CN113133761B - Method for judging left and right gait and its analyzing device - Google Patents
Method for judging left and right gait and its analyzing device Download PDFInfo
- Publication number
- CN113133761B CN113133761B CN202010051348.9A CN202010051348A CN113133761B CN 113133761 B CN113133761 B CN 113133761B CN 202010051348 A CN202010051348 A CN 202010051348A CN 113133761 B CN113133761 B CN 113133761B
- Authority
- CN
- China
- Prior art keywords
- gait
- trajectory
- sensor unit
- unit
- coordinate points
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000005021 gait Effects 0.000 title claims abstract description 116
- 238000000034 method Methods 0.000 title claims description 19
- 238000004458 analytical method Methods 0.000 claims abstract description 20
- 238000004364 calculation method Methods 0.000 claims abstract description 15
- 238000004891 communication Methods 0.000 claims description 8
- 238000005516 engineering process Methods 0.000 claims description 4
- 210000002683 foot Anatomy 0.000 description 31
- 238000010586 diagram Methods 0.000 description 5
- 230000001133 acceleration Effects 0.000 description 3
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 2
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 1
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 1
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 210000003371 toe Anatomy 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/103—Measuring devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
- A61B5/11—Measuring movement of the entire body or parts thereof, e.g. head or hand tremor or mobility of a limb
- A61B5/112—Gait analysis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0002—Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
- A61B5/0004—Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by the type of physiological signal transmitted
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/68—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
- A61B5/6801—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
- A61B5/6802—Sensor mounted on worn items
- A61B5/6804—Garments; Clothes
- A61B5/6807—Footwear
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Heart & Thoracic Surgery (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Physics & Mathematics (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Physiology (AREA)
- Dentistry (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Computer Networks & Wireless Communication (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
Abstract
一种左右步态的分析装置,包含配置在两个鞋子的两个传感单元,及至少一个计算单元。每一个传感单元用于输出步态讯息,所述步态讯息至少包括坐标点。所述至少一个计算单元根据每一个传感单元的步态讯息,获得每一个传感单元由多个坐标点所构成的步态轨迹,且计算所述步态轨迹中至少两个相邻坐标点间的直线的斜率,并在斜率大于0时,设定输出所述步态轨迹的传感单元为适用于右脚的右传感单元,在斜率小于0时,设定输出所述步态轨迹的传感单元为适用于左脚的左传感单元。借此,以能够自动判断左脚或右脚的方式,模块化所述传感单元,而提升所述传感单元安装于所述鞋子时的方便性与简易性。
A left-right gait analysis device includes two sensor units disposed on two shoes, and at least one calculation unit. Each sensor unit is used to output a gait message, and the gait message at least includes a coordinate point. The at least one calculation unit obtains a gait trajectory of each sensor unit consisting of a plurality of coordinate points based on the gait message of each sensor unit, and calculates the slope of a straight line between at least two adjacent coordinate points in the gait trajectory, and when the slope is greater than 0, sets the sensor unit that outputs the gait trajectory to be a right sensor unit suitable for the right foot, and when the slope is less than 0, sets the sensor unit that outputs the gait trajectory to be a left sensor unit suitable for the left foot. In this way, the sensor unit is modularized in a manner that can automatically determine the left foot or the right foot, thereby improving the convenience and simplicity of the sensor unit when it is installed on the shoe.
Description
技术领域Technical Field
本发明涉及一种用于分析步态的装置,特别是涉及一种左右步态的判断方法及其分析装置。The present invention relates to a device for analyzing gait, and in particular to a method for judging left and right gait and an analyzing device thereof.
背景技术Background technique
一种中国台湾专利号第M562025号专利案所公开的一种现有的智慧鞋垫,或中国台湾专利号第M562028号专利案所公开的一种现有的智慧鞋,主要都是在一个鞋子或一个鞋垫中,设置有用于感测运动资讯的感测单元。A conventional smart insole disclosed in Taiwan Patent No. M562025 or a conventional smart shoe disclosed in Taiwan Patent No. M562028 mainly has a sensing unit for sensing motion information in a shoe or an insole.
不管是前述第M562025号专利案、或第M562028号专利案都只针对单一个鞋子或单一个鞋垫进行运动资讯的收集,也就是说,在分析步态时,都是以各自的运动资讯进行分析,惟,人体的步态是左脚与右脚相互作用的结果,因此,分析结果与实际步态间仍然存有落差,且为了能够区分前述运动资讯来自于左脚或右脚的感测单元,通常会预先标记所述感测单元,比如编号1的感测单元是安装在右脚鞋或右脚鞋垫,编号2的感测单元是安装在左脚鞋或左脚鞋垫,而这样的标记不管是以实体方式达成或以软件方式达成,对于现场的组装人员来说,都要先经过辨识后才能进行组装,不但编程上较繁琐且在安装上也较不方便。Both the aforementioned patent case No. M562025 and the patent case No. M562028 only collect motion information for a single shoe or a single insole. That is to say, when analyzing gait, the analysis is performed based on the motion information of each shoe or insole. However, the gait of the human body is the result of the interaction between the left foot and the right foot. Therefore, there is still a gap between the analysis result and the actual gait. In order to distinguish whether the aforementioned motion information comes from the sensing unit of the left foot or the right foot, the sensing unit is usually marked in advance. For example, the sensing unit No. 1 is installed in the right shoe or the right insole, and the sensing unit No. 2 is installed in the left shoe or the left insole. Regardless of whether such marking is achieved in a physical way or in a software way, for the on-site assemblers, they must first be identified before assembly can be performed, which is not only more cumbersome in programming but also less convenient in installation.
发明内容Summary of the invention
本发明的目的在于提供一种能够提升安装方便性与简易性的左右步态的判断方法及其分析装置。The object of the present invention is to provide a method for determining left and right gait and an analysis device thereof which can improve installation convenience and simplicity.
本发明的左右步态的判断方法,主要是配置两个传感单元于两个鞋子,每一个传感单元用于输出步态讯息,所述步态讯息至少包括坐标点,其特征在于:所述判断方法通过至少一个计算单元实现以下步骤:The method for judging left and right gait of the present invention mainly configures two sensor units on two shoes, each sensor unit is used to output gait information, and the gait information at least includes coordinate points. The characteristic is that the judgment method implements the following steps through at least one computing unit:
a:根据每一个传感单元的步态讯息,计算出每一个传感单元的步态轨迹,所述步态轨迹由多个坐标点所构成。a: Calculate the gait trajectory of each sensor unit according to the gait information of each sensor unit, wherein the gait trajectory is composed of a plurality of coordinate points.
b:计算所述步态轨迹中至少两个相邻坐标点间的直线的斜率,在斜率大于0时,设定输出所述步态轨迹的传感单元为适用于右脚的右传感单元,在斜率小于0时,设定输出所述步态轨迹的传感单元为适用于左脚的左传感单元。b: Calculate the slope of the straight line between at least two adjacent coordinate points in the gait trajectory. When the slope is greater than 0, set the sensor unit that outputs the gait trajectory to be a right sensor unit suitable for the right foot. When the slope is less than 0, set the sensor unit that outputs the gait trajectory to be a left sensor unit suitable for the left foot.
本发明的左右步态的判断方法,步骤b包括The method for judging left and right gait of the present invention, step b comprises:
b-1:根据所述步态轨迹选取n个坐标点,且每两个相邻坐标点间界定有直线。b-1: n coordinate points are selected according to the gait trajectory, and a straight line is defined between every two adjacent coordinate points.
b-2:计算每一直线的斜率。b-2: Calculate the slope of each line.
b-3:判断所述步态轨迹中的至少一个斜率是否大于0,如果是,进行步骤b-4,如果否,进行步骤b-5。b-3: Determine whether at least one slope in the gait trajectory is greater than 0, if yes, proceed to step b-4, if no, proceed to step b-5.
b-4:设定输出所述步态轨迹的传感单元为适用于右脚的右传感单元。b-4: Set the sensor unit that outputs the gait trajectory to be the right sensor unit suitable for the right foot.
b-5:判断所述步态轨迹中的至少一个斜率是否小于0,如果是,进行步骤b-6,如果否,回到步骤a。b-5: Determine whether at least one slope in the gait trajectory is less than 0. If yes, proceed to step b-6; if not, return to step a.
b-6:设定输出所述步态轨迹的传感单元为适用于左脚的左传感单元。b-6: Set the sensor unit that outputs the gait trajectory to be the left sensor unit suitable for the left foot.
本发明的左右步态的判断方法,在步骤b-3中,所述至少一个计算单元判断所述步态轨迹中是否有一半以上的斜率大于0,且在步骤b-5中,所述至少一个计算单元判断所述步态轨迹中是否有一半以上的斜率小于0。In the method for judging left and right gait of the present invention, in step b-3, the at least one computing unit judges whether more than half of the slopes in the gait trajectory are greater than 0, and in step b-5, the at least one computing unit judges whether more than half of the slopes in the gait trajectory are less than 0.
本发明的左右步态的判断方法,在步骤a中,所述至少一个计算单元是根据每一个传感单元在起始时间至终止时间内接收的步态讯息获得所述步态轨迹,所述起始时间至所述终止时间介于1秒~3秒。In the method for determining left and right gait of the present invention, in step a, the at least one computing unit obtains the gait trajectory based on the gait information received by each sensor unit between the start time and the end time, and the start time to the end time is between 1 second and 3 seconds.
本发明的左右步态的判断方法,根据权利要求4所述的左右步态的判断方法,其特征在于:所述至少一个计算单元在所述起始时间至所述终止时间内获得共m个坐标点,m=10~50。The method for judging left and right gait of the present invention is according to the method for judging left and right gait of claim 4, characterized in that: the at least one calculation unit obtains a total of m coordinate points from the start time to the end time, m=10~50.
本发明的左右步态的判断方法,前述n个坐标点由所述步态轨迹的第一个坐标点依序开始选取,所述至少一个计算单元是在所述起始时间时获得所述第一个坐标点。In the method for determining left and right gait of the present invention, the aforementioned n coordinate points are selected sequentially starting from the first coordinate point of the gait trajectory, and the at least one calculation unit obtains the first coordinate point at the starting time.
一种左右步态的分析装置,配置于两个鞋子,并包含:两个传感单元,及至少一个计算单元。A left-right gait analysis device is arranged on two shoes and comprises two sensor units and at least one calculation unit.
每一个传感单元配置于各自的鞋子,且用于输出步态讯息,所述步态讯息至少包括坐标点。Each sensor unit is configured on a respective shoe and is used to output gait information, wherein the gait information at least includes a coordinate point.
所述至少一个计算单元根据每一个传感单元的步态讯息,计算出每一个传感单元的步态轨迹,所述步态轨迹由多个坐标点所构成,所述至少一个计算单元还用于计算所述步态轨迹中至少两个相邻坐标点间的直线的斜率,在斜率大于0时,设定输出所述步态轨迹的传感单元为适用于右脚的右传感单元,在斜率小于0时,设定输出所述步态轨迹的传感单元为适用于左脚的左传感单元。The at least one computing unit calculates the gait trajectory of each sensing unit based on the gait information of each sensing unit, and the gait trajectory is composed of multiple coordinate points. The at least one computing unit is also used to calculate the slope of the straight line between at least two adjacent coordinate points in the gait trajectory. When the slope is greater than 0, the sensing unit that outputs the gait trajectory is set to be a right sensing unit suitable for the right foot. When the slope is less than 0, the sensing unit that outputs the gait trajectory is set to be a left sensing unit suitable for the left foot.
本发明的左右步态的分析装置,所述分析装置包含两个计算单元,每一个计算单元电连接各自的传感单元。The left and right gait analysis device of the present invention comprises two computing units, each of which is electrically connected to a respective sensing unit.
本发明的左右步态的分析装置,所述分析装置只包含一个计算单元,所述计算单元通过无线通讯技术与所述传感单元相互通讯。The left and right gait analysis device of the present invention comprises only one computing unit, and the computing unit communicates with the sensing unit via wireless communication technology.
本发明的左右步态的分析装置,所述坐标点界定出多条直线,每一条直线连接相邻两个坐标点,所述至少一个计算单元是根据每一个传感单元在起始时间至终止时间内接收的步态讯息获得所述步态轨迹,所述起始时间至所述终止时间介于1秒~3秒。In the left and right gait analysis device of the present invention, the coordinate points define a plurality of straight lines, each straight line connects two adjacent coordinate points, and the at least one calculation unit obtains the gait trajectory based on the gait information received by each sensor unit between the start time and the end time, and the start time to the end time is between 1 second and 3 seconds.
本发明的有益效果在于:以能够自动判断左脚或右脚的方式,模块化所述传感单元,而提升所述传感单元安装于所述鞋子时的方便性与简易性。The beneficial effect of the present invention is that the sensor unit is modularized in a manner that can automatically determine whether it is a left foot or a right foot, thereby improving the convenience and simplicity of installing the sensor unit on the shoe.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
本发明的其他的特征及功效,将于参照图式的实施方式中清楚地呈现,其中:Other features and effects of the present invention will be clearly presented in the embodiments with reference to the accompanying drawings, in which:
图1是一立体示意图,说明本发明左右步态的分析装置的一个实施例;FIG1 is a perspective schematic diagram illustrating an embodiment of a left-right gait analysis device of the present invention;
图2是所述实施例的一方块图;FIG2 is a block diagram of the embodiment;
图3是类似于图1的一立体示意图,但一个计算单元为一个电子装置的组件;FIG3 is a perspective schematic diagram similar to FIG1 , but a computing unit is a component of an electronic device;
图4是所述实施例的一流程图;FIG4 is a flow chart of the embodiment;
图5是一示意图,说明所述实施例中两个步态轨迹中多个坐标点的变化;及FIG5 is a schematic diagram illustrating the changes of multiple coordinate points in two gait trajectories in the embodiment; and
图6是图5的一放大示意图。FIG. 6 is an enlarged schematic diagram of FIG. 5 .
具体实施方式Detailed ways
参阅图1与图2,本发明左右步态的分析装置的一个实施例,配置在穿载于人体左脚与右脚的两个鞋子1。所述分析装置包含两个传感单元2,及两个计算单元4。1 and 2 , an embodiment of the left-right gait analysis device of the present invention is configured in two shoes 1 worn on the left and right feet of a human body. The analysis device includes two sensor units 2 and two calculation units 4 .
每一个传感单元2配置于各自的鞋子1,且用于输出一个步态讯息S。所述步态讯息S至少包括位于两个维空间的一个坐标点P。在本实施例中,每一个传感单元2配置于各自的鞋子1的一个中底且邻近足弓的位置处,也可以配置于一个大底、或一个鞋面,当不以此为限。Each sensor unit 2 is configured on a respective shoe 1 and is used to output a gait message S. The gait message S includes at least a coordinate point P located in a two-dimensional space. In this embodiment, each sensor unit 2 is configured on a midsole of a respective shoe 1 and adjacent to a foot arch, and may also be configured on a sole or a shoe upper, but is not limited thereto.
在本实施例中,每一个传感单元2包括采集三轴加速度的一个三轴加速度传感器、采集三轴角速率的一个陀螺仪两个至少其中一个,且分别是一种微机电元件(MEMS)。且每一个坐标点P采用三维坐标系统(x,y,z),包括沿一条X轴方向的X值、沿一条Y轴方向的Y值,及沿一条Z轴方向的Z值,所述Z轴沿垂直方向延伸,所述X轴、所述Y轴与所述Z轴垂直成角度。值得说明的是,本发明只取所述坐标点P中的X值与Y值。In this embodiment, each sensing unit 2 includes at least one of a three-axis acceleration sensor for collecting three-axis acceleration and a gyroscope for collecting three-axis angular rate, and each is a micro-electromechanical device (MEMS). Each coordinate point P uses a three-dimensional coordinate system (x, y, z), including an X value along an X-axis direction, a Y value along a Y-axis direction, and a Z value along a Z-axis direction, wherein the Z-axis extends in a vertical direction, and the X-axis, the Y-axis and the Z-axis are perpendicular to each other and form an angle. It is worth noting that the present invention only takes the X value and the Y value of the coordinate point P.
在本实施例中,每一个计算单元4电连接各自的传感单元2,且分别与所述传感单元2配置于所述鞋子1。每一个计算单元4包括存储或暂存数据的一个记忆体41、通过无线通讯技术对外通讯的一个通讯模块42,及电连接于所述记忆体41、所述通讯模块42的一个处理器43。前述无线通讯技术可以是蓝牙、wifi、NB-IoT、Cat-M1等等,当不以此为限。In this embodiment, each computing unit 4 is electrically connected to its own sensor unit 2, and is respectively configured with the sensor unit 2 on the shoe 1. Each computing unit 4 includes a memory 41 for storing or temporarily storing data, a communication module 42 for external communication via wireless communication technology, and a processor 43 electrically connected to the memory 41 and the communication module 42. The aforementioned wireless communication technology may be Bluetooth, wifi, NB-IoT, Cat-M1, etc., but is not limited thereto.
如图2与图5所示,举例来说,每一个传感单元2会在行动过程中输出多个步态讯息S,使各自的计算单元4的处理器43获得多个坐标点P(x,y,z),此时,只需取所述坐标点P(x,y,z)就可以计算出移动距离、方向,及角度,而进行步态分析。由于三轴加速度传感器、陀螺仪己公开在先前技术,且非本案技术特征,本领域中具有通常知识者根据以上说明可以推知扩充细节,因此不多加说明。As shown in FIG. 2 and FIG. 5 , for example, each sensor unit 2 will output a plurality of gait information S during the movement, so that the processor 43 of each computing unit 4 obtains a plurality of coordinate points P (x, y, z). At this time, only the coordinate points P (x, y, z) are needed to calculate the moving distance, direction, and angle, and perform gait analysis. Since the three-axis acceleration sensor and gyroscope have been disclosed in the prior art and are not technical features of this case, those with ordinary knowledge in the field can infer the expanded details based on the above description, so no further description is given.
值得说明的是,每一个计算单元4可以通过所述通讯模块42与远端的一个电子装置6如手机、平板、计算机相互通讯。应当注意的是,所述计算单元4的数目不限于是2个,在本实施例的其他变化例中,所述计算单元4的数目也可以如图3所示是1个,且独立于所述传感单元2,例如是所述电子装置6的组件,由于本领域中具有通常知识者根据以上说明可以推知扩充细节,因此不多加说明。It is worth noting that each computing unit 4 can communicate with a remote electronic device 6 such as a mobile phone, a tablet, or a computer through the communication module 42. It should be noted that the number of the computing units 4 is not limited to 2. In other variations of the present embodiment, the number of the computing unit 4 can also be 1 as shown in FIG. 3 and is independent of the sensor unit 2, for example, a component of the electronic device 6. Since those with ordinary knowledge in the art can infer the expanded details based on the above description, no further description is given.
参阅图1、图2与图4、图5,本发明左右步态的判断方法是通过每一个计算单元4的处理器43实现以下步骤:1, 2, 4 and 5, the method for determining the left and right gait of the present invention is to implement the following steps through the processor 43 of each computing unit 4:
步骤51:根据各自的传感单元2在预设的一个起始时间Ts至一个终止时间Te输出的多个步态讯息S,计算出各自的传感单元2在行动过程中的一个步态轨迹L。所述步态轨迹L由所述步态讯息S中的多个坐标点P所构成。Step 51: Calculate a gait trajectory L of each sensor unit 2 during the action process according to a plurality of gait messages S outputted by each sensor unit 2 from a preset start time Ts to an end time Te . The gait trajectory L is composed of a plurality of coordinate points P in the gait message S.
在本实施例中,所述起始时间Ts至所述终止时间Te介于1秒~3秒,且每一个计算单元4的处理器43能够在所述起始时间Ts至所述终止时间Te内获得共m个坐标点P,m=10~50。In this embodiment, the start time T s to the end time Te is between 1 second and 3 seconds, and the processor 43 of each calculation unit 4 can obtain a total of m coordinate points P from the start time T s to the end time Te , where m=10-50.
步骤52:根据所述步态轨迹L选取n个坐标点P,且每两个相邻坐标点P间界定有一条直线,在本实施例中,n=10,且由所述步态轨迹L的第1个坐标点P依序开始选取共10个坐标点,而界定出9条直线。以下为方便说明,以P1~P10依序标示10个坐标点P,且每一个计算单元4的处理器43是在所述起始时间Ts时获得所述第1个坐标点P1。Step 52: Select n coordinate points P according to the gait trajectory L, and define a straight line between every two adjacent coordinate points P. In this embodiment, n=10, and a total of 10 coordinate points are selected in sequence starting from the first coordinate point P of the gait trajectory L to define 9 straight lines. For the convenience of description below, 10 coordinate points P are sequentially labeled as P1 to P10, and the processor 43 of each calculation unit 4 obtains the first coordinate point P1 at the starting time Ts .
应当注意的是,每一个步态轨迹L相当于使用者1步的步伐,在取n个坐标点P时,不限于是取1步的步伐所产生的步态轨迹L,在本实施例的其它变化例中,也可以监测使用者1步到5步的步伐所产生的五个步态轨迹L进行计算,监测的步伐多个越高,n值就愈大,计算结果就愈准确。It should be noted that each gait trajectory L is equivalent to one step of the user. When taking n coordinate points P, it is not limited to the gait trajectory L generated by one step. In other variations of this embodiment, five gait trajectories L generated by one to five steps of the user can also be monitored for calculation. The higher the number of steps monitored, the larger the n value is and the more accurate the calculation result is.
步骤53:计算所述步态轨迹L中每一条直线的斜率k。Step 53: Calculate the slope k of each straight line in the gait trajectory L.
步骤54:判断所述步态轨迹L中是否有一半以上的斜率k大于0,即是否有5条以上的直线的斜率k大于0,如果否,进行步骤55,如果是,进行步骤56。Step 54: Determine whether more than half of the slopes k in the gait trajectory L are greater than 0, that is, whether there are more than 5 straight lines with slopes k greater than 0. If not, proceed to step 55; if yes, proceed to step 56.
如图6,值得说明的是,前述斜率k大于0或小于0是根据相邻两个坐标点P间的直线与所述Y轴的夹角θ所决定,根据公式,斜率k=tanθ,当夹角θ小于90度时,斜率k大于0,当夹角θ大于90度时,斜率k小于0。As shown in Figure 6, it is worth noting that the aforementioned slope k is greater than 0 or less than 0 is determined by the angle θ between the straight line between two adjacent coordinate points P and the Y axis. According to the formula, slope k = tanθ. When the angle θ is less than 90 degrees, the slope k is greater than 0. When the angle θ is greater than 90 degrees, the slope k is less than 0.
步骤55:判断所述步态轨迹L中是否有一半以上的斜率k小于0,即是否有5条以上的直线的斜率小于0,如果否,回到步骤51,如果是,进行步骤57。Step 55: Determine whether more than half of the slopes k in the gait trajectory L are less than 0, that is, whether there are more than 5 straight lines with slopes less than 0; if not, return to step 51; if yes, proceed to step 57.
步骤56:设定输出所述步态轨迹L的传感单元2为适用于右脚的右传感单元。Step 56: Set the sensor unit 2 that outputs the gait trajectory L to be a right sensor unit suitable for the right foot.
步骤57:设定输出所述步态轨迹L的传感单元2为适用于左脚的左传感单元。Step 57: Set the sensor unit 2 that outputs the gait trajectory L to be a left sensor unit suitable for the left foot.
借此,所述计算单元4的处理器43会自动判断各自的鞋子1中的传感单元2是配置在穿载于右脚的鞋子1,或穿载于左脚的鞋子1,而进行左右脚的步态分析,如分析左右脚的步态是否有内八或外八、或分析左右脚的步态是否偏离中心、或分析左右脚的步态是否有内翻或外翻、或分析左脚的步态是先以脚尖或脚踏落地等。Thereby, the processor 43 of the computing unit 4 will automatically determine whether the sensor unit 2 in the respective shoe 1 is configured in the shoe 1 worn on the right foot, or in the shoe 1 worn on the left foot, and perform gait analysis of the left and right feet, such as analyzing whether the gait of the left and right feet is inward-turned or outward-turned, or analyzing whether the gait of the left and right feet is deviated from the center, or analyzing whether the gait of the left and right feet is inverted or everted, or analyzing whether the gait of the left foot is to land on the toes or the foot first, etc.
经由以上的说明,可将前述实施例的优点归纳如下:Through the above description, the advantages of the above embodiments can be summarized as follows:
本发明能够自动判断每一个传感单元2是配置在穿载于右脚的鞋子1,或穿载于左脚的鞋子1,因此,所述传感单元2不需要预先标记或区分左脚、右脚,不但可以模块化所述传感单元2,而提升所述传感单元2安装于所述鞋子1时的方便性与简易性,且能够以同时获取左脚、右脚的步态讯息S的方式分析双脚在行动时的步态,而取得更贴近实际行动的步态,及提升分析步态时的准确性。The present invention can automatically determine whether each sensor unit 2 is configured in a shoe 1 worn on the right foot or a shoe 1 worn on the left foot. Therefore, the sensor unit 2 does not need to be pre-marked or distinguished between the left foot and the right foot. Not only can the sensor unit 2 be modularized to improve the convenience and simplicity of installing the sensor unit 2 on the shoe 1, but the gait of both feet during movement can also be analyzed by simultaneously acquiring the gait information S of the left foot and the right foot, thereby obtaining a gait that is closer to the actual action and improving the accuracy of gait analysis.
以上所述者,仅为本发明的实施例而已,当不能以此限定本发明实施的范围,即凡依本发明权利要求书及说明书内容所作的简单的等效变化与修饰,皆仍属本发明的范围。The above are merely embodiments of the present invention and should not be used to limit the scope of the present invention. All simple equivalent changes and modifications made according to the claims and description of the present invention are still within the scope of the present invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010051348.9A CN113133761B (en) | 2020-01-17 | 2020-01-17 | Method for judging left and right gait and its analyzing device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010051348.9A CN113133761B (en) | 2020-01-17 | 2020-01-17 | Method for judging left and right gait and its analyzing device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113133761A CN113133761A (en) | 2021-07-20 |
CN113133761B true CN113133761B (en) | 2024-05-28 |
Family
ID=76808524
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010051348.9A Active CN113133761B (en) | 2020-01-17 | 2020-01-17 | Method for judging left and right gait and its analyzing device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113133761B (en) |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2186478A1 (en) * | 2008-11-14 | 2010-05-19 | HASOMED Hard- und Software für Medizin GmbH | Method and device for analysing the human movement cycle |
WO2014108948A1 (en) * | 2013-01-11 | 2014-07-17 | テルモ株式会社 | Measurement device, footwear, and information processing device |
WO2016084285A1 (en) * | 2014-11-27 | 2016-06-02 | パナソニックIpマネジメント株式会社 | Gait analysis system and gait analysis program |
WO2016081994A1 (en) * | 2014-11-24 | 2016-06-02 | Quanticare Technologies Pty Ltd | Gait monitoring system, method and device |
CN105973143A (en) * | 2016-05-06 | 2016-09-28 | 北京理工大学 | Biped walking parameter measuring method and apparatus |
JP2017074263A (en) * | 2015-10-15 | 2017-04-20 | 花王株式会社 | Walking cycle detection method and detection apparatus |
CN107137089A (en) * | 2017-04-07 | 2017-09-08 | 浙江大学 | A kind of Wearable sensing shoe system and gait evaluation method |
CN107174255A (en) * | 2017-06-15 | 2017-09-19 | 西安交通大学 | Three-dimensional gait information gathering and analysis method based on Kinect somatosensory technology |
CN107561970A (en) * | 2017-07-13 | 2018-01-09 | 安徽工程大学 | The control system and method that a kind of biped supporting zone differentiates |
CN108968973A (en) * | 2018-08-07 | 2018-12-11 | 南通大学 | A kind of acquisition of body gait and analysis system and method |
WO2018230787A1 (en) * | 2017-06-15 | 2018-12-20 | 순천향대학교 산학협력단 | Device and method for analyzing gait by using acceleration sensor worn on ankle |
KR20190042241A (en) * | 2017-10-16 | 2019-04-24 | (주) 에이치앤아이웍스 | Apparatus for generating user customized insole data and operating method thereof |
CN110664409A (en) * | 2019-10-24 | 2020-01-10 | 瑞昌芯迈科技有限公司 | Arch type identification method based on pressure acquisition |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5724237B2 (en) * | 2010-07-27 | 2015-05-27 | オムロンヘルスケア株式会社 | Walking change judgment device |
JP6334925B2 (en) * | 2013-01-18 | 2018-05-30 | キヤノンメディカルシステムズ株式会社 | Motion information processing apparatus and method |
US9801568B2 (en) * | 2014-01-07 | 2017-10-31 | Purdue Research Foundation | Gait pattern analysis for predicting falls |
US10327671B2 (en) * | 2014-02-17 | 2019-06-25 | Hong Kong Baptist University | Algorithms for gait measurement with 3-axes accelerometer/gyro in mobile devices |
FR3018469B1 (en) * | 2014-03-11 | 2016-04-01 | Robotiques 3 Dimensions | EXOSQUE PANTS. |
JP5758028B1 (en) * | 2014-06-19 | 2015-08-05 | 本田技研工業株式会社 | Step counting device, walking assist device, and step counting program |
-
2020
- 2020-01-17 CN CN202010051348.9A patent/CN113133761B/en active Active
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2186478A1 (en) * | 2008-11-14 | 2010-05-19 | HASOMED Hard- und Software für Medizin GmbH | Method and device for analysing the human movement cycle |
WO2014108948A1 (en) * | 2013-01-11 | 2014-07-17 | テルモ株式会社 | Measurement device, footwear, and information processing device |
WO2016081994A1 (en) * | 2014-11-24 | 2016-06-02 | Quanticare Technologies Pty Ltd | Gait monitoring system, method and device |
WO2016084285A1 (en) * | 2014-11-27 | 2016-06-02 | パナソニックIpマネジメント株式会社 | Gait analysis system and gait analysis program |
JP2017074263A (en) * | 2015-10-15 | 2017-04-20 | 花王株式会社 | Walking cycle detection method and detection apparatus |
CN105973143A (en) * | 2016-05-06 | 2016-09-28 | 北京理工大学 | Biped walking parameter measuring method and apparatus |
CN107137089A (en) * | 2017-04-07 | 2017-09-08 | 浙江大学 | A kind of Wearable sensing shoe system and gait evaluation method |
CN107174255A (en) * | 2017-06-15 | 2017-09-19 | 西安交通大学 | Three-dimensional gait information gathering and analysis method based on Kinect somatosensory technology |
WO2018230787A1 (en) * | 2017-06-15 | 2018-12-20 | 순천향대학교 산학협력단 | Device and method for analyzing gait by using acceleration sensor worn on ankle |
CN107561970A (en) * | 2017-07-13 | 2018-01-09 | 安徽工程大学 | The control system and method that a kind of biped supporting zone differentiates |
KR20190042241A (en) * | 2017-10-16 | 2019-04-24 | (주) 에이치앤아이웍스 | Apparatus for generating user customized insole data and operating method thereof |
CN108968973A (en) * | 2018-08-07 | 2018-12-11 | 南通大学 | A kind of acquisition of body gait and analysis system and method |
CN110664409A (en) * | 2019-10-24 | 2020-01-10 | 瑞昌芯迈科技有限公司 | Arch type identification method based on pressure acquisition |
Non-Patent Citations (2)
Title |
---|
一种人体步态轨迹测量方法;张立勋;王令军;王凤良;王克宽;;测控技术;20090218(第02期);全文 * |
基于多传感器的实时步态检测研究;张今瑜;王岚;张立勋;;哈尔滨工程大学学报;20070228(第02期);全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN113133761A (en) | 2021-07-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101252634B1 (en) | system for analyzing walking motion | |
KR101988718B1 (en) | Method and System of Collecting and analyzing gait for healthcare and smart life-logger | |
CN102917640A (en) | Mobile terminal device, walking loci calculation program and walking posture diagnosis method | |
WO2021140658A1 (en) | Anomaly detection device, determination system, anomaly detection method, and program recording medium | |
WO2017133498A1 (en) | Intelligent device and intelligent device control method | |
US20180360157A1 (en) | Smart shoe and method for processing data therefor | |
JP2021503646A (en) | VR walking mechanism and walking method in virtual reality scene | |
KR20120070846A (en) | Method and apparatus for analysis gait pattern | |
WO2008087651A2 (en) | Pedestrian navigation system and method | |
CN105188530A (en) | Walking posture meter and program | |
US20220022604A1 (en) | Receiving feedback based on pressure sensor data and movement data | |
US20210275098A1 (en) | Methods and devices for information acquisition, detection, and application of foot gestures | |
KR102423494B1 (en) | Smart shoes system and mobile terminal processing data of smart shoes | |
CN105091878A (en) | Positioning method based on gait and positioning apparatus based on gait | |
JP2012205816A (en) | Walking posture determination device | |
US20180070877A1 (en) | Compass-sensor embedded footwear system and operation method thereof | |
JP2015217250A (en) | Stride measuring system, program, method and apparatus | |
CN107561970B (en) | A method for discrimination of bipedal support area | |
CN113133761B (en) | Method for judging left and right gait and its analyzing device | |
TWI711431B (en) | Judgment method of left and right gait and analysis device thereof | |
WO2021084614A1 (en) | Gait measurement system, gait measurement method, and program storage medium | |
TWI723654B (en) | Method and device for analyzing gait | |
CN110633007B (en) | Method and device for acquiring, detecting and applying foot posture information | |
CN112869732B (en) | Method and device for analyzing gait | |
JP7582318B2 (en) | Estimation device, estimation system, estimation method, and program |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |