learning machine to classify the data set to obtain a classification result.
优选地,步骤(1)包括以下子步骤:Preferably, step (1) includes the following substeps:
(1-1)获取数据集Ds;(1-1) Obtain the dataset Ds;
其中,k为数据集Ds中的样本总数,n为数据集中样本的特征维数,为Ds中第i行第j个样本点,其表示数据集Ds中第i个样本中的第j个特征属性值,且有i∈[1,k],j∈[1,n];Among them, k is the total number of samples in the data set Ds, n is the feature dimension of the samples in the data set, is the jth sample point in the ith row in Ds, which represents the jth feature attribute value in the ith sample in the data set Ds, and has i∈[1,k], j∈[1,n];
(1-2)从步骤(1-1)得到的数据集Ds中获取第i行第j个元素并对其进行标准化处理,以得到标准化后的特征属性值 (1-2) Obtain the jth element of the i-th row from the data set Ds obtained in step (1-1) And normalize it to get the normalized feature attribute value
(1-3)针对数据集Ds中的剩余样本点,重复上述步骤(1-2),直到数据集Ds中的所有样本点都被处理完毕为止,从而得到标准化后的数据集Ds。(1-3) For the remaining sample points in the data set Ds, repeat the above step (1-2) until all the sample points in the data set Ds have been processed, thereby obtaining the standardized data set Ds.
优选地,步骤(1-2)中的标准化处理的计算公式如下:Preferably, the calculation formula of the standardized processing in step (1-2) is as follows:
其中,μj是数据集Ds中第j列的均值,σj是数据集Ds中第j列的标准差。where μj is the mean of the jth column in the dataset Ds, and σj is the standard deviation of the jth column in the dataset Ds.
优选地,步骤(2)具体包括以下子步骤:Preferably, step (2) specifically includes the following substeps:
(2-1)随机生成种群规模为N的初始种群pop={p1,p2,…,pN},并设置计数器cnt=1,其中种群中第m个个体为pm={Cm,γm},m∈[1,N],Cm和γm分别表示第m个个体的惩罚系数和核系数;(2-1) Randomly generate an initial population pop={p 1 ,p 2 ,...,p N } with a population size of N, and set the counter cnt=1, where the mth individual in the population is p m ={C m ,γ m }, m∈[1,N], C m and γ m represent the penalty coefficient and kernel coefficient of the mth individual, respectively;
(2-2)判断cnt是否大于种群规模N,如果是,则转入步骤(2-4),否则转入步骤(2-3);(2-2) Judging whether cnt is greater than the population size N, if so, go to step (2-4), otherwise go to step (2-3);
(2-3)判断cnt是否为1,如果是,则随机生成位于(0,1)范围内、且不能等于0.25、0.5和0.75的混沌数α(1),设置计数器cnt=cnt+1,并返回步骤(2-2),否则生成第cnt个混沌数α(cnt),设置计数器cnt=cnt+1,并返回步骤(2-2);(2-3) Determine whether cnt is 1. If so, randomly generate a chaotic number α(1) that is in the range of (0,1) and cannot be equal to 0.25, 0.5 and 0.75, and set the counter cnt=cnt+1, And return to step (2-2), otherwise generate the cnt th chaotic number α(cnt), set the counter cnt=cnt+1, and return to step (2-2);
(2-4)设置计数器cnt1=1;(2-4) Set the counter cnt1=1;
(2-5)判断cnt1是否大于种群规模N,如果是,则转入步骤(2-7),否则转入步骤(2-6);(2-5) Judging whether cnt1 is greater than the population size N, if so, go to step (2-7), otherwise go to step (2-6);
(2-6)生成第cnt1个混沌个体设置计数器cnt1=cnt1+1,并返回步骤(2-5);(2-6) Generate the cnt1 chaotic individual Set the counter cnt1=cnt1+1, and return to step (2-5);
(2-7)将生成的N个混沌个体与步骤(2-1)中生成的初始种群混合,以得到混合种群mixpop={mix1,mix2,…,mix2N},获取该混合种群中所有个体的适应度值所构成的适应度值集合F={f(mix1),f(mix2),…,f(mixsn)},按照从小到大的顺序对该适应度值集合中的所有适应度值进行排序,以获取新的适应度值集合并取新的适应度值集合中前N个个体作为混沌初始化后的种群,取新的适应度值集合中最小适应度值对应的个体作为全局最优解pbest,并设置计数器cnt2=1,其中sn为适应度值集合F中适应度值的总数;(2-7) Mix the generated N chaotic individuals with the initial population generated in step (2-1) to obtain a mixed population mixpop={mix 1 , mix 2 ,..., mix 2N }, and obtain the The fitness value set F={f(mix 1 ),f(mix 2 ),...,f(mix sn )} formed by the fitness values of all individuals, in this fitness value set in the order from small to large to sort all fitness values of , to obtain a new set of fitness values And take the first N individuals in the new fitness value set as the population after chaotic initialization, take the individual corresponding to the minimum fitness value in the new fitness value set as the global optimal solution p best , and set the counter cnt2=1, where sn is the total number of fitness values in the fitness value set F;
(2-8)判断cnt2是否等于最大迭代次数T,如果是,则输出全局最优解pbest={Cbest,γbest},过程结束,否则转入步骤(2-9);(2-8) Judging whether cnt2 is equal to the maximum number of iterations T, if so, output the global optimal solution p best ={C best ,γ best }, the process ends, otherwise go to step (2-9);
(2-9)判断cnt2是否为1,如果是,则将步骤(2-7)中得到的混沌初始化后的种群作为种群popmix,并从种群popmix中随机选择q个种群个体形成种群popde,剩下的种群个体形成种群popabc,然后转入步骤(2-10),否则进入步骤(2-33);(2-9) Determine whether cnt2 is 1, if so, take the chaotically initialized population obtained in step (2-7) as the population pop mix , and randomly select q population individuals from the population pop mix to form the population pop de , the remaining population individuals form population pop abc , and then go to step (2-10), otherwise go to step (2-33);
(2-10)针对步骤(2-9)得到的种群popde,获取该种群中所有个体的适应度值所构成的适应度值集合取该适应度值集合中适应度最小的个体作为改进差分进化算法中的局部最优解并设置计数器cnt3=1;(2-10) For the population pop de obtained in step (2-9), obtain a fitness value set composed of fitness values of all individuals in the population Take the individual with the smallest fitness in the fitness value set as the local optimal solution in the improved differential evolution algorithm And set the counter cnt3=1;
(2-11)判断cnt3是否等于最大子种群迭代次数I,如果是,则保存改进差分进化算法中的局部最优解和种群popde,并转入步骤(2-18),否则转入步骤(2-12);(2-11) Determine whether cnt3 is equal to the maximum number of subpopulation iterations I, and if so, save the local optimal solution in the improved differential evolution algorithm and population pop de , and go to step (2-18), otherwise go to step (2-12);
(2-12)判断cnt3是否为1,如果是,则获取步骤(2-10)得到的种群popde中所有个体的适应度值所构成的适应度值集合Fde,并转入步骤(2-13),否则进入步骤(2-17);(2-12) Determine whether cnt3 is 1, and if so, obtain the fitness value set F de formed by the fitness values of all individuals in the population pop de obtained in step (2-10), and go to step (2) -13), otherwise go to step (2-17);
(2-13)针对步骤(2-12)得到的适应度值集合Fde,按照从小到大的顺序对该适应度值集合中的所有适应度值进行排序,以获取新的适应度值集合取中最小适应度值对应的个体作为改进差分进化算法中的局部最优解并取适应度值排前一半的种群个体组成集合该适应度值集合中剩余的个体组成集合 (2-13) For the fitness value set F de obtained in step (2-12), sort all fitness values in the fitness value set according to the order from small to large to obtain a new fitness value set Pick The individual corresponding to the minimum fitness value is used as the local optimal solution in the improved differential evolution algorithm And take the top half of the population individuals with fitness value to form a set The fitness value set The remaining individuals form the set
(2-14)根据步骤(2-13)中得到的集合Fde中的第个个体生成自适应变异个体其中 (2-14) According to the first in the set F de obtained in step (2-13) individual Generate adaptive mutant individuals in
(2-15)对步骤(2-14)得到的自适应变异个体和步骤(2-13)中得到的集合Fde中的第个个体行交叉操作,以生成实验个体 (2-15) For the adaptive mutant individual obtained in step (2-14) and the first in the set F de obtained in step (2-13) individual Crossover operation to generate experimental individuals
(2-16)获取步骤(2-15)得到的实验个体对应的适应度值以及步骤(2-13)得到的个体对应的适应度值,使用二者中较小的适应度值所对应的个体代替适应度值集合Fde中的对应个体,从而得到更新后的种群popde,设置计数器cnt3=cnt3+1,并返回步骤(2-11);(2-16) Obtain the experimental individuals obtained in the step (2-15) The corresponding fitness value and the individual obtained in step (2-13) For the corresponding fitness value, use the individual corresponding to the smaller fitness value of the two to replace the corresponding individual in the fitness value set F de , so as to obtain the updated population pop de , set the counter cnt3=cnt3+1, and Return to step (2-11);
(2-17)获取步骤(2-16)更新后的种群popde中所有个体的适应度值所构成的适应度值集合Fde,然后返回步骤(2-13);(2-17) Obtain the fitness value set F de formed by the fitness values of all individuals in the population pop de updated in step (2-16), and then return to step (2-13);
(2-18)针对步骤(2-9)中的种群popabc,获取该种群中所有个体的人工蜂群适应度值所构成的人工蜂群适应度值集合其中N-q为人工蜂群适应度值集合Fitabc中人工蜂群适应度值的总数,初始化禁忌表T1为种群popabc,禁忌表T2为空,并取人工蜂群适应度值集合Fitabc中人工蜂群适应度最小的个体作为改进人工蜂群算法中的局部最优解并设置计数器cnt4=1;(2-18) For the population pop abc in step (2-9), obtain an artificial bee colony fitness value set composed of the artificial bee colony fitness values of all individuals in the population Among them, Nq is the total number of artificial bee colony fitness values in the artificial bee colony fitness value set Fit abc , the initial taboo table T1 is the population pop abc , the taboo table T2 is empty, and the artificial bee colony fitness value set Fit abc is taken from the artificial bee colony fitness value set Fit abc. Individuals with the smallest swarm fitness as a local optimal solution in an improved artificial bee colony algorithm And set the counter cnt4=1;
(2-19)判断cnt4是否等于最大子种群迭代次数I,如果是,则保存改进人工蜂群算法中的局部最优解和种群popabc,转入步骤(2-32),否则转入步骤(2-20);(2-19) Determine whether cnt4 is equal to the maximum number of subpopulation iterations I, and if so, save the local optimal solution in the improved artificial bee colony algorithm and population pop abc , go to step (2-32), otherwise go to step (2-20);
(2-20)判断cnt4是否为1,如果是,则获取步骤(2-18)中的种群popabc中所有个体的人工蜂群适应度值所构成的人工蜂群适应度值集合Fitabc,转入步骤(2-21),否则进入步骤(2-31);(2-20) Determine whether cnt4 is 1, and if so, obtain the artificial bee colony fitness value set Fit abc composed of the artificial bee colony fitness values of all individuals in the population pop abc in step (2-18), Go to step (2-21), otherwise go to step (2-31);
(2-21)根据步骤(2-20)中得到的集合Fitabc中的第个蜜源个体生成领域蜜源个体其中 (2-21) According to the No. 1 in the set Fit abc obtained in step (2-20) nectar source Generate Domain Nectar Individuals in
(2-22)根据步骤(2-21)中得到的领域蜜源个体判断该领域蜜源个体是否在禁忌表T1或者T2中,如果是则进入步骤(2-21),否则,将该领域蜜源个体加入禁忌表T1中,并进入步骤(2-23);(2-22) According to the field nectar source individuals obtained in step (2-21) Determine whether the nectar source individuals in this field are in the taboo table T1 or T2, if so, go to step (2-21), otherwise, add the nectar source individuals in this field to the taboo table T1, and enter step (2-23);
(2-23)获取步骤(2-21)的蜜源个体对应的人工蜂群适应度值以及领域蜜源个体对应的人工蜂群适应度值判断是否小于如果是,领域蜜源个体代替原种群的蜜源个体,否则将未更新蜜源表Tr中对应蜜源个体的未更新次数加1;(2-23) Obtain the nectar source individuals of step (2-21) Corresponding artificial bee colony fitness value and domain nectar individuals Corresponding artificial bee colony fitness value judge Is it less than If yes, the domain nectar source individual replaces the nectar source individual of the original population, otherwise the unupdated number of the corresponding nectar source individual in the unupdated nectar source table Tr is increased by 1;
(2-24)计算通过步骤(2-23)中得到的更新后蜜源种群中的第个蜜源个体的概率并产生一个[0,1]范围的随机数,判断该随机数是否小于如果是,则进入步骤(2-25),否则,进入步骤(2-28);(2-24) Calculate the No. 1 nectar population in the updated nectar population obtained in step (2-23) The probability of a nectar source And generate a random number in the range of [0,1] to determine whether the random number is less than If yes, then go to step (2-25), otherwise, go to step (2-28);
(2-25)根据步骤(2-24)得到的蜜源个体生成领域蜜源个体其中 (2-25) The nectar source individual obtained according to step (2-24) Generate Domain Nectar Individuals in
(2-26)根据步骤(2-25)中得到的领域蜜源个体判断该领域蜜源个体是否在禁忌表T1或者T2中,如果是则进入步骤(2-25),否则,将该领域蜜源个体加入禁忌表T1中,并进入步骤(2-27);(2-26) According to the field nectar source individual obtained in step (2-25) Determine whether the nectar source individual in this field is in the taboo table T1 or T2, if so, go to step (2-25), otherwise, add the nectar source individual in this field to the taboo table T1, and enter step (2-27);
(2-27)获取步骤(2-24)的蜜源个体对应的人工蜂群适应度值以及步骤(2-25)的领域蜜源个体对应的人工蜂群适应度值判断是否小于如果是,领域蜜源个体代替原种群的蜜源个体,否则将未更新蜜源表Tr中对应蜜源个体的未更新次数加1;(2-27) Obtain the nectar source individuals of step (2-24) Corresponding artificial bee colony fitness value And the domain nectar individual of step (2-25) Corresponding artificial bee colony fitness value judge Is it less than If yes, the domain nectar source individual replaces the nectar source individual of the original population, otherwise the unupdated number of the corresponding nectar source individual in the unupdated nectar source table Tr is increased by 1;
(2-28)获取步骤(2-27)中Tr的最大未更新次数max,判断max是否大于蜜源最大搜索次数limit,如果是,将max对应的蜜源个体加入到T2中,并转到步骤(2-29),否则转到步骤(2-31);(2-28) Obtain the maximum number of unupdated times max of Tr in step (2-27), and determine whether max is greater than the maximum search times limit of the nectar source. If so, add the nectar source individual corresponding to max to T2, and go to step ( 2-29), otherwise go to step (2-31);
(2-29)随机生成一个新的蜜源个体;(2-29) Randomly generate a new nectar source;
(2-30)判断步骤(2-29)中的蜜源个体是否在禁忌表T1或者T2中,如果是则进入步骤(2-29),否则,将该蜜源个体加入禁忌表T1中,并获取更新后的种群popabc,并转到步骤(2-31),设置计数器cnt4=cnt4+1,并返回步骤(2-19);(2-30) Determine whether the nectar source individual in step (2-29) is in the taboo table T1 or T2, if so, go to step (2-29), otherwise, add the nectar source individual to the taboo table T1, and obtain The updated population pop abc , and go to step (2-31), set the counter cnt4=cnt4+1, and return to step (2-19);
(2-31)获取步骤(2-30)更新后的种群popabc中所有个体的适应度值所构成的适应度值集合Fitabc,然后返回步骤(2-20);(2-31) Obtain the fitness value set Fit abc formed by the fitness values of all individuals in the population pop abc updated in step (2-30), and then return to step (2-20);
(2-32)获取步骤(2-11)的局部最优解对应的适应度值以及步骤(2-19)的局部最优解对应的适应度值使用二者中较小的适应度值对应的个体来代替pbest,并将popde和popabc融合得到更新后的种群popmix,设置计数器cnt2=cnt2+1,并返回步骤(2-8);(2-32) Obtain the local optimal solution of step (2-11) The corresponding fitness value and the local optimal solution of step (2-19) The corresponding fitness value Use the individual corresponding to the smaller fitness value of the two to replace p best , and fuse pop de and pop abc to obtain the updated population pop mix , set the counter cnt2=cnt2+1, and return to step (2-8) ;
(2-33)获取步骤(2-32)更新后的种群popmix,并随机选择q个种群个体形成种群popde,剩下的种群个体形成种群popabc,然后返回步骤(2-10)。(2-33) Obtain the updated population pop mix in step (2-32), randomly select q population individuals to form population pop de , and the remaining population individuals form population pop abc , and then return to step (2-10).
优选地,步骤(2-3)中生成混沌数的计算公式如下:Preferably, the calculation formula for generating the chaotic number in step (2-3) is as follows:
α(cnt)=μ·α(cnt)·(1-α(cnt-1))α(cnt)=μ·α(cnt)·(1-α(cnt-1))
其中,μ是相关系数,其取值范围是0到4,优选为4。Among them, μ is the correlation coefficient, and its value ranges from 0 to 4, preferably 4.
步骤(2-6)中生成第cnt1个混沌个体的计算公式如下:Generate the cnt1 chaotic individual in step (2-6) The calculation formula is as follows:
其中,pcnt1是第cnt1个初始种群个体,α(cnt1)是第cnt1个混沌数。Among them, p cnt1 is the cnt1-th initial population individual, and α(cnt1) is the cnt1-th chaotic number.
步骤(2-7)是从步骤(1)中的数据集中随机选取CN组训练数据,计算其分类错误率CE作为适应度函数f,其中分类错误率CE计算公式如下:Step (2-7) is to randomly select the CN group training data from the data set in step (1), and calculate its classification error rate CE as the fitness function f, wherein the calculation formula of the classification error rate CE is as follows:
其中,EN为分类错误的样本数,CN为训练数据样本数。Among them, EN is the number of misclassified samples, and CN is the number of training data samples.
优选地,步骤(2-14)中生成自适应变异个体的计算公式如下:Preferably, the calculation formula for generating the adaptive mutation individual in step (2-14) is as follows:
其中,两者彼此不相同,且两者均不等于Fc为自适应变异因子;in, Both are not identical to each other, and neither is equal to F c is the adaptive variation factor;
自适应变异因子Fc的计算公式如下:The formula for calculating the adaptive variation factor F c is as follows:
其中,fc是初始变异因子;where f c is the initial variation factor;
步骤(2-15)中生成实验个体的计算公式如下:The calculation formula for generating experimental individuals in step (2-15) is as follows:
其中,randn是随机产生于[1,D]之间的随机整数,rand是属于[0,1]之间的均匀分布的随机实数,CR是交叉因子,D为个体基因维度,其中h∈[1,D];Among them, randn is a random integer randomly generated between [1, D], rand is a random real number belonging to a uniform distribution between [0, 1], CR is the crossover factor, D is the individual gene dimension, where h∈[ 1, D];
步骤(2-18)中的人工蜂群适应度函数是采用以下公式:The artificial bee colony fitness function in step (2-18) adopts the following formula:
其中f表示适应度函数,abs表示绝对值函数。where f is the fitness function and abs is the absolute value function.
优选地,步骤(2-21)中生成领域蜜源个体的计算公式如下:Preferably, in step (2-21), the calculation formula for generating domain nectar source individuals is as follows:
其中且与不相同,φ为邻域搜索因子,是-1到1的一个随机数。in and with Not the same, φ is the neighborhood search factor, which is a random number from -1 to 1.
步骤(2-24)中生成概率的计算公式如下:The calculation formula of the generation probability in step (2-24) is as follows:
优选地,步骤(3)具体包括以下子步骤:Preferably, step (3) specifically includes the following substeps:
(3-1)将步骤(1)标准化处理后的数据集按照7:3的比例分为训练集和测试集;(3-1) Divide the standardized data set in step (1) into a training set and a test set according to a ratio of 7:3;
(3-2)根据步骤(2)中得到的最优核参数γbest获取高斯核函数K(xki,xkj),并根据高斯核函数K(xki,xkj)和步骤(3-1)中得到的训练集获得训练好的核极限学习机模型;(3-2) Obtain the Gaussian kernel function K(x ki , x kj ) according to the optimal kernel parameter γ best obtained in step (2), and according to the Gaussian kernel function K(x ki , x kj ) and step (3- The training set obtained in 1) obtains a trained kernel extreme learning machine model;
(3-3)使用步骤(3-2)中训练好的核极限学习机模型对步骤(3-1)中的测试集进行分类,以得到分类结果。(3-3) Use the kernel extreme learning machine model trained in step (3-2) to classify the test set in step (3-1) to obtain a classification result.
优选地,步骤(3-2)中,使用最优核参数γbest获取高斯核函数K(xki,xkj)这一过程具体是:Preferably, in step (3-2), the process of using the optimal kernel parameter γ best to obtain the Gaussian kernel function K(x ki , x kj ) is as follows:
K(xki,xkj)=exp(-||xki-xkj||2/γbest)K(x ki ,x kj )=exp(-||x ki -x kj || 2 /γ best )
核极限学习机模型的训练公式如下:The training formula of the kernel extreme learning machine model is as follows:
其中f(x)是核极限学习机的输出函数,KN是训练集的总数,ΩKELM是高斯核函数对应的核矩阵,T为训练集的标签,Cbest是根据步骤(2)中得到的最优惩罚系数。where f(x) is the output function of the kernel extreme learning machine, KN is the total number of training sets, Ω KELM is the kernel matrix corresponding to the Gaussian kernel function, T is the label of the training set, and C best is obtained according to step (2) optimal penalty coefficient.
按照本发明的另一方面,提供了一种基于改进智能优化算法的入侵检测系统,包括:According to another aspect of the present invention, an intrusion detection system based on an improved intelligent optimization algorithm is provided, comprising:
第一模块,用于获取数据集,使用z-score方法对数据集进行标准化处理,以得到标准化处理后的数据集;The first module is used to obtain the data set, and use the z-score method to standardize the data set to obtain the standardized data set;
第二模块,用于通过改进智能优化算法优化核极限学习机模型的惩罚系数C和核系数γ,并得到优化后的核极限学习机模型;The second module is used to optimize the penalty coefficient C and the kernel coefficient γ of the kernel extreme learning machine model by improving the intelligent optimization algorithm, and obtain the optimized kernel extreme learning machine model;
第三模块,用于对第二模块优化后的核极限学习机模型进行训练,以得到训练好的核极限学习机模型,并使用训练好的核极限学习机对数据集进行分类,以得到分类结果。The third module is used to train the kernel extreme learning machine model optimized by the second module to obtain the trained kernel extreme learning machine model, and use the trained kernel extreme learning machine to classify the data set to obtain the classification result.
总体而言,通过本发明所构思的以上技术方案与现有技术相比,能够取得下列有益效果:In general, compared with the prior art, the above technical solutions conceived by the present invention can achieve the following beneficial effects:
(1)由于本发明采用了步骤(2-1)到步骤(2-7),其采用混沌初始化策略来初始化种群,因此能解决现有基于多种智能优化算法的入侵检测方法中种群质量分布较差和不能得到质量较高的最优解的技术问题;(1) Since the present invention adopts steps (2-1) to (2-7), it adopts the chaotic initialization strategy to initialize the population, so it can solve the problem of population quality distribution in the existing intrusion detection methods based on multiple intelligent optimization algorithms Technical problems that are poor and cannot obtain high-quality optimal solutions;
(2)由于本发明采用了步骤(2-14)和步骤(2-18),其引入自适应变异因子和精英进化策略对差分进化算法进行改进,同时采用禁忌搜索算法对人工蜂群算法进行优化,因此能够解决现有基于单种智能优化算法的入侵检测方法中存在的收敛速度慢、计算精度低、容易陷入局部最优陷阱和全局搜索能力不强的技术问题;(2) Since the present invention adopts steps (2-14) and (2-18), it introduces adaptive mutation factor and elite evolution strategy to improve the differential evolution algorithm, and at the same time adopts the tabu search algorithm to perform artificial bee colony algorithm. Therefore, the existing intrusion detection methods based on a single intelligent optimization algorithm can solve the technical problems of slow convergence speed, low calculation accuracy, easy to fall into the trap of local optimum and weak global search ability;
(3)由于本发明采用了步骤(2-32),其采用改进的差分进化算法和改进的人工蜂群算法作为基本优化算法来进行结合,因此能解决现有基于多种智能优化算法的入侵检测方法中运行效率较低和算法性能不佳的技术问题。(3) Since the present invention adopts step (2-32), it adopts the improved differential evolution algorithm and the improved artificial bee colony algorithm as the basic optimization algorithm to combine, so it can solve the existing intrusion based on a variety of intelligent optimization algorithms. Technical issues with low operational efficiency and poor algorithm performance in detection methods.
附图说明Description of drawings
图1是本发明基于改进智能优化算法的入侵检测方法流程图。Fig. 1 is a flow chart of the intrusion detection method based on the improved intelligent optimization algorithm of the present invention.
具体实施方式Detailed ways
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。In order to make the objectives, technical solutions and advantages of the present invention clearer, the present invention will be further described in detail below with reference to the accompanying drawings and embodiments. It should be understood that the specific embodiments described herein are only used to explain the present invention, but not to limit the present invention. In addition, the technical features involved in the various embodiments of the present invention described below can be combined with each other as long as they do not conflict with each other.
本发明的基本思路在于,提出了一种基于改进智能优化算法的入侵检测方法,其方法首先针对差分进化算法容易陷入局部最优陷阱的问题,引入自适应变异因子,使差分进化算法跳出局部最优值,并提高差分进化算法的全局搜索能力,同时采用精英进化策略来提升差分进化算法的搜索速率,加快算法收敛速度。然后针对人工蜂群算法容易陷入早熟、全局搜索能力较差的问题,采用禁忌搜索算法优秀的全局搜索能力来优化人工蜂群算法中的领域搜索能力,同时改善人工蜂群算法的运行效率。最后,将上述两种改进算法作为基本优化算法进行结合,同时引入混沌初始化策略来初始化种群,得到一种改进智能优化算法,并将该改进智能优化算法应用到入侵检测方法的参数寻优中,提高了入侵检测方法的分类准确性和稳定性。本方法相对于其他基于智能优化算法的入侵检测算法,容易跳出局部最优,能有效避免算法早熟,同时具有运行效率和计算精度好、迭代效率高和收率速度快等优点。The basic idea of the present invention is to propose an intrusion detection method based on an improved intelligent optimization algorithm. The method firstly aims at the problem that the differential evolution algorithm is easy to fall into the local optimum trap, and introduces an adaptive mutation factor to make the differential evolution algorithm jump out of the local optimum. The figure of merit is improved, and the global search ability of the differential evolution algorithm is improved. At the same time, the elite evolution strategy is used to improve the search rate of the differential evolution algorithm and accelerate the convergence speed of the algorithm. Then, in view of the problem that artificial bee colony algorithm is prone to fall into premature and poor global search ability, the excellent global search ability of tabu search algorithm is used to optimize the domain search ability in artificial bee colony algorithm, and at the same time improve the operation efficiency of artificial bee colony algorithm. Finally, the above two improved algorithms are combined as the basic optimization algorithm, and the chaotic initialization strategy is introduced to initialize the population, and an improved intelligent optimization algorithm is obtained, and the improved intelligent optimization algorithm is applied to the parameter optimization of the intrusion detection method. The classification accuracy and stability of the intrusion detection method are improved. Compared with other intrusion detection algorithms based on intelligent optimization algorithms, this method is easy to jump out of the local optimum, and can effectively avoid the premature algorithm.
如图1所示,本发明提供了一种基于改进智能优化算法的入侵检测方法,包括以下步骤:As shown in Figure 1, the present invention provides an intrusion detection method based on an improved intelligent optimization algorithm, comprising the following steps:
(1)获取数据集,使用z-score方法对数据集进行标准化处理,以得到标准化处理后的数据集;(1) Obtain a data set, and use the z-score method to standardize the data set to obtain a standardized data set;
本步骤具体包括以下子步骤:This step specifically includes the following sub-steps:
(1-1)获取数据集Ds;(1-1) Obtain the dataset Ds;
其中,k为数据集Ds中的样本总数,n为数据集中样本的特征维数,为Ds中第i行第j个样本点,其表示数据集Ds中第i个样本中的第j个特征属性值,且有i∈[1,k],j∈[1,n];Among them, k is the total number of samples in the data set Ds, n is the feature dimension of the samples in the data set, is the jth sample point in the ith row in Ds, which represents the jth feature attribute value in the ith sample in the data set Ds, and has i∈[1,k], j∈[1,n];
(1-2)从步骤(1-1)得到的数据集Ds中获取第i行第j个元素(即第i个样本中的第j个特征属性值)并对其进行标准化处理,以得到标准化后的特征属性值 (1-2) Obtain the j-th element of the i-th row (that is, the j-th feature attribute value in the i-th sample) from the data set Ds obtained in step (1-1) And normalize it to get the normalized feature attribute value
上述标准化处理的计算公式如下:The calculation formula of the above normalization processing is as follows:
其中,μj是数据集Ds中第j列的均值,σj是数据集Ds中第j列的标准差;Among them, μ j is the mean of the jth column in the data set Ds, and σ j is the standard deviation of the jth column in the data set Ds;
(1-3)针对数据集Ds中的剩余样本点,重复上述步骤(1-2),直到数据集Ds中的所有样本点都被处理完毕为止,从而得到标准化后的数据集Ds;(1-3) For the remaining sample points in the data set Ds, repeat the above step (1-2) until all the sample points in the data set Ds have been processed, thereby obtaining the standardized data set Ds;
(2)通过改进智能优化算法优化核极限学习机模型的惩罚系数C和核系数γ,并得到优化后的核极限学习机模型;(2) Optimize the penalty coefficient C and the kernel coefficient γ of the kernel extreme learning machine model by improving the intelligent optimization algorithm, and obtain the optimized kernel extreme learning machine model;
本步骤具体包括以下子步骤:This step specifically includes the following sub-steps:
(2-1)随机生成种群规模为N的初始种群pop={p1,p2,…,pN},并设置计数器cnt=1,其中种群中第m个个体为pm={Cm,γm},m∈[1,N],Cm和γm分别表示第m个个体的惩罚系数和核系数;(2-1) Randomly generate an initial population pop={p 1 ,p 2 ,...,p N } with a population size of N, and set the counter cnt=1, where the mth individual in the population is p m ={C m ,γ m }, m∈[1,N], C m and γ m represent the penalty coefficient and kernel coefficient of the mth individual, respectively;
具体而言,种群规模N的取值范围是10到60,优选为20。Specifically, the population size N ranges from 10 to 60, preferably 20.
(2-2)判断cnt是否大于种群规模N,如果是,则转入步骤(2-4),否则转入步骤(2-3);(2-2) Judging whether cnt is greater than the population size N, if so, go to step (2-4), otherwise go to step (2-3);
(2-3)判断cnt是否为1,如果是,则随机生成位于(0,1)范围内、且不能等于0.25、0.5和0.75的混沌数α(1),设置计数器cnt=cnt+1,并返回步骤(2-2),否则生成第cnt个混沌数α(cnt),设置计数器cnt=cnt+1,并返回步骤(2-2);(2-3) Determine whether cnt is 1. If so, randomly generate a chaotic number α(1) that is in the range of (0,1) and cannot be equal to 0.25, 0.5 and 0.75, and set the counter cnt=cnt+1, And return to step (2-2), otherwise generate the cnt th chaotic number α(cnt), set the counter cnt=cnt+1, and return to step (2-2);
上述生成混沌数的计算公式如下:The calculation formula of the above generated chaotic number is as follows:
α(cnt)=μ·α(cnt)·(1-α(cnt-1))α(cnt)=μ·α(cnt)·(1-α(cnt-1))
其中,μ是相关系数,其取值范围是0到4,优选为4。Among them, μ is the correlation coefficient, and its value ranges from 0 to 4, preferably 4.
(2-4)设置计数器cnt1=1;(2-4) Set the counter cnt1=1;
(2-5)判断cnt1是否大于种群规模N,如果是,则转入步骤(2-7),否则转入步骤(2-6);(2-5) Judging whether cnt1 is greater than the population size N, if so, go to step (2-7), otherwise go to step (2-6);
(2-6)生成第cnt1个混沌个体设置计数器cnt1=cnt1+1,并返回步骤(2-5);(2-6) Generate the cnt1 chaotic individual Set the counter cnt1=cnt1+1, and return to step (2-5);
上述生成第cnt1个混沌个体的计算公式如下:The above generates the cnt1th chaotic individual The calculation formula is as follows:
其中,pcnt1是第cnt1个初始种群个体,α(cnt1)是第cnt1个混沌数。Among them, p cnt1 is the cnt1-th initial population individual, and α(cnt1) is the cnt1-th chaotic number.
(2-7)将生成的N个混沌个体与步骤(2-1)中生成的初始种群混合,以得到混合种群mixpop={mix1,mix2,…,mix2N},获取该混合种群中所有个体的适应度值所构成的适应度值集合F={f(mix1),f(mix2),…,f(mixsn)},按照从小到大的顺序对该适应度值集合中的所有适应度值进行排序,以获取新的适应度值集合并取新的适应度值集合中前N个个体作为混沌初始化后的种群,取新的适应度值集合中最小适应度值对应的个体作为全局最优解pbest,并设置计数器cnt2=1,其中sn为适应度值集合F中适应度值的总数;(2-7) Mix the generated N chaotic individuals with the initial population generated in step (2-1) to obtain a mixed population mixpop={mix 1 , mix 2 ,..., mix 2N }, and obtain the The fitness value set F={f(mix 1 ),f(mix 2 ),...,f(mix sn )} formed by the fitness values of all individuals, in this fitness value set in the order from small to large to sort all fitness values of , to obtain a new set of fitness values And take the first N individuals in the new fitness value set as the population after chaotic initialization, take the individual corresponding to the minimum fitness value in the new fitness value set as the global optimal solution p best , and set the counter cnt2=1, where sn is the total number of fitness values in the fitness value set F;
具体而言,本步骤中是从步骤(1)中的数据集中随机选取CN组训练数据,计算其分类错误率CE作为适应度函数f。Specifically, in this step, the CN group training data is randomly selected from the data set in step (1), and its classification error rate CE is calculated as the fitness function f.
具体而言,分类错误率CE计算公式如下:Specifically, the calculation formula of the classification error rate CE is as follows:
其中,EN为分类错误的样本数,CN为训练数据样本数,其取值范围为100到500,优选为400。Among them, EN is the number of misclassified samples, CN is the number of training data samples, and its value ranges from 100 to 500, preferably 400.
上述步骤(2-1)到(2-7)的优点在于,利用混沌映射来产生混沌数,进而产生混沌种群,并取混沌种群和初始种群中质量较好的个体作为初始化个体,因此能够解决现有基于多种智能优化算法的入侵检测方法中种群质量分布较差和不能得到质量较高的最优解的技术问题。The advantages of the above steps (2-1) to (2-7) are that the chaotic map is used to generate the chaotic number, and then the chaotic population is generated, and the individual with better quality in the chaotic population and the initial population is taken as the initialization individual, so the solution The existing intrusion detection methods based on a variety of intelligent optimization algorithms have the technical problems that the population quality distribution is poor and the optimal solution with high quality cannot be obtained.
(2-8)判断cnt2是否等于最大迭代次数T,如果是,则输出全局最优解pbest={Cbest,γbest},过程结束,否则转入步骤(2-9);(2-8) Judging whether cnt2 is equal to the maximum number of iterations T, if so, output the global optimal solution p best ={C best ,γ best }, the process ends, otherwise go to step (2-9);
具体而言,最大迭代次数T的取值范围是500到1000,优选为500。Specifically, the value range of the maximum number of iterations T is 500 to 1000, preferably 500.
(2-9)判断cnt2是否为1,如果是,则将步骤(2-7)中得到的混沌初始化后的种群作为种群popmix,并从种群popmix中随机选择q个种群个体形成种群popde,剩下的种群个体形成种群popabc,然后转入步骤(2-10),否则进入步骤(2-33);(2-9) Determine whether cnt2 is 1, if so, take the chaotically initialized population obtained in step (2-7) as the population pop mix , and randomly select q population individuals from the population pop mix to form the population pop de , the remaining population individuals form population pop abc , and then go to step (2-10), otherwise go to step (2-33);
在本步骤中,q的取值范围是0到20。In this step, the value range of q is 0 to 20.
(2-10)针对步骤(2-9)得到的种群popde,获取该种群中所有个体的适应度值所构成的适应度值集合取该适应度值集合中适应度最小的个体作为改进差分进化算法中的局部最优解并设置计数器cnt3=1;(2-10) For the population pop de obtained in step (2-9), obtain a fitness value set composed of fitness values of all individuals in the population Take the individual with the smallest fitness in the fitness value set as the local optimal solution in the improved differential evolution algorithm And set the counter cnt3=1;
(2-11)判断cnt3是否等于最大子种群迭代次数I,如果是,则保存改进差分进化算法中的局部最优解和种群popde,并转入步骤(2-18),否则转入步骤(2-12);(2-11) Determine whether cnt3 is equal to the maximum number of subpopulation iterations I, and if so, save the local optimal solution in the improved differential evolution algorithm and population pop de , and go to step (2-18), otherwise go to step (2-12);
具体而言,最大子种群迭代次数I的取值范围是5到10,优选为10。Specifically, the maximum subpopulation iteration number I ranges from 5 to 10, preferably 10.
(2-12)判断cnt3是否为1,如果是,则获取步骤(2-10)得到的种群popde中所有个体的适应度值所构成的适应度值集合Fde,并转入步骤(2-13),否则进入步骤(2-17);(2-12) Determine whether cnt3 is 1, and if so, obtain the fitness value set F de formed by the fitness values of all individuals in the population pop de obtained in step (2-10), and go to step (2) -13), otherwise go to step (2-17);
(2-13)针对步骤(2-12)得到的适应度值集合Fde,按照从小到大的顺序对该适应度值集合中的所有适应度值进行排序,以获取新的适应度值集合取中最小适应度值对应的个体作为改进差分进化算法中的局部最优解并取适应度值排前一半的种群个体组成集合该适应度值集合中剩余的个体组成集合 (2-13) For the fitness value set F de obtained in step (2-12), sort all fitness values in the fitness value set according to the order from small to large to obtain a new fitness value set Pick The individual corresponding to the minimum fitness value is used as the local optimal solution in the improved differential evolution algorithm And take the top half of the population individuals with fitness value to form a set The fitness value set The remaining individuals form the set
(2-14)根据步骤(2-13)中得到的集合Fde中的第个个体生成自适应变异个体其中 (2-14) According to the first in the set F de obtained in step (2-13) individual Generate adaptive mutant individuals in
具体而言,生成自适应变异个体的计算公式如下:Specifically, the calculation formula for generating adaptive mutant individuals is as follows:
其中,两者彼此不相同,且两者均不等于Fc为自适应变异因子。in, Both are not identical to each other, and neither is equal to F c is the adaptive variation factor.
自适应变异因子Fc的计算公式如下:The formula for calculating the adaptive variation factor F c is as follows:
其中,fc是初始变异因子,其取值范围是0.5到0.8,优选为0.5。Among them, f c is the initial variation factor, and its value ranges from 0.5 to 0.8, preferably 0.5.
上述步骤(2-14)的优点在于,采用自适应变异因子来使变异因子进行动态改变,在迭代初期,采用较大的自适应变异因子来生成较多的扰动变量,以提高种群个体多样性,同时在迭代后期,采用较小的自适应变异因子来降低差分进化算法最优个体被破坏的概率,以提升算法的收敛速度,然后,通过精英进化策略来获取精英个体信息来提升算法的运行效率,因此能解决现有基于差分进化算法的入侵检测方法中收敛速度慢和计算精度较低的技术问题。The advantage of the above steps (2-14) is that the adaptive variation factor is used to dynamically change the variation factor. In the early stage of the iteration, a larger adaptive variation factor is used to generate more disturbance variables to improve the individual diversity of the population. At the same time, in the later stage of the iteration, a smaller adaptive mutation factor is used to reduce the probability of the optimal individual of the differential evolution algorithm being destroyed, so as to improve the convergence speed of the algorithm. Then, the elite individual information is obtained through the elite evolution strategy to improve the operation of the algorithm. Therefore, it can solve the technical problems of slow convergence speed and low calculation accuracy in the existing intrusion detection methods based on differential evolution algorithm.
(2-15)对步骤(2-14)得到的自适应变异个体和步骤(2-13)中得到的集合Fde中的第个个体行交叉操作,以生成实验个体 (2-15) For the adaptive mutant individual obtained in step (2-14) and the first in the set F de obtained in step (2-13) individual Crossover operation to generate experimental individuals
具体而言,生成实验个体的计算公式如下:Specifically, the calculation formula for generating experimental individuals is as follows:
其中,randn是随机产生于[1,D]之间的随机整数,rand是属于[0,1]之间的均匀分布的随机实数,CR是交叉因子,D为个体基因维度,其中h∈[1,D];Among them, randn is a random integer randomly generated between [1, D], rand is a random real number belonging to a uniform distribution between [0, 1], CR is the crossover factor, D is the individual gene dimension, where h∈[ 1, D];
具体而言,交叉因子CR的取值范围是0.1到0.9,优选为0.3,个体基因维度D的取值范围是1到10,优选为2。Specifically, the value range of the cross factor CR is 0.1 to 0.9, preferably 0.3, and the value range of the individual gene dimension D is 1 to 10, preferably 2.
(2-16)获取步骤(2-15)得到的实验个体对应的适应度值以及步骤(2-13)得到的个体对应的适应度值,使用二者中较小的适应度值所对应的个体代替适应度值集合Fde中的对应个体,从而得到更新后的种群popde,设置计数器cnt3=cnt3+1,并返回步骤(2-11);(2-16) Obtain the experimental individuals obtained in the step (2-15) The corresponding fitness value and the individual obtained in step (2-13) For the corresponding fitness value, use the individual corresponding to the smaller fitness value of the two to replace the corresponding individual in the fitness value set F de , so as to obtain the updated population pop de , set the counter cnt3=cnt3+1, and Return to step (2-11);
(2-17)获取步骤(2-16)更新后的种群popde中所有个体的适应度值所构成的适应度值集合Fde,然后返回步骤(2-13);(2-17) Obtain the fitness value set F de formed by the fitness values of all individuals in the population pop de updated in step (2-16), and then return to step (2-13);
(2-18)针对步骤(2-9)中的种群popabc,获取该种群中所有个体的人工蜂群适应度值所构成的人工蜂群适应度值集合其中N-q为人工蜂群适应度值集合Fitabc中人工蜂群适应度值的总数,初始化禁忌表T1为种群popabc,禁忌表T2为空,并取人工蜂群适应度值集合Fitabc中人工蜂群适应度最小的个体作为改进人工蜂群算法中的局部最优解并设置计数器cnt4=1;(2-18) For the population pop abc in step (2-9), obtain an artificial bee colony fitness value set composed of the artificial bee colony fitness values of all individuals in the population Among them, Nq is the total number of artificial bee colony fitness values in the artificial bee colony fitness value set Fit abc , the initial taboo table T1 is the population pop abc , the taboo table T2 is empty, and the artificial bee colony fitness value set Fit abc is taken from the artificial bee colony fitness value set Fit abc. Individuals with the smallest swarm fitness as a local optimal solution in an improved artificial bee colony algorithm And set the counter cnt4=1;
具体而言,本步骤中的人工蜂群适应度函数是采用以下公式:Specifically, the artificial bee colony fitness function in this step adopts the following formula:
其中f表示适应度函数,abs表示绝对值函数。where f is the fitness function and abs is the absolute value function.
上述步骤(2-18)的优点在于,采用禁忌表来储存人工蜂群中已经搜索到的解,在后续的迭代过程中不再搜索在禁忌表中已经储存的解,有效的避免了迭代过程中的重复搜索,防止算法陷入局部最优陷阱,因此能够解决现有基于人工蜂群算法的入侵检测方法中容易陷入局部最优陷阱和全局搜索能力不强的技术问题。The advantage of the above steps (2-18) is that the tabu table is used to store the solutions that have been searched in the artificial bee colony, and the solutions that have been stored in the tabu table are no longer searched in the subsequent iteration process, which effectively avoids the iterative process. The repeated search in the algorithm can prevent the algorithm from falling into the local optimal trap, so it can solve the technical problems that the existing intrusion detection methods based on the artificial bee colony algorithm are easy to fall into the local optimal trap and the global search ability is not strong.
(2-19)判断cnt4是否等于最大子种群迭代次数I,如果是,则保存改进人工蜂群算法中的局部最优解和种群popabc,转入步骤(2-32),否则转入步骤(2-20);(2-19) Determine whether cnt4 is equal to the maximum number of subpopulation iterations I, and if so, save the local optimal solution in the improved artificial bee colony algorithm and population pop abc , go to step (2-32), otherwise go to step (2-20);
(2-20)判断cnt4是否为1,如果是,则获取步骤(2-18)中的种群popabc中所有个体的人工蜂群适应度值所构成的人工蜂群适应度值集合Fitabc,转入步骤(2-21),否则进入步骤(2-31);(2-20) Determine whether cnt4 is 1, and if so, obtain the artificial bee colony fitness value set Fit abc composed of the artificial bee colony fitness values of all individuals in the population pop abc in step (2-18), Go to step (2-21), otherwise go to step (2-31);
(2-21)根据步骤(2-20)中得到的集合Fitabc中的第个蜜源个体生成领域蜜源个体其中 (2-21) According to the No. 1 in the set Fit abc obtained in step (2-20) nectar source Generate Domain Nectar Individuals in
所述生成领域蜜源个体的计算公式如下:The calculation formula for generating the nectar source individuals in the field is as follows:
其中且与不相同,φ为邻域搜索因子,是-1到1的一个随机数。in and with Not the same, φ is the neighborhood search factor, which is a random number from -1 to 1.
(2-22)根据步骤(2-21)中得到的领域蜜源个体判断该领域蜜源个体是否在禁忌表T1或者T2中,如果是则进入步骤(2-21),否则,将该领域蜜源个体加入禁忌表T1中,并进入步骤(2-23);(2-22) According to the field nectar source individuals obtained in step (2-21) Determine whether the nectar source individuals in this field are in the taboo table T1 or T2, if so, go to step (2-21), otherwise, add the nectar source individuals in this field to the taboo table T1, and enter step (2-23);
(2-23)获取步骤(2-21)的蜜源个体对应的人工蜂群适应度值以及领域蜜源个体对应的人工蜂群适应度值判断是否小于如果是,领域蜜源个体代替原种群的蜜源个体,否则将未更新蜜源表Tr中对应蜜源个体的未更新次数加1;(2-23) Obtain the nectar source individuals of step (2-21) Corresponding artificial bee colony fitness value and domain nectar individuals Corresponding artificial bee colony fitness value judge Is it less than If yes, the domain nectar source individual replaces the nectar source individual of the original population, otherwise the unupdated number of the corresponding nectar source individual in the unupdated nectar source table Tr is increased by 1;
(2-24)计算通过步骤(2-23)中得到的更新后蜜源种群中的第个蜜源个体的概率并产生一个[0,1]范围的随机数,判断该随机数是否小于如果是,则进入步骤(2-25),否则,进入步骤(2-28);(2-24) Calculate the No. 1 nectar population in the updated nectar population obtained in step (2-23) The probability of a nectar source And generate a random number in the range of [0,1] to determine whether the random number is less than If yes, then go to step (2-25), otherwise, go to step (2-28);
所述生成概率的计算公式如下:The calculation formula of the generation probability is as follows:
(2-25)根据步骤(2-24)得到的蜜源个体生成领域蜜源个体其中 (2-25) The nectar source individual obtained according to step (2-24) Generate Domain Nectar Individuals in
(2-26)根据步骤(2-25)中得到的领域蜜源个体判断该领域蜜源个体是否在禁忌表T1或者T2中,如果是则进入步骤(2-25),否则,将该领域蜜源个体加入禁忌表T1中,并进入步骤(2-27);(2-26) According to the field nectar source individual obtained in step (2-25) Determine whether the nectar source individual in this field is in the taboo table T1 or T2, if so, go to step (2-25), otherwise, add the nectar source individual in this field to the taboo table T1, and enter step (2-27);
(2-27)获取步骤(2-24)的蜜源个体对应的人工蜂群适应度值以及步骤(2-25)的领域蜜源个体对应的人工蜂群适应度值判断是否小于如果是,领域蜜源个体代替原种群的蜜源个体,否则将未更新蜜源表Tr中对应蜜源个体的未更新次数加1;(2-27) Obtain the nectar source individuals of step (2-24) Corresponding artificial bee colony fitness value And the domain nectar individual of step (2-25) Corresponding artificial bee colony fitness value judge Is it less than If yes, the domain nectar source individual replaces the nectar source individual of the original population, otherwise the unupdated number of the corresponding nectar source individual in the unupdated nectar source table Tr is increased by 1;
(2-28)获取步骤(2-27)中Tr的最大未更新次数max,判断max是否大于蜜源最大搜索次数limit,如果是,将max对应的蜜源个体加入到T2中,并转到步骤(2-29),否则转到步骤(2-31);(2-28) Obtain the maximum number of unupdated times max of Tr in step (2-27), and determine whether max is greater than the maximum search times limit of the nectar source. If so, add the nectar source individual corresponding to max to T2, and go to step ( 2-29), otherwise go to step (2-31);
具体而言,蜜源最大搜索次数limit的取值范围是5到100,优选为50。Specifically, the value range of the maximum search times limit of the nectar source is 5 to 100, preferably 50.
(2-29)随机生成一个新的蜜源个体;(2-29) Randomly generate a new nectar source;
(2-30)判断步骤(2-29)中的蜜源个体是否在禁忌表T1或者T2中,如果是则进入步骤(2-29),否则,将该蜜源个体加入禁忌表T1中,并获取更新后的种群popabc,并转到步骤(2-31),设置计数器cnt4=cnt4+1,并返回步骤(2-19);(2-30) Determine whether the nectar source individual in step (2-29) is in the taboo table T1 or T2, if so, go to step (2-29), otherwise, add the nectar source individual to the taboo table T1, and obtain The updated population pop abc , and go to step (2-31), set the counter cnt4=cnt4+1, and return to step (2-19);
(2-31)获取步骤(2-30)更新后的种群popabc中所有个体的适应度值所构成的适应度值集合Fitabc,然后返回步骤(2-20);(2-31) Obtain the fitness value set Fit abc formed by the fitness values of all individuals in the population pop abc updated in step (2-30), and then return to step (2-20);
(2-32)获取步骤(2-11)的局部最优解对应的适应度值以及步骤(2-19)的局部最优解对应的适应度值使用二者中较小的适应度值对应的个体来代替pbest,并将popde和popabc融合得到更新后的种群popmix,设置计数器cnt2=cnt2+1,并返回步骤(2-8);(2-32) Obtain the local optimal solution of step (2-11) The corresponding fitness value and the local optimal solution of step (2-19) The corresponding fitness value Use the individual corresponding to the smaller fitness value of the two to replace p best , and fuse pop de and pop abc to obtain the updated population pop mix , set the counter cnt2=cnt2+1, and return to step (2-8) ;
上述步骤(2-32)的优点在于,将改进后的差分进化算法和改进后的人工蜂群算法作为基本优化算法进行融合,因此能够解决现有基于多种智能优化算法的入侵检测方法中运行效率较低和算法性能不佳的技术问题。The advantage of the above steps (2-32) is that the improved differential evolution algorithm and the improved artificial bee colony algorithm are integrated as the basic optimization algorithm, so it can solve the problem of running in the existing intrusion detection methods based on multiple intelligent optimization algorithms. Technical issues with lower efficiency and poor algorithm performance.
(2-33)获取步骤(2-32)更新后的种群popmix,并随机选择q个种群个体形成种群popde,剩下的种群个体形成种群popabc,然后返回步骤(2-10);(2-33) Obtain the updated population pop mix in step (2-32), and randomly select q population individuals to form population pop de , and the remaining population individuals form population pop abc , and then return to step (2-10);
(3)对步骤(2)优化后的核极限学习机模型进行训练,以得到训练好的核极限学习机模型,并使用训练好的核极限学习机对数据集进行分类,以得到分类结果;(3) training the nuclear extreme learning machine model optimized in step (2) to obtain a trained nuclear extreme learning machine model, and using the trained nuclear extreme learning machine to classify the data set to obtain a classification result;
本步骤具体包括以下子步骤:This step specifically includes the following sub-steps:
(3-1)将步骤(1)标准化处理后的数据集按照7:3的比例分为训练集和测试集;(3-1) Divide the standardized data set in step (1) into a training set and a test set according to a ratio of 7:3;
(3-2)根据步骤(2)中得到的最优核参数γbest获取高斯核函数K(xki,xkj),并根据高斯核函数K(xki,xkj)和步骤(3-1)中得到的训练集获得训练好的核极限学习机模型;(3-2) Obtain the Gaussian kernel function K(x ki , x kj ) according to the optimal kernel parameter γ best obtained in step (2), and according to the Gaussian kernel function K(x ki , x kj ) and step (3- The training set obtained in 1) obtains a trained kernel extreme learning machine model;
本步骤中,使用最优核参数γbest获取高斯核函数K(xki,xkj)这一过程具体是:In this step, the process of using the optimal kernel parameter γ best to obtain the Gaussian kernel function K(x ki , x kj ) is as follows:
K(xki,xkj)=exp(-||xki-xkj||2/γbest)K(x ki ,x kj )=exp(-||x ki -x kj || 2 /γ best )
所述核极限学习机模型的训练公式如下:The training formula of the kernel extreme learning machine model is as follows:
其中f(x)是核极限学习机的输出函数,KN是训练集的总数,ΩKELM是高斯核函数对应的核矩阵,T为训练集的标签,Cbest是根据步骤(2)中得到的最优惩罚系数。where f(x) is the output function of the kernel extreme learning machine, KN is the total number of training sets, Ω KELM is the kernel matrix corresponding to the Gaussian kernel function, T is the label of the training set, and C best is obtained according to step (2) optimal penalty coefficient.
(3-3)使用步骤(3-2)中训练好的核极限学习机模型对步骤(3-1)中的测试集进行分类,以得到分类结果。(3-3) Use the kernel extreme learning machine model trained in step (3-2) to classify the test set in step (3-1) to obtain a classification result.
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。Those skilled in the art can easily understand that the above are only preferred embodiments of the present invention, and are not intended to limit the present invention. Any modifications, equivalent replacements and improvements made within the spirit and principles of the present invention, etc., All should be included within the protection scope of the present invention.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110434602.8A CN113139598B (en) | 2021-04-22 | 2021-04-22 | Intrusion detection method and system based on improved intelligent optimization algorithm |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110434602.8A CN113139598B (en) | 2021-04-22 | 2021-04-22 | Intrusion detection method and system based on improved intelligent optimization algorithm |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113139598A CN113139598A (en) | 2021-07-20 |
CN113139598B true CN113139598B (en) | 2022-04-22 |
Family
ID=76813305
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110434602.8A Active CN113139598B (en) | 2021-04-22 | 2021-04-22 | Intrusion detection method and system based on improved intelligent optimization algorithm |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113139598B (en) |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105354363A (en) * | 2015-10-09 | 2016-02-24 | 上海大学 | Fluctuation wind speed prediction method based on extreme learning machine |
CN106228184A (en) * | 2016-07-19 | 2016-12-14 | 东北大学 | A kind of based on the blast furnace fault detection system and the method that optimize extreme learning machine |
CN106790248A (en) * | 2017-01-23 | 2017-05-31 | 中南大学 | A kind of network inbreak detection method based on the online extreme learning machine of double adaptive regularization |
CN107180190A (en) * | 2016-03-11 | 2017-09-19 | 深圳先进技术研究院 | A kind of Android malware detection method and system based on composite character |
CN107911346A (en) * | 2017-10-31 | 2018-04-13 | 天津大学 | A kind of intrusion detection method based on extreme learning machine |
CN108520272A (en) * | 2018-03-22 | 2018-09-11 | 江南大学 | A Semi-supervised Intrusion Detection Method Based on Improved Cangwolf Algorithm |
CN109818798A (en) * | 2019-02-19 | 2019-05-28 | 上海海事大学 | A wireless sensor network intrusion detection system and method integrating KPCA and ELM |
CN109886350A (en) * | 2019-02-25 | 2019-06-14 | 东北农业大学 | A method for predicting the digestible energy of dairy cows' diets based on the kernel extreme learning machine |
WO2019129915A1 (en) * | 2017-12-29 | 2019-07-04 | Nokia Solutions And Networks Oy | Intelligent defense and filtration platform for network traffic |
CN111209563A (en) * | 2019-12-27 | 2020-05-29 | 北京邮电大学 | Network intrusion detection method and system |
CN111860638A (en) * | 2020-07-17 | 2020-10-30 | 湖南大学 | Parallel Intrusion Detection Method and System Based on Imbalanced Data Deep Belief Network |
CN112383563A (en) * | 2020-12-03 | 2021-02-19 | 中国铁建重工集团股份有限公司 | Intrusion detection method and related device |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3435262A1 (en) * | 2010-03-15 | 2019-01-30 | Singapore Health Services Pte. Ltd. | A system for the detection of impending acute cardiopulmonary medical events |
-
2021
- 2021-04-22 CN CN202110434602.8A patent/CN113139598B/en active Active
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105354363A (en) * | 2015-10-09 | 2016-02-24 | 上海大学 | Fluctuation wind speed prediction method based on extreme learning machine |
CN107180190A (en) * | 2016-03-11 | 2017-09-19 | 深圳先进技术研究院 | A kind of Android malware detection method and system based on composite character |
CN106228184A (en) * | 2016-07-19 | 2016-12-14 | 东北大学 | A kind of based on the blast furnace fault detection system and the method that optimize extreme learning machine |
CN106790248A (en) * | 2017-01-23 | 2017-05-31 | 中南大学 | A kind of network inbreak detection method based on the online extreme learning machine of double adaptive regularization |
CN107911346A (en) * | 2017-10-31 | 2018-04-13 | 天津大学 | A kind of intrusion detection method based on extreme learning machine |
WO2019129915A1 (en) * | 2017-12-29 | 2019-07-04 | Nokia Solutions And Networks Oy | Intelligent defense and filtration platform for network traffic |
CN108520272A (en) * | 2018-03-22 | 2018-09-11 | 江南大学 | A Semi-supervised Intrusion Detection Method Based on Improved Cangwolf Algorithm |
CN109818798A (en) * | 2019-02-19 | 2019-05-28 | 上海海事大学 | A wireless sensor network intrusion detection system and method integrating KPCA and ELM |
CN109886350A (en) * | 2019-02-25 | 2019-06-14 | 东北农业大学 | A method for predicting the digestible energy of dairy cows' diets based on the kernel extreme learning machine |
CN111209563A (en) * | 2019-12-27 | 2020-05-29 | 北京邮电大学 | Network intrusion detection method and system |
CN111860638A (en) * | 2020-07-17 | 2020-10-30 | 湖南大学 | Parallel Intrusion Detection Method and System Based on Imbalanced Data Deep Belief Network |
CN112383563A (en) * | 2020-12-03 | 2021-02-19 | 中国铁建重工集团股份有限公司 | Intrusion detection method and related device |
Non-Patent Citations (4)
Title |
---|
Research of Intrusion Detection Based on Ensemble Learning Model;Li Y et al.;《AMM 2013》;20130731;1-5 * |
基于优化核极限学习机的工控入侵检测方法;杜晔 等;《信息网络安全》;20210228(第2期);1-9 * |
无线局域网中的入侵检测系统研究;李肯立 等;《科学技术与工程》;20060630;第6卷(第11期);1-5 * |
杜晔 等.基于优化核极限学习机的工控入侵检测方法.《信息网络安全》.2021,(第2期),1-9. * |
Also Published As
Publication number | Publication date |
---|---|
CN113139598A (en) | 2021-07-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Lu et al. | Learning to pre-train graph neural networks | |
Hu et al. | A modified weighted TOPSIS to identify influential nodes in complex networks | |
Wang et al. | Cross-domain graph anomaly detection via anomaly-aware contrastive alignment | |
CN105022754A (en) | Social network based object classification method and apparatus | |
CN112927266B (en) | Weak supervision time domain action positioning method and system based on uncertainty guide training | |
CN104835181B (en) | A kind of method for tracking target based on ranking and fusing study | |
CN111506785B (en) | Social text-based network public opinion topic identification method and system | |
CN106528705A (en) | Repeated record detection method and system based on RBF neural network | |
CN103150383A (en) | Event evolution analysis method of short text data | |
CN115952343A (en) | Social robot detection method based on multi-relation graph convolutional network | |
CN117272195A (en) | Block chain abnormal node detection method and system based on graph convolution attention network | |
CN113139598B (en) | Intrusion detection method and system based on improved intelligent optimization algorithm | |
CN114694173B (en) | A cross-domain unsupervised person re-identification method based on fine-grained feature fusion | |
Yang et al. | Semi-supervised clustering ensemble based on multi-ant colonies algorithm | |
Tian et al. | Multi-class center dynamic contrastive learning for unsupervised domain adaptation person re-identification | |
CN105468669A (en) | Adaptive microblog topic tracking method fusing with user relationship | |
CN111400617B (en) | A method and system for expanding social robot detection dataset based on active learning | |
Zheng et al. | An influence maximization-based hybrid advertising dissemination for Internet of Vehicles | |
CN111860866A (en) | A network representation learning method and device with community structure | |
Tang et al. | The Buckley-Osthus model and the block preferential attachment model: statistical analysis and application | |
Xiong et al. | Fisher discriminant analysis random forest for online class incremental learning | |
CN111782969B (en) | The selection method of the most influential node in social network based on geographical area | |
CN109558483B (en) | A Rumor Recognition Method Based on Naive Bayesian Model | |
Nie et al. | A multi-seed nodes selection strategy for influence maximization based on reinforcement learning algorithms | |
CN114443851A (en) | Improved knowledge graph generation method based on probability calibration |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |