CN113131933B - Continuous approximate register analog-to-digital converter with correction function and correction method - Google Patents
Continuous approximate register analog-to-digital converter with correction function and correction method Download PDFInfo
- Publication number
- CN113131933B CN113131933B CN201911412669.0A CN201911412669A CN113131933B CN 113131933 B CN113131933 B CN 113131933B CN 201911412669 A CN201911412669 A CN 201911412669A CN 113131933 B CN113131933 B CN 113131933B
- Authority
- CN
- China
- Prior art keywords
- digital
- capacitors
- analog
- bit
- capacitance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 131
- 238000012937 correction Methods 0.000 title claims abstract description 72
- 239000003990 capacitor Substances 0.000 claims abstract description 697
- 230000008878 coupling Effects 0.000 claims abstract description 65
- 238000010168 coupling process Methods 0.000 claims abstract description 65
- 238000005859 coupling reaction Methods 0.000 claims abstract description 65
- 230000009467 reduction Effects 0.000 claims description 9
- 238000005070 sampling Methods 0.000 description 34
- 238000006243 chemical reaction Methods 0.000 description 26
- 238000010586 diagram Methods 0.000 description 23
- 102100027668 Carboxy-terminal domain RNA polymerase II polypeptide A small phosphatase 1 Human genes 0.000 description 12
- 101710134395 Carboxy-terminal domain RNA polymerase II polypeptide A small phosphatase 1 Proteins 0.000 description 12
- 102100031476 Cytochrome P450 1A1 Human genes 0.000 description 12
- 101000941690 Homo sapiens Cytochrome P450 1A1 Proteins 0.000 description 12
- PUPNJSIFIXXJCH-UHFFFAOYSA-N n-(4-hydroxyphenyl)-2-(1,1,3-trioxo-1,2-benzothiazol-2-yl)acetamide Chemical compound C1=CC(O)=CC=C1NC(=O)CN1S(=O)(=O)C2=CC=CC=C2C1=O PUPNJSIFIXXJCH-UHFFFAOYSA-N 0.000 description 12
- 102100027667 Carboxy-terminal domain RNA polymerase II polypeptide A small phosphatase 2 Human genes 0.000 description 9
- 101710134389 Carboxy-terminal domain RNA polymerase II polypeptide A small phosphatase 2 Proteins 0.000 description 9
- 102100024607 DNA topoisomerase 1 Human genes 0.000 description 9
- 102100033587 DNA topoisomerase 2-alpha Human genes 0.000 description 9
- 101000830681 Homo sapiens DNA topoisomerase 1 Proteins 0.000 description 9
- 101000801505 Homo sapiens DNA topoisomerase 2-alpha Proteins 0.000 description 9
- 101150078570 WIN1 gene Proteins 0.000 description 9
- 230000008569 process Effects 0.000 description 7
- 101150017489 WIN2 gene Proteins 0.000 description 6
- 101000631760 Homo sapiens Sodium channel protein type 1 subunit alpha Proteins 0.000 description 5
- 102100028910 Sodium channel protein type 1 subunit alpha Human genes 0.000 description 5
- 230000007246 mechanism Effects 0.000 description 4
- 230000009471 action Effects 0.000 description 3
- 238000013459 approach Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000012935 Averaging Methods 0.000 description 2
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 2
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 2
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000013139 quantization Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/10—Calibration or testing
- H03M1/1009—Calibration
- H03M1/1028—Calibration at two points of the transfer characteristic, i.e. by adjusting two reference values, e.g. offset and gain error
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Analogue/Digital Conversion (AREA)
Abstract
Description
技术领域Technical Field
本公开涉及一种模拟数字转换器的校正方法,且特别是有关于一种连续近似缓存器模拟至数字转换器的校正方法及其电路。The present disclosure relates to a calibration method for an analog-to-digital converter, and more particularly to a calibration method for a successive approximation register analog-to-digital converter and a circuit thereof.
背景技术Background Art
模拟数字转换器性能的表现可能影响仪器测量的精准度,故在此应用将会要求模拟数字转换器的线性度。晶圆代工厂提供每个制程下所有装置的不匹配参数,在连续近似模拟数字转换器(Successive Approximation Register Analog-to-Digital Converter,SAR ADC)里,电容数字式模拟转换器(Capacitor Digital to Analog Converter,CDAC)影响着整体的线性度。如何在不过度放大电容数字模拟转换器的单位电容的情形下,仍可达到一定的线性度,是本技术领域所欲解决的课题之一。The performance of the analog-to-digital converter may affect the accuracy of the instrument measurement, so the linearity of the analog-to-digital converter will be required in this application. The wafer foundry provides the mismatch parameters of all devices under each process. In the Successive Approximation Register Analog-to-Digital Converter (SAR ADC), the Capacitor Digital to Analog Converter (CDAC) affects the overall linearity. How to achieve a certain linearity without over-amplifying the unit capacitance of the capacitor digital to analog converter is one of the issues that this technical field wants to solve.
发明内容Summary of the invention
根据本公开一种实施方式,提供一种连续近似缓存器模拟至数字转换器的校正方法。所述连续近似缓存器模拟至数字转换器包括至少一电容式数字至模拟转换器以及控制器,所述至少一电容式数字至模拟转换器包括对应于Nd位的Nd个电容,其中Nd为正整数。所述连续近似缓存器模拟至数字转换器的电容校正方法包括:将第z位至第(Nd-1)位的所述电容耦接第一参考电压,根据第(z-1)位至第0位的所述电容的运作产生第一数字码,其中z为小于Nd的整数;将第(i+1)位至所述第(Nd-1)位的所述电容耦接所述第一参考电压,将第i位的所述电容耦接第二参考电压,根据第(i-1)位至所述第0位的所述电容的运作产生第二数字码,其中i为小于Nd的整数,且z小于i;根据所述第一数字码与所述第二数字码产生所述第i位的所述电容的电容权重;以及根据所述第i位的所述电容的所述电容权重校正所述连续近似缓存器模拟至数字转换器。According to an embodiment of the present disclosure, a calibration method for a continuous approximate register analog-to-digital converter is provided. The continuous approximate register analog-to-digital converter includes at least one capacitive digital-to-analog converter and a controller, wherein the at least one capacitive digital-to-analog converter includes Nd capacitors corresponding to Nd bits, where Nd is a positive integer. The capacitance correction method of the continuous approximate register analog-to-digital converter includes: coupling the capacitors from the zth to (Nd-1)th bits to a first reference voltage, generating a first digital code according to the operation of the capacitors from the (z-1)th to the 0th bits, wherein z is an integer less than Nd; coupling the capacitors from the (i+1)th to the (Nd-1)th bits to the first reference voltage, coupling the capacitors from the ith bit to a second reference voltage, generating a second digital code according to the operation of the capacitors from the (i-1)th to the 0th bits, wherein i is an integer less than Nd, and z is less than i; generating a capacitance weight of the capacitor at the ith bit according to the first digital code and the second digital code; and calibrating the continuous approximate register analog-to-digital converter according to the capacitance weight of the capacitor at the ith bit.
依据一实施方式,本公开提供一种连续近似缓存器模拟至数字转换器的校正方法,其中连续近似缓存器模拟至数字转换器包括至少一电容式数字至模拟转换器以及控制器。至少一电容式数字至模拟转换器包括对应于Nd位的Nd个电容,其中Nd为正整数。连续近似缓存器模拟至数字转换器的电容校正方法包括:将第i位至第(Nd-1)位的电容耦接第一参考电压,根据第(i-1)位至第0位的电容的运作产生第一数字码,其中i为小于Nd的整数;将第(i+1)位至第(Nd-1)位的电容耦接所述第一参考电压,将第i位的电容耦接第二参考电压,根据第(i-1)位至第0位的电容的运作产生第二数字码;根据第一数字码与第二数字码产生第i位的电容的电容权重;以及根据第i位的电容的电容权重校正连续近似缓存器模拟至数字转换器。According to one embodiment, the present disclosure provides a calibration method for a continuous approximate register analog-to-digital converter, wherein the continuous approximate register analog-to-digital converter includes at least one capacitive digital-to-analog converter and a controller. The at least one capacitive digital-to-analog converter includes Nd capacitors corresponding to Nd bits, wherein Nd is a positive integer. The capacitance calibration method for the continuous approximate register analog-to-digital converter includes: coupling the capacitors from the i-th to (Nd-1)-th bits to a first reference voltage, generating a first digital code according to the operation of the capacitors from the (i-1)-th to the 0-th bits, wherein i is an integer less than Nd; coupling the capacitors from the (i+1)-th to (Nd-1)-th bits to the first reference voltage, coupling the capacitors from the i-th bit to a second reference voltage, generating a second digital code according to the operation of the capacitors from the (i-1)-th to the 0-th bits; generating a capacitance weight of the capacitor from the i-th bit according to the first digital code and the second digital code; and calibrating the continuous approximate register analog-to-digital converter according to the capacitance weight of the capacitor from the i-th bit.
依据另一实施方式,本公开提供一种具有校正功能的连续近似缓存器模拟至数字转换器,其包括:至少一电容式数字至模拟转换器,受控于多个控制信号以分别控制至少一电容式数字至模拟转换器的Nd个切换电容的切换运作,其中Nd为正整数;比较器,耦接至少一电容式数字至模拟转换器,用以将至少一电容式数字至模拟转换器的输出与比较电压进行比较;以及控制器,耦接比较器以及至少一电容式数字至模拟转换器,用以根据比较器的输出产生控制信号及数字输出信号。控制器在校正模式时,藉由比较器的(Nd+1)次运作的结果获得至少一电容式数字至模拟转换器的第i位的电容权重,其中i为小于Nd的整数。According to another embodiment, the present disclosure provides a continuous approximate register analog-to-digital converter with a calibration function, which includes: at least one capacitive digital-to-analog converter, which is controlled by a plurality of control signals to respectively control the switching operation of Nd switching capacitors of the at least one capacitive digital-to-analog converter, wherein Nd is a positive integer; a comparator, coupled to the at least one capacitive digital-to-analog converter, for comparing the output of the at least one capacitive digital-to-analog converter with a comparison voltage; and a controller, coupled to the comparator and the at least one capacitive digital-to-analog converter, for generating a control signal and a digital output signal according to the output of the comparator. When the controller is in a calibration mode, the capacitance weight of the i-th bit of the at least one capacitive digital-to-analog converter is obtained by the result of the (Nd+1)th operation of the comparator, wherein i is an integer less than Nd.
根据本公开另一实施方式,提供一种具有校正功能的连续近似缓存器模拟至数字转换器,包括:至少一Nd位电容式数字至模拟转换器,具有Nd位的电容,其中Nd为正整数;控制器,耦接所述至少一个电容式数字至模拟转换器。所述控制器用以执行以下电容校正程序:将第z位至第(Nd-1)位的所述电容耦接第一参考电压,根据第(z-1)位至第0位的所述电容的运作产生第一数字码,其中z为小于Nd的整数;将第(i+1)位至所述第(Nd-1)位的所述电容耦接所述第一参考电压,将所述第i位的所述电容耦接第二参考电压,根据所述第(i-1)位至所述第0位的所述电容的运作产生第二数字码,其中i为小于Nd的整数,且z小于i;根据所述第一数字码与所述第二数字码产生所述第i位的所述电容的电容权重;以及根据所述第i位的所述电容的所述电容权重校正所述连续近似缓存器模拟至数字转换器。According to another embodiment of the present disclosure, a continuous approximate buffer analog-to-digital converter with a correction function is provided, comprising: at least one Nd-bit capacitive digital-to-analog converter having Nd-bit capacitance, where Nd is a positive integer; and a controller coupled to the at least one capacitive digital-to-analog converter. The controller is used to perform the following capacitor correction procedure: coupling the capacitors from the zth to (Nd-1)th bits to a first reference voltage, generating a first digital code based on the operation of the capacitors from the (z-1)th to the 0th bits, wherein z is an integer less than Nd; coupling the capacitors from the (i+1)th to the (Nd-1)th bits to the first reference voltage, coupling the capacitors from the i-th bit to a second reference voltage, generating a second digital code based on the operation of the capacitors from the (i-1)th to the 0th bits, wherein i is an integer less than Nd, and z is less than i; generating a capacitance weight of the capacitor at the i-th bit based on the first digital code and the second digital code; and calibrating the continuous approximate register analog-to-digital converter based on the capacitance weight of the capacitor at the i-th bit.
依据另一实施方式,本公开一种具有校正功能的连续近似缓存器模拟至数字转换器,包括:至少一Nd位电容式数字至模拟转换器,具有Nd位的电容;控制器,耦接比较器的输出以及至少一个电容式数字至模拟转换器。控制器进行以下电容校正程序:将第i位至第(Nd-1)位的电容耦接第一参考电压,根据第(i-1)位至第0位的电容的运作产生第一数字码,其中i为小于Nd的整数;将第(i+1)位至第(Nd-1)位的电容耦接所述第一参考电压,将第i位的电容耦接第二参考电压,根据第(i-1)位至第0位的电容的运作产生第二数字码;根据第一数字码与第二数字码产生第i位的电容的电容权重;以及根据第i位的电容的电容权重校正连续近似缓存器模拟至数字转换器。According to another embodiment, the present invention discloses a continuous approximate register analog-to-digital converter with a correction function, comprising: at least one Nd-bit capacitive digital-to-analog converter having Nd-bit capacitors; a controller coupled to the output of the comparator and at least one capacitive digital-to-analog converter. The controller performs the following capacitor correction procedure: coupling the capacitors from the i-th to (Nd-1)-th bits to a first reference voltage, generating a first digital code according to the operation of the capacitors from the (i-1)-th to the 0-th bits, wherein i is an integer less than Nd; coupling the capacitors from the (i+1)-th to the (Nd-1)-th bits to the first reference voltage, coupling the capacitor from the i-th bit to a second reference voltage, generating a second digital code according to the operation of the capacitors from the (i-1)-th to the 0-th bits; generating a capacitance weight of the capacitor from the i-th bit according to the first digital code and the second digital code; and calibrating the continuous approximate register analog-to-digital converter according to the capacitance weight of the capacitor from the i-th bit.
基于上述,本公开结合窗口切换的优点,无需在信号路径上增加其他电路,而影响校正的比较器偏移以及闪烁噪声的信息。此外,本公开也可改善因校正而累积的电容权重偏差,来进一步提升电容式数字至模拟转换器的积分非线性度。Based on the above, the present disclosure combines the advantages of window switching without adding other circuits to the signal path to affect the information of the corrected comparator offset and flicker noise. In addition, the present disclosure can also improve the capacitance weight deviation accumulated due to the correction to further improve the integral nonlinearity of the capacitive digital-to-analog converter.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
包含附图以便进一步理解本发明,且附图并入本说明书中并构成本说明书的一部分。附图说明本发明的实施例,并与描述一起用于解释本发明的原理。The accompanying drawings are included to provide a further understanding of the present invention and are incorporated in and constitute a part of this specification. The drawings illustrate embodiments of the present invention and together with the description serve to explain the principles of the present invention.
图1是依照本公开一实施例所绘示的连续近似缓存器模拟至数字转换器的电路方块示意图。FIG. 1 is a circuit block diagram of a successive approximation register analog-to-digital converter according to an embodiment of the disclosure.
图2是依照本公开一实施例所绘示的单端输入式连续近似缓存器模拟至数字转换器的切换机制示意图。FIG. 2 is a schematic diagram of a switching mechanism of a single-ended input successive approximation register analog-to-digital converter according to an embodiment of the disclosure.
图3是依照本公开另一实施例所绘示的连续近似缓存器模拟至数字转换器的电路方块示意图。FIG. 3 is a circuit block diagram of a successive approximation register analog-to-digital converter according to another embodiment of the disclosure.
图4是依照本公开另一实施例所绘示的差动输入式连续近似缓存器模拟至数字转换器的切换机制示意图。FIG. 4 is a schematic diagram showing a switching mechanism of a differential input SAR analog-to-digital converter according to another embodiment of the disclosure.
图5为本公开一实施例的校正的时序示意图。FIG. 5 is a timing diagram of calibration according to an embodiment of the present disclosure.
图6为本公开一实施例的闪烁噪声与比较器的偏移的校正示意图。FIG. 6 is a schematic diagram of correction of flicker noise and offset of a comparator according to an embodiment of the present disclosure.
图7为本公开一实施例的电容校正的示意图。FIG. 7 is a schematic diagram of capacitance calibration according to an embodiment of the present disclosure.
图8为本公开一实施例的电容校正的示意图。FIG. 8 is a schematic diagram of capacitance calibration according to an embodiment of the present disclosure.
图9A绘示本公开一实施例的电路方块变化例的示意图。FIG. 9A is a schematic diagram illustrating a variation of a circuit block according to an embodiment of the present disclosure.
图9B绘示本公开一实施例的电路方块变化例的示意图。FIG. 9B is a schematic diagram illustrating a variation of a circuit block according to an embodiment of the present disclosure.
图10A与10B绘示本公开一实施例的时钟信号缩减示意图。10A and 10B are schematic diagrams showing clock signal reduction according to an embodiment of the present disclosure.
图11绘示本公开的连续近似缓存器模拟至数字转换器的校正方法的流程示意图。FIG. 11 is a flow chart showing a calibration method for a SAR ADC according to the present disclosure.
图12是根据本发明一实施例的连续近似缓存器模拟至数字转换器的校正方法的流程示意图。FIG. 12 is a flowchart of a calibration method for a SAR ADC according to an embodiment of the present invention.
图13是根据本发明一实施例的连续近似缓存器模拟至数字转换器的校正方法的流程示意图。FIG. 13 is a flowchart of a calibration method for a SAR ADC according to an embodiment of the present invention.
附图标号说明Description of Figure Numbers
100、200:连续近似缓存器模拟至数字转换器100, 200: Successive Approximate Register Analog to Digital Converter
120、220:第一电容式数字至模拟转换器120, 220: First capacitive digital to analog converter
121、281:取样开关121, 281: Sampling switch
140、240:比较器140, 240: Comparator
160、260:控制器160, 260: Controller
280:第二电容式数字至模拟转换器280: Second Capacitive Digital to Analog Converter
300:连续近似缓存器模拟至数字转换器300: Successive Approximate Register Analog to Digital Converter
310:第一电容式数字至模拟转换器310: First capacitive digital-to-analog converter
320:第二电容式数字至模拟转换器320: Second capacitive digital to analog converter
340:比较器340: Comparator
345:时钟缩减电路345: Clock reduction circuit
360:控制器360: Controller
380:编码器380: Encoder
400:校正处理器400: Correction Processor
CP1~CP11、CN1~CN11:电容CP1~CP11, CN1~CN11: capacitor
WP1~WP11、WN1~WN11、SWTOP1、SWTOP2:开关WP1~WP11、WN1~WN11、SW TOP1 、SW TOP2 :Switch
Vcm:第一参考电压(共模电压)Vcm: First reference voltage (common mode voltage)
Vref:第二参考电压Vref: Second reference voltage
GND:第三参考电压GND: The third reference voltage
CQ:比较结果输入端CQ: comparison result input
CQ1:第一比较结果CQ1: First comparison result
CQ2_1~CQ2_10、CQ2_k:第二比较结果CQ2_1~CQ2_10, CQ2_k: Second comparison result
D:输入端D: Input terminal
GND:接地电压GND: Ground voltage
RDY:备妥信号RDY: Ready signal
RST:重置信号RST: reset signal
SCP1~SCP10、SCN1~SCN10:切换电容组SCP1~SCP10, SCN1~SCN10: Switching capacitor bank
SDO:数字输出信号SDO: digital output signal
SP1~SP10:第一控制信号SP1~SP10: first control signal
SN1~SN10:第二控制信号SN1~SN10: Second control signal
VDD:电源电压VDD: power supply voltage
VIP:第一模拟输入信号VIP: First analog input signal
VIN:第二模拟输入信号VIN: Second analog input signal
VP0:第一电压VP0: First voltage
VP1~VPk:第二电压VP1~VPk: Second voltage
VN0:第三电压VN0: third voltage
VN1~VNk:第四电压VN1~VNk: fourth voltage
Vr:比较参考电压Vr: comparison reference voltage
Vref:参考电压Vref: reference voltage
WIN1~WINk:窗口区域WIN1~WINk: Window area
CLKS:取样时钟信号CLKS: sampling clock signal
CLKC:比较时钟信号CLKC: comparison clock signal
RCLKC:缩减比较时钟RCLKC: Reduced Compare Clock
具体实施方式DETAILED DESCRIPTION
本发明一实施例提出一种基于窗口切换架构连续近似模拟数字转换器(简称:SARADC)的校正技术,可有效缩小因制程限制且必须到达较高线性度表现的数字模拟转换器(DAC)的装置尺寸,亦可进一步达到因切换模拟数字转换器消耗的动态功率。本技术结合了窗口切换的优点,无须在信号路径上增加其他电路来得到会影响校正的比较器偏移以及闪烁噪声的信息,也可改善因校正而累积的权重偏差,来进一步提升模拟数字转换器的积分非线性度(Integral Non Linearity,INL)。An embodiment of the present invention proposes a correction technology based on a window switching architecture continuous approximation analog-to-digital converter (SARADC for short), which can effectively reduce the device size of a digital-to-analog converter (DAC) that must achieve higher linearity performance due to process limitations, and can further achieve the dynamic power consumed by switching the analog-to-digital converter. This technology combines the advantages of window switching, and does not need to add other circuits to the signal path to obtain information about the comparator offset and flicker noise that will affect the correction. It can also improve the weight deviation accumulated due to the correction to further improve the integral nonlinearity (INL) of the analog-to-digital converter.
模拟至数字转换操作Analog to digital conversion operation
图1是依照本公开一实施例所绘示的连续近似缓存器模拟至数字转换器100的电路方块示意图。连续近似缓存器模拟至数字转换器(Successive Approximation RegisterAnalog-to-Digital Converter,SAR ADC)100,用以转换第一模拟输入信号VIP为数字输出信号SDO,其中数字输出信号SDO具有从最高有效位(Most Significant Bit,MSB)计算至最低有效位(Least Significant Bit,LSB)的N个位,其中N为正整数,以下以N=10来说明。FIG1 is a circuit block diagram of a successive approximation register analog-to-digital converter 100 according to an embodiment of the present disclosure. The successive approximation register analog-to-digital converter (SAR ADC) 100 is used to convert a first analog input signal VIP into a digital output signal SDO, wherein the digital output signal SDO has N bits calculated from the most significant bit (MSB) to the least significant bit (LSB), wherein N is a positive integer, and N=10 is used for illustration below.
SAR ADC 100可包括第一电容式数字至模拟转换器(Capacitor Digital toAnalog Converter,CDAC)120、比较器140以及控制器160。第一电容式数字至模拟转换器120可包括取样开关121以及切换电容组SCP1~SCP10,其分别受控于第一控制信号SP1~SP10。第一电容式数字至模拟转换器120可于一时间点通过取样开关121接收并取样第一模拟输入信号VIP以产生第一电压VP0。取样开关121可例如是通过一取样时钟信号CLKS所控制的靴带式开关(Bootstrapped Switch)。第一电容式数字至模拟转换器120受控于多个第一控制信号SP1~SP10以分别控制切换电容组SCP1~SCP10的切换运作。详细来说,切换电容组SCPi可包括电容CPi及开关WPi,其中i为1至L的整数(在此例中,L=10)。电容CP1~CP10的第一端耦接至比较器140的非反相输入端,而电容CP1~CP10的第二端则分别通过对应的开关WP1~WP10被切换于参考电压Vref与接地电压GND之间。开关WP1~WP10分别由第一控制信号SP1~SP10所控制。电容CP1~电容CP8的电容值分别为电容CP2~电容CP9的电容值的两倍,而电容CP9的电容值等于电容CP10的电容值。在实施例中,耦接可以是直接连接或是间接连接,间接连接例如是通过另一装置连接,例如若是说明装置A耦接装置B,可以是装置A与装置B直接连接,也可以是装置A与装置B之间通过装置C相接,例如装置A直接连接到装置C后,装置C再直接连接到装置B。The SAR ADC 100 may include a first capacitor digital to analog converter (CDAC) 120, a comparator 140, and a controller 160. The first capacitor digital to analog converter 120 may include a sampling switch 121 and a switching capacitor group SCP1-SCP10, which are respectively controlled by first control signals SP1-SP10. The first capacitor digital to analog converter 120 may receive and sample a first analog input signal VIP through the sampling switch 121 at a time point to generate a first voltage VP0. The sampling switch 121 may be, for example, a bootstrapped switch controlled by a sampling clock signal CLKS. The first capacitor digital to analog converter 120 is controlled by a plurality of first control signals SP1-SP10 to respectively control the switching operation of the switching capacitor groups SCP1-SCP10. Specifically, the switching capacitor group SCPi may include a capacitor CPi and a switch WPi, where i is an integer from 1 to L (in this example, L=10). The first ends of the capacitors CP1 to CP10 are coupled to the non-inverting input end of the comparator 140, and the second ends of the capacitors CP1 to CP10 are switched between the reference voltage Vref and the ground voltage GND through the corresponding switches WP1 to WP10. The switches WP1 to WP10 are controlled by the first control signals SP1 to SP10, respectively. The capacitance values of the capacitors CP1 to CP8 are respectively twice the capacitance values of the capacitors CP2 to CP9, and the capacitance value of the capacitor CP9 is equal to the capacitance value of the capacitor CP10. In an embodiment, the coupling can be a direct connection or an indirect connection. The indirect connection is, for example, connected through another device. For example, if device A is coupled to device B, it can be that device A is directly connected to device B, or that device A and device B are connected through device C. For example, after device A is directly connected to device C, device C is directly connected to device B.
比较器140接收来自第一电容式数字至模拟转换器120的第一电压VP0,且受控于比较时钟信号CLKC,以将第一电压VP0与比较参考电压Vr进行比较,产生第一比较结果CQ1,其中比较参考电压Vr可例如是参考电压Vref。控制器160耦接比较器140以及第一电容式数字至模拟转换器120。特别是,控制器160可根据第一比较结果CQ1产生第一控制信号SP1~SP10以分别控制切换电容组SCP1~SCP10的切换运作。The comparator 140 receives the first voltage VP0 from the first capacitive digital-to-analog converter 120 and is controlled by the comparison clock signal CLKC to compare the first voltage VP0 with a comparison reference voltage Vr to generate a first comparison result CQ1, wherein the comparison reference voltage Vr may be, for example, a reference voltage Vref. The controller 160 is coupled to the comparator 140 and the first capacitive digital-to-analog converter 120. In particular, the controller 160 may generate first control signals SP1-SP10 according to the first comparison result CQ1 to control the switching operations of the switched capacitor groups SCP1-SCP10 respectively.
更进一步来说,控制器160具有二进制窗口(binary window)功能。控制器160可根据比较器140的输出(亦即第一比较结果VP0)来决定切换电容组SCP1~SCP10中的至少一者的切换运作,以将第一电容式数字至模拟转换器120的输出逼近上述的二进制窗口,其中上述的二进制窗口为M位的窗口,且M为小于或等于N的正整数。详细来说,于连续近似缓存器模拟至数字转换器100的M次迭代(iteration)运作的第k次迭代运作中(k小于或等于M),控制器160可将切换电容组SCP1~SCP10中的第k个切换电容组SCPk进行切换(例如自第一状态切换为第二状态),致使第一电容式数字至模拟转换器120产生对应的第二电压VPk。接着,比较器140可将第k次迭代运作的第二电压VPk与比较参考电压Vr进行比较以产生对应的第二比较结果CQ2_k。控制器160可根据第一比较结果CQ1与第二比较结果CQ2_k定义(或决定)窗口区域WINk。并且,控制器160可根据第一比较结果CQ1与第二比较结果CQ2_k来决定是否将第k个切换电容组SCPk切换回第一状态,或者维持于第二状态。Furthermore, the controller 160 has a binary window function. The controller 160 can determine the switching operation of at least one of the switched capacitor groups SCP1-SCP10 according to the output of the comparator 140 (i.e., the first comparison result VP0) to make the output of the first capacitive digital-to-analog converter 120 approach the above-mentioned binary window, wherein the above-mentioned binary window is an M-bit window, and M is a positive integer less than or equal to N. In detail, in the k-th iteration operation of the M-iteration operation of the continuous approximate register analog-to-digital converter 100 (k is less than or equal to M), the controller 160 can switch the k-th switched capacitor group SCPk among the switched capacitor groups SCP1-SCP10 (e.g., from the first state to the second state), so that the first capacitive digital-to-analog converter 120 generates a corresponding second voltage VPk. Then, the comparator 140 can compare the second voltage VPk of the k-th iteration operation with the comparison reference voltage Vr to generate a corresponding second comparison result CQ2_k. The controller 160 may define (or determine) the window area WINk according to the first comparison result CQ1 and the second comparison result CQ2_k, and may determine whether to switch the kth switching capacitor group SCPk back to the first state or maintain it in the second state according to the first comparison result CQ1 and the second comparison result CQ2_k.
于第k次迭代运作中,若第一比较结果CQ1表示第一电压VP0大于比较参考电压Vr,且第二比较结果CQ2_k表示第二电压VPk亦大于比较参考电压Vr,则控制器160将第k个切换电容组维持在第二状态(即切换后的状态)。或者是,于第k次迭代运作中,若第一比较结果CQ1表示该第一电压VP0小于比较参考电压Vr,且第二比较结果CQ2_k表示第二电压VPk亦小于比较参考电压Vr,则控制器160将第k个切换电容组维持在第二状态(即切换后的状态)。In the k-th iteration operation, if the first comparison result CQ1 indicates that the first voltage VP0 is greater than the comparison reference voltage Vr, and the second comparison result CQ2_k indicates that the second voltage VPk is also greater than the comparison reference voltage Vr, the controller 160 maintains the k-th switching capacitor group in the second state (i.e., the switched state). Alternatively, in the k-th iteration operation, if the first comparison result CQ1 indicates that the first voltage VP0 is less than the comparison reference voltage Vr, and the second comparison result CQ2_k indicates that the second voltage VPk is also less than the comparison reference voltage Vr, the controller 160 maintains the k-th switching capacitor group in the second state (i.e., the switched state).
相对地,于第k次迭代运作中,若第一比较结果CQ1与第二比较结果CQ2_k表示第一电压VP0及第二电压VPk的其中之一大于比较参考电压Vr,且第一电压VP0及第二电压VPk的其中另一小于比较参考电压Vr,则控制器160将第k个切换电容组切换回第一状态(即切换前的状态)。Correspondingly, in the kth iterative operation, if the first comparison result CQ1 and the second comparison result CQ2_k indicate that one of the first voltage VP0 and the second voltage VPk is greater than the comparison reference voltage Vr, and the other of the first voltage VP0 and the second voltage VPk is less than the comparison reference voltage Vr, the controller 160 switches the kth switching capacitor group back to the first state (i.e., the state before switching).
图2是依照本公开一实施例所绘示的单端输入式连续近似缓存器模拟至数字转换器执行二进制窗口功能时的切换机制示意图,其中横轴表示时间,纵轴表示第一电容式数字至模拟转换器120的输出电压,以下将以M等于4来说明。基于二进制窗口为4位的窗口,故而于图2的第一次迭代运作(即k=1)至第四次迭代运作(即k=4)中,分别示出由虚线所包围出来的四块窗口区域,即WIN1~WIN4。FIG2 is a schematic diagram of a switching mechanism of a single-ended input continuous approximation register analog-to-digital converter when performing a binary window function according to an embodiment of the present disclosure, wherein the horizontal axis represents time and the vertical axis represents the output voltage of the first capacitive digital-to-analog converter 120, and the following description will be made with M being equal to 4. Since the binary window is a 4-bit window, four window areas surrounded by dotted lines, namely WIN1 to WIN4, are respectively shown in FIG2 in the first iteration operation (i.e., k=1) to the fourth iteration operation (i.e., k=4).
首先,于取样保持(sample-and-hold)运作(即k=0)中,第一电容式数字至模拟转换器120通过取样开关121接收并取样第一模拟输入信号VIP以产生第一电压VP0。在一实施例中,在此的第一模拟输入信号VIP的振幅(Amplitude)例如是等于参考电压Vref,且第一模拟输入信号VIP的共模电压(Common Mode Voltage)例如是等于参考电压Vref。比较器140可判断第一电压VP0是否大于比较参考电压Vr,从而产生第一比较结果CQ1。接着,于第一次迭代运作(即k=1),控制器160可根据第一比较结果CQ1产生第一控制信号SP1以控制切换电容组SCP1的切换运作。以下先针对第一电压VP0大于比较参考电压Vr的情况进行说明。First, in a sample-and-hold operation (i.e., k=0), the first capacitive digital-to-analog converter 120 receives and samples the first analog input signal VIP through the sampling switch 121 to generate a first voltage VP0. In one embodiment, the amplitude of the first analog input signal VIP is, for example, equal to the reference voltage Vref, and the common mode voltage of the first analog input signal VIP is, for example, equal to the reference voltage Vref. The comparator 140 can determine whether the first voltage VP0 is greater than the comparison reference voltage Vr, thereby generating a first comparison result CQ1. Then, in the first iteration operation (i.e., k=1), the controller 160 can generate a first control signal SP1 according to the first comparison result CQ1 to control the switching operation of the switched capacitor group SCP1. The following first describes the case where the first voltage VP0 is greater than the comparison reference voltage Vr.
于取样保持运作(即k=0)中,如果第一电压VP0大于比较参考电压Vr,则比较器140可输出例如是逻辑1的第一比较结果CQ1。因此,于第一次迭代运作(即k=1)中,控制器160将切换电容组SCP1中的开关WP1进行切换以将第一电压VP0下拉,致使第一电容式数字至模拟转换器120产生对应的第二电压VP1,其中VP1=VP0-(Vref/2k)=VP0-(Vref/2)=VP0-(Vr/2)。值得一提,在此的参考电压Vref,即为比较参考电压Vr,故以下范例说明,即假设Vref=Vr。接着,比较器140可将第一次迭代运作(即k=1)的第二电压VP1与比较参考电压Vr进行比较,以判断第二电压VP1是否大于比较参考电压Vr。如果第二电压VP1大于比较参考电压Vr,则比较器140将输出例如是逻辑1的第二比较结果CQ2_1。可以理解的是,如果第二电压VP1大于比较参考电压Vr,表示第一电压VP0大于1.5Vref而位于窗口区域WIN1之外,故控制器160将切换电容组SCP1中的开关WP1维持在切换后的状态,此时VP1=VP0-(Vr/2)。相对地,如果第二电压VP1小于比较参考电压Vr,则比较器140将输出例如是逻辑0的第二比较结果CQ2_1。可以理解的是,如果第二电压VP1小于比较参考电压Vr,表示第一电压VP0小于1.5Vref而位于窗口区域WIN1内,故控制器160将切换电容组SCP1中的开关WP1回复至切换前的状态,此时VP1=VP0。In the sample-and-hold operation (i.e., k=0), if the first voltage VP0 is greater than the comparison reference voltage Vr, the comparator 140 may output a first comparison result CQ1 such as logic 1. Therefore, in the first iteration operation (i.e., k=1), the controller 160 switches the switch WP1 in the switched capacitor group SCP1 to pull down the first voltage VP0, so that the first capacitive digital-to-analog converter 120 generates a corresponding second voltage VP1, wherein VP1=VP0-(Vref/2 k )=VP0-(Vref/2)=VP0-(Vr/2). It is worth mentioning that the reference voltage Vref here is the comparison reference voltage Vr, so the following example assumes that Vref=Vr. Then, the comparator 140 may compare the second voltage VP1 of the first iteration operation (i.e., k=1) with the comparison reference voltage Vr to determine whether the second voltage VP1 is greater than the comparison reference voltage Vr. If the second voltage VP1 is greater than the comparison reference voltage Vr, the comparator 140 will output a second comparison result CQ2_1, for example, of logic 1. It is understandable that if the second voltage VP1 is greater than the comparison reference voltage Vr, it means that the first voltage VP0 is greater than 1.5Vref and is located outside the window area WIN1, so the controller 160 maintains the switch WP1 in the switching capacitor group SCP1 in the switched state, at which time VP1=VP0-(Vr/2). Conversely, if the second voltage VP1 is less than the comparison reference voltage Vr, the comparator 140 will output a second comparison result CQ2_1, for example, of logic 0. It is understandable that if the second voltage VP1 is less than the comparison reference voltage Vr, it means that the first voltage VP0 is less than 1.5Vref and is located within the window area WIN1, so the controller 160 returns the switch WP1 in the switching capacitor group SCP1 to the state before switching, at which time VP1=VP0.
接着,于第二次迭代运作(即k=2)中,控制器160将对切换电容组SCP2中的开关WP2进行切换以将第二电压VP1下拉,致使第一电容式数字至模拟转换器120产生对应的第二电压VP2,其中VP2=VP1-(Vr/2k)=VP1-(Vr/4)。接着,比较器140可将第二次迭代运作(即k=2)的第二电压VP2与比较参考电压Vr进行比较,以判断第二电压VP2是否大于比较参考电压Vr。如果第二电压VP2大于比较参考电压Vr,则比较器140将输出例如是逻辑1的第二比较结果CQ2_2。可以理解的是,如果第二电压VP2大于比较参考电压Vr,表示第二电压VP1大于1.25Vref而位于窗口区域WIN2之外,故控制器160将切换电容组SCP2中的开关WP2维持在切换后的状态,此时VP2=VP1-(Vr/4)。相对地,如果第二电压VP2小于比较参考电压Vr,则比较器140将输出例如是逻辑0的第二比较结果CQ2_2。可以理解的是,如果第二电压VP2小于比较参考电压Vr,表示第二电压VP1小于1.25Vref而位于窗口区域WIN2内,故控制器160将切换电容组SCP2中的开关WP2回复至切换前的状态,此时VP2=VP1。值得一提的是,在此的第二电压VP1是根据第一次迭代运作(即k=1)结果(即第二比较结果CQ2_1)来决定,若第二比较结果CQ2_1例如是逻辑1,则VP1=VP0-(Vr/2);若第二比较结果CQ2_1例如是逻辑0,则VP1=VP0。Next, in the second iteration operation (i.e., k=2), the controller 160 switches the switch WP2 in the switched capacitor group SCP2 to pull down the second voltage VP1, so that the first capacitive digital-to-analog converter 120 generates a corresponding second voltage VP2, wherein VP2=VP1-(Vr/2 k )=VP1-(Vr/4). Next, the comparator 140 can compare the second voltage VP2 of the second iteration operation (i.e., k=2) with the comparison reference voltage Vr to determine whether the second voltage VP2 is greater than the comparison reference voltage Vr. If the second voltage VP2 is greater than the comparison reference voltage Vr, the comparator 140 will output a second comparison result CQ2_2 such as logic 1. It can be understood that if the second voltage VP2 is greater than the comparison reference voltage Vr, it means that the second voltage VP1 is greater than 1.25Vref and is outside the window area WIN2, so the controller 160 maintains the switch WP2 in the switched capacitor group SCP2 in the switched state, and at this time VP2=VP1-(Vr/4). In contrast, if the second voltage VP2 is less than the comparison reference voltage Vr, the comparator 140 will output a second comparison result CQ2_2, for example, a logic 0. It is understandable that if the second voltage VP2 is less than the comparison reference voltage Vr, it means that the second voltage VP1 is less than 1.25Vref and is located within the window area WIN2, so the controller 160 returns the switch WP2 in the switching capacitor group SCP2 to the state before switching, and VP2=VP1 at this time. It is worth mentioning that the second voltage VP1 here is determined according to the result of the first iteration operation (i.e., k=1) (i.e., the second comparison result CQ2_1). If the second comparison result CQ2_1 is, for example, a logic 1, VP1=VP0-(Vr/2); if the second comparison result CQ2_1 is, for example, a logic 0, VP1=VP0.
至于连续近似缓存器模拟至数字转换器100于第三次迭代运作(即k=3)及第四次迭代运作(即k=4)的运作,则可根据上述第一次迭代运作(即k=1)及第二次迭代运作(即k=2)的说明而类推得知,故在此不再赘述。As for the operation of the SAR ADC 100 in the third iteration operation (i.e., k=3) and the fourth iteration operation (i.e., k=4), it can be inferred from the description of the first iteration operation (i.e., k=1) and the second iteration operation (i.e., k=2) mentioned above, so it will not be repeated here.
以下针对第一电压VP0小于比较参考电压Vr的情况进行说明。于取样保持运作(即k=0)中,如果第一电压VP0小于比较参考电压Vr,则比较器140可输出例如是逻辑0的第一比较结果CQ1。因此,于第一次迭代运作(即k=1)中,控制器160将对切换电容组SCP1中的开关WP1进行切换以将第一电压VP0上拉,致使第一电容式数字至模拟转换器120产生对应的第二电压VP1,其中VP1=VP0+(Vr/2k)=VP0+(Vr/2)。接着,比较器140可将第一次迭代运作(即k=1)的第二电压VP1与比较参考电压Vr进行比较,以判断第二电压VP1是否大于比较参考电压Vr。如果第二电压VP1大于比较参考电压Vr,则比较器140将输出例如是逻辑1的第二比较结果CQ2_1。可以理解的是,如果第二电压VP1大于比较参考电压Vr,表示第一电压VP0大于0.5Vref而位于窗口区域WIN1之内,故控制器160将切换电容组SCP1中的开关WP1回复至切换前的状态,此时VP1=VP0。相对地,如果第二电压VP1小于比较参考电压Vr,则比较器140将输出例如是逻辑0的第二比较结果CQ2_1。可以理解的是,如果第二电压VP1小于比较参考电压Vr,表示第一电压VP0小于0.5Vref而位于窗口区域WIN1之外,故控制器160将切换电容组SCP1中的开关WP1维持在切换后的状态,此时VP1=VP0+(Vr/2)。The following is a description of the case where the first voltage VP0 is less than the comparison reference voltage Vr. In the sample-and-hold operation (i.e., k=0), if the first voltage VP0 is less than the comparison reference voltage Vr, the comparator 140 may output a first comparison result CQ1, such as logic 0. Therefore, in the first iteration operation (i.e., k=1), the controller 160 switches the switch WP1 in the switched capacitor group SCP1 to pull up the first voltage VP0, so that the first capacitive digital-to-analog converter 120 generates a corresponding second voltage VP1, wherein VP1=VP0+(Vr/2 k )=VP0+(Vr/2). Then, the comparator 140 may compare the second voltage VP1 of the first iteration operation (i.e., k=1) with the comparison reference voltage Vr to determine whether the second voltage VP1 is greater than the comparison reference voltage Vr. If the second voltage VP1 is greater than the comparison reference voltage Vr, the comparator 140 will output a second comparison result CQ2_1, such as logic 1. It is understood that if the second voltage VP1 is greater than the comparison reference voltage Vr, it means that the first voltage VP0 is greater than 0.5Vref and is located within the window area WIN1, so the controller 160 returns the switch WP1 in the switched capacitor group SCP1 to the state before switching, and VP1=VP0 at this time. In contrast, if the second voltage VP1 is less than the comparison reference voltage Vr, the comparator 140 will output a second comparison result CQ2_1 of, for example, logic 0. It is understood that if the second voltage VP1 is less than the comparison reference voltage Vr, it means that the first voltage VP0 is less than 0.5Vref and is located outside the window area WIN1, so the controller 160 maintains the switch WP1 in the switched capacitor group SCP1 in the state after switching, and VP1=VP0+(Vr/2).
接着,于第二次迭代运作(即k=2)中,控制器160将对切换电容组SCP2中的开关WP2进行切换以将第二电压VP1上拉,致使第一电容式数字至模拟转换器120产生对应的第二电压VP2,其中VP2=VP1+(Vr/2k)=VP1+(Vr/4)。接着,比较器140可将第二次迭代运作(即k=2)的第二电压VP2与比较参考电压Vr进行比较,以判断第二电压VP2是否大于比较参考电压Vr。如果第二电压VP2大于比较参考电压Vr,则比较器140将输出例如是逻辑1的第二比较结果CQ2_2。可以理解的是,如果第二电压VP2大于比较参考电压Vr,表示第二电压VP1大于0.75Vref而位于窗口区域WIN2之内,故控制器160将切换电容组SCP2中的开关WP2回复至切换前的状态,此时VP2=VP1。相对地,如果第二电压VP2小于比较参考电压Vr,则比较器140将输出例如是逻辑0的第二比较结果CQ2_2。可以理解的是,如果第二电压VP2小于比较参考电压Vr,表示第二电压VP1小于0.75Vref而位于窗口区域WIN2之外,故控制器160将切换电容组SCP2中的开关WP2维持在切换后的状态,此时VP2=VP1+(Vr/4)。值得一提的是,在此的第二电压VP1是根据第一次迭代运作(即k=1)结果(即第二比较结果CQ2_1)来决定,若第二比较结果CQ2_1例如是逻辑1,则VP1=VP0;若第二比较结果CQ2_1例如是逻辑0,则VP1=VP0+(Vr/2)。Next, in the second iteration operation (i.e., k=2), the controller 160 switches the switch WP2 in the switched capacitor group SCP2 to pull up the second voltage VP1, so that the first capacitive digital-to-analog converter 120 generates a corresponding second voltage VP2, wherein VP2=VP1+(Vr/2 k )=VP1+(Vr/4). Next, the comparator 140 can compare the second voltage VP2 of the second iteration operation (i.e., k=2) with the comparison reference voltage Vr to determine whether the second voltage VP2 is greater than the comparison reference voltage Vr. If the second voltage VP2 is greater than the comparison reference voltage Vr, the comparator 140 will output a second comparison result CQ2_2 such as logic 1. It can be understood that if the second voltage VP2 is greater than the comparison reference voltage Vr, it means that the second voltage VP1 is greater than 0.75Vref and is within the window area WIN2, so the controller 160 returns the switch WP2 in the switched capacitor group SCP2 to the state before switching, and at this time VP2=VP1. In contrast, if the second voltage VP2 is less than the comparison reference voltage Vr, the comparator 140 will output a second comparison result CQ2_2, for example, of logic 0. It is understandable that if the second voltage VP2 is less than the comparison reference voltage Vr, it means that the second voltage VP1 is less than 0.75Vref and is outside the window area WIN2, so the controller 160 maintains the switch WP2 in the switched capacitor group SCP2 in the switched state, and at this time VP2=VP1+(Vr/4). It is worth mentioning that the second voltage VP1 here is determined according to the result of the first iteration operation (i.e., k=1) (i.e., the second comparison result CQ2_1). If the second comparison result CQ2_1 is, for example, logic 1, VP1=VP0; if the second comparison result CQ2_1 is, for example, logic 0, VP1=VP0+(Vr/2).
至于连续近似缓存器模拟至数字转换器100于第三次迭代运作(即k=3)及第四次迭代运作(即k=4)的运作,则可根据上述第一次迭代运作(即k=1)及第二次迭代运作(即k=2)的说明而类推得知。As for the operation of the SAR ADC 100 in the third iteration operation (i.e., k=3) and the fourth iteration operation (i.e., k=4), it can be inferred from the description of the first iteration operation (i.e., k=1) and the second iteration operation (i.e., k=2) mentioned above.
图3是依照本公开另一实施例所绘示的连续近似缓存器模拟至数字转换器200的电路方块示意图。连续近似缓存器模拟至数字转换器200为差动输入式模拟至数字转换器。连续近似缓存器模拟至数字转换器200用以转换差动对信号(包括第一模拟输入信号VIP及第二模拟输入信号VIN)为数字输出信号SDO。FIG3 is a circuit block diagram of a SAR analog-to-digital converter 200 according to another embodiment of the present disclosure. The SAR analog-to-digital converter 200 is a differential input analog-to-digital converter. The SAR analog-to-digital converter 200 is used to convert a differential pair signal (including a first analog input signal VIP and a second analog input signal VIN) into a digital output signal SDO.
SAR ADC 200可包括第一电容式数字至模拟转换器220、第二电容式数字至模拟转换器280、比较器240以及控制器260。第一电容式数字至模拟转换器220、比较器240以及控制器260的架构分别类似于图1的第一电容式数字至模拟转换器120、比较器140以及控制器160,故可参酌上述图1的相关说明而类推,在此不再赘述。The SAR ADC 200 may include a first capacitive digital-to-analog converter 220, a second capacitive digital-to-analog converter 280, a comparator 240, and a controller 260. The architectures of the first capacitive digital-to-analog converter 220, the comparator 240, and the controller 260 are similar to the first capacitive digital-to-analog converter 120, the comparator 140, and the controller 160 of FIG. 1 , respectively, and thus the relevant descriptions of FIG. 1 may be referred to and analogized, and will not be described in detail herein.
第二电容式数字至模拟转换器280可包括取样开关281以及切换电容组SCN1~SCN10。第二电容式数字至模拟转换器280可于一时间点通过取样开关281接收并取样第二模拟输入信号VIN以产生第三电压VN0。取样开关281可例如是通过一取样时钟信号CLKS所控制的靴带式开关。第二电容式数字至模拟转换器280受控于多个第二控制信号SN1~SN10以分别控制切换电容组SCN1~SCN10的切换运作。详细来说,切换电容组SCNi可包括电容CNi及开关WNi,其中i为1至10的整数。电容CN1~CN10的第一端耦接至比较器240的反相输入端,而电容CN1~CN10的第二端则分别通过开关WN1~WN10被切换于参考电压Vref与接地电压GND之间。开关WN1~WN10分别由第二控制信号SN1~SN10所控制。电容CN1~电容CN8的电容值分别为电容CN2~电容CN9的电容值的两倍,而电容CN9的电容值等于电容CN10的电容值。The second capacitive digital-to-analog converter 280 may include a sampling switch 281 and a switching capacitor group SCN1-SCN10. The second capacitive digital-to-analog converter 280 may receive and sample the second analog input signal VIN through the sampling switch 281 at a time point to generate a third voltage VN0. The sampling switch 281 may be, for example, a bootstrap switch controlled by a sampling clock signal CLKS. The second capacitive digital-to-analog converter 280 is controlled by a plurality of second control signals SN1-SN10 to respectively control the switching operation of the switching capacitor group SCN1-SCN10. In detail, the switching capacitor group SCNi may include a capacitor CNi and a switch WNi, where i is an integer from 1 to 10. The first end of the capacitor CN1-CN10 is coupled to the inverting input terminal of the comparator 240, and the second end of the capacitor CN1-CN10 is switched between the reference voltage Vref and the ground voltage GND through the switches WN1-WN10, respectively. The switches WN1-WN10 are controlled by second control signals SN1-SN10 respectively. The capacitance values of capacitors CN1-CN8 are twice the capacitance values of capacitors CN2-CN9 respectively, and the capacitance value of capacitor CN9 is equal to the capacitance value of capacitor CN10.
运作上,比较器240接收来自第一电容式数字至模拟转换器220的第一电压VP0以及来自第二电容式数字至模拟转换器280的第三电压VN0。比较器240可受控于比较时钟信号CLKC以将第一电压VP0与第三电压VN0的差值与零值交越点进行比较以产生第一比较结果CQ1。特别是,控制器260可根据第一比较结果CQ1产生第一控制信号SP1~SP10及第二控制信号SN1~SN10,以分别控制切换电容组SCP1~SCP10及SCN1~SCN10的切换运作。In operation, the comparator 240 receives the first voltage VP0 from the first capacitive digital-to-analog converter 220 and the third voltage VN0 from the second capacitive digital-to-analog converter 280. The comparator 240 can be controlled by the comparison clock signal CLKC to compare the difference between the first voltage VP0 and the third voltage VN0 with the zero crossing point to generate a first comparison result CQ1. In particular, the controller 260 can generate the first control signals SP1-SP10 and the second control signals SN1-SN10 according to the first comparison result CQ1 to control the switching operations of the switched capacitor groups SCP1-SCP10 and SCN1-SCN10, respectively.
进一步来说,控制器260具有二进制窗口功能。控制器260可根据比较器240的输出(亦即第一比较结果CQ1)来决定切换电容组SCP1~SCP10中的至少一者及切换电容组SCN1~SCN10中的至少一者的切换运作,以将第一电容式数字至模拟转换器220的输出及第二电容式数字至模拟转换器280的输出逼近上述的二进制窗口,其中上述的二进制窗口为M位的窗口,且M为小于或等于N的正整数。详细来说,在连续近似缓存器模拟至数字转换器200的M次迭代运作的第k次迭代运作中(k小于或等于M),控制器260可将切换电容组SCP1~SCP10中的第k个切换电容组SCPk进行切换(例如自第一状态切换为第二状态),使第一电容式数字至模拟转换器220产生对应的第二电压VPk。此外,控制器260可将切换电容组SCN1~SCN10中的第k个切换电容组SCNk进行切换(例如自第一状态切换为第二状态),使第二电容式数字至模拟转换器280产生对应的第四电压VNk。接着,比较器240可将第k次迭代运作的第二电压VPk与第四电压VNk的差值与零值交越点(zero crossing point,例如0伏特)进行比较以产生对应的第二比较结果CQ2_k。控制器260可根据第一比较结果CQ1及第二比较结果CQ2_k定义(或决定)窗口区域WINk。还有,控制器260可根据第一比较结果CQ1及第二比较结果CQ2_k来决定是否将第一电容式数字至模拟转换器220的第k个切换电容组及第二电容式数字至模拟转换器280的第k个切换电容组切换回第一状态(即切换前的状态),或维持于第二状态。Further, the controller 260 has a binary window function. The controller 260 can determine the switching operation of at least one of the switched capacitor groups SCP1-SCP10 and at least one of the switched capacitor groups SCN1-SCN10 according to the output of the comparator 240 (i.e., the first comparison result CQ1), so as to make the output of the first capacitive digital-to-analog converter 220 and the output of the second capacitive digital-to-analog converter 280 approach the above-mentioned binary window, wherein the above-mentioned binary window is an M-bit window, and M is a positive integer less than or equal to N. In detail, in the k-th iteration operation (k is less than or equal to M) of the M-th iteration operation of the continuous approximate register analog-to-digital converter 200, the controller 260 can switch the k-th switched capacitor group SCPk among the switched capacitor groups SCP1-SCP10 (for example, from the first state to the second state), so that the first capacitive digital-to-analog converter 220 generates the corresponding second voltage VPk. In addition, the controller 260 may switch the kth switched capacitor group SCNk among the switched capacitor groups SCN1-SCN10 (e.g., switching from the first state to the second state), so that the second capacitive digital-to-analog converter 280 generates a corresponding fourth voltage VNk. Then, the comparator 240 may compare the difference between the second voltage VPk and the fourth voltage VNk of the kth iteration operation with a zero crossing point (e.g., 0 volts) to generate a corresponding second comparison result CQ2_k. The controller 260 may define (or determine) a window area WINk based on the first comparison result CQ1 and the second comparison result CQ2_k. In addition, the controller 260 may determine whether to switch the kth switched capacitor group of the first capacitive digital-to-analog converter 220 and the kth switched capacitor group of the second capacitive digital-to-analog converter 280 back to the first state (i.e., the state before switching) or maintain them in the second state based on the first comparison result CQ1 and the second comparison result CQ2_k.
下面一并参照图3及图4,图4是依照本公开一实施例所绘示的差动输入式连续近似缓存器模拟至数字转换器执行二进制窗口功能时的切换机制示意图,其中横轴表示时间,纵轴表示第一电容式数字至模拟转换器220的输出电压与第二电容式数字至模拟转换器280的输出电压的电压差(亦即比较器240的差动输入电压)。为了方便说明,以下将以M等于4(即上述的二进制窗口为4位的窗口)为例子进行说明,而M为其他正整数的实施例则可依以下说明类推。基于二进制窗口为4位的窗口,故在图4的第一次迭代运作(即k=1)至第四次迭代运作(即k=4)中,分别示出由虚线所包围出来的四块窗口区域WIN1~WIN4。Referring to FIG. 3 and FIG. 4 , FIG. 4 is a schematic diagram of a switching mechanism when a differential input continuous approximation register analog-to-digital converter performs a binary window function according to an embodiment of the present disclosure, wherein the horizontal axis represents time and the vertical axis represents the voltage difference between the output voltage of the first capacitive digital-to-analog converter 220 and the output voltage of the second capacitive digital-to-analog converter 280 (i.e., the differential input voltage of the comparator 240). For the convenience of explanation, the following will be described with M equal to 4 (i.e., the above-mentioned binary window is a 4-bit window) as an example, and the embodiments where M is other positive integers can be analogized according to the following description. Based on the binary window being a 4-bit window, in the first iteration operation (i.e., k=1) to the fourth iteration operation (i.e., k=4) of FIG. 4 , four window areas WIN1 to WIN4 surrounded by dotted lines are respectively shown.
首先,于取样保持运作(即k=0)中,第一电容式数字至模拟转换器220通过取样时钟信号CLKS,控制取样开关221接收并取样第一模拟输入信号VIP以产生第一电压VP0,且第二电容式数字至模拟转换器280通过取样时钟信号CLKS,控制取样开关281接收并取样第二模拟输入信号VIN以产生第三电压VN0。在一实施例中,第一模拟输入信号VIP与第二模拟输入信号VIN的振幅(Amplitude)例如皆等于参考电压Vref,且第一模拟输入信号VIP与第二模拟输入信号VIN的共模电压(Common Mode Voltage)例如是皆相等,而第一模拟输入信号VIP与第二模拟输入信号VIN彼此的相位差例如是180度。比较器240受控于比较时钟信号CLKC,可据以判断第一电压VP0与第三电压VN0的差值是否大于零值交越点,从而产生第一比较结果CQ1。接着,于第一次迭代运作(即k=1),控制器260可根据第一比较结果CQ1产生第一控制信号SP1及第二控制信号SN1,以控制切换电容组SCP1及SCN1的切换运作。以下将先针对第一电压VP0与第三电压VN0的差值大于零值交越点(即VP0-VN0>0)进行说明。First, in a sample-and-hold operation (i.e., k=0), the first capacitive digital-to-analog converter 220 controls the sampling switch 221 to receive and sample the first analog input signal VIP to generate a first voltage VP0 through the sampling clock signal CLKS, and the second capacitive digital-to-analog converter 280 controls the sampling switch 281 to receive and sample the second analog input signal VIN to generate a third voltage VN0 through the sampling clock signal CLKS. In one embodiment, the amplitudes of the first analog input signal VIP and the second analog input signal VIN are, for example, equal to the reference voltage Vref, and the common mode voltages of the first analog input signal VIP and the second analog input signal VIN are, for example, equal, and the phase difference between the first analog input signal VIP and the second analog input signal VIN is, for example, 180 degrees. The comparator 240 is controlled by the comparison clock signal CLKC, and can determine whether the difference between the first voltage VP0 and the third voltage VN0 is greater than the zero crossing point, thereby generating a first comparison result CQ1. Next, in the first iteration operation (i.e., k=1), the controller 260 can generate the first control signal SP1 and the second control signal SN1 according to the first comparison result CQ1 to control the switching operation of the switched capacitor groups SCP1 and SCN1. The following will first be described with respect to the difference between the first voltage VP0 and the third voltage VN0 being greater than the zero crossing point (i.e., VP0-VN0>0).
在取样保持运作(即k=0)中,如果第一电压VP0与第三电压VN0的差值大于零值交越点,则比较器240可输出例如是逻辑1的第一比较结果CQ1。因此,在第一次迭代运作(即k=1)中,控制器260将切换电容组SCP1中的开关WP1进行切换以将第一电压VP0下拉,使第一电容式数字至模拟转换器220产生对应的第二电压VP1,其中VP1=VP0-(Vref/2)。同时,控制器260将切换电容组SCN1中的开关WN1进行切换以将第三电压VN0上拉,使第二电容式数字至模拟转换器280产生对应的第四电压VN1,其中VN1=VN0+(Vref/2)。接着,比较器240可将第一次迭代运作(即k=1)的第二电压VP1与第四电压VN1进行比较,以判断第二电压VP1与第四电压VN1的差值是否大于零值交越点。如果第二电压VP1与第四电压VN1的差值大于零值交越点,则比较器240将输出例如是逻辑1的第二比较结果CQ2_1。可以理解的是,如果第二电压VP1与第四电压VN1的差值大于零值交越点,表示第一电压VP0与第三电压VN0的差值大于Vref而位于窗口区域WIN1之外,故控制器260将切换电容组SCP1中的开关WP1以及切换电容组SCN1中的开关WN1维持在切换后的状态,此时第二电压VP1与第四电压VN1的差值即为VP1-VN1=[VP0-(Vref/2)]-[VN0+(Vref/2)]=(VP0-VN0)-Vref。相对地,如果第二电压VP1与第四电压VN1的差值小于零值交越点,则比较器240将输出例如是逻辑0的第二比较结果CQ2_1。可以理解的是,如果第二电压VP1与第四电压VN1的差值小于零值交越点,表示第一电压VP0与第三电压VN0的差值小于Vref而位于窗口区域WIN1之内,故控制器260将切换电容组SCP1中的开关WP1以及切换电容组SCN1中的开关WN1回复至切换前的状态,此时第二电压VP1与第四电压VN1的差值即为VP1-VN1=VP0-VN0。In the sample-and-hold operation (i.e., k=0), if the difference between the first voltage VP0 and the third voltage VN0 is greater than the zero-crossing point, the comparator 240 may output a first comparison result CQ1, such as a logic 1. Therefore, in the first iteration operation (i.e., k=1), the controller 260 switches the switch WP1 in the switched capacitor group SCP1 to pull down the first voltage VP0, so that the first capacitive digital-to-analog converter 220 generates a corresponding second voltage VP1, wherein VP1=VP0-(Vref/2). At the same time, the controller 260 switches the switch WN1 in the switched capacitor group SCN1 to pull up the third voltage VN0, so that the second capacitive digital-to-analog converter 280 generates a corresponding fourth voltage VN1, wherein VN1=VN0+(Vref/2). Then, the comparator 240 may compare the second voltage VP1 of the first iteration operation (i.e., k=1) with the fourth voltage VN1 to determine whether the difference between the second voltage VP1 and the fourth voltage VN1 is greater than the zero-crossing point. If the difference between the second voltage VP1 and the fourth voltage VN1 is greater than the zero crossing point, the comparator 240 will output a second comparison result CQ2_1, for example, of logic 1. It can be understood that if the difference between the second voltage VP1 and the fourth voltage VN1 is greater than the zero crossing point, it means that the difference between the first voltage VP0 and the third voltage VN0 is greater than Vref and is outside the window area WIN1, so the controller 260 maintains the switch WP1 in the switched capacitor group SCP1 and the switch WN1 in the switched capacitor group SCN1 in the switched state, and at this time, the difference between the second voltage VP1 and the fourth voltage VN1 is VP1-VN1=[VP0-(Vref/2)]-[VN0+(Vref/2)]=(VP0-VN0)-Vref. In contrast, if the difference between the second voltage VP1 and the fourth voltage VN1 is less than the zero crossing point, the comparator 240 will output a second comparison result CQ2_1, for example, of logic 0. It can be understood that if the difference between the second voltage VP1 and the fourth voltage VN1 is less than the zero crossing point, it means that the difference between the first voltage VP0 and the third voltage VN0 is less than Vref and is within the window area WIN1, so the controller 260 restores the switch WP1 in the switching capacitor group SCP1 and the switch WN1 in the switching capacitor group SCN1 to the state before switching. At this time, the difference between the second voltage VP1 and the fourth voltage VN1 is VP1-VN1=VP0-VN0.
接着,于第二次迭代运作(即k=2)中,控制器260将切换电容组SCP2中的开关WP2进行切换以将第二电压VP1下拉,致使第一电容式数字至模拟转换器220产生对应的第二电压VP2,其中VP2=VP1-(Vref/4)。同时,控制器260将切换电容组SCN2中的开关WN2进行切换以将第四电压VN1上拉,致使第二电容式数字至模拟转换器280产生对应的第四电压VN2,其中VN2=VN1+(Vref/4)。接着,比较器240可将第二次迭代运作(即k=2)的第二电压VP2与第四电压VN2进行比较,以判断第二电压VP2与第四电压VN2的差值是否大于零值交越点。如果第二电压VP2与第四电压VN2的差值大于零值交越点,则比较器240将输出例如是逻辑1的第二比较结果CQ2_2。可以理解的是,如果第二电压VP2与第四电压VN2的差值大于零值交越点,表示第二电压VP1与第四电压VN1的差值大于0.5Vref而位于窗口区域WIN2之外,故控制器260将切换电容组SCP2中的开关WP2以及切换电容组SCN2中的开关WN2维持在切换后的状态,此时VP2-VN2=[VP1-(Vref/4)]-[VN1+(Vref/4)]=(VP1-VN1)-0.5Vref。相对地,如果第二电压VP2与第四电压VN2的差值小于零值交越点,则比较器240将输出例如是逻辑0的第二比较结果CQ2_2。可以理解的是,如果第二电压VP2与第四电压VN2的差值小于零值交越点,表示第二电压VP1与第四电压VN1的差值小于0.5Vref而位于窗口区域WIN2之内,故控制器260将切换电容组SCP2中的开关WP2以及切换电容组SCN2中的开关WN2回复至切换前的状态,此时VP2-VN2=(VP1-VN1)。Then, in the second iteration operation (i.e., k=2), the controller 260 switches the switch WP2 in the switched capacitor group SCP2 to pull down the second voltage VP1, so that the first capacitive digital-to-analog converter 220 generates a corresponding second voltage VP2, wherein VP2=VP1-(Vref/4). At the same time, the controller 260 switches the switch WN2 in the switched capacitor group SCN2 to pull up the fourth voltage VN1, so that the second capacitive digital-to-analog converter 280 generates a corresponding fourth voltage VN2, wherein VN2=VN1+(Vref/4). Then, the comparator 240 can compare the second voltage VP2 of the second iteration operation (i.e., k=2) with the fourth voltage VN2 to determine whether the difference between the second voltage VP2 and the fourth voltage VN2 is greater than the zero crossing point. If the difference between the second voltage VP2 and the fourth voltage VN2 is greater than the zero crossing point, the comparator 240 will output a second comparison result CQ2_2, such as logic 1. It can be understood that if the difference between the second voltage VP2 and the fourth voltage VN2 is greater than the zero crossing point, it means that the difference between the second voltage VP1 and the fourth voltage VN1 is greater than 0.5Vref and is outside the window area WIN2, so the controller 260 maintains the switch WP2 in the switched capacitor group SCP2 and the switch WN2 in the switched capacitor group SCN2 in the switched state, at which time VP2-VN2=[VP1-(Vref/4)]-[VN1+(Vref/4)]=(VP1-VN1)-0.5Vref. In contrast, if the difference between the second voltage VP2 and the fourth voltage VN2 is less than the zero crossing point, the comparator 240 will output a second comparison result CQ2_2 of, for example, logic 0. It can be understood that if the difference between the second voltage VP2 and the fourth voltage VN2 is less than the zero crossing point, it means that the difference between the second voltage VP1 and the fourth voltage VN1 is less than 0.5Vref and is within the window area WIN2, so the controller 260 restores the switch WP2 in the switching capacitor group SCP2 and the switch WN2 in the switching capacitor group SCN2 to the state before switching, at which time VP2-VN2=(VP1-VN1).
至于第一电容式数字至模拟转换器220与第二电容式数字至模拟转换器280分别于第三次迭代运作(即k=3)及第四次迭代运作(即k=4)的切换运作,则可根据上述第一次迭代运作(即k=1)及第二次迭代运作(即k=2)的说明而类推得知,故在此不再赘述。可以理解的是,在第一电压VP0与第三电压VN0的差值大于零值交越点的情况下,控制器将根据第一比较结果CQ1与第二比较结果CQ2_k来控制第一电容式数字至模拟转换器220与第二电容式数字至模拟转换器280的切换运作。另一方面,在第一电压VP0与第三电压VN0的差值小于零值交越点,控制器260将根据第一比较结果CQ1与第二比较结果CQ2_k来控制第一电容式数字至模拟转换器220与第二电容式数字至模拟转换器280的切换运作,其详细运作可参照上述说明而类推得知,故不再赘述。As for the switching operation of the first capacitive digital-to-analog converter 220 and the second capacitive digital-to-analog converter 280 in the third iteration operation (i.e., k=3) and the fourth iteration operation (i.e., k=4), respectively, it can be inferred from the description of the first iteration operation (i.e., k=1) and the second iteration operation (i.e., k=2), so it is not repeated here. It can be understood that when the difference between the first voltage VP0 and the third voltage VN0 is greater than the zero crossing point, the controller will control the switching operation of the first capacitive digital-to-analog converter 220 and the second capacitive digital-to-analog converter 280 according to the first comparison result CQ1 and the second comparison result CQ2_k. On the other hand, when the difference between the first voltage VP0 and the third voltage VN0 is less than the zero crossing point, the controller 260 will control the switching operation of the first capacitive digital-to-analog converter 220 and the second capacitive digital-to-analog converter 280 according to the first comparison result CQ1 and the second comparison result CQ2_k, and its detailed operation can be inferred from the description above, so it is not repeated here.
校正方法Calibration method
在一实施例中,模拟至数字转换器在操作模式进行在模拟至数字转换正常操作,在校正模式进行校正;在一实施例中,在操作模式前,可先行进入校正模式;在一实施例中,可在操作模式进行一段时间后进入校正模式;在一实施例中,可每进行一段时间的操作模式后(周期性地)进入校正模式。接着将说明本公开实施例的电容校正的方法,在此做为解说范例的是上面图3所说明的电路架构。在这个例子的架构中,为了着眼在电容校正的部分,将电路图再略作简化。在此范例中,以具有11个电容为范例,其中电容CP1~CP5、CN1~CN5待校正的电容,而电容CP6~CP11、CN6~CN11为准确的电容;在实施时,各电容可各为一个电容群,例如,电容CP1、CN1可以各由8个较小的电容所组成,电容CP2、CN2可以各由4个较小的电容所组成,本发明不加以限制。电容CP6~CP11、CN6~CN11在制作时,可以通过要求制程参数达到所要求的准确度。在一实施例中,在未增加额外电路下,以准确的电容做为参考,校正较为不准的电容。在本实施例以准确的电容CP6-CP11、CN6~CN11来校正较为不准确的电容CP1-CP5、CN1~CN5。In one embodiment, the analog-to-digital converter performs normal operation of analog-to-digital conversion in the operation mode and performs calibration in the calibration mode; in one embodiment, the calibration mode may be entered before the operation mode; in one embodiment, the calibration mode may be entered after a period of operation in the operation mode; in one embodiment, the calibration mode may be entered after each period of operation in the operation mode (periodically). Next, the method of capacitor calibration of the disclosed embodiment will be described. The circuit architecture described in FIG. 3 above is used as an example for explanation. In the architecture of this example, the circuit diagram is slightly simplified in order to focus on the part of capacitor calibration. In this example, 11 capacitors are used as an example, where capacitors CP1~CP5 and CN1~CN5 are capacitors to be calibrated, and capacitors CP6~CP11 and CN6~CN11 are accurate capacitors; in implementation, each capacitor may be a capacitor group, for example, capacitors CP1 and CN1 may each be composed of 8 smaller capacitors, and capacitors CP2 and CN2 may each be composed of 4 smaller capacitors, and the present invention is not limited thereto. When manufacturing capacitors CP6-CP11 and CN6-CN11, the required accuracy can be achieved by requiring process parameters. In one embodiment, accurate capacitors are used as references to calibrate relatively inaccurate capacitors without adding additional circuits. In this embodiment, accurate capacitors CP6-CP11 and CN6-CN11 are used to calibrate relatively inaccurate capacitors CP1-CP5 and CN1-CN5.
图5为本公开一实施例的校正的时序示意图。在本公开实施例中,校正过程是可以执行多次,并可以藉由多次校正所得的闪烁(flicker)噪声与比较器的偏移(offset)以及电容C1~C5的平均值,使获得的校正值更为精准。如图5所示,在每一个校正循环的校正顺序为先校正闪烁噪声与比较器的偏移(即图中的O&F,两者统称噪声),再校正电容CP5~CP1、CN5~CN1。在一实施例中,亦即在取样时钟CLKS第一个周期进行闪烁噪声与比较器的偏移的校正,在取样时钟CLKS第二个周期至第六周期分别进行电容CP5~CP1和CN5~CN1的校正。在取样时钟CLKS第一个周期获得比较器的偏移(offset)与闪烁(flicker)噪声的信息Do[x],接着于每个取样时钟CLKS,依序进行电容CP5~CP1、CN5~CN1的校正,而分别获得校正信息Do[x+1]~Do[x+5],其中Do[x]为模拟数字转换器输出的二进制数字码,其中,x代表每个校正周期,x为正整数,而y代表一个校正程序的重复次数,其为自然数。同理,上述校正程序一直重复进行,例如在取样时钟CLKS的第七至第十二周期可以获得比较器的偏移与闪烁(flicker)噪声以及电容CP5~CP1和CN5~CN1的校正信息Do[x+6]~Do[x+11]。以此类推,此整体校正程序将会持续数个周期来进行平均。FIG5 is a timing diagram of the calibration of an embodiment of the present disclosure. In the embodiment of the present disclosure, the calibration process can be performed multiple times, and the obtained flicker noise and the offset of the comparator and the average value of the capacitors C1 to C5 can be calibrated multiple times to make the obtained calibration value more accurate. As shown in FIG5, the calibration sequence in each calibration cycle is to first calibrate the flicker noise and the offset of the comparator (i.e., O&F in the figure, both are collectively referred to as noise), and then calibrate the capacitors CP5 to CP1 and CN5 to CN1. In one embodiment, the flicker noise and the offset of the comparator are calibrated in the first cycle of the sampling clock CLKS, and the capacitors CP5 to CP1 and CN5 to CN1 are calibrated in the second to sixth cycles of the sampling clock CLKS. In the first cycle of the sampling clock CLKS, the information Do[x] of the offset and flicker noise of the comparator is obtained. Then, in each sampling clock CLKS, the capacitors CP5-CP1 and CN5-CN1 are calibrated in sequence to obtain the calibration information Do[x+1]-Do[x+5], where Do[x] is the binary digital code output by the analog-to-digital converter, where x represents each calibration cycle, x is a positive integer, and y represents the number of repetitions of a calibration procedure, which is a natural number. Similarly, the above calibration procedure is repeated. For example, in the seventh to twelfth cycles of the sampling clock CLKS, the calibration information Do[x+6]-Do[x+11] of the offset and flicker noise of the comparator and the capacitors CP5-CP1 and CN5-CN1 can be obtained. By analogy, this overall calibration procedure will continue for several cycles for averaging.
接着配合电路结构来说明校正的方法,其中将以闪烁噪声与比较器的偏移、电容CP5、CN5与电容CP1、CN1的校正来进行说明,电容CP4、CN5至CP2、CN2的校正方法与电容CP5、C1和电容CN5、CN1的校正方法相似。Next, the correction method is explained in conjunction with the circuit structure, in which the correction of flicker noise and comparator offset, capacitors CP5, CN5 and capacitors CP1, CN1 will be explained. The correction method of capacitors CP4, CN5 to CP2, CN2 is similar to the correction method of capacitors CP5, C1 and capacitors CN5, CN1.
接着以图6至图8说明本公开范例的电容校正方法。图6为本公开一实施例的闪烁噪声与比较器340的偏移的校正示意图。Next, the capacitance calibration method of the present disclosure is described with reference to Figures 6 to 8. Figure 6 is a schematic diagram of calibrating flicker noise and offset of the comparator 340 according to an embodiment of the present disclosure.
如图6所示,连续近似缓存器模拟至数字转换器300可包括第一电容式数字至模拟转换器310、第二电容式数字至模拟转换器320、比较器340以及控制器360。第一电容式数字至模拟转换器310、第二电容式数字至模拟转换器320的输出VCP和VCN分别连接到比较器340的两个输入端。电容CP1、CN1对应MSB,依序而下为电容CP2与CN2、电容CP3与CN4......,但本发明不以此为限。比较器340输出的比较结果再传送到控制器360。在一实施例中,控制器360进行图1~图4所说明的模拟数字转换的控制,以及/或是进行电容校正以及闪烁噪声与比较器360的偏移的量化等控制。As shown in FIG6 , the SAR analog-to-digital converter 300 may include a first capacitive digital-to-analog converter 310, a second capacitive digital-to-analog converter 320, a comparator 340, and a controller 360. The outputs VCP and VCN of the first capacitive digital-to-analog converter 310 and the second capacitive digital-to-analog converter 320 are connected to two input terminals of the comparator 340, respectively. Capacitors CP1 and CN1 correspond to the MSB, followed by capacitors CP2 and CN2, capacitors CP3 and CN4, etc., but the present invention is not limited thereto. The comparison result output by the comparator 340 is then transmitted to the controller 360. In one embodiment, the controller 360 performs the control of the analog-to-digital conversion illustrated in FIGS. 1 to 4 , and/or performs the control of the capacitance correction and the quantization of the flicker noise and the offset of the comparator 360.
首先进行闪烁噪声与比较器340的偏移的校正。如图6所示,当取样时钟(samplingclock)CLKS为高电位时,此时将电容器CP1~CP11与CN1~CN11的第一端(或称顶板)的开关SWTOP1与SWTOP2接上,此时第一电容式数字至模拟转换器310的电容CP1~CP11的第一端均经由开关SWTOP1接而连接至第一输入电压VIP,第二电容式数字至模拟转换器320的电容CN1~CN11的第一端均经由开关SWTOP2接而连接至第二输入电压VIN。在一实施例中,第一输入电压VIP与第二输入电压VIN的电压为任意电压值,此任意电压值是基于比较器的输入共模电压Vicm来决定;在一实施例中,此时第一输入电压VIP与第二输入电压VIN的电压值为输入共模电压Vicm,电容CP1~CP11与CN1~CN11的第二端(或称底板)分别藉由开关WP1~WP11与WN1~WN11切换至第一参考电压Vcm,藉此重置所有电容CP1~CP11、CN1~CN11。在一实施例中,第一输入电压VIP与第二输入电压VIN的电压为Vcm,电容CP1~CP11与电容CN1~CN11的第二端藉由开关WP1~WP11与开关WN1~WN11切换至输入共模电压Vicm或其他电压,藉此重置所有电容CP1~CP11、CN1~CN11。在一实施例中,操作模式的输入共模电压Vicm=(VIP+VIN)/2。在一实施例中,第一参考电压Vcm可以是输入共模电压Vicm。在一实施例中,重置电容CP1~CP11与电容CN1~CN11时,电容CP1~CP11与电容CN1~CN11的第一端和第二端的电压可以相同。First, the flicker noise and the offset of the comparator 340 are corrected. As shown in FIG6 , when the sampling clock CLKS is at a high level, the switches SW TOP1 and SW TOP2 of the first ends (or top plates) of the capacitors CP1-CP11 and CN1-CN11 are connected. At this time, the first ends of the capacitors CP1-CP11 of the first capacitive digital-to-analog converter 310 are connected to the first input voltage VIP via the switch SW TOP1 , and the first ends of the capacitors CN1-CN11 of the second capacitive digital-to-analog converter 320 are connected to the second input voltage VIN via the switch SW TOP2 . In one embodiment, the voltage of the first input voltage VIP and the second input voltage VIN is an arbitrary voltage value, and this arbitrary voltage value is determined based on the input common mode voltage Vicm of the comparator; in one embodiment, at this time, the voltage value of the first input voltage VIP and the second input voltage VIN is the input common mode voltage Vicm, and the second ends (or bottom plates) of the capacitors CP1-CP11 and CN1-CN11 are switched to the first reference voltage Vcm by switches WP1-WP11 and WN1-WN11, respectively, thereby resetting all the capacitors CP1-CP11 and CN1-CN11. In one embodiment, the voltage of the first input voltage VIP and the second input voltage VIN is Vcm, and the second ends of the capacitors CP1-CP11 and the capacitors CN1-CN11 are switched to the input common mode voltage Vicm or other voltages by switches WP1-WP11 and switches WN1-WN11, thereby resetting all the capacitors CP1-CP11 and CN1-CN11. In one embodiment, the input common mode voltage Vicm of the operation mode = (VIP+VIN)/2. In one embodiment, the first reference voltage Vcm may be an input common mode voltage Vicm. In one embodiment, when resetting the capacitors CP1-CP11 and the capacitors CN1-CN11, the voltages at the first and second ends of the capacitors CP1-CP11 and the capacitors CN1-CN11 may be the same.
在取样时钟CLKS转为低电位时,控制器360将开关SWTOP1、SWTOP2断开,使电容CP1~CP11与电容CN1~CN11的第一端与第一输入电压VIP、第二输入电压VIN断开,电容CP1~CP5与电容CN1~CN5(即,需进行校正的电容)的所有第二端分别藉由开关WP1~WP5与开关WN1~WN5而维持在第一参考电压Vcm。当取样时钟CLKS由高电位转为低电位后,进入校正程序,在比较时钟(comparator clock)CLKC的T0周期,开始偏移和闪烁噪声的校正。在一实施例中,在比较时钟CLKC的T1-T5周期,电容CP1~CP5的开关WP1~WP5与电容CN1~CN5的开关WN1~WN5不会进行切换动作。经过比较时钟CLKC的5个周期(T1-T5)后,由第一电容式数字至模拟转换器310的准确电容CP6-CP11和第二电容式数字至模拟转换器320的准确电容CN6-CN11(图6所示的zADC 5)进行SAR ADC 300的数字至模拟转换的操作。在进行SAR ADC300的数字至模拟转换的操作时,电容CP6~CP11与电容CN6~CN11的第二端不需再接到第一参考电压Vcm,可依SAR ADC 300的操作接到第二参考电压Vref或第三参考电压GND。在一实施例中,zADC为由准确的电容及/或已校正的电容所组成的对应的模拟至数字转换器。通过zADC 5每个位的结果,决定相对应的电容切换,即进行SAR ADC 300的二进制搜寻法。若该位下,比较器340的结果为1,则代表该位的VCP侧的电容藉由第二端的开关从Vcm切换到GND、VCN侧的电容藉由第二端的开关从第一参考电压Vcm切换到第二参考电压Vref。反之,若在该位下,比较器340的结果为0,则代表该位VCP侧的电容藉由第二端的开关从第一参考电压Vcm切换到第二参考电压Vref,VCN侧的电容藉由第二端的开关从第一参考电压Vcm切换到第三参考电压GND。如此,切换完后,进行下个位的比较,直到所有位转换完成。zADC 5所得到的二进制七个数字位输出为闪烁噪声与比较器340的偏移的信息。在本实施例中,以所有的准确电容量测闪烁噪声与比较器340的偏移的信息,但本发明并不以此为限,在一实施例中,可以部份的准确电容量测闪烁噪声与比较器340的偏移的信息,例如包括LSB的较低位的数个电容的对应ADC量测闪烁噪声与比较器340的偏移的信息,具体而言,例如可以CP7~CP11、CN7~CN11量测,量测方式与上述类似,例如当取样时钟CLKS由高电位转为低电位后,进入校正程序,在比较时钟CLKC的T0周期,开始偏移和闪烁噪声的校正。在比较时钟CLKC的T1-T5周期,电容CP1~CP6的开关WP1~WP6与电容CN1~CN6的开关WN1~WN6不会进行切换动作。经过比较时钟CLKC的6个周期(T1-T6,T6未绘示,T6为T5的下一周期)后,由第一电容式数字至模拟转换器310的准确电容CP7-CP11和第二电容式数字至模拟转换器320的准确电容CN7-CN11进行SAR ADC 300的数字至模拟转换的操作。在进行SAR ADC 300的数字至模拟转换的操作时,电容CP7~CP11与电容CN7~CN11的第二端不需再接到第一参考电压Vcm,可依SAR ADC 300的操作接到第二参考电压Vref或第三参考电压GND。所得到的二进制六个数字位输出为闪烁噪声与比较器340的偏移的信息。本实施例中的高电位及低电位仅为例示,在另一实施例中,也可在取样时钟CLKS为低电位时进行电容重置,在取样时钟CLKS为高电位时进行校正,本公开不对此做限制。When the sampling clock CLKS turns to a low level, the controller 360 turns off the switches SW TOP1 and SW TOP2 , so that the first ends of the capacitors CP1-CP11 and the capacitors CN1-CN11 are disconnected from the first input voltage VIP and the second input voltage VIN, and the second ends of the capacitors CP1-CP5 and the capacitors CN1-CN5 (i.e., the capacitors to be calibrated) are maintained at the first reference voltage Vcm by the switches WP1-WP5 and the switches WN1-WN5, respectively. When the sampling clock CLKS turns from a high level to a low level, the calibration procedure is entered, and the calibration of the offset and flicker noise is started in the T0 cycle of the comparator clock CLKC. In one embodiment, in the T1-T5 cycles of the comparator clock CLKC, the switches WP1-WP5 of the capacitors CP1-CP5 and the switches WN1-WN5 of the capacitors CN1-CN5 do not perform switching actions. After 5 cycles (T1-T5) of the comparison clock CLKC, the digital-to-analog conversion operation of the SAR ADC 300 is performed by the accurate capacitors CP6-CP11 of the first capacitive digital-to-analog converter 310 and the accurate capacitors CN6-CN11 of the second capacitive digital-to-analog converter 320 (zADC 5 shown in FIG. 6 ). When performing the digital-to-analog conversion operation of the SAR ADC 300, the second ends of the capacitors CP6-CP11 and the capacitors CN6-CN11 do not need to be connected to the first reference voltage Vcm, but can be connected to the second reference voltage Vref or the third reference voltage GND according to the operation of the SAR ADC 300. In one embodiment, the zADC is a corresponding analog-to-digital converter composed of accurate capacitors and/or calibrated capacitors. The corresponding capacitor switching is determined by the result of each bit of the zADC 5, that is, the binary search method of the SAR ADC 300 is performed. If the result of comparator 340 is 1 at this bit, it means that the capacitor on the VCP side of this bit is switched from Vcm to GND through the switch at the second end, and the capacitor on the VCN side is switched from the first reference voltage Vcm to the second reference voltage Vref through the switch at the second end. On the contrary, if the result of comparator 340 is 0 at this bit, it means that the capacitor on the VCP side of this bit is switched from the first reference voltage Vcm to the second reference voltage Vref through the switch at the second end, and the capacitor on the VCN side is switched from the first reference voltage Vcm to the third reference voltage GND through the switch at the second end. In this way, after the switching is completed, the comparison of the next bit is performed until all the bit conversions are completed. The binary seven-digit output obtained by zADC 5 is the information of flicker noise and the offset of comparator 340. In this embodiment, all accurate capacitors are used to measure the information of flicker noise and offset of the comparator 340, but the present invention is not limited thereto. In one embodiment, the information of flicker noise and offset of the comparator 340 can be measured by partial accurate capacitors, for example, the corresponding ADC of several capacitors with lower bits of LSB can measure the information of flicker noise and offset of the comparator 340. Specifically, for example, CP7-CP11 and CN7-CN11 can be measured. The measurement method is similar to the above. For example, when the sampling clock CLKS changes from a high potential to a low potential, the calibration procedure is entered. In the T0 cycle of the comparison clock CLKC, the calibration of offset and flicker noise begins. In the T1-T5 cycle of the comparison clock CLKC, the switches WP1-WP6 of the capacitors CP1-CP6 and the switches WN1-WN6 of the capacitors CN1-CN6 will not perform switching actions. After 6 cycles (T1-T6, T6 is not shown, T6 is the next cycle of T5) of the comparison clock CLKC, the digital-to-analog conversion operation of the SAR ADC 300 is performed by the accurate capacitors CP7-CP11 of the first capacitive digital-to-analog converter 310 and the accurate capacitors CN7-CN11 of the second capacitive digital-to-analog converter 320. When the digital-to-analog conversion operation of the SAR ADC 300 is performed, the second ends of the capacitors CP7-CP11 and the capacitors CN7-CN11 do not need to be connected to the first reference voltage Vcm, and can be connected to the second reference voltage Vref or the third reference voltage GND according to the operation of the SAR ADC 300. The obtained binary six-digit output is the information of the flicker noise and the offset of the comparator 340. The high voltage and low voltage in this embodiment are only for example. In another embodiment, the capacitors can be reset when the sampling clock CLKS is at a low voltage, and the calibration can be performed when the sampling clock CLKS is at a high voltage. The present disclosure is not limited to this.
当将闪烁噪声与比较器340的偏移量化后,进行第一电容式数字至模拟转换器310与第二电容式数字至模拟转换器320的电容CP1~CP5与电容CN1~CN5的校正程序。在一实施例中,电容校正从待校电容中的最小位开始,于本实施例中,由电容CP5与电容CN5开始,亦即位排序最接近准确的电容CP6-CP11与电容CN6~CN11。After the flicker noise and the offset of the comparator 340 are quantized, the calibration process of the capacitors CP1-CP5 and the capacitors CN1-CN5 of the first capacitive digital-to-analog converter 310 and the second capacitive digital-to-analog converter 320 is performed. In one embodiment, the capacitor calibration starts from the smallest bit in the capacitor to be calibrated. In this embodiment, it starts from the capacitor CP5 and the capacitor CN5, that is, the capacitors CP6-CP11 and the capacitors CN6-CN11 whose bit order is closest to the accuracy.
图7为本公开一实施例的电容校正的示意图。以下以实施例说明电容CP5、CN5的校正。如图7所示,取样时钟CLKS为高电位时,第一电容式数字至模拟转换器310的电容CP1~CP11的第一端均经由开关SWTOP1而连接至第一输入电压VIP,第二电容式数字至模拟转换器320的电容CN1~CN11的第一端均经由开关SWTOP2而连接至第二输入电压VIN。在一实施例中,第一输入电压VIP与第二输入电压VIN的电压为输入共模电压Vicm,电容CP1~CP11与电容CN1~CN11的第二端藉由开关WP1~WP11与WN1~WN11切换至Vcm,藉此重置所有电容CP1~CP11、CN1~CN11。FIG. 7 is a schematic diagram of capacitor calibration according to an embodiment of the present disclosure. The calibration of capacitors CP5 and CN5 is described below by way of an embodiment. As shown in FIG. 7 , when the sampling clock CLKS is at a high level, the first ends of capacitors CP1 to CP11 of the first capacitive digital-to-analog converter 310 are all connected to the first input voltage VIP via the switch SW TOP1 , and the first ends of capacitors CN1 to CN11 of the second capacitive digital-to-analog converter 320 are all connected to the second input voltage VIN via the switch SW TOP2 . In one embodiment, the voltage of the first input voltage VIP and the second input voltage VIN is the input common mode voltage Vicm, and the second ends of capacitors CP1 to CP11 and capacitors CN1 to CN11 are switched to Vcm by switches WP1 to WP11 and WN1 to WN11, thereby resetting all capacitors CP1 to CP11 and CN1 to CN11.
在取样时钟CLKS转为低电位后,在比较时钟CLKC的T0~T4周期,对应的第一电容式数字至模拟转换器310和第二电容式数字至模拟转换器320的电容CP1-CP4与电容CN1~CN4的第二端均分别经由开关WP1~WP4与开关WN1~WN4维持在第一参考电压Vcm,而与第一电容式数字至模拟转换器310和第二电容式数字至模拟转换器320分别对应的SWTOP1和SWTOP2则均断开。在比较时钟CLKC的T0~T4周期,比较器340可进行比较,但不切换电容第二端的电压。在一实施例中,可以通过控制器360内部的逻辑门电路阻挡控制器360产生的开关控制信号,使电容CP1-CP4的开关WP1~WP4与电容CN1-CN4的开关WN1~WN4在T1~T4期间不切换。After the sampling clock CLKS turns to a low potential, during the T0-T4 period of the comparison clock CLKC, the second ends of the capacitors CP1-CP4 and the capacitors CN1-CN4 of the corresponding first capacitive digital-to-analog converter 310 and the second capacitive digital-to-analog converter 320 are maintained at the first reference voltage Vcm via switches WP1-WP4 and switches WN1-WN4, respectively, while SW TOP1 and SW TOP2 corresponding to the first capacitive digital-to-analog converter 310 and the second capacitive digital-to-analog converter 320 are disconnected. During the T0-T4 period of the comparison clock CLKC, the comparator 340 can make comparisons, but the voltages of the second ends of the capacitors are not switched. In one embodiment, the switch control signal generated by the controller 360 can be blocked by the logic gate circuit inside the controller 360, so that the switches WP1-WP4 of the capacitors CP1-CP4 and the switches WN1-WN4 of the capacitors CN1-CN4 are not switched during the T1-T4 period.
接着,在比较时钟CLKC的T5周期,开始进行电容CP5、CN5的校正。此时,第一电容式数字至模拟转换器310的电容CP5的第二端通过开关WP5连接到第二参考电压Vref(参考电压),而第二电容式数字至模拟转换器320的电容CN5的第二端通过开关WN5接到第三参考电压GND(接地电压)。接着,在比较时钟CLKC的T5周期后,进行电容CP6~CP11与CN6~CN11对应的zADC 5的模拟至数字转换的操作。Next, at the T5 cycle of the comparison clock CLKC, the calibration of the capacitors CP5 and CN5 is started. At this time, the second end of the capacitor CP5 of the first capacitive digital-to-analog converter 310 is connected to the second reference voltage Vref (reference voltage) through the switch WP5, and the second end of the capacitor CN5 of the second capacitive digital-to-analog converter 320 is connected to the third reference voltage GND (ground voltage) through the switch WN5. Next, after the T5 cycle of the comparison clock CLKC, the analog-to-digital conversion operation of the zADC 5 corresponding to the capacitors CP6-CP11 and CN6-CN11 is performed.
如前所述,第一电容式数字至模拟转换器310的电容CP6-CP11与第二电容式数字至模拟转换器320的电容CN6-CN11可以通过要求制程参数来准确制作,所以由CP6-CP11与CN6~CN11对应的zADC 5进行模拟至数字转换可得到准确的结果,以校正电容CP5、CN5。As mentioned above, the capacitors CP6-CP11 of the first capacitive digital-to-analog converter 310 and the capacitors CN6-CN11 of the second capacitive digital-to-analog converter 320 can be accurately manufactured by requiring process parameters, so the analog-to-digital conversion performed by zADC 5 corresponding to CP6-CP11 and CN6~CN11 can obtain accurate results to calibrate the capacitors CP5 and CN5.
在一实施例中,由zADC 5进行模拟至数字转换得到的结果包含闪烁噪声与比较器340的偏移,在一实施例中,由zADC 5进行模拟至数字转换得到的结果减去闪烁噪声与比较器340的偏移(例如前述所得的闪烁噪声与比较器340的偏移),以得到电容CP5及/或电容CN5的电容权重WC5。在一实施例中,例如图7所示的差动电路,电容权重WC5为电容CP5及电容CN5所对应的位的权重。在另一实施例中,例如图1所示的单端电路,电容权重WC5为电容CP5所对应的位的权重。在另一实施例中,电容权重WC5为电容CN5所对应的位的权重。电容权重WC1~WC4与电容权重WC5类似,可依此类推。In one embodiment, the result obtained by analog-to-digital conversion by zADC 5 includes flicker noise and the offset of comparator 340. In one embodiment, the result obtained by analog-to-digital conversion by zADC 5 is subtracted from flicker noise and the offset of comparator 340 (e.g., the flicker noise and the offset of comparator 340 obtained above) to obtain the capacitance weight W C5 of capacitor CP5 and/or capacitor CN5. In one embodiment, such as the differential circuit shown in FIG7 , the capacitance weight W C5 is the weight of the bit corresponding to capacitor CP5 and capacitor CN5. In another embodiment, such as the single-ended circuit shown in FIG1 , the capacitance weight W C5 is the weight of the bit corresponding to capacitor CP5. In another embodiment, the capacitance weight W C5 is the weight of the bit corresponding to capacitor CN5. The capacitance weights W C1 to W C4 are similar to the capacitance weight W C5 , and the same can be said.
图8为本公开一实施例的电容校正的示意图。以下以实施例说明电容CP1、CN1的校正。如图8所示,取样时钟CLKS为高电位时,第一电容式数字至模拟转换器310的电容CP1~CP11的第一端均经由开关SWTOP1连接至第一输入电压VIP,第二电容式数字至模拟转换器320的电容CN1~CN11的第一端均经由开关SWTOP2连接至第二输入电压VIN。在一实施例中,第一输入电压VIP与第二输入电压VIN的电压为输入共模电压Vicm,电容CP1~CP11与电容CN1~CN11的第二端分别藉由开关WP1~WP11与开关WN1~WN11切换至Vcm,藉此重置所有电容CP1~CP11、CN1~CN11。FIG8 is a schematic diagram of capacitor calibration according to an embodiment of the present disclosure. The calibration of capacitors CP1 and CN1 is described below by way of an embodiment. As shown in FIG8 , when the sampling clock CLKS is at a high potential, the first ends of capacitors CP1 to CP11 of the first capacitive digital-to-analog converter 310 are all connected to the first input voltage VIP via the switch SW TOP1 , and the first ends of capacitors CN1 to CN11 of the second capacitive digital-to-analog converter 320 are all connected to the second input voltage VIN via the switch SW TOP2 . In one embodiment, the voltage of the first input voltage VIP and the second input voltage VIN is the input common mode voltage Vicm, and the second ends of capacitors CP1 to CP11 and capacitors CN1 to CN11 are respectively switched to Vcm by switches WP1 to WP11 and switches WN1 to WN11, thereby resetting all capacitors CP1 to CP11 and CN1 to CN11.
在取样时钟CLKS转为低电位后,与第一电容式数字至模拟转换器310和第二电容式数字至模拟转换器320分别对应的SWTOP1和SWTOP2均断开。在比较时钟CLKC的T0周期,比较器340可进行比较,但不切换电容第二端的电压。在比较时钟CLKC的T1周期,进行电容CP1、CN1的校正。此时,第一电容式数字至模拟转换器310的电容CP1的第二端通过开关WP1连接到第二参考电压Vref(参考电压),而第二电容式数字至模拟转换器320的电容CN1的第二端通过开关WN1接到第三参考电压GND(接地电压)。接着,在比较时钟CLKC的周期T1后,以zADC1(包括已校正的电容CP2~CP5、CN2~CN5以及准确电容CP6-CP11、CN6~CP11对应的SARADC),执行模拟至数字转换,以zADC1每个位的比较结果,切换各位对应的电容的第二端的电压。以此得到的二进制十一个位数字输出为电容CP1、CN1的权重,在一实施例中,由zADC1进行模拟至数字得到的结果包含闪烁噪声与比较器340的偏移,由zADC 1进行模拟至数字转换得到的电容CP1、CN1的权重减去闪烁噪声与比较器340的偏移(例如前述所得的闪烁噪声与比较器340的偏移),可得到电容CP1、CN1的电容权重WC1。After the sampling clock CLKS turns to a low potential, the SW TOP1 and SW TOP2 corresponding to the first capacitive digital-to-analog converter 310 and the second capacitive digital-to-analog converter 320 are both disconnected. In the T0 cycle of the comparison clock CLKC, the comparator 340 can make comparisons, but the voltage of the second end of the capacitor is not switched. In the T1 cycle of the comparison clock CLKC, the capacitors CP1 and CN1 are calibrated. At this time, the second end of the capacitor CP1 of the first capacitive digital-to-analog converter 310 is connected to the second reference voltage Vref (reference voltage) through the switch WP1, and the second end of the capacitor CN1 of the second capacitive digital-to-analog converter 320 is connected to the third reference voltage GND (ground voltage) through the switch WN1. Then, after the cycle T1 of the comparison clock CLKC, the analog-to-digital conversion is performed with zADC1 (including the SARADC corresponding to the calibrated capacitors CP2-CP5, CN2-CN5 and the accurate capacitors CP6-CP11, CN6-CP11), and the voltage of the second end of the capacitor corresponding to each bit is switched with the comparison result of each bit of zADC1. The eleven-bit binary digital output obtained in this way is the weight of the capacitors CP1 and CN1. In one embodiment, the result obtained by analog-to-digital conversion of zADC1 includes flicker noise and the offset of the comparator 340. The weight of the capacitors CP1 and CN1 obtained by analog-to-digital conversion of zADC 1 minus the flicker noise and the offset of the comparator 340 (such as the flicker noise and the offset of the comparator 340 obtained above) can obtain the capacitance weight W C1 of the capacitors CP1 and CN1.
如前所述,第一电容式数字至模拟转换器310的电容CP6~CP11与第二电容式数字至模拟转换器320的电容CN6~CN11为准确的电容,且电容CP2~CP5、CN2~CN5也进行过校正,后续由zADC1的电容CP2-CP11、CN2~CN11进行一般连续近似模拟数字转换动作时,可以对电容CP1、CN1进行校正。以此得到的电容CP1、CN1的权重包含闪烁噪声与比较器340的偏移,故可减去闪烁噪声与比较器340的偏移,以得到电容CP1、CN1的电容权重WC1。As mentioned above, the capacitors CP6-CP11 of the first capacitive digital-to-analog converter 310 and the capacitors CN6-CN11 of the second capacitive digital-to-analog converter 320 are accurate capacitors, and the capacitors CP2-CP5 and CN2-CN5 have also been calibrated. When the capacitors CP2-CP11 and CN2-CN11 of zADC1 perform a general continuous approximate analog-to-digital conversion operation, the capacitors CP1 and CN1 can be calibrated. The weights of the capacitors CP1 and CN1 obtained in this way include the flicker noise and the offset of the comparator 340, so the flicker noise and the offset of the comparator 340 can be subtracted to obtain the capacitance weight W C1 of the capacitors CP1 and CN1.
以与上述类似的方法,可以对第一电容式数字至模拟转换器310的电容CP2-CP4与第二电容式数字至模拟转换器320的电容CN2-CN4进行电容权重的校正。以校正电容CP4、CN4为例,在取样时钟CLKS为高电位时,重置电容CP1~CP11、CN1~CN11,在取样时钟CLKS为低电位且比较时钟CLKC的T0~T3周期间,断开SWTOP1和SWTOP2,在比较时钟CLKC的T4周期时,电容CP1~CP3、CN1~CN3的第二端维持在第一参考电压Vcm,而第一电容式数字至模拟转换器310的电容CP4的第二端通过开关WP4切换至第二参考电压Vref,第二电容式数字至模拟转换器320的电容CN4的第二端通过开关WN4切换至第三参考电压GND。在比较时钟CLKC的周期T4,开始对电容CP4、CN4进行校正,以zADC4(包含已校正的电容CP5、CN5以及准确电容CP6-CP11、CN6~CN11所对应的SAR ADC)进行一般连续近似模拟数字转换动作,再减去闪烁噪声与比较器340的偏移,以得到电容CP4、CN4的电容权重WC4。电容CP2与CN2、CP3与CN3的校正方法与上述相似,可以类推而知。In a similar manner to the above, the capacitance weights of the capacitors CP2-CP4 of the first capacitive digital-to-analog converter 310 and the capacitors CN2-CN4 of the second capacitive digital-to-analog converter 320 can be calibrated. Taking the calibration capacitors CP4 and CN4 as an example, when the sampling clock CLKS is at a high level, the capacitors CP1-CP11 and CN1-CN11 are reset, when the sampling clock CLKS is at a low level and during the T0-T3 cycle of the comparison clock CLKC, SW TOP1 and SW TOP2 are disconnected, and during the T4 cycle of the comparison clock CLKC, the second ends of the capacitors CP1-CP3 and CN1-CN3 are maintained at the first reference voltage Vcm, and the second end of the capacitor CP4 of the first capacitive digital-to-analog converter 310 is switched to the second reference voltage Vref through the switch WP4, and the second end of the capacitor CN4 of the second capacitive digital-to-analog converter 320 is switched to the third reference voltage GND through the switch WN4. In cycle T4 of the comparison clock CLKC, the capacitors CP4 and CN4 are calibrated, and zADC4 (including the calibrated capacitors CP5 and CN5 and the SAR ADC corresponding to the accurate capacitors CP6-CP11 and CN6-CN11) performs a general continuous approximate analog-to-digital conversion operation, and then subtracts the flicker noise and the offset of the comparator 340 to obtain the capacitance weight W C4 of the capacitors CP4 and CN4. The calibration method of the capacitors CP2 and CN2, and CP3 and CN3 is similar to the above, and can be inferred by analogy.
在一实施例中,SAR ADC 300在校正模式的校正程序的时序与操作模式的时序相同或相似,因此不需增设或改变电路,即可以达到电容的校正以及闪烁噪声与比较器340的偏移的量测。In one embodiment, the timing of the calibration procedure of the SAR ADC 300 in the calibration mode is the same or similar to that in the operation mode, so that the calibration of capacitance and the measurement of flicker noise and offset of the comparator 340 can be achieved without adding or changing circuits.
在一实施例中,在获得各电容的电容权重后,可以电容权重修正第一电容式数字至模拟转换器310及/或第二电容式数字至模拟转换器320所输出的数字码,以得到准确的数字码。在一实施例中,由于电容不准确,可能使第一电容式数字至模拟转换器310及/或第二电容式数字至模拟转换器320所输出的数字码与正确的数字码有偏差,在获得各电容的电容权重后,可使用冗余电路(未绘示)修正偏差,以获得正确的数字码,在一实施例中,可量化闪烁噪声和比较器340的偏移。In one embodiment, after obtaining the capacitance weight of each capacitor, the capacitance weight can be used to correct the digital code output by the first capacitive digital-to-analog converter 310 and/or the second capacitive digital-to-analog converter 320 to obtain an accurate digital code. In one embodiment, due to inaccurate capacitance, the digital code output by the first capacitive digital-to-analog converter 310 and/or the second capacitive digital-to-analog converter 320 may deviate from the correct digital code. After obtaining the capacitance weight of each capacitor, a redundant circuit (not shown) can be used to correct the deviation to obtain the correct digital code. In one embodiment, flicker noise and the offset of the comparator 340 can be quantified.
以下以另一实施例说明电容CP1~CP5及电容CN1~CN5的电容权重WC1~WC5的计算方式。如前所述,在图6-8所示的电路架构范例,其一个校正程序是经过取样时钟CLKS的6个周期,在六个周期内分别进行闪烁噪声与比较器偏移以及电容CP5~CP1与电容CN5~CN1的校正。在一实施中,校正程序可以执行多次,对每次得到的各校正值进行平均,以得到更准确的电容校正值。配合图5,当上述程序进行y次后,电容CP5~CP1、CN5~CN1的平均权重WC1avg~WC5avg可以由式(1)计算而得,其中WC1avg是电容CP1、CN1的平均权重,D0[x+6y]是第y+1次所得到的闪烁噪声与比较器340的偏移。其中,x代表每个校正周期,x为正整数。y代表一个校正程序的重复次数,其为自然数。通过执行多次的校正程序,可以消除白噪声对于电容校正权重的影响。D0[(x+1)+6y]~D0[(x+5)+6y]与D0[x+6y]等则为每个校正周期下,SARADC 300运作所得到的二进制数字码。The following is another example of how to calculate the capacitance weights W C1 ~W C5 of the capacitors CP1 ~ CP5 and the capacitors CN1 ~ CN5. As described above, in the circuit architecture examples shown in FIGS. 6-8 , a calibration procedure is performed over 6 cycles of the sampling clock CLKS, and the flicker noise and comparator offset as well as the calibration of the capacitors CP5 ~ CP1 and the capacitors CN5 ~ CN1 are performed in six cycles. In one implementation, the calibration procedure can be performed multiple times, and the calibration values obtained each time are averaged to obtain a more accurate capacitance calibration value. In conjunction with FIG. 5 , when the above procedure is performed y times, the average weights W C1avg ~W C5avg of the capacitors CP5 ~ CP1 and CN5 ~ CN1 can be calculated by formula (1), where W C1avg is the average weight of the capacitors CP1 and CN1, and D0[x+6y] is the flicker noise and the offset of the comparator 340 obtained at the y+1th time. Wherein, x represents each calibration cycle, and x is a positive integer. y represents the number of repetitions of a calibration procedure, which is a natural number. By executing the calibration procedure multiple times, the influence of white noise on the capacitance calibration weight can be eliminated. D0[(x+1)+6y]~D0[(x+5)+6y] and D0[x+6y] are binary digital codes obtained by the operation of SARADC 300 in each calibration cycle.
图9A绘示本公开一实施例的电路方块变化例的示意图。如图9A所示,连续近似缓存器模拟至数字转换器300可以更包括:编码器380,其耦接到控制器360,用以接收控制器360的输出;以及校正处理器400,耦接至编码器380。在校正模式下以校正电容CP5、CN5为例,SAR ADC 300输出二进制制数字结果至编码器380,编码器380将二进制制数字结果编码后产生十进制制的编码结果,再将该编码结果传送到校正处理器400。校正处理器400可利用循环对进行y次的校正程序进行平均。在一实施例中,可由校正处理器400执行式(1)的运算。在一实施例中,可以平均后的电容权重WC1avg~WC5avg修正第一电容式数字至模拟转换器310及/或第二电容式数字至模拟转换器320所输出的数字码,在操作模式下进行模拟数字转换,以得到准确的模拟至数字转换结果。在一实施例中,藉由将多次校正所得的数据平均,可消除白噪声的影响。在一实施例中,可以未平均的单次电容权重WC1~WC5修正第一电容式数字至模拟转换器310及/或第二电容式数字至模拟转换器320所输出的数字码。FIG9A is a schematic diagram of a circuit block variation example of an embodiment of the present disclosure. As shown in FIG9A , the SAR analog-to-digital converter 300 may further include: an encoder 380 coupled to the controller 360 for receiving the output of the controller 360; and a calibration processor 400 coupled to the encoder 380. In the calibration mode, taking the calibration capacitors CP5 and CN5 as an example, the SAR ADC 300 outputs a binary digital result to the encoder 380, and the encoder 380 encodes the binary digital result to generate a decimal encoding result, and then transmits the encoding result to the calibration processor 400. The calibration processor 400 may use a loop to average the calibration procedure performed y times. In one embodiment, the calibration processor 400 may perform the operation of formula (1). In one embodiment, the digital code output by the first capacitive digital-to-analog converter 310 and/or the second capacitive digital-to-analog converter 320 may be corrected by the averaged capacitance weights W C1avg ~W C5avg , and analog-to-digital conversion is performed in the operation mode to obtain an accurate analog-to-digital conversion result. In one embodiment, the influence of white noise can be eliminated by averaging the data obtained from multiple calibrations. In one embodiment, the digital code output by the first capacitive digital-to-analog converter 310 and/or the second capacitive digital-to-analog converter 320 can be corrected by using the unaveraged single capacitance weights W C1 -W C5 .
图9B绘示本公开一实施例的电路方块变化例的示意图。如图9B所示,连续近似缓存器模拟至数字转换器300可以还包括时钟缩减电路345,可用以产生缩减比较时钟RCLKC。在一实施例中,时钟缩减电路345可缩减比较时钟CLKC,以产生缩减比较时钟RCLKC。在一实施例中,可使用缩减比较时钟RCLKC进一步地减少校正时间。FIG9B is a schematic diagram of a circuit block variation of an embodiment of the present disclosure. As shown in FIG9B , the SAR ADC 300 may further include a clock reduction circuit 345, which may be used to generate a reduced comparison clock RCLKC. In one embodiment, the clock reduction circuit 345 may reduce the comparison clock CLKC to generate the reduced comparison clock RCLKC. In one embodiment, the reduced comparison clock RCLKC may be used to further reduce the calibration time.
在上述实施例中,在量测噪声后,从最靠近LSB的待校电容开始校正,直到最靠近MSB的待校电容为止。例如电容CP1~CP5、CN1~CN5的校正是从电容CP5、CN5开始,依序校正到电容CP1、CN1。依此顺序,第一个校正的电容CP5、CN5是最靠近LSB的待校电容,作为校正基础的电容CP6~CP11、CN6~CN11均为准确的电容。校正电容CP5、CN5后,再以电容CP5~CP11、CN5~CN11校正下一个最靠近LSB的待校电容CP4、CN4。以此类推,每次皆校正最靠近LSB的待校电容,用来校正待校电容的电容包括先前校正过的电容以及准确的电容来进行。In the above embodiment, after measuring the noise, the calibration starts from the capacitor to be calibrated that is closest to the LSB until the capacitor to be calibrated that is closest to the MSB. For example, the calibration of capacitors CP1 to CP5 and CN1 to CN5 starts from capacitors CP5 and CN5, and then calibrates to capacitors CP1 and CN1 in sequence. In this order, the first calibrated capacitors CP5 and CN5 are the capacitors to be calibrated that are closest to the LSB, and the capacitors CP6 to CP11 and CN6 to CN11 that serve as the basis for calibration are all accurate capacitors. After calibrating capacitors CP5 and CN5, the capacitors CP5 to CP11 and CN5 to CN11 are used to calibrate the next capacitors CP4 and CN4 that are closest to the LSB. By analogy, the capacitor to be calibrated that is closest to the LSB is calibrated each time, and the capacitors used to calibrate the capacitors to be calibrated include previously calibrated capacitors and accurate capacitors.
但是,本公开并不限定于此。在另一实施例中,在量测噪声后,从最靠近MSB的待校电容开始校正,直到最靠近LSB的待校电容为止。但是,从MSB侧往LSB侧进行校正的说明如下。However, the present disclosure is not limited thereto. In another embodiment, after measuring the noise, calibration is started from the capacitor to be calibrated closest to the MSB until the capacitor to be calibrated closest to the LSB. However, the description of calibration from the MSB side to the LSB side is as follows.
首先使用电容CP2-CP11、CN2~CN11(例如图8中的zADC 1)进行电容CP1、CN1的校正。此时,zADC 1中的电容CP6-CP11、CN6~CN11是准确的,但是电容CP2-CP5、CN2~CN5尚未经过校正。因此,当以上述方式获得电容CP1、CN1的权重WC1’时,WC1’可能包含电容CP2-CP5、CN2~CN5的误差。同理,电容CP2、CN2的权重WC2’可能包含电容CP3-CP5、CN3~CN5的误差,电容CP3的WC3’可能会包含电容CP4-CP5、CN4~CN5的误差,电容CP4、CN4的权重WC4’可能包含电容CP5、CN5的误差。进行电容CP5、CN5的校正时,与图7的方式相同或相似,可以获得电容CP5、CN5的正确的电容权重WC5。First, capacitors CP2-CP11 and CN2-CN11 (e.g., zADC 1 in FIG8 ) are used to calibrate capacitors CP1 and CN1. At this time, capacitors CP6-CP11 and CN6-CN11 in zADC 1 are accurate, but capacitors CP2-CP5 and CN2-CN5 have not been calibrated. Therefore, when the weight W C1' of capacitors CP1 and CN1 is obtained in the above manner, W C1' may include the errors of capacitors CP2-CP5 and CN2-CN5. Similarly, the weight W C2' of capacitors CP2 and CN2 may include the errors of capacitors CP3-CP5 and CN3-CN5, the W C3' of capacitor CP3 may include the errors of capacitors CP4-CP5 and CN4-CN5, and the weight W C4' of capacitors CP4 and CN4 may include the errors of capacitors CP5 and CN5. When calibrating capacitors CP5 and CN5, the correct capacitance weight W C5 of capacitors CP5 and CN5 can be obtained in the same or similar manner as in FIG7 .
接着,再从如图9A或9B所示的校正处理器400,以电容CP5、CN5的电容权重WC5计算正确的电容CP4、CN4的电容权重WC4,以电容CP5、CN5与电容CP4、CN4的权重WC5、WC4计算正确的电容CP3、CN3的电容权重WC3。以此类推,最后以权重WC5~WC2计算正确的电容CP1、CN1的电容权重WC1。在一实施例中,电容CP1~CP5、CN1~CN5的平均电容权重计算方式可由式(1)计算而得。Next, from the calibration processor 400 shown in FIG. 9A or 9B, the capacitance weight W C5 of the capacitor CP5 and CN5 is used to calculate the correct capacitance weight W C4 of the capacitor CP4 and CN4, and the weights W C5 and W C4 of the capacitor CP5 and CN5 and the capacitor CP4 and CN4 are used to calculate the correct capacitance weight W C3 of the capacitor CP3 and CN3. And so on, finally, the correct capacitance weight W C1 of the capacitor CP1 and CN1 is calculated using the weights W C5 to W C2 . In one embodiment, the average capacitance weight calculation method of the capacitors CP1 to CP5 and CN1 to CN5 can be calculated by formula (1).
在一实施例中,若连续近似缓存器模拟至数字转换器的准确电容为第0至第a位,则在一实施例中,校正顺序可以是以第i位从i=a+1位起,重复地往上递增,产生各电容的电容权重,直到产生第(Nd-1)位的电容权重为止。在一实施例中,校正顺序可以是以第i位从i=Nd-1位起,重复地往下递减,产生各电容的电容权重,直到产生第a+1位的电容权重为止。In one embodiment, if the accurate capacitance of the analog-to-digital converter of the continuous approximate register is from the 0th to the ath bit, then in one embodiment, the calibration sequence may be repeated increasing from the i-th bit from i=a+1 bit upwards to generate the capacitance weight of each capacitor until the capacitance weight of the (Nd-1)th bit is generated. In one embodiment, the calibration sequence may be repeated decreasing from the i-th bit from i=Nd-1 bit downwards to generate the capacitance weight of each capacitor until the capacitance weight of the a+1th bit is generated.
在一实施例中,校正时序使用连续近似缓存器模拟至数字转换器在操作模式下时的时钟顺序,故可以不增设或改变电路的硬件结构,便可以达到电容的校正以及闪烁噪声与比较器340的偏移的量测。在另一实施例中,可以进一步减少校正时间,例如,如图7所示,当进行电容CP5、CN5的校正时,使用原本操作模式的时序,在比较时钟CLKC的T0~T4周期间,电容不进行切换,因此,可缩减T0~T4周期,以减少校正时间。In one embodiment, the calibration timing uses the clock sequence of the continuous approximation register analog-to-digital converter in the operation mode, so the calibration of the capacitor and the measurement of the flicker noise and the offset of the comparator 340 can be achieved without adding or changing the hardware structure of the circuit. In another embodiment, the calibration time can be further reduced. For example, as shown in FIG. 7, when the calibration of the capacitors CP5 and CN5 is performed, the timing of the original operation mode is used. During the T0-T4 period of the comparison clock CLKC, the capacitor is not switched. Therefore, the T0-T4 period can be shortened to reduce the calibration time.
图10A与10B绘示本公开一实施例的时钟信号缩减示意图。如图10A的上半图所示,在操作模式时,T0周期为取样保持运作的周期,T1~T5周期为电容CP1~CP5、CN1~CN5的对应模拟至数字转换周期。在校正模式时,进行闪烁噪声与比较器340的偏移的量测后,周期T1~T5期间电容CP1~CP5、CN1~CN5并未切换,直到比较时钟CLKC的下一个周期后再进行zADC 5的模拟至数字转换。在一实施例中,如图10A的下半图所示,在校正模式省略T1~T5周期;亦即,周期T0的下一周期,即进行zADC 5的运作,其时序如缩减比较时钟RCLKC的波形所示。10A and 10B are schematic diagrams of clock signal reduction according to an embodiment of the present disclosure. As shown in the upper half of FIG. 10A , in the operation mode, the T0 period is the period of the sample-and-hold operation, and the T1-T5 periods are the corresponding analog-to-digital conversion periods of the capacitors CP1-CP5 and CN1-CN5. In the calibration mode, after the flicker noise and the offset of the comparator 340 are measured, the capacitors CP1-CP5 and CN1-CN5 are not switched during the period T1-T5, and the analog-to-digital conversion of the zADC 5 is performed after the next period of the comparison clock CLKC. In one embodiment, as shown in the lower half of FIG. 10A , the T1-T5 periods are omitted in the calibration mode; that is, the operation of the zADC 5 is performed in the next period of the period T0, and its timing is shown in the waveform of the reduced comparison clock RCLKC.
在一实施例中,如图10B的上半图所示,在操作模式时,T0周期为取样保持运作的周期,T1~T5周期为电容CP1~CP5、CN1~CN5的对应模拟至数字转换周期;在校正模式时,进行闪烁噪声与比较器340的偏移的量测后,周期T1~T4期间电容CP1~CP4、CN1~CP4并未切换,直到周期T5时切换电容CP5、CN5第二端的电压,接着进行zADC 5的模拟至数字转换。在一实施例中,如图10B的下半图所示,在校正模式省略T0~T4周期;也就是说,在取样时钟CLKS转为低电位后,比较时钟CLKC的第一个周期可以是周期T5,直接进入电容CP5、CN5的校正程序,其时序如缩减比较时钟RCLKC的波形所示。在此实施例中,可以不需等待周期T0~T4,以使校正时间更快。同理,在进行电容CP4、CN4校正时,可省略周期T0~T3的等待周期。在进行电容CP3、CN3校正时,可省略周期T0~T2的等待周期。在进行电容CP2、CN2校正时,可省略周期T0~T1的等待周期。在进行电容CP1、CN1校正时,可省略周期T0的等待周期。如此,整体的校正时间可以更为缩短。In one embodiment, as shown in the upper half of FIG. 10B , in the operation mode, the T0 period is the period of the sample-and-hold operation, and the T1-T5 periods are the corresponding analog-to-digital conversion periods of the capacitors CP1-CP5 and CN1-CN5; in the calibration mode, after the flicker noise and the offset of the comparator 340 are measured, the capacitors CP1-CP4 and CN1-CP4 are not switched during the period T1-T4, until the voltages at the second terminals of the capacitors CP5 and CN5 are switched in the period T5, and then the analog-to-digital conversion of the zADC 5 is performed. In one embodiment, as shown in the lower half of FIG. 10B , the T0-T4 periods are omitted in the calibration mode; that is, after the sampling clock CLKS turns to a low level, the first period of the comparison clock CLKC can be the period T5, and the calibration procedure of the capacitors CP5 and CN5 is directly entered, and its timing is shown in the waveform of the reduced comparison clock RCLKC. In this embodiment, it is not necessary to wait for the period T0-T4, so that the calibration time is faster. Similarly, when calibrating capacitors CP4 and CN4, the waiting period of periods T0 to T3 can be omitted. When calibrating capacitors CP3 and CN3, the waiting period of periods T0 to T2 can be omitted. When calibrating capacitors CP2 and CN2, the waiting period of periods T0 to T1 can be omitted. When calibrating capacitors CP1 and CN1, the waiting period of period T0 can be omitted. In this way, the overall calibration time can be further shortened.
在一实施例中,电容式数字至模拟转换器具有Nd位,Nd为正整数,当校正第i位的电容时,缩减比较时钟RCLKC省略了操作模式时序(比较时钟CLKC)中第Nd-1位电容至第(i+1)位的等待周期,其中i为小于Nd的整数。在一实施例中,如图9B所示,可以在连续近似缓存器模拟至数字转换器300中增加时钟缩减电路345,用以进行时钟缩减,亦即对操作模式的比较时钟CLKC缩减成缩减比较时钟RCLKC,省略等待周期。In one embodiment, the capacitive digital-to-analog converter has Nd bits, where Nd is a positive integer. When the capacitance of the i-th bit is corrected, the comparison clock RCLKC is reduced to omit the waiting period from the Nd-1-th bit capacitance to the (i+1)-th bit in the operation mode timing (comparison clock CLKC), where i is an integer less than Nd. In one embodiment, as shown in FIG. 9B , a clock reduction circuit 345 can be added to the continuous approximate register analog-to-digital converter 300 to perform clock reduction, that is, the comparison clock CLKC of the operation mode is reduced to the reduced comparison clock RCLKC, and the waiting period is omitted.
此外,在上述校正程序中,对待校电容进行校正时,第一电容式数字至模拟转换器310的待校电容的第二端电压被切换而连接到第二参考电压Vref,而第二电容式数字至模拟转换器320的待校电容的第二端被切换而连接到第三参考电压GND,但本公开并不限定于此。例如,第一电容式数字至模拟转换器310的待校电容的第二端电压被切换而连接到第三参考电压GND,而第二电容式数字至模拟转换器320的待校电容的第二端被切换而连接到第二参考电压Vref。在另一实施例中,第一电容式数字至模拟转换器310的待校电容的第二端电压可以连接到第二参考电压Vref或第三参考电压GND,亦即可以切换到不同的参考电压,在另一实施例中,也可以切换到其他电压。同理,第二电容式数字至模拟转换器320的待校电容的第二端电压可以连接到第二参考电压Vref或第三参考电压GND,亦即可以切换到不同的参考电压,在另一实施例中,也可以切换到其他电压。在另一实施例中,第二参考电压可以是Vref或GND的其中一个电压,第三参考电压可以是Vref或GND的其中另外一个电压,例如第二参考电压可以是GND,第三参考电压可以是Vref。In addition, in the above-mentioned calibration procedure, when the calibration capacitor is calibrated, the second terminal voltage of the calibration capacitor of the first capacitive digital-to-analog converter 310 is switched and connected to the second reference voltage Vref, and the second terminal of the calibration capacitor of the second capacitive digital-to-analog converter 320 is switched and connected to the third reference voltage GND, but the present disclosure is not limited to this. For example, the second terminal voltage of the calibration capacitor of the first capacitive digital-to-analog converter 310 is switched and connected to the third reference voltage GND, and the second terminal of the calibration capacitor of the second capacitive digital-to-analog converter 320 is switched and connected to the second reference voltage Vref. In another embodiment, the second terminal voltage of the calibration capacitor of the first capacitive digital-to-analog converter 310 can be connected to the second reference voltage Vref or the third reference voltage GND, that is, it can be switched to different reference voltages, and in another embodiment, it can also be switched to other voltages. Similarly, the second terminal voltage of the calibration capacitor of the second capacitive digital-to-analog converter 320 can be connected to the second reference voltage Vref or the third reference voltage GND, that is, it can be switched to different reference voltages, and in another embodiment, it can also be switched to other voltages. In another embodiment, the second reference voltage may be one of Vref and GND, and the third reference voltage may be the other of Vref and GND. For example, the second reference voltage may be GND, and the third reference voltage may be Vref.
在上述实施例中,以差动电路(differential circuit)(例如图3所示的电路)说明电容校正的程序,但是单端电路(single ended circuit)(例如图1所示的电路)也可以适用本公开的电容校正方法。亦即,比较器340的输入端只连接一个电容式数字至模拟转换器也可以适用本公开的电容校正方法。单端电路架构下的电容校正方法与差动电路的校正方法相同或相似,在此省略其说明。In the above embodiment, the capacitance correction procedure is described with a differential circuit (e.g., the circuit shown in FIG. 3 ), but a single-ended circuit (e.g., the circuit shown in FIG. 1 ) can also be applied to the capacitance correction method of the present disclosure. That is, the input end of the comparator 340 is only connected to a capacitive digital-to-analog converter, and the capacitance correction method of the present disclosure can also be applied. The capacitance correction method under the single-ended circuit architecture is the same or similar to the correction method of the differential circuit, and its description is omitted here.
图11绘示本公开的连续近似缓存器模拟至数字转换器的校正方法的流程示意图。在一实施例中,连续近似缓存器模拟至数字转换器包含至少一个Nd位电容式数字至模拟转换器,电容式数字至模拟转换器的电容有对应第0位至第Nd-1位,其中第0位的电容至第i-1位的电容例如是上述的准确的电容(例如电容CP11~CP6、CN11~CN6),而第i位电容至第Nd-1位电容例如是待校电容(例如上述的电容CP5~CP1、CN5~CN1),i为小于Nd的整数。在一实施例中,Nd位电容式数字至模拟转换器所转换的数字码经SAR ADC的转换后可得到Nd+1个位的数字码,例如SAR ADC可不需电容运作,而比较VIP与VIN的差异,以获得多1个位的数字码。如图11所示,在步骤S100,将第i位至第(Nd-1)位的电容耦接第一参考电压,根据第(i-1)位至第0位的电容的运作产生第一数字码,其中i为小于Nd的整数。在一实施例中,步骤S100可以获得噪声,该噪声可以包括闪烁噪声以及比较器的偏移。FIG. 11 is a flow chart of a calibration method of a continuous approximate register analog-to-digital converter of the present disclosure. In one embodiment, the continuous approximate register analog-to-digital converter includes at least one Nd-bit capacitive digital-to-analog converter, and the capacitors of the capacitive digital-to-analog converter correspond to the 0th bit to the Nd-1th bit, wherein the capacitors from the 0th bit to the i-1th bit are, for example, the above-mentioned accurate capacitors (e.g., capacitors CP11 to CP6, CN11 to CN6), and the capacitors from the ith bit to the Nd-1th bit are, for example, capacitors to be calibrated (e.g., the above-mentioned capacitors CP5 to CP1, CN5 to CN1), and i is an integer less than Nd. In one embodiment, the digital code converted by the Nd-bit capacitive digital-to-analog converter can obtain a digital code of Nd+1 bits after conversion by the SAR ADC. For example, the SAR ADC can compare the difference between VIP and VIN without capacitor operation to obtain a digital code with one more bit. As shown in FIG11 , in step S100 , the capacitors from the i-th to the (Nd-1)th bits are coupled to a first reference voltage, and a first digital code is generated according to the operation of the capacitors from the (i-1)th to the 0th bits, where i is an integer less than Nd. In one embodiment, step S100 may obtain noise, which may include flicker noise and offset of a comparator.
在一实施例中,将第Nd-1位至第0位的电容的第一端连接到输入电压(例如VIP,VIN),电容的第二端连接第一参考电压(例如Vcm);将所述第Nd-1个位至所述第0位的电容的第一端断开所述输入电压;以及利用所述第(i-1)个位至所述第0位的电容所对应的连续近似缓存器模拟至数字转换器产生第一数字码,以量测所述噪声。In one embodiment, the first ends of the capacitors from the Nd-1th bit to the 0th bit are connected to an input voltage (e.g., VIP, VIN), and the second ends of the capacitors are connected to a first reference voltage (e.g., Vcm); the first ends of the capacitors from the Nd-1th bit to the 0th bit are disconnected from the input voltage; and a continuous approximate register analog-to-digital converter corresponding to the capacitors from the (i-1)th bit to the 0th bit is used to generate a first digital code to measure the noise.
接着,执行步骤S102。在步骤S102,将第(i+1)位至第(Nd-1)位的电容耦接第一参考电压,将第i位的电容耦接第二参考电压,根据第(i-1)位至第0位的电容的运作产生第二数字码。在一实施例中,步骤S102基于第(i-1)个位至第0位电容的运作,校正第i个位的电容,并由所述比较器产生第二数字码,将述第二数字码与所述第一数字码相减以产生所述第i个位电容的权重。Next, step S102 is executed. In step S102, the capacitors of the (i+1)th to (Nd-1)th positions are coupled to a first reference voltage, the capacitor of the ith position is coupled to a second reference voltage, and a second digital code is generated according to the operation of the capacitors of the (i-1)th to 0th positions. In one embodiment, step S102 calibrates the capacitor of the ith position based on the operation of the capacitors of the (i-1)th to 0th positions, and generates a second digital code by the comparator, and subtracts the second digital code from the first digital code to generate the weight of the capacitor of the ith position.
在一实施例中,将第i个位电容耦接至第二参考电压或第三参考电压,第(Nd-1)个位至第(i+1)个位电容耦接至所述第一参考电压,利用第(i-1)个位至第0位电容所对应的连续近似缓存器模拟至数字转换器产生第二数字码,并由所述第二数字码与所述第一数字码产生所述第i个位电容的权重。In one embodiment, the i-th bit capacitor is coupled to a second reference voltage or a third reference voltage, and the (Nd-1)-th to (i+1)-th bit capacitors are coupled to the first reference voltage, and a second digital code is generated by a continuous approximate register analog-to-digital converter corresponding to the (i-1)-th to 0-th bit capacitors, and a weight of the i-th bit capacitor is generated by the second digital code and the first digital code.
在一实施例中,将第(Nd-1)个位至所述第0个位的电容(如CP1~CP11、CN1~CN11)的第一端连接到输入电压(如VIP、VIN),电容的第二端连接所述第一参考电压(如Vcm);将第Nd-1个位至所述第0位的电容的第一端断开所述输入电压;将第i个位的电容的第二端耦接至第二参考电压(如Vref)或第三参考电压(如GND);以及利用第(i-1)个位至第0位的电容所对应的连续近似缓存器模拟至数字转换器产生第二数字码,并由所述第二数字码与所述第一数字码产生第i个位电容的所述电容权重。In one embodiment, the first end of the capacitor from the (Nd-1)th bit to the 0th bit (such as CP1~CP11, CN1~CN11) is connected to the input voltage (such as VIP, VIN), and the second end of the capacitor is connected to the first reference voltage (such as Vcm); the first end of the capacitor from the Nd-1th bit to the 0th bit is disconnected from the input voltage; the second end of the capacitor of the i-th bit is coupled to the second reference voltage (such as Vref) or the third reference voltage (such as GND); and a continuous approximate register analog-to-digital converter corresponding to the capacitor from the (i-1)th bit to the 0th bit is used to generate a second digital code, and the capacitance weight of the i-th bit capacitor is generated by the second digital code and the first digital code.
在步骤S106,判断i是否已经等于Nd-1,亦即上述动作是否已经进行到第Nd-1个位。如果尚未进行到第Nd-1个位,亦即判断结果为否,则进行步骤S108。步骤S108递增i,即i=i+1,再继续执行步骤S102,直至i=Nd-1为止。另外,当在步骤S106,判断i是否已经等于Nd-1,亦即到第(Nd-1)个位电容的电容权重都已经产生,并且将连续近似缓存器模拟至数字转换器校正完毕。在一实施例中,可以在步骤S102和S106间加一步骤,根据第一数字码与第二数字码产生第i位的所述电容的电容权重;在一实施例中,也可在步骤S106判断i=Nd-1后,根据各次执行步骤S102获得的各个第二数字码产生各个位的电容的电容权重。获得各位或所有位的电容权重后,可依据获得的电容权重修正对应的连续近似缓存器模拟至数字转换器。In step S106, it is determined whether i is equal to Nd-1, that is, whether the above action has been performed to the Nd-1th bit. If it has not yet been performed to the Nd-1th bit, that is, the judgment result is no, then step S108 is performed. Step S108 increments i, that is, i=i+1, and then continues to execute step S102 until i=Nd-1. In addition, when in step S106, it is determined whether i is equal to Nd-1, that is, the capacitance weights of the capacitors up to the (Nd-1)th bit have been generated, and the continuous approximate buffer analog-to-digital converter calibration is completed. In one embodiment, a step can be added between steps S102 and S106 to generate the capacitance weight of the capacitor of the i-th bit according to the first digital code and the second digital code; in one embodiment, after judging i=Nd-1 in step S106, the capacitance weights of the capacitors of each bit can be generated according to each second digital code obtained by executing step S102 each time. After obtaining the capacitance weights of each bit or all bits, the corresponding SAR analog-to-digital converter can be corrected according to the obtained capacitance weights.
图12是根据本发明一实施例的连续近似缓存器模拟至数字转换器的校正方法的流程示意图。在此实施例中,不须将所有准确的电容皆用来获得闪烁噪声以及比较器的偏移。连续近似缓存器模拟至数字转换器包括至少一电容式数字至模拟转换器以及控制器,至少一电容式数字至模拟转换器包括对应于Nd位的Nd个电容,Nd为正整数。如图12所示。在步骤S1202中,将第z位至第(Nd-1)位的电容耦接第一参考电压,根据第(z-1)位至第0位的电容的运作产生第一数字码,其中z为小于Nd的整数。在一实施例中,例如第0~5位的电容式数字至模拟转换器具有准确的电容,Nd例如为11,z例如为5,将第5位至第10位的电容耦接第一参考电压,根据第4位至第0位的电容的运作产生第一数字码,第一数字码包括闪烁噪声以及比较器的偏移。在步骤S1204中,将第(i+1)位至第(Nd-1)位的电容耦接第一参考电压,将第i位的电容耦接第二参考电压,根据第(i-1)位至第0位的电容的运作产生第二数字码,其中i为小于Nd的整数,且z小于i。在此实施例中,i例如为6,将第7位至第10位的电容耦接第一参考电压,将第6位的电容耦接第二参考电压,根据第5位至第0位的电容的运作产生第二数字码。在步骤S1206中,根据第一数字码与第二数字码产生第i位的电容的电容权重。在此实施例中,根据利用第4位至第0位的电容的运作产生的第一数字码与利用第5位至第0位的电容产生的第二数字码产生第6位的电容的电容权重,在步骤S1208中,根据第i位的电容的电容权重校正连续近似缓存器模拟至数字转换器。FIG. 12 is a flow chart of a calibration method for a continuous approximate register analog-to-digital converter according to an embodiment of the present invention. In this embodiment, it is not necessary to use all accurate capacitors to obtain flicker noise and comparator offset. The continuous approximate register analog-to-digital converter includes at least one capacitive digital-to-analog converter and a controller, and at least one capacitive digital-to-analog converter includes Nd capacitors corresponding to Nd bits, where Nd is a positive integer. As shown in FIG. 12. In step S1202, the capacitors from the zth bit to the (Nd-1)th bit are coupled to a first reference voltage, and a first digital code is generated according to the operation of the capacitors from the (z-1)th bit to the 0th bit, where z is an integer less than Nd. In one embodiment, for example, the capacitive digital-to-analog converters from the 0th to the 5th bit have accurate capacitors, Nd is, for example, 11, and z is, for example, 5, and the capacitors from the 5th bit to the 10th bit are coupled to a first reference voltage, and a first digital code is generated according to the operation of the capacitors from the 4th bit to the 0th bit, and the first digital code includes flicker noise and comparator offset. In step S1204, the capacitors of the (i+1)th to (Nd-1)th positions are coupled to a first reference voltage, the capacitor of the ith position is coupled to a second reference voltage, and a second digital code is generated according to the operation of the capacitors of the (i-1)th to the 0th position, wherein i is an integer less than Nd, and z is less than i. In this embodiment, i is, for example, 6, the capacitors of the 7th to 10th positions are coupled to a first reference voltage, the capacitor of the 6th position is coupled to a second reference voltage, and a second digital code is generated according to the operation of the capacitors of the 5th to the 0th position. In step S1206, a capacitance weight of the capacitor of the ith position is generated according to the first digital code and the second digital code. In this embodiment, a capacitance weight of the capacitor of the 6th position is generated according to the first digital code generated by the operation of the capacitors of the 4th to the 0th position and the second digital code generated by the capacitors of the 5th to the 0th position, and in step S1208, a continuous approximate register analog-to-digital converter is calibrated according to the capacitance weight of the capacitor of the ith position.
图13是根据本发明一实施例的连续近似缓存器模拟至数字转换器的校正方法的流程示意图。连续近似缓存器模拟至数字转换器包括至少一电容式数字至模拟转换器以及控制器,至少一电容式数字至模拟转换器包括对应于Nd位的Nd个电容,Nd为正整数。如图13所示。在步骤S1302中,将第i位至第(Nd-1)位的电容耦接第一参考电压,根据第(i-1)位至第0位的电容的运作产生第一数字码,其中i为小于Nd的整数。在一实施例中,Nd例如为11,i例如为6,将第6位至第10位的电容耦接第一参考电压,根据第5位至第0位的电容的运作产生第一数字码,第一数字码包括闪烁噪声以及比较器的偏移。在步骤S1304中,将第(i+1)位至第(Nd-1)位的电容耦接第一参考电压,将第i位的电容耦接第二参考电压,根据第(i-1)位至第0位的电容的运作产生第二数字码。在此实施例中,i例如为6,将第7位至第10位的电容耦接第一参考电压,将第6位的电容耦接第二参考电压,根据第5位至第0位的电容的运作产生第二数字码。在步骤S1306中,根据第一数字码与第二数字码产生第i位的电容的电容权重。在此实施例中,根据利用第5位至第0位的电容的运作产生的第一数字码与利用第5位至第0位的电容产生的第二数字码产生第6位的电容的电容权重,在步骤S1308中,根据第i位的电容的电容权重校正连续近似缓存器模拟至数字转换器。FIG13 is a flow chart of a calibration method for a continuous approximate register analog-to-digital converter according to an embodiment of the present invention. The continuous approximate register analog-to-digital converter includes at least one capacitive digital-to-analog converter and a controller, and at least one capacitive digital-to-analog converter includes Nd capacitors corresponding to Nd bits, where Nd is a positive integer. As shown in FIG13 . In step S1302, the capacitors from the i-th to (Nd-1)-th bits are coupled to a first reference voltage, and a first digital code is generated according to the operation of the capacitors from the (i-1)-th to the 0-th bits, where i is an integer less than Nd. In one embodiment, Nd is, for example, 11, and i is, for example, 6, and the capacitors from the 6th to the 10th bits are coupled to a first reference voltage, and a first digital code is generated according to the operation of the capacitors from the 5th to the 0th bits, and the first digital code includes flicker noise and an offset of a comparator. In step S1304, the capacitors from the (i+1)th to the (Nd-1)th are coupled to the first reference voltage, the capacitor from the ith is coupled to the second reference voltage, and a second digital code is generated according to the operation of the capacitors from the (i-1)th to the 0th. In this embodiment, i is 6, for example, and the capacitors from the 7th to the 10th are coupled to the first reference voltage, and the capacitor from the 6th is coupled to the second reference voltage, and a second digital code is generated according to the operation of the capacitors from the 5th to the 0th. In step S1306, a capacitance weight of the capacitor from the ith is generated according to the first digital code and the second digital code. In this embodiment, a capacitance weight of the capacitor from the 6th is generated according to the first digital code generated by the operation of the capacitors from the 5th to the 0th and the second digital code generated by the capacitors from the 5th to the 0th, and in step S1308, a continuous approximate register analog-to-digital converter is calibrated according to the capacitance weight of the capacitor from the ith.
由上述说明可以得知,本公开实施例的电容校正方法可以不需增加额外的电路架构,可以原本的连续近似缓存器模拟至数字转换器的操作架构下进行。例如将驱动连续近似缓存器模拟至数字转换器的进行模拟至数字转换的比较时钟CLKC做为校正时钟,在比较时钟CLKC的T1~T5周期间,在操作模式中可以用来驱动电容CP1~CP5、CN1~CN5进行模拟至数字转换,在校正模式中,可以将被校正的电容连接到第二参考电压Vref或第三参考电压GND,而其他尚未被校正的电容则连接到第一参考电压Vcm。因此,在一实施例中,可改变控制器360内的控制序列(control sequence)以适用于操作模式及校正模式,而不需大幅改变整体的电路架构,亦不需增大电容的面积,整体电路的尺寸也就不会变大。It can be known from the above description that the capacitor calibration method of the disclosed embodiment can be performed under the original operation structure of the continuous approximate register analog-to-digital converter without adding an additional circuit structure. For example, the comparison clock CLKC that drives the continuous approximate register analog-to-digital converter to perform analog-to-digital conversion is used as the calibration clock. During the T1-T5 period of the comparison clock CLKC, it can be used to drive the capacitors CP1-CP5 and CN1-CN5 to perform analog-to-digital conversion in the operation mode. In the calibration mode, the capacitor to be calibrated can be connected to the second reference voltage Vref or the third reference voltage GND, while other capacitors that have not been calibrated are connected to the first reference voltage Vcm. Therefore, in one embodiment, the control sequence in the controller 360 can be changed to be suitable for the operation mode and the calibration mode without significantly changing the overall circuit structure or increasing the area of the capacitor, and the size of the overall circuit will not be increased.
综上所述,基于上述本公开的说明,若是需校正电容数量为NumC,校正所需时间可所减为(NumC+1)周期,较传统校正所需2NumC周期,速度提升约2倍。校正流程若连续重复多次,亦可用来消除电路所产生的白噪声,使得校正更为准确。本公开一实施例可不需在信号路径上增加电路,即可得到闪烁噪声与比较器偏移的信息。In summary, based on the above description of the present disclosure, if the number of capacitors to be corrected is NumC, the time required for correction can be reduced to (NumC+1) cycles, which is about twice as fast as the 2NumC cycles required for traditional correction. If the correction process is repeated multiple times in succession, it can also be used to eliminate the white noise generated by the circuit, making the correction more accurate. An embodiment of the present disclosure can obtain information about flicker noise and comparator offset without adding circuits to the signal path.
此外,本公开一实施例可改善因校正而累积的电容权重偏差,来进一步提升电容式数字至模拟转换器的积分非线性度。In addition, an embodiment of the present disclosure can improve the capacitance weight deviation accumulated due to calibration, so as to further enhance the integral nonlinearity of the capacitive digital-to-analog converter.
根据本公开一种实施方式,提供一种连续近似缓存器模拟至数字转换器的校正方法。所述连续近似缓存器模拟至数字转换器包括至少一电容式数字至模拟转换器以及控制器,所述至少一电容式数字至模拟转换器包括对应于Nd位的Nd个电容,其中Nd为正整数。所述连续近似缓存器模拟至数字转换器的电容校正方法包括:将第z位至第(Nd-1)位的所述电容耦接第一参考电压,根据第(z-1)位至第0位的所述电容的运作产生第一数字码,其中z为小于Nd的整数;将第(i+1)位至所述第(Nd-1)位的所述电容耦接所述第一参考电压,将所述第i位的所述电容耦接第二参考电压,根据所述第(i-1)位至所述第0位的所述电容的运作产生第二数字码,其中i为小于Nd的整数,且z小于i;根据所述第一数字码与所述第二数字码产生所述第i位的所述电容的电容权重;以及根据所述第i位的所述电容的所述电容权重校正所述连续近似缓存器模拟至数字转换器。According to an embodiment of the present disclosure, a calibration method for a continuous approximate register analog-to-digital converter is provided. The continuous approximate register analog-to-digital converter includes at least one capacitive digital-to-analog converter and a controller, wherein the at least one capacitive digital-to-analog converter includes Nd capacitors corresponding to Nd bits, where Nd is a positive integer. The capacitance correction method of the continuous approximate register analog-to-digital converter includes: coupling the capacitors from the zth to (Nd-1)th bits to a first reference voltage, generating a first digital code according to the operation of the capacitors from the (z-1)th to the 0th bits, wherein z is an integer less than Nd; coupling the capacitors from the (i+1)th to the (Nd-1)th bits to the first reference voltage, coupling the capacitors from the i-th bit to a second reference voltage, generating a second digital code according to the operation of the capacitors from the (i-1)th to the 0th bits, wherein i is an integer less than Nd, and z is less than i; generating a capacitance weight of the capacitor at the i-th bit according to the first digital code and the second digital code; and calibrating the continuous approximate register analog-to-digital converter according to the capacitance weight of the capacitor at the i-th bit.
在上述连续近似缓存器模拟至数字转换器的电容校正方法,其中将所述第z位至所述第(Nd-1)位的所述电容耦接所述第一参考电压,根据所述第(z-1)位至所述第0位的所述电容的运作产生所述第一数字码包括:将所述第(Nd-1)位至所述第0位的所述电容的第一端耦接输入电压,所述第(Nd-1)位至所述第0位的所述电容的第二端耦接所述第一参考电压;将所述第(Nd-1)位至所述第0位的所述电容的所述第一端断开所述输入电压;以及利用所述第(z-1)位至所述第0位的电容所对应的所述连续近似缓存器模拟至数字转换器产生所述第一数字码。In the above-mentioned capacitor correction method of the continuous approximate register analog-to-digital converter, the capacitors from the zth bit to the (Nd-1)th bit are coupled to the first reference voltage, and the first digital code is generated according to the operation of the capacitors from the (z-1)th bit to the 0th bit, including: coupling the first end of the capacitors from the (Nd-1)th bit to the 0th bit to the input voltage, and coupling the second end of the capacitors from the (Nd-1)th bit to the 0th bit to the first reference voltage; disconnecting the first end of the capacitors from the (Nd-1)th bit to the 0th bit from the input voltage; and generating the first digital code using the continuous approximate register analog-to-digital converter corresponding to the capacitors from the (z-1)th bit to the 0th bit.
根据本公开一种实施方式,提供一种连续近似缓存器模拟至数字转换器的校正方法,其中所述连续近似缓存器模拟至数字转换器包括至少一电容式数字至模拟转换器以及控制器,所述至少一电容式数字至模拟转换器包括对应于Nd位的Nd个电容,其中Nd为正整数。所述连续近似缓存器模拟至数字转换器的电容校正方法包括:将第i位至第(Nd-1)位的所述电容耦接第一参考电压,根据第(i-1)位至第0位的所述电容的运作产生第一数字码,其中i为小于Nd的整数;将第(i+1)位至所述第(Nd-1)位的所述电容耦接所述第一参考电压,将所述第i位的所述电容耦接第二参考电压,根据所述第(i-1)位至所述第0位的所述电容的运作产生第二数字码;根据所述第一数字码与所述第二数字码产生所述第i位的所述电容的电容权重;以及根据所述第i位的所述电容的所述电容权重校正所述连续近似缓存器模拟至数字转换器。According to an embodiment of the present disclosure, a calibration method for a continuous approximate register analog-to-digital converter is provided, wherein the continuous approximate register analog-to-digital converter includes at least one capacitive digital-to-analog converter and a controller, wherein the at least one capacitive digital-to-analog converter includes Nd capacitors corresponding to Nd bits, wherein Nd is a positive integer. The capacitance calibration method for the continuous approximate register analog-to-digital converter includes: coupling the capacitors from the i-th bit to the (Nd-1)-th bit to a first reference voltage, generating a first digital code according to the operation of the capacitors from the (i-1)-th bit to the 0th bit, wherein i is an integer less than Nd; coupling the capacitors from the (i+1)-th bit to the (Nd-1)-th bit to the first reference voltage, coupling the capacitors from the i-th bit to the second reference voltage, generating a second digital code according to the operation of the capacitors from the (i-1)-th bit to the 0th bit; generating a capacitance weight of the capacitors from the i-th bit according to the first digital code and the second digital code; and calibrating the continuous approximate register analog-to-digital converter according to the capacitance weight of the capacitors from the i-th bit.
在上述连续近似缓存器模拟至数字转换器的电容校正方法,还包括多次执行所述电容校正方法,以获得所述第i位所述电容权重的平均值。The capacitance calibration method of the SAR analog-to-digital converter further includes executing the capacitance calibration method multiple times to obtain an average value of the capacitance weight of the i-th bit.
在上述连续近似缓存器模拟至数字转换器的电容校正方法,其中将所述第i位至所述第(Nd-1)位的所述电容耦接所述第一参考电压,根据所述第(i-1)位至所述第0位的所述电容的运作产生所述第一数字码包括:将所述第(Nd-1)位至所述第0位的所述电容的第一端耦接输入电压,所述第(Nd-1)位至所述第0位的所述电容的第二端耦接所述第一参考电压;将所述第(Nd-1)位至所述第0位的所述电容的所述第一端断开所述输入电压;以及利用所述第(i-1)位至所述第0位的电容所对应的所述连续近似缓存器模拟至数字转换器产生所述第一数字码。In the above-mentioned capacitor correction method of the continuous approximate register analog-to-digital converter, the capacitors from the i-th to the (Nd-1)th bits are coupled to the first reference voltage, and the first digital code is generated according to the operation of the capacitors from the (i-1)th to the 0th bits, including: coupling the first ends of the capacitors from the (Nd-1)th to the 0th bits to the input voltage, and coupling the second ends of the capacitors from the (Nd-1)th to the 0th bits to the first reference voltage; disconnecting the first ends of the capacitors from the (Nd-1)th to the 0th bits from the input voltage; and generating the first digital code using the continuous approximate register analog-to-digital converter corresponding to the capacitors from the (i-1)th to the 0th bits.
在上述连续近似缓存器模拟至数字转换器的电容校正方法,其中将所述第(i+1)位至所述第(Nd-1)位的所述电容耦接所述第一参考电压,将所述第i位的所述电容耦接所述第二参考电压,根据所述第(i-1)位至所述第0位的所述电容的运作产生所述第二数字码包括:将所述第(i+1)位至所述第(Nd-1)位的所述电容的第二端耦接所述第一参考电压,将所述第i位的电容的第二端耦接至所述第二参考电压;以及利用所述第(i-1)位至所述第0位的所述电容所对应的所述连续近似缓存器模拟至数字转换器产生所述第二数字码。In the above-mentioned capacitor calibration method of the continuous approximate register analog-to-digital converter, the capacitors from the (i+1)th bit to the (Nd-1)th bit are coupled to the first reference voltage, and the capacitors from the i-th bit are coupled to the second reference voltage. The second digital code is generated according to the operation of the capacitors from the (i-1)th bit to the 0th bit, including: coupling the second ends of the capacitors from the (i+1)th bit to the (Nd-1)th bit to the first reference voltage, and coupling the second ends of the capacitors from the i-th bit to the second reference voltage; and generating the second digital code using the continuous approximate register analog-to-digital converter corresponding to the capacitors from the (i-1)th bit to the 0th bit.
在上述连续近似缓存器模拟至数字转换器的电容校正方法,其中所述至少一电容式数字至模拟转换器包括第一电容式数字至模拟转换器与第二电容式数字至模拟转换器,其中将所述第i位的电容的所述第二端耦接所述第二参考电压包括:所述第一电容式数字至模拟转换器的所述第i位的所述电容的第二端耦接所述第二参考电压;以及所述第二电容式数字至模拟转换器的所述第i位的所述电容的第二端耦接第三参考电压。In the above-mentioned capacitance correction method of the continuous approximate register analog-to-digital converter, the at least one capacitive digital-to-analog converter includes a first capacitive digital-to-analog converter and a second capacitive digital-to-analog converter, wherein coupling the second end of the i-th capacitor to the second reference voltage includes: coupling the second end of the i-th capacitor of the first capacitive digital-to-analog converter to the second reference voltage; and coupling the second end of the i-th capacitor of the second capacitive digital-to-analog converter to a third reference voltage.
在上述连续近似缓存器模拟至数字转换器的电容校正方法,其中所述连续近似缓存器模拟至数字转换器还包括比较器,所述输入电压由所述比较器的输入共模电压决定。In the above-mentioned capacitance calibration method of the SAR ADC, the SAR ADC further includes a comparator, and the input voltage is determined by an input common mode voltage of the comparator.
在上述连续近似缓存器模拟至数字转换器的电容校正方法,还包括:产生所述第二数字码后,将第(i+2)位至所述第(Nd-1)位的所述电容耦接所述第一参考电压,将所述第(i+1)位的所述电容耦接所述第二参考电压,根据所述第i位至所述第0位的所述电容的运作产生第三数字码;以及根据所述第一数字码与所述第三数字码产生所述第i+1位的所述电容的电容权重。在一实施例中,将i重复往上递增,以产生各电容的电容权重,到产生第(Nd-1)位的电容权重为止。The capacitance calibration method of the above-mentioned continuous approximate register analog-to-digital converter further includes: after generating the second digital code, coupling the capacitors at the (i+2)th to the (Nd-1)th positions to the first reference voltage, coupling the capacitors at the (i+1)th position to the second reference voltage, generating a third digital code according to the operation of the capacitors at the i-th to the 0th positions; and generating a capacitance weight of the capacitor at the i+1th position according to the first digital code and the third digital code. In one embodiment, i is repeatedly incremented upward to generate capacitance weights of each capacitor until the capacitance weight of the (Nd-1)th position is generated.
在上述连续近似缓存器模拟至数字转换器的电容校正方法,还包括:产生所述第二数字码后,将所述第i位至所述第(Nd-1)位的所述电容耦接所述第一参考电压,将所述第(i-1)位的所述电容耦接所述第二参考电压,根据第(i-2)位至所述第0位的所述电容的运作产生第三数字码;以及根据所述第一数字码与所述第三数字码产生所述第i-1位的所述电容的电容权重。在一实施例中,将i重复往下递减,产生各电容的电容权重,直到产生第(a+1)位的电容权重为止。The capacitance calibration method of the above-mentioned continuous approximate register analog-to-digital converter further includes: after generating the second digital code, coupling the capacitors from the i-th to the (Nd-1)th to the first reference voltage, coupling the capacitors from the (i-1)th to the second reference voltage, generating a third digital code according to the operation of the capacitors from the (i-2)th to the 0th; and generating a capacitance weight of the capacitor from the i-1th to the 1st according to the first digital code and the third digital code. In one embodiment, i is repeatedly decreased downward to generate capacitance weights of each capacitor until the capacitance weight of the (a+1)th is generated.
在上述连续近似缓存器模拟至数字转换器的电容校正方法,还包括:根据第(j-1)位至第i位的所述电容的电容权重获得第j位的所述电容的电容权重,其中Nd>j>i。The capacitance calibration method of the above-mentioned continuous approximate buffer analog-to-digital converter also includes: obtaining the capacitance weight of the j-th capacitor according to the capacitance weights of the capacitors from the (j-1)th to the i-th bit, where Nd>j>i.
在上述连续近似缓存器模拟至数字转换器的电容校正方法,其中所述电容校正方法的校正时序与所述连续近似缓存器模拟至数字转换器的操作模式时序相同。In the above-mentioned capacitance calibration method of the SAR ADC, the calibration timing of the capacitance calibration method is the same as the operation mode timing of the SAR ADC.
在上述连续近似缓存器模拟至数字转换器的电容校正方法,其中该所述电容校正方法在校正第i位的电容时,所述电容校正方法的校正时序省略操作模式时序中第(Nd-1)位电容至第(i+1)位的等待周期。In the above-mentioned capacitance correction method of the continuous approximate register analog-to-digital converter, when the capacitance correction method corrects the capacitance of the i-th bit, the correction timing of the capacitance correction method omits the waiting period from the (Nd-1)th bit capacitance to the (i+1)th bit capacitance in the operation mode timing.
在上述连续近似缓存器模拟至数字转换器的电容校正方法,其中所述连续近似缓存器模拟至数字转换器还包括比较器,所述第一数字码包括闪烁噪声以及所述比较器的偏移的信息。In the above-mentioned capacitance calibration method of the SAR ADC, the SAR ADC further includes a comparator, and the first digital code includes flicker noise and information of an offset of the comparator.
在上述连续近似缓存器模拟至数字转换器的电容校正方法,其中根据所述第一数字码与所述第二数字码产生所述第i位的所述电容的电容权重包括将所述第一数字码与所述第二数字码相减以产生所述第i位的所述电容的电容权重。In the above-mentioned capacitance correction method of the continuous approximate register analog-to-digital converter, generating the capacitance weight of the capacitor at the i-th bit according to the first digital code and the second digital code includes subtracting the first digital code from the second digital code to generate the capacitance weight of the capacitor at the i-th bit.
根据本公开另一实施方式,提供一种具有校正功能的连续近似缓存器模拟至数字转换器,包括:至少一电容式数字至模拟转换器,受控于多个控制信号以分别控制所述至少一电容式数字至模拟转换器的Nd个切换电容的切换运作,其中Nd为正整数;比较器,耦接所述至少一电容式数字至模拟转换器,用以将所述至少一电容式数字至模拟转换器的输出与比较电压进行比较;以及控制器,耦接所述比较器以及所述至少一电容式数字至模拟转换器,用以根据所述比较器的输出产生所述控制信号及数字输出信号。所述控制器在校正模式时,藉由所述比较器的(Nd+1)次运作的结果获得所述至少一电容式数字至模拟转换器的第i位的电容权重,其中i为小于Nd的整数。According to another embodiment of the present disclosure, a continuous approximate register analog-to-digital converter with a calibration function is provided, comprising: at least one capacitive digital-to-analog converter, which is controlled by a plurality of control signals to respectively control the switching operation of Nd switching capacitors of the at least one capacitive digital-to-analog converter, wherein Nd is a positive integer; a comparator, coupled to the at least one capacitive digital-to-analog converter, for comparing the output of the at least one capacitive digital-to-analog converter with a comparison voltage; and a controller, coupled to the comparator and the at least one capacitive digital-to-analog converter, for generating the control signal and the digital output signal according to the output of the comparator. In the calibration mode, the controller obtains the capacitance weight of the i-th bit of the at least one capacitive digital-to-analog converter by the result of the (Nd+1)th operation of the comparator, wherein i is an integer less than Nd.
在上述具有校正功能的连续近似缓存器模拟至数字转换器,其中所述控制器在操作模式时,根据所述比较器的所述输出而将所述至少一电容式数字至模拟转换器的所述输出逼近Nd位的窗口,藉由所述比较器的(Nd+1)次比较运算的结果来完成将所述至少一电容式数字至模拟转换器的所述输出逼近所述Nd位的窗口的一运作。In the above-mentioned continuous approximate register analog-to-digital converter with correction function, the controller, when in operation mode, approaches the output of the at least one capacitive digital-to-analog converter to a window of Nd bits according to the output of the comparator, and completes an operation of approaching the output of the at least one capacitive digital-to-analog converter to the window of Nd bits by the result of (Nd+1) comparison operations of the comparator.
根据本公开另一实施方式,提供一种具有校正功能的连续近似缓存器模拟至数字转换器,包括:至少一Nd位电容式数字至模拟转换器,具有Nd位的电容,其中Nd为正整数;控制器,耦接所述至少一个电容式数字至模拟转换器。所述控制器用以执行以下电容校正程序:将第z位至第(Nd-1)位的所述电容耦接第一参考电压,根据第(z-1)位至第0位的所述电容的运作产生第一数字码,其中z为小于Nd的整数;将第(i+1)位至所述第(Nd-1)位的所述电容耦接所述第一参考电压,将所述第i位的所述电容耦接第二参考电压,根据所述第(i-1)位至所述第0位的所述电容的运作产生第二数字码,其中i为小于Nd的整数,且z小于i;根据所述第一数字码与所述第二数字码产生所述第i位的所述电容的电容权重;以及根据所述第i位的所述电容的所述电容权重校正所述连续近似缓存器模拟至数字转换器。According to another embodiment of the present disclosure, a continuous approximate buffer analog-to-digital converter with a correction function is provided, comprising: at least one Nd-bit capacitive digital-to-analog converter having Nd-bit capacitance, where Nd is a positive integer; and a controller coupled to the at least one capacitive digital-to-analog converter. The controller is used to perform the following capacitor correction procedure: coupling the capacitors from the zth to (Nd-1)th bits to a first reference voltage, generating a first digital code based on the operation of the capacitors from the (z-1)th to the 0th bits, wherein z is an integer less than Nd; coupling the capacitors from the (i+1)th to the (Nd-1)th bits to the first reference voltage, coupling the capacitors from the i-th bit to a second reference voltage, generating a second digital code based on the operation of the capacitors from the (i-1)th to the 0th bits, wherein i is an integer less than Nd, and z is less than i; generating a capacitance weight of the capacitor at the i-th bit based on the first digital code and the second digital code; and calibrating the continuous approximate register analog-to-digital converter based on the capacitance weight of the capacitor at the i-th bit.
根据本公开另一实施方式,提供一种具有校正功能的连续近似缓存器模拟至数字转换器,包括:至少一Nd位电容式数字至模拟转换器,具有Nd位的电容,其中Nd为正整数;控制器,耦接所述至少一个电容式数字至模拟转换器。所述控制器用以执行以下电容校正程序:将第i位至第(Nd-1)位的所述电容耦接第一参考电压,根据第(i-1)位至第0位的所述电容的运作产生第一数字码,其中i为小于Nd的整数;将第(i+1)位至所述第(Nd-1)位的所述电容耦接所述第一参考电压,将所述第i位的所述电容耦接第二参考电压,根据所述第(i-1)位至所述第0位的所述电容的运作产生第二数字码;根据所述第一数字码与所述第二数字码产生所述第i位的所述电容的电容权重;以及根据所述第i位的所述电容的所述电容权重校正所述连续近似缓存器模拟至数字转换器。According to another embodiment of the present disclosure, a continuous approximate register analog-to-digital converter with a correction function is provided, comprising: at least one Nd-bit capacitive digital-to-analog converter having Nd-bit capacitors, wherein Nd is a positive integer; and a controller coupled to the at least one capacitive digital-to-analog converter. The controller is used to perform the following capacitor correction procedure: coupling the capacitors from the i-th to (Nd-1)-th bits to a first reference voltage, generating a first digital code according to the operation of the capacitors from the (i-1)-th to the 0-th bits, wherein i is an integer less than Nd; coupling the capacitors from the (i+1)-th to the (Nd-1)-th bits to the first reference voltage, coupling the capacitors from the i-th bit to a second reference voltage, generating a second digital code according to the operation of the capacitors from the (i-1)-th to the 0-th bits; generating a capacitance weight of the capacitor from the i-th bit according to the first digital code and the second digital code; and calibrating the continuous approximate register analog-to-digital converter according to the capacitance weight of the capacitor from the i-th bit.
在上述具有校正功能的连续近似缓存器模拟至数字转换器,其中所述控制器更多次执行所述校正程序,以获得所述第i位所述电容权重的平均值。In the above-mentioned SAR ADC with correction function, the controller executes the correction procedure more times to obtain the average value of the capacitance weight of the i-th bit.
在上述具有校正功能的连续近似缓存器模拟至数字转换器,所述控制器在执行将所述第i位至所述第(Nd-1)位的所述电容耦接所述第一参考电压,根据所述第(i-1)位至所述第0位的所述电容的运作产生所述第一数字码包括:将所述第(Nd-1)位至所述第0位的所述电容的第一端耦接输入电压,所述第(Nd-1)位至所述第0位的所述电容的第二端耦接所述第一参考电压;将所述第(Nd-1)位至所述第0位的所述电容的所述第一端断开所述输入电压;以及利用所述第(i-1)位至所述第0位的电容所对应的所述连续近似缓存器模拟至数字转换器产生所述第一数字码。In the above-mentioned continuous approximate register analog-to-digital converter with correction function, the controller performs the operation of coupling the capacitors from the i-th to the (Nd-1)-th bits to the first reference voltage, and generates the first digital code according to the operation of the capacitors from the (i-1)-th to the 0-th bits, including: coupling the first ends of the capacitors from the (Nd-1)-th to the 0-th bits to the input voltage, and coupling the second ends of the capacitors from the (Nd-1)-th to the 0-th bits to the first reference voltage; disconnecting the first ends of the capacitors from the (Nd-1)-th to the 0-th bits from the input voltage; and generating the first digital code using the continuous approximate register analog-to-digital converter corresponding to the capacitors from the (i-1)-th to the 0-th bits.
在上述具有校正功能的连续近似缓存器模拟至数字转换器,其中所述控制器在执行将所述第(i+1)位至所述第(Nd-1)位的所述电容耦接所述第一参考电压,将所述第i位的所述电容耦接所述第二参考电压,根据所述第(i-1)位至所述第0位的所述电容的运作产生所述第二数字码包括:将所述第(i+1)位至所述第(Nd-1)位的所述电容的第二端耦接所述第一参考电压,将所述第i位的电容的第二端耦接至所述第二参考电压;以及利用所述第(i-1)位至所述第0位的所述电容所对应的所述连续近似缓存器模拟至数字转换器产生所述第二数字码。In the above-mentioned continuous approximate register analog-to-digital converter with correction function, the controller performs the operation of coupling the capacitors from the (i+1)th bit to the (Nd-1)th bit to the first reference voltage and coupling the capacitor from the i-th bit to the second reference voltage, and generates the second digital code according to the operation of the capacitors from the (i-1)th bit to the 0th bit, including: coupling the second ends of the capacitors from the (i+1)th bit to the (Nd-1)th bit to the first reference voltage and coupling the second ends of the capacitors from the i-th bit to the second reference voltage; and generating the second digital code using the continuous approximate register analog-to-digital converter corresponding to the capacitors from the (i-1)th bit to the 0th bit.
在上述具有校正功能的连续近似缓存器模拟至数字转换器,其中所述至少一电容式数字至模拟转换器包括第一电容式数字至模拟转换器与第二电容式数字至模拟转换器,其中所述控制器在执行将所述第i位的电容的所述第二端耦接所述第二参考电压包括:所述第一电容式数字至模拟转换器的所述第i位的所述电容的第二端耦接所述第二参考电压;以及所述第二电容式数字至模拟转换器的所述第i位的所述电容的第二端耦接第三参考电压。In the above-mentioned continuous approximate register analog-to-digital converter with correction function, wherein the at least one capacitive digital-to-analog converter includes a first capacitive digital-to-analog converter and a second capacitive digital-to-analog converter, wherein the controller couples the second end of the i-th capacitor to the second reference voltage including: coupling the second end of the i-th capacitor of the first capacitive digital-to-analog converter to the second reference voltage; and coupling the second end of the i-th capacitor of the second capacitive digital-to-analog converter to a third reference voltage.
在上述具有校正功能的连续近似缓存器模拟至数字转换器,其中所述连续近似缓存器模拟至数字转换器还包括比较器,所述输入电压由所述比较器的输入共模电压决定。In the above-mentioned SAR ADC with correction function, the SAR ADC further includes a comparator, and the input voltage is determined by the input common mode voltage of the comparator.
在上述具有校正功能的连续近似缓存器模拟至数字转换器,所述控制器更用以执行:产生所述第二数字码后,将第(i+2)位至所述第(Nd-1)位的所述电容耦接所述第一参考电压,将所述第(i+1)位的所述电容耦接所述第二参考电压,根据所述第i位至所述第0位的所述电容的运作产生第三数字码;以及根据所述第一数字码与所述第三数字码产生所述第i+1位的所述电容的电容权重。In the above-mentioned continuous approximate register analog-to-digital converter with correction function, the controller is further used to perform: after generating the second digital code, coupling the capacitors at the (i+2)th to the (Nd-1)th positions to the first reference voltage, coupling the capacitors at the (i+1)th positions to the second reference voltage, generating a third digital code based on the operation of the capacitors at the i-th to the 0th positions; and generating a capacitance weight of the capacitor at the i+1th position based on the first digital code and the third digital code.
在上述具有校正功能的连续近似缓存器模拟至数字转换器,所述控制器还执行:产生所述第二数字码后,将所述第i位至所述第(Nd-1)位的所述电容耦接所述第一参考电压,将所述第(i-1)位的所述电容耦接所述第二参考电压,根据第(i-2)位至所述第0位的所述电容的运作产生第三数字码;以及根据所述第一数字码与所述第三数字码产生所述第i-1位的所述电容的电容权重。In the above-mentioned continuous approximate register analog-to-digital converter with correction function, the controller also performs: after generating the second digital code, coupling the capacitors from the i-th bit to the (Nd-1)-th bit to the first reference voltage, coupling the capacitors from the (i-1)-th bit to the second reference voltage, generating a third digital code based on the operation of the capacitors from the (i-2)-th bit to the 0th bit; and generating the capacitance weight of the capacitor at the i-1-th bit based on the first digital code and the third digital code.
在上述具有校正功能的连续近似缓存器模拟至数字转换器,所述控制器还用以执行:根据第(j-1)位至第i位的所述电容的电容权重获得第j位的所述电容的电容权重,其中Nd>j>i。In the above-mentioned continuous approximate register analog-to-digital converter with correction function, the controller is also used to execute: obtaining the capacitance weight of the capacitor at the jth position according to the capacitance weights of the capacitors at the (j-1)th position to the i-th position, where Nd>j>i.
在上述具有校正功能的连续近似缓存器模拟至数字转换器,其中所述控制器的所述电容校正程序的校正时序与所述连续近似缓存器模拟至数字转换器的操作模式时序相同。In the above-mentioned SAR ADC with calibration function, the calibration timing of the capacitance calibration procedure of the controller is the same as the operation mode timing of the SAR ADC.
在上述具有校正功能的连续近似缓存器模拟至数字转换器,还包括:时钟缩减电路,耦接在所述控制器与所述比较器之间,用以在校正第i位的电容时,将所述电容校正程序的校正时序省略操作模式时序中第(Nd-1)位电容至第(i+1)位的等待周期。The above-mentioned continuous approximate register analog-to-digital converter with correction function also includes: a clock reduction circuit, coupled between the controller and the comparator, for omitting the waiting period from the (Nd-1)th capacitor to the (i+1)th capacitor in the operation mode timing of the correction timing of the capacitor correction program when correcting the i-th capacitor.
在上述具有校正功能的连续近似缓存器模拟至数字转换器,所述连续近似缓存器模拟至数字转换器还包括比较器,所述第一数字码包括闪烁噪声以及所述比较器的偏移的信息。In the above-mentioned SAR ADC with correction function, the SAR ADC further includes a comparator, and the first digital code includes flicker noise and information of an offset of the comparator.
在上述具有校正功能的连续近似缓存器模拟至数字转换器,其中所述控制器将所述第一数字码与所述第二数字码相减以产生所述第i位的所述电容的电容权重。In the above-mentioned SAR ADC with correction function, the controller subtracts the first digital code from the second digital code to generate the capacitance weight of the capacitor at the i-th bit.
虽然本公开已以实施例公开如上,然其并非用以限定本公开,任何所属技术领域中具有通常知识者,在不脱离本公开的精神和范围内,当可作些许的更动与润饰,故本公开的保护范围当视后附的权利要求书所界定者为准。Although the present disclosure has been disclosed as above by way of embodiments, it is not intended to limit the present disclosure. Any person having ordinary knowledge in the technical field may make slight changes and modifications without departing from the spirit and scope of the present disclosure. Therefore, the protection scope of the present disclosure shall be determined by the definition of the appended claims.
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。Finally, it should be noted that the above embodiments are only used to illustrate the technical solutions of the present invention, rather than to limit it. Although the present invention has been described in detail with reference to the aforementioned embodiments, those skilled in the art should understand that they can still modify the technical solutions described in the aforementioned embodiments, or replace some or all of the technical features therein by equivalents. However, these modifications or replacements do not cause the essence of the corresponding technical solutions to deviate from the scope of the technical solutions of the embodiments of the present invention.
Claims (31)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911412669.0A CN113131933B (en) | 2019-12-31 | 2019-12-31 | Continuous approximate register analog-to-digital converter with correction function and correction method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911412669.0A CN113131933B (en) | 2019-12-31 | 2019-12-31 | Continuous approximate register analog-to-digital converter with correction function and correction method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113131933A CN113131933A (en) | 2021-07-16 |
CN113131933B true CN113131933B (en) | 2024-10-01 |
Family
ID=76770253
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911412669.0A Active CN113131933B (en) | 2019-12-31 | 2019-12-31 | Continuous approximate register analog-to-digital converter with correction function and correction method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113131933B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113794475B (en) * | 2021-11-16 | 2022-03-15 | 杭州深谙微电子科技有限公司 | Calibration method of capacitor array type successive approximation analog-digital converter |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104917524A (en) * | 2014-03-14 | 2015-09-16 | 联发科技股份有限公司 | Analog to Digital Converter |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5218362A (en) * | 1992-07-02 | 1993-06-08 | National Semiconductor Corporation | Multistep analog-to-digital converter with embedded correction data memory for trimming resistor ladders |
DE102010063405A1 (en) * | 2010-12-17 | 2012-06-21 | Siemens Aktiengesellschaft | Analog-to-digital converter, method for operating an analog-to-digital converter and method for converting an analog input signal into a digital output signal |
CN102790618A (en) * | 2011-05-18 | 2012-11-21 | 财团法人成大研究发展基金会 | Successively-approximating analogue/digital converter with window predicting function and method |
CN102970038B (en) * | 2011-08-31 | 2016-02-03 | 奇景光电股份有限公司 | Approximation analog-to-digital converter for correcting capacitance mismatch and method thereof |
CN107306135B (en) * | 2016-04-22 | 2020-03-10 | 瑞昱半导体股份有限公司 | Correction circuit and correction method for digital-to-analog converter |
US10511320B2 (en) * | 2017-09-28 | 2019-12-17 | Taiwan Semiconductor Manufacturing Company Limited | Low distortion successive approximation register (SAR) analog-to-digital converters (ADCs) and associated methods |
-
2019
- 2019-12-31 CN CN201911412669.0A patent/CN113131933B/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104917524A (en) * | 2014-03-14 | 2015-09-16 | 联发科技股份有限公司 | Analog to Digital Converter |
Also Published As
Publication number | Publication date |
---|---|
CN113131933A (en) | 2021-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI717958B (en) | Successive approximation register analog-to-digital converter with calibration function and calibration method thereof | |
CN105208303B (en) | A/d conversion device, solid state image pickup device and imaging system | |
JP5440758B2 (en) | A / D conversion circuit, electronic device, and A / D conversion method | |
US7928880B2 (en) | Digital analog converter | |
CN103281083B (en) | Approach by inchmeal fully differential analog-digital converter with figure adjustment and processing method thereof | |
US10069506B2 (en) | Calibration circuit and calibration method for DAC | |
US8451151B2 (en) | Successive approximation analog to digital converter with capacitor mismatch calibration and method thereof | |
TWI455487B (en) | Systems and methods for characterizing component ratios and generating a digital representation of same | |
US7893860B2 (en) | Successive approximation register analog-digital converter and method of driving the same | |
TWI677195B (en) | Calibration circuit and calibration method for adc | |
US9432046B1 (en) | Successive approximation analog-to-digital converter | |
CN113794475B (en) | Calibration method of capacitor array type successive approximation analog-digital converter | |
KR101191054B1 (en) | Analog-to-digital converter with offset voltage calibration method | |
WO2013111473A1 (en) | Analog-digital converter and solid-state image capture device | |
JP6668677B2 (en) | A / D converter, A / D conversion method, and semiconductor integrated circuit | |
TWI572144B (en) | Method and digital correction circuit for adaptive regulating coding mode | |
CN107306135B (en) | Correction circuit and correction method for digital-to-analog converter | |
JP2013251700A (en) | Ad conversion circuit and ad conversion method | |
JP2013150117A (en) | Analog-digital converter and receiver | |
CN113131933B (en) | Continuous approximate register analog-to-digital converter with correction function and correction method | |
US8223049B2 (en) | Charge injection mechanism for analog-to-digital converters | |
WO2020172769A1 (en) | Data converter, related analog-digital converter and digital-analog converter, and chips | |
JP5549824B2 (en) | A / D conversion circuit, electronic device, and A / D conversion method | |
TWI419475B (en) | Test system and method for analog-to-digital converter | |
CN113810052A (en) | Successive approximation analog-digital converter based on capacitance mismatch calibration circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |