CN113131820B - Method and device for analyzing periodic errors of permanent magnet synchronous motor - Google Patents
Method and device for analyzing periodic errors of permanent magnet synchronous motor Download PDFInfo
- Publication number
- CN113131820B CN113131820B CN202010031113.3A CN202010031113A CN113131820B CN 113131820 B CN113131820 B CN 113131820B CN 202010031113 A CN202010031113 A CN 202010031113A CN 113131820 B CN113131820 B CN 113131820B
- Authority
- CN
- China
- Prior art keywords
- frequency
- current
- permanent magnet
- synchronous motor
- magnet synchronous
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000001360 synchronised effect Effects 0.000 title claims abstract description 125
- 230000000737 periodic effect Effects 0.000 title claims abstract description 86
- 238000000034 method Methods 0.000 title claims abstract description 43
- 230000009466 transformation Effects 0.000 claims abstract description 42
- 238000004458 analytical method Methods 0.000 claims abstract description 40
- 238000004422 calculation algorithm Methods 0.000 claims abstract description 15
- 230000006870 function Effects 0.000 claims description 49
- 230000008569 process Effects 0.000 claims description 18
- 230000015654 memory Effects 0.000 claims description 14
- 238000004364 calculation method Methods 0.000 claims description 11
- 238000004590 computer program Methods 0.000 claims description 7
- 238000012795 verification Methods 0.000 claims description 6
- 230000004044 response Effects 0.000 claims description 3
- 238000004891 communication Methods 0.000 claims description 2
- 230000001568 sexual effect Effects 0.000 claims description 2
- 230000009286 beneficial effect Effects 0.000 abstract description 4
- 238000010586 diagram Methods 0.000 description 8
- 230000005284 excitation Effects 0.000 description 3
- 230000003750 conditioning effect Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- 102100038353 Gremlin-2 Human genes 0.000 description 1
- 101001032861 Homo sapiens Gremlin-2 Proteins 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000011900 installation process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P21/00—Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
- H02P21/14—Estimation or adaptation of machine parameters, e.g. flux, current or voltage
- H02P21/18—Estimation of position or speed
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P2203/00—Indexing scheme relating to controlling arrangements characterised by the means for detecting the position of the rotor
- H02P2203/03—Determination of the rotor position, e.g. initial rotor position, during standstill or low speed operation
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Control Of Ac Motors In General (AREA)
- Control Of Motors That Do Not Use Commutators (AREA)
Abstract
Description
技术领域technical field
本发明涉及永磁同步电机技术领域,具体涉及一种永磁同步电机周期性误差的分析方法及装置。The invention relates to the technical field of permanent magnet synchronous motors, in particular to a method and device for analyzing periodic errors of permanent magnet synchronous motors.
背景技术Background technique
同步电机为了实现能量的转换,就需要设置一个直流磁场,通过该直流磁场产生直流电流,称为电机的励磁电流,根据该励磁电流的供给方式,凡是从其它电源获得励磁电流的发电机,称为永磁同步电机。In order to realize the energy conversion of the synchronous motor, a DC magnetic field needs to be set up, and a DC current is generated through the DC magnetic field, which is called the excitation current of the motor. According to the supply method of the excitation current, any generator that obtains the excitation current from other power sources is called It is a permanent magnet synchronous motor.
在永磁同步电机的磁场定向控制中,电机转子磁极位置的信号检测信息是电机控制系统的重要反馈信息,实时反映了电机的运动状态,直接影响电机控制系统性能。由于旋转变压器(Resolver)作为一种常见的位置传感器,鲁棒性好,可靠性高,可以抑制共模噪声,也适用于恶劣条件的工作环境,因此,旋转变压器被广泛应用于检测永磁同步电机的电机转子磁极位置信号。但是,旋转变压器自身存在非线性特性,以及旋转变压器在机械安装过程中存在转子偏心、旋转正余弦绕组非正交、调理电路非对称等非理想因素,导致电机转子磁极位置信号不可避免地会出现不同频次的周期性误差,该周期性误差影响永磁同步电机的控制性能,因此,对永磁同步电机的周期性误差进行系统分析至关重要。In the field-oriented control of the permanent magnet synchronous motor, the signal detection information of the magnetic pole position of the motor rotor is an important feedback information of the motor control system, which reflects the motion state of the motor in real time and directly affects the performance of the motor control system. As a common position sensor, resolver (Resolver) has good robustness, high reliability, can suppress common mode noise, and is also suitable for working environments with harsh conditions. Therefore, resolvers are widely used in the detection of permanent magnet synchronization. Motor rotor pole position signal for the motor. However, the resolver itself has nonlinear characteristics, and the resolver has non-ideal factors such as rotor eccentricity, non-orthogonal rotating sine and cosine windings, and asymmetric conditioning circuits during the mechanical installation process of the resolver, which cause the rotor magnetic pole position signal of the motor to inevitably appear The periodic error of different frequencies affects the control performance of the permanent magnet synchronous motor. Therefore, it is very important to systematically analyze the periodic error of the permanent magnet synchronous motor.
目前,在现有技术中仅仅提到旋转变压器在检测电机转子磁极位置信号的过程中会存在周期性误差,通过旋转变压器检测的电机转子磁极位置信号和基于正弦变换得到的周期性误差对应的幅值信号,对周期性误差进行在线补偿,但是由于没有针对性地考虑旋转变压器在具体应用中产生周期性误差的原因,可能最终导致在线补偿周期性误差的结果不够精确。At present, it is only mentioned in the prior art that there will be periodic errors in the process of detecting the magnetic pole position signal of the motor rotor by the resolver. The value signal is used to compensate the periodic error online. However, because the reason for the periodic error generated by the resolver in the specific application is not considered in a targeted manner, the result of the online compensation of the periodic error may be inaccurate.
发明内容SUMMARY OF THE INVENTION
有鉴于此,本发明实施例提供了一种永磁同步电机周期性误差的分析方法,以解决现有技术中由于没有针对性地考虑旋转变压器在具体应用中产生周期性误差的原因,可能最终导致在线补偿周期性误差的结果不够精确问题。In view of this, the embodiment of the present invention provides a method for analyzing the periodic error of a permanent magnet synchronous motor, so as to solve the reason that the periodic error generated by the resolver in the specific application is not considered in the prior art. The result of online compensation of periodic errors is not accurate enough.
根据第一方面,本发明实施例提供了一种永磁同步电机周期性误差的分析方法,包括如下步骤:According to a first aspect, an embodiment of the present invention provides a method for analyzing the periodic error of a permanent magnet synchronous motor, including the following steps:
确定永磁同步电机在恒定转速状态下的当前角度信号、预设谐波频次和预设基波频率;Determine the current angle signal, the preset harmonic frequency and the preset fundamental frequency of the permanent magnet synchronous motor at a constant speed;
根据所述当前角度信号、所述预设谐波频次和所述预设基波频率,计算所述当前角度信号对应的初始正弦函数;calculating an initial sine function corresponding to the current angle signal according to the current angle signal, the preset harmonic frequency and the preset fundamental frequency;
在所述当前角度信号进行坐标变换过程中,计算所述初始正弦函数对应的复矢量函数;During the coordinate transformation process of the current angle signal, the complex vector function corresponding to the initial sine function is calculated;
根据所述复矢量函数和所述预设基波频率,通过第一坐标变换路径产生第一目标谐波电流频率和通过第二坐标变换路径产生第二目标谐波电流频率;generating a first target harmonic current frequency through a first coordinate transformation path and generating a second target harmonic current frequency through a second coordinate transformation path according to the complex vector function and the preset fundamental frequency;
根据所述预设基波频率、预设谐波频次、所述第一目标谐波电流频率和所述第二目标谐波电流频率,通过预设周期性误差分析算法分析验证永磁同步电机周期性误差。According to the preset fundamental frequency, the preset harmonic frequency, the first target harmonic current frequency and the second target harmonic current frequency, the period of the permanent magnet synchronous motor is analyzed and verified by a preset periodic error analysis algorithm sexual error.
结合第一方面,在第一方面第一实施方式中,所述确定永磁同步电机在恒定转速状态下的当前角度信号的步骤包括:With reference to the first aspect, in the first embodiment of the first aspect, the step of determining the current angle signal of the permanent magnet synchronous motor in a state of constant rotational speed includes:
确定永磁同步电机在各种不同转速状态下的初始角度信号;Determine the initial angle signal of the permanent magnet synchronous motor under various rotational speed states;
根据所述初始角度信号,确定永磁同步电机在恒定转速状态下的当前角度信号。According to the initial angle signal, the current angle signal of the permanent magnet synchronous motor in the state of constant rotational speed is determined.
结合第一方面第二实施方式,在第一方面第二实施方式中,所述根据所述初始角度信号,确定永磁同步电机在恒定转速状态下的当前角度信号通过如下公式计算:In combination with the second embodiment of the first aspect, in the second embodiment of the first aspect, the determination of the current angle signal of the permanent magnet synchronous motor in a constant rotational speed state according to the initial angle signal is calculated by the following formula:
θe=K·θrdc,K=np/prdc θ e =K·θ rdc , K=n p /p rdc
其中,eh为所述初始角度信号中的谐波,k为谐波频次,ak为k次谐波幅值和为k次谐波相位,θrdc为初始角度信号,ωrdc为角频率;θe为当前角度信号,np为永磁同步电机极对数,prdc为旋变极对数,K为永磁同步电机极对数与旋变极对数的比值。Among them, e h is the harmonic in the initial angle signal, k is the harmonic frequency, a k is the k-th harmonic amplitude and is the k-th harmonic phase, θ rdc is the initial angle signal, ω rdc is the angular frequency; θ e is the current angle signal, n p is the number of pole pairs of the permanent magnet synchronous motor, p rdc is the number of resolver pole pairs, and K is the permanent The ratio of the number of pole pairs to the number of resolver pole pairs for a magnetic synchronous motor.
结合第一方面,在第一方面第三实施方式中,所述根据所述当前角度信号、所述预设谐波频次和所述预设基波频率,计算所述当前角度信号对应的初始正弦函数通过如下公式计算:With reference to the first aspect, in the third embodiment of the first aspect, the initial sine corresponding to the current angle signal is calculated according to the current angle signal, the preset harmonic frequency and the preset fundamental frequency The function is calculated by the following formula:
其中,Jn(λk)为调频指数为λk的n阶第一类贝塞尔函数,θe为所述当前角度信号,ωe为所述预设基波频率,λ为所述预设谐波频次,λk为所述永磁同步电机的正弦扰动幅值。in, J n (λ k ) is the n-th order Bessel function of the first kind with a frequency modulation index of λ k , θ e is the current angle signal, ω e is the preset fundamental frequency, λ is the preset harmonic frequency, and λ k is the sinusoidal disturbance amplitude of the permanent magnet synchronous motor.
结合第一方面,在第一方面第四实施方式中,在所述当前角度信号进行坐标变换过程中,计算所述初始正弦函数对应的复矢量函数的公式如下:With reference to the first aspect, in the fourth embodiment of the first aspect, during the coordinate transformation process of the current angle signal, the formula for calculating the complex vector function corresponding to the initial sine function is as follows:
J-n(λk)=(-1)nJn(λk)J -n (λ k )=(-1) n J n (λ k )
其中,θe为所述当前角度信号,ωe为所述预设基波频率,λ为所述预设谐波频次,λk为所述永磁同步电机的正弦扰动幅值,为所述复矢量函数。Wherein, θ e is the current angle signal, ω e is the preset fundamental frequency, λ is the preset harmonic frequency, λ k is the sinusoidal disturbance amplitude of the permanent magnet synchronous motor, is the complex vector function.
结合第一方面,在第一方面第五实施方式中,所述根据预设基波频率、预设谐波频次、所述第一目标谐波电流频率和所述第二目标谐波电流频率,通过预设周期性误差分析算法分析验证永磁同步电机周期性误差通过如下公式计算:With reference to the first aspect, in a fifth implementation manner of the first aspect, according to the preset fundamental frequency, the preset harmonic frequency, the first target harmonic current frequency and the second target harmonic current frequency, Through the analysis and verification of the preset periodic error analysis algorithm, the periodic error of the permanent magnet synchronous motor is calculated by the following formula:
令所述预设基波频率为ωe,令预设谐波频次λ为0.5,令第一目标谐波电流频率为ω2=λωe=0.5ωe,令第二目标谐波电流频率为ω1=(2-λ)ωe=1.5ωe,以所述永磁同步电机的所述当前角度信号为0.5ωe单频扰动,Let the preset fundamental frequency be ω e , let the preset harmonic frequency λ be 0.5, let the first target harmonic current frequency be ω 2 =λω e =0.5ω e , let the second target harmonic current frequency be ω 1 =(2-λ)ω e =1.5ω e , and the current angle signal of the permanent magnet synchronous motor is a single-frequency disturbance of 0.5ω e ,
其中,a1.5为1.5次电流幅值,a1为1次电流幅值,a0.5为0.5次电流幅值,kp为PI调节器的比例,ki为PI调节器的积分系数,Za为A相等效阻抗,KPI为PI调节器的等效增益,为对应频率分量的相位,ωr1为PI调节器对应输入信号的频率,ωr2为负载对应输入信号的频率,Us为dq坐标系相电压幅值,当电流响应进入稳态后,PI调节器的直流输入分量为零,0.5ωe频次电流谐波由udq直流分量经旋转矢量产生。Among them, a 1.5 is the 1.5th order current amplitude, a 1 is the 1st order current amplitude, a 0.5 is the 0.5th order current amplitude, k p is the ratio of the PI regulator, ki is the integral coefficient of the PI regulator, Z a is the equivalent impedance of phase A, K PI is the equivalent gain of the PI regulator, is the phase of the corresponding frequency component, ω r1 is the frequency of the input signal corresponding to the PI regulator, ω r2 is the frequency of the input signal corresponding to the load, and U s is the phase voltage amplitude of the dq coordinate system. When the current response enters a steady state, the DC input component of the PI regulator is zero. , the 0.5ω e frequency current harmonics are rotated by the u dq DC component via the rotation vector produce.
结合第一方面,在第一方面第六实施方式中,所述根据预设基波频率、预设谐波频次、所述第一目标谐波电流频率和所述第二目标谐波电流频率,通过预设周期性误差分析算法分析验证永磁同步电机周期性误差还通过如下公式计算:With reference to the first aspect, in a sixth implementation manner of the first aspect, according to the preset fundamental frequency, the preset harmonic frequency, the first target harmonic current frequency and the second target harmonic current frequency, Through the analysis and verification of the preset periodic error analysis algorithm, the periodic error of the permanent magnet synchronous motor is also calculated by the following formula:
令所述预设基波频率为ωe,令预设谐波频次λ为0.5,令第一目标谐波电流频率为ω2=λωe=0.5ωe,令第二目标谐波电流频率为ω1=(2-λ)ωe=1.5ωe,以所述永磁同步电机的所述当前角度信号为0.5ωe单频扰动,Let the preset fundamental frequency be ω e , let the preset harmonic frequency λ be 0.5, let the first target harmonic current frequency be ω 2 =λω e =0.5ω e , let the second target harmonic current frequency be ω 1 =(2-λ)ω e =1.5ω e , and the current angle signal of the permanent magnet synchronous motor is a single-frequency disturbance of 0.5ω e ,
其中,ki/ωr1<<kp,a1.5为1.5次电流幅值,a1为1次电流幅值,a0.5为0.5次电流幅值,λk为所述永磁同步电机的正弦扰动幅值,kp为PI调节器的比例。Wherein, k i /ω r1 <<k p , a 1.5 is the 1.5th order current amplitude, a 1 is the 1st order current amplitude, a 0.5 is the 0.5th order current amplitude, λ k is the sine of the permanent magnet synchronous motor The perturbation amplitude, k p is the ratio of the PI regulator.
根据第二方面,本发明实施例提供一种永磁同步电机周期性误差的分析装置,包括:According to a second aspect, an embodiment of the present invention provides a device for analyzing the periodic error of a permanent magnet synchronous motor, including:
确定模块,用于确定永磁同步电机在恒定转速状态下的当前角度信号、预设谐波频次和预设基波频率;A determination module, used to determine the current angle signal, the preset harmonic frequency and the preset fundamental frequency of the permanent magnet synchronous motor in a state of constant speed;
第一计算模块,用于根据所述当前角度信号、所述预设谐波频次和所述预设基波频率,计算所述当前角度信号对应的初始正弦函数;a first calculation module, configured to calculate the initial sine function corresponding to the current angle signal according to the current angle signal, the preset harmonic frequency and the preset fundamental frequency;
第二计算模块,用于在所述当前角度信号进行坐标变换过程中,计算所述初始正弦函数对应的复矢量函数;a second calculation module, configured to calculate the complex vector function corresponding to the initial sine function during the coordinate transformation process of the current angle signal;
目标谐波电流产生模块,用于根据所述复矢量函数和所述预设基波频率,通过第一坐标变换路径产生第一目标谐波电流频率和通过第二坐标变换路径产生第二目标谐波电流频率;A target harmonic current generation module is configured to generate a first target harmonic current frequency through a first coordinate transformation path and a second target harmonic current through a second coordinate transformation path according to the complex vector function and the preset fundamental frequency. wave current frequency;
分析验证模块,用于根据所述预设基波频率、预设谐波频次、所述第一目标谐波电流频率和所述第二目标谐波电流频率,通过预设周期性误差分析算法分析验证永磁同步电机周期性误差。An analysis and verification module for analyzing the preset periodic error analysis algorithm according to the preset fundamental frequency, preset harmonic frequency, the first target harmonic current frequency and the second target harmonic current frequency Verify the periodic error of a permanent magnet synchronous motor.
根据第三方面,本发明实施例提供一种永磁同步电机控制系统,包括:According to a third aspect, an embodiment of the present invention provides a permanent magnet synchronous motor control system, including:
第一轴向电流环PI调节器,用于接收第一轴向电流信号,并对第一轴向电流信号进行PI调节控制输出第一轴向电压信号;The first axial current loop PI regulator is used for receiving the first axial current signal, and performing PI adjustment and control on the first axial current signal to output the first axial voltage signal;
第二轴向电流环PI调节器,用于接收第二轴向电流信号,并对第二轴向电流信号进行PI调节控制输出第二轴向电压信号;The second axial current loop PI regulator is used for receiving the second axial current signal, and performing PI adjustment and control on the second axial current signal to output the second axial voltage signal;
第一坐标变换器,分别与所述第一轴向电流环PI调节器和所述第二轴向电流环PI调节器连接;a first coordinate converter, respectively connected to the first axial current loop PI regulator and the second axial current loop PI regulator;
PWM调制器,与所述第一坐标变换器连接;a PWM modulator, connected to the first coordinate converter;
逆变器,与所述PWM调制器连接;an inverter, connected with the PWM modulator;
第二坐标变换器,分别与所述第一轴向电流环PI调节器、所述第二轴向电流环PI调节器和所述第一坐标变换器连接;a second coordinate converter, respectively connected to the first axial current loop PI regulator, the second axial current loop PI regulator and the first coordinate converter;
电流传感器,分别与所述第二坐标变换器和所述逆变器连接;a current sensor, connected to the second coordinate converter and the inverter respectively;
永磁同步电机,与所述电流传感器连接;a permanent magnet synchronous motor, connected with the current sensor;
旋转变压器,与所述永磁同步电机连接;a rotary transformer, connected with the permanent magnet synchronous motor;
角度正余弦变换器,与所述旋转变压器连接;an angle sine-cosine converter, connected with the resolver;
处理器,与永磁同步电机连接,所述处理器包括存储在计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被计算机执行时,使所述计算机执行第一方面或第一方面任一实施方式中所述的永磁同步电机周期性误差的分析方法的步骤。a processor connected to the permanent magnet synchronous motor, the processor including a computer program stored on a computer-readable storage medium, the computer program including program instructions, when the program instructions are executed by a computer, cause the computer to execute The steps of the method for analyzing the periodic error of the permanent magnet synchronous motor described in the first aspect or any embodiment of the first aspect.
根据第四方面,本发明实施例提供一种计算机设备,包括:存储器和处理器,所述存储器和所述处理器之间互相通信连接,所述存储器中存储有计算机指令,所述处理器通过执行所述计算机指令,从而使所述计算机执行第一方面或第一方面任一实施方式中所述的永磁同步电机周期性误差的分析方法的步骤。According to a fourth aspect, an embodiment of the present invention provides a computer device, including: a memory and a processor, the memory and the processor are connected in communication with each other, the memory stores computer instructions, and the processor passes Executing the computer instructions causes the computer to execute the steps of the method for analyzing the periodic error of a permanent magnet synchronous motor described in the first aspect or any embodiment of the first aspect.
本发明实施例技术方案,具有如下优点:The technical solution of the embodiment of the present invention has the following advantages:
本发明提供了一种永磁同步电机周期性误差的分析方法及装置,其中方法包括:确定永磁同步电机在恒定转速状态下的当前角度信号、预设谐波频次和预设基波频率;根据当前角度信号、预设谐波频次和预设基波频率,计算当前角度信号对应的初始正弦函数;在当前角度信号进行坐标变换过程中,计算初始正弦函数对应的复矢量函数;根据复矢量函数和预设基波频率,通过第一坐标变换路径产生第一目标谐波电流频率和通过第二坐标变换路径产生第二目标谐波电流频率;根据预设基波频率、预设谐波频次、第一目标谐波电流频率和第二目标谐波电流频率,通过预设周期性误差分析算法分析验证永磁同步电机周期性误差。通过永磁同步电机周期性误差分析,有利于根据获知的该周期性误差存在的原因,便于及时进行在线补偿周期性误差,进而改善周期性误差,提高在线补偿精度。The invention provides a method and device for analyzing the periodic error of a permanent magnet synchronous motor, wherein the method includes: determining a current angle signal, a preset harmonic frequency and a preset fundamental frequency of the permanent magnet synchronous motor under a constant rotational speed state; According to the current angle signal, the preset harmonic frequency and the preset fundamental frequency, the initial sine function corresponding to the current angle signal is calculated; during the coordinate transformation process of the current angle signal, the complex vector function corresponding to the initial sine function is calculated; according to the complex vector function and the preset fundamental frequency, the first target harmonic current frequency is generated through the first coordinate transformation path and the second target harmonic current frequency is generated through the second coordinate transformation path; according to the preset fundamental frequency, preset harmonic frequency , the first target harmonic current frequency and the second target harmonic current frequency, and the periodic error of the permanent magnet synchronous motor is analyzed and verified by a preset periodic error analysis algorithm. Through the analysis of the periodic error of the permanent magnet synchronous motor, it is beneficial to timely compensate the periodic error online according to the known cause of the periodic error, thereby improving the periodic error and improving the accuracy of the online compensation.
附图说明Description of drawings
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to illustrate the specific embodiments of the present invention or the technical solutions in the prior art more clearly, the following briefly introduces the accompanying drawings that need to be used in the description of the specific embodiments or the prior art. Obviously, the accompanying drawings in the following description The drawings are some embodiments of the present invention. For those of ordinary skill in the art, other drawings can also be obtained based on these drawings without creative efforts.
图1为本发明实施例中永磁同步电机周期性误差的分析方法的流程图;Fig. 1 is the flow chart of the analysis method of the periodic error of permanent magnet synchronous motor in the embodiment of the present invention;
图2为本发明实施例中永磁同步电机角度畸变与电流畸变频率成分对应关系示意图;2 is a schematic diagram of the corresponding relationship between the angle distortion of the permanent magnet synchronous motor and the frequency component of the current distortion in the embodiment of the present invention;
图3为本发明实施例中永磁同步电机谐波电流分析框图;Fig. 3 is the harmonic current analysis block diagram of the permanent magnet synchronous motor in the embodiment of the present invention;
图4为本发明实施例中电流谐波含量分析结果示意图;4 is a schematic diagram of the analysis result of the current harmonic content in the embodiment of the present invention;
图5为本发明实施例中永磁同步电机周期性误差的分析装置的结构框图;Fig. 5 is the structural block diagram of the analyzing device of the periodic error of permanent magnet synchronous motor in the embodiment of the present invention;
图6为本发明实施例中永磁同步电机控制系统的结构示意图;6 is a schematic structural diagram of a permanent magnet synchronous motor control system in an embodiment of the present invention;
图7为本发明实施例中计算机设备的硬件结构示意图。FIG. 7 is a schematic diagram of a hardware structure of a computer device in an embodiment of the present invention.
具体实施方式Detailed ways
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。In order to make the purposes, technical solutions and advantages of the embodiments of the present invention clearer, the technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments These are some embodiments of the present invention, but not all embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those skilled in the art without creative efforts shall fall within the protection scope of the present invention.
实施例1Example 1
本发明实施例提供了一种永磁同步电机周期性误差的分析方法,如图1所示,包括如下步骤:An embodiment of the present invention provides a method for analyzing the periodic error of a permanent magnet synchronous motor, as shown in FIG. 1 , including the following steps:
步骤S1:确定永磁同步电机在恒定转速状态下的当前角度信号、预设谐波频次和预设基波频率。此处的恒定转速状态为永磁同步电机的稳定状态,即永磁同步电机在稳速状态下的工作状态。具体地,上述中的当前角度信号为永磁同步电机的当前电角度,该当前电角度是通过旋转变压器检测出的电角度,其表示电机转子磁极位置信号,该当前电角度可以用θe表示。预设谐波频次,为永磁同步电机的频次,可以用λ表示,该预设谐波频次为假设的一个谐波频次,例如:λ可以代表一次谐波、二次谐波以及三次谐波等。预设基波频率可以为预设频率,也是一个假设的谐波频率,可以用ωe表示。Step S1: Determine the current angle signal, the preset harmonic frequency and the preset fundamental frequency of the permanent magnet synchronous motor in a state of constant rotational speed. The constant speed state here is the steady state of the permanent magnet synchronous motor, that is, the working state of the permanent magnet synchronous motor in the steady speed state. Specifically, the current angle signal in the above is the current electrical angle of the permanent magnet synchronous motor, and the current electrical angle is the electrical angle detected by the resolver, which represents the rotor magnetic pole position signal of the motor, and the current electrical angle can be represented by θ e . The preset harmonic frequency is the frequency of the permanent magnet synchronous motor, which can be represented by λ. The preset harmonic frequency is an assumed harmonic frequency. For example, λ can represent the first harmonic, the second harmonic and the third harmonic. Wait. The preset fundamental frequency can be a preset frequency, which is also a hypothetical harmonic frequency, which can be represented by ω e .
在一具体实施例中,上述步骤S1在执行的过程中,可具体包括如下步骤:In a specific embodiment, in the process of executing the above step S1, the following steps may be specifically included:
第一步:确定永磁同步电机在各种不同转速状态下的初始角度信号。The first step: determine the initial angle signal of the permanent magnet synchronous motor under various rotational speed states.
此处的各种不同转速包括永磁同步电机在高速状态、稳速状态以及低速状态运行情况的初始角度信号,该初始角度信号可以用θrdc表示。The various rotational speeds here include the initial angle signals of the permanent magnet synchronous motor in the high-speed state, the steady-speed state, and the low-speed state, and the initial angle signal can be represented by θ rdc .
第二步:根据初始角度信号,确定永磁同步电机在恒定转速状态下的当前角度信号。Step 2: According to the initial angle signal, determine the current angle signal of the permanent magnet synchronous motor in the state of constant speed.
具体地,根据初始角度信号,确定永磁同步电机在恒定转速状态下的当前角度信号通过如下公式计算:Specifically, according to the initial angle signal, it is determined that the current angle signal of the permanent magnet synchronous motor in the state of constant speed is calculated by the following formula:
θe=K·θrdc,K=np/prdc……………………………(2);θ e =K·θ rdc , K=n p / prdc …………………………(2);
其中,eh为初始角度信号中的谐波,k为谐波频次,ak为k次谐波幅值和为k次谐波相位,θrdc为初始角度信号,ωrdc为角频率;θe为当前角度信号,np为永磁同步电机极对数,prdc为旋变极对数,K为永磁同步电机极对数与旋变极对数的比值。因此,根据初始角度信号θrdc,可以确定永磁同步电机在恒定转速状态下的当前角度信号θe。Among them, e h is the harmonic in the initial angle signal, k is the harmonic frequency, a k is the k-th harmonic amplitude and is the k-th harmonic phase, θ rdc is the initial angle signal, ω rdc is the angular frequency; θ e is the current angle signal, n p is the number of pole pairs of the permanent magnet synchronous motor, p rdc is the number of resolver pole pairs, and K is the permanent The ratio of the number of pole pairs to the number of resolver pole pairs for a magnetic synchronous motor. Therefore, according to the initial angle signal θ rdc , the current angle signal θ e of the permanent magnet synchronous motor in the state of constant rotational speed can be determined.
步骤S2:根据当前角度信号、预设谐波频次和预设基波频率,计算当前角度信号对应的初始正弦函数。Step S2: Calculate the initial sine function corresponding to the current angle signal according to the current angle signal, the preset harmonic frequency and the preset fundamental frequency.
在一具体实施例中,上述步骤S2在执行的过程中,可通过如下公式计算:In a specific embodiment, during the execution of the above step S2, it can be calculated by the following formula:
其中,Jn(λk)为调频指数为λk的n阶第一类贝塞尔函数,θe为当前角度信号,ωe为预设基波频率,λ为预设谐波频率,λk为永磁同步电机的正弦扰动幅值。因此,上述中的sinθe为初始正弦函数。in, J n (λ k ) is the n-th order Bessel function of the first kind with a frequency modulation index of λ k , θ e is the current angle signal, ω e is the preset fundamental frequency, λ is the preset harmonic frequency, and λ k is the sinusoidal disturbance amplitude of the permanent magnet synchronous motor. Therefore, sinθ e in the above is the initial sine function.
步骤S3:在当前角度信号进行坐标变换过程中,计算初始正弦函数对应的复矢量函数。Step S3: During the coordinate transformation process of the current angle signal, the complex vector function corresponding to the initial sine function is calculated.
在一具体实施例中,上述步骤S3在执行的过程中,通过如下公式计算:In a specific embodiment, in the process of executing the above step S3, it is calculated by the following formula:
J-n(λk)=(-1)nJn(λk)………………………………………………(4);J -n (λ k )=(-1) n J n (λ k )………………………………………………(4);
其中,θe为当前角度信号,ωe为预设基波频率,λ为预设谐波频次,λk为永磁同步电机的正弦扰动幅值,为复矢量函数。上述公式(6)是对上述公式(5)进行电角度正弦值的级数分析,才进一步得到上式(6)对应的复矢量函数。Among them, θ e is the current angle signal, ω e is the preset fundamental frequency, λ is the preset harmonic frequency, λ k is the sinusoidal disturbance amplitude of the permanent magnet synchronous motor, is a complex vector function. The above formula (6) is based on the series analysis of the electrical angle sine value of the above formula (5), and then the complex vector function corresponding to the above formula (6) is further obtained.
步骤S4:根据复矢量函数和预设基波频率,通过第一坐标变换路径产生第一目标谐波电流频率和通过第二坐标变换路径产生第二目标谐波电流频率。其中第一坐标变换为park变换,第二坐标变换为ipark变换。Step S4: According to the complex vector function and the preset fundamental frequency, the first target harmonic current frequency is generated through the first coordinate transformation path and the second target harmonic current frequency is generated through the second coordinate transformation path. The first coordinate transformation is park transformation, and the second coordinate transformation is ipark transformation.
如图2所示,预设基波频率为ωe,复矢量函数为上式(6),第一坐标变换路径在图2中为①,第二坐标变换路径在图2中为②,经过第一坐标变换路径产生的第一目标谐波电流频率为ω2和经过第二坐标变换路径产生的第二目标谐波电流频率为ω1,其中,ω1=(2-λ)ωe,ω2=λωe。As shown in FIG. 2 , the preset fundamental frequency is ω e , the complex vector function is the above formula (6), the first coordinate transformation path is ① in FIG. 2 , and the second coordinate transformation path is ② in FIG. 2 . The frequency of the first target harmonic current generated by the first coordinate transformation path is ω 2 and the frequency of the second target harmonic current generated by the second coordinate transformation path is ω 1 , where ω 1 =(2-λ)ω e , ω 2 =λω e .
通过前述公式分析,因旋转变压器自身存在非线性特性,以及旋转变压器在机械安装过程中存在转子偏心、旋转正余弦绕组非正交、调理电路非对称等非理想因素导致的当前电角度在坐标变换时的表达形式为上式(6)所示的复矢量函数,鉴于J1(λk)、J-1(λk)…<<J0(λk),谐波电流的主要成分由基频电流在Park变换和Ipark变换分别作用于基频旋转矢量和谐波旋转矢量组成,考虑位置信号中为单频扰动,分别对应图2中的第一坐标变换路径①和第二坐标变换路径②,而谐波电流经坐标变换产生的其他频次的谐波可以忽略不计,即电角度信号中频率为λωe的谐波信号导致三相电流的谐波频率主要为λωe和(2-λ)ωe。Through the analysis of the above formula, due to the nonlinear characteristics of the resolver itself, and the non-ideal factors such as rotor eccentricity, non-orthogonal rotating sine and cosine windings, and asymmetry of the conditioning circuit during the mechanical installation of the resolver, the current electrical angle is in the coordinate transformation. When , the expression form is the complex vector function shown in the above formula (6). In view of J 1 (λk), J -1 (λ k )...<<J 0 (λ k ), the main component of the harmonic current is determined by the fundamental frequency The current acts on the fundamental frequency rotation vector and the harmonic rotation vector in the Park transformation and the Ipark transformation, respectively. Considering the single-frequency disturbance in the position signal, it corresponds to the first coordinate
如图3所示,为谐波电流分析框图,忽略开关管非线性和电机非对称等因素,根据图2中的第一坐标变换路径和第二坐标变换路径,可以得到谐波电流的定量表达。然后,在此基础上可以进一步基于下述的预设周期性误差分析算法分析验证永磁同步电机周期性误差。As shown in Figure 3, it is a block diagram of harmonic current analysis, ignoring factors such as switching tube nonlinearity and motor asymmetry, according to the first coordinate transformation path and the second coordinate transformation path in Figure 2, the quantitative expression of harmonic current can be obtained . Then, on this basis, the periodic error of the permanent magnet synchronous motor can be further analyzed and verified based on the following preset periodic error analysis algorithm.
步骤S5:根据预设基波频率、预设谐波频次、第一目标谐波电流频率和第二目标谐波电流频率,通过预设周期性误差分析算法分析验证永磁同步电机周期性误差。Step S5: According to the preset fundamental frequency, the preset harmonic frequency, the first target harmonic current frequency and the second target harmonic current frequency, analyze and verify the periodic error of the permanent magnet synchronous motor through a preset periodic error analysis algorithm.
在一具体实施例中,上述步骤S5在执行的过程中,可通过如下公式计算:In a specific embodiment, in the process of executing the above step S5, it can be calculated by the following formula:
令预设基波频率为ωe,令预设谐波频次λ为0.5,令第一目标谐波电流频率为ω2=λωe=0.5ωe,令第二目标谐波电流频率为ω1=(2-λ)ωe=1.5ωe,以永磁同步电机的当前角度信号为0.5ωe单频扰动,Let the preset fundamental frequency be ω e , let the preset harmonic frequency λ be 0.5, let the first target harmonic current frequency be ω 2 =λω e =0.5ω e , let the second target harmonic current frequency be ω 1 =(2-λ)ω e =1.5ω e , taking the current angle signal of the permanent magnet synchronous motor as 0.5ω e single-frequency disturbance,
其中,a1.5为1.5次电流幅值,a1为1次电流幅值,a0.5为0.5次电流幅值,kp为PI调节器的比例,ki为PI调节器的积分系数,Za为A相等效阻抗,KPI为PI调节器的等效增益,为对应频率分量的相位,为第一频率成分对应PI调节器与阻抗的第一相角差,为第二频率成分对应PI调节器与阻抗的第二相角差,为第一频率成分对应PI调节器与阻抗的第三相角差,为第一频率成分对应PI调节器与阻抗的第四相角差,由负载阻抗角和PI调节器等效阻抗角之差决定。ωr1为PI调节器对应输入信号的频率,ωr2为负载对应输入信号的频率,Us为dq坐标系相电压幅值,当电流响应进入稳态后,PI调节器的直流输入分量为零,0.5ωe频次电流谐波由udq直流分量经旋转矢量产生。Among them, a 1.5 is the 1.5th order current amplitude, a 1 is the 1st order current amplitude, a 0.5 is the 0.5th order current amplitude, k p is the ratio of the PI regulator, ki is the integral coefficient of the PI regulator, Z a is the equivalent impedance of phase A, K PI is the equivalent gain of the PI regulator, is the phase of the corresponding frequency component, is the first phase angle difference between the PI regulator and the impedance corresponding to the first frequency component, is the second phase angle difference between the PI regulator and the impedance corresponding to the second frequency component, is the third phase angle difference between the PI regulator and the impedance corresponding to the first frequency component, The fourth phase angle difference between the PI regulator and the impedance corresponding to the first frequency component is determined by the difference between the load impedance angle and the equivalent impedance angle of the PI regulator. ω r1 is the frequency of the input signal corresponding to the PI regulator, ω r2 is the frequency of the input signal corresponding to the load, and U s is the phase voltage amplitude of the dq coordinate system. When the current response enters a steady state, the DC input component of the PI regulator is zero. , the 0.5ω e frequency current harmonics are rotated by the u dq DC component via the rotation vector produce.
以电机转子磁极位置信号谐波为0.5ωe单频扰动为例,0.5ωe频次电流谐波和1.5ωe频次电流谐波分别由图2中的路径①和②产生。其中,1.5ωe频次电流谐波的幅值表达式满足上述等式(7),0.5ωe频次谐波电流谐波的幅值表达式满足上式等式(8),对于表达式(7)等式左边第一项为基频电流由路径②产生的1.5ωe频次谐波电流成分,第二项为1.5ωe频次谐波电流经路径①产生的1.5ωe频次谐波电流成分,等式右边为总的1.5ωe频次谐波电流。Taking the motor rotor magnetic pole position signal harmonic as a 0.5ωe single-frequency disturbance as an example, the 0.5ωe frequency current harmonic and the 1.5ωe frequency current harmonic are generated by
在一具体实施例中,上述步骤S5在执行的过程中还通过如下公式计算:In a specific embodiment, the above-mentioned step S5 is also calculated by the following formula during the execution process:
令预设基波频率为ωe,令预设谐波频次λ为0.5,令第一目标谐波电流频率为ω2=λωe=0.5ωe,令第二目标谐波电流频率为ω1=(2-λ)ωe=1.5ωe,以永磁同步电机的当前角度信号为0.5ωe单频扰动,Let the preset fundamental frequency be ω e , let the preset harmonic frequency λ be 0.5, let the first target harmonic current frequency be ω 2 =λω e =0.5ω e , let the second target harmonic current frequency be ω 1 =(2-λ)ω e =1.5ω e , taking the current angle signal of the permanent magnet synchronous motor as 0.5ω e single-frequency disturbance,
其中,ki/ωr1<<kp,a1.5为1.5次电流幅值,a1为1次电流幅值,a0.5为0.5次电流幅值,λk为永磁同步电机的正弦扰动幅值,kp为PI调节器的比例。Among them, k i /ω r1 <<k p , a 1.5 is the 1.5th order current amplitude, a 1 is the 1st order current amplitude, a 0.5 is the 0.5th order current amplitude, and λ k is the sinusoidal disturbance amplitude of the PMSM value, k p is the ratio of the PI regulator.
在上述公式(9)中,可以令J0(λk)=1,J1(λk)=0.01,ωe=250Hz,λ=0.5,kp=0.3,ki=60,分别计算1.5ωe谐波电流含量和0.5ωe谐波电流含量,可得a1.5/a1=0.33%、a0.5/a1=0.81%。按照图3搭建的谐波电流分析框图,可以得到谐波分析结果,该分析结果如图4所示。因此,通过上述公式可以定量分析永磁同步电机转子位置信号中的周期性误差对交流侧电流谐波产生影响,即可以定量分析出永磁同步电机在工作过程中存在周期性误差。In the above formula (9), J 0 (λ k ) = 1, J 1 (λ k ) = 0.01, ω e = 250 Hz, λ = 0.5, k p = 0.3, k i = 60, and calculate 1.5 ω e harmonic current content and 0.5ω e harmonic current content, a 1.5 /a 1 =0.33%, a 0.5 /a 1 =0.81%. According to the harmonic current analysis block diagram constructed in Figure 3, the harmonic analysis results can be obtained, and the analysis results are shown in Figure 4. Therefore, the impact of the periodic error in the rotor position signal of the permanent magnet synchronous motor on the AC side current harmonics can be quantitatively analyzed through the above formula, that is, the periodic error in the working process of the permanent magnet synchronous motor can be quantitatively analyzed.
本发明实施例中的永磁同步电机周期性误差的分析方法,通过永磁同步电机周期性误差分析,有利于根据获知的该周期性误差存在的原因,便于及时进行在线补偿周期性误差,进而改善周期性误差,提高在线补偿精度。In the method for analyzing the periodic error of the permanent magnet synchronous motor in the embodiment of the present invention, through the periodic error analysis of the permanent magnet synchronous motor, it is beneficial to perform online compensation of the periodic error in time according to the known cause of the periodic error, and further Improve periodic error and improve online compensation accuracy.
实施例2Example 2
本发明实施例提供了一种永磁同步电机周期性误差的分析装置,如图5所示,包括:An embodiment of the present invention provides a device for analyzing the periodic error of a permanent magnet synchronous motor, as shown in FIG. 5 , including:
确定模块51,用于确定永磁同步电机在恒定转速状态下的当前角度信号、预设谐波频次和预设基波频率。The
第一计算模块52,用于根据当前角度信号、预设谐波频次和预设基波频率,计算当前角度信号对应的初始正弦函数。The
第二计算模块53,用于在当前角度信号进行坐标变换过程中,计算初始正弦函数对应的复矢量函数。The
目标谐波电流产生模块54,用于根据复矢量函数和预设基波频率,通过第一坐标变换路径产生第一目标谐波电流频率和通过第二坐标变换路径产生第二目标谐波电流频率。The target harmonic
分析验证模块55,用于根据预设基波频率、预设谐波频次、第一目标谐波电流频率和第二目标谐波电流频率,通过预设周期性误差分析算法分析验证永磁同步电机周期性误差。The analysis and
本发明实施例中的永磁同步电机周期性误差的分析方法,在图5中,确定模块51包括:In the method for analyzing the periodic error of the permanent magnet synchronous motor in the embodiment of the present invention, in FIG. 5 , the
第一确定子模块511,用于确定永磁同步电机在各种不同转速状态下的初始角度信号;The first determination sub-module 511 is used to determine the initial angle signal of the permanent magnet synchronous motor under various rotational speed states;
第二确定子模块512,用于根据所述初始角度信号,确定永磁同步电机在恒定转速状态下的当前角度信号。The second determination sub-module 512 is configured to determine, according to the initial angle signal, the current angle signal of the permanent magnet synchronous motor in a state of constant rotational speed.
本发明实施例中的永磁同步电机周期性误差的分析装置,确定模块51根据初始角度信号,确定永磁同步电机在恒定转速状态下的当前角度信号通过上述公式(1)与(2)进行计算,在此不在赘述。In the device for analyzing the periodic error of the permanent magnet synchronous motor in the embodiment of the present invention, the
本发明实施例中的永磁同步电机周期性误差的分析装置,第二计算模块53根据当前角度信号、预设谐波频次和预设基波频率,计算当前角度信号对应的初始正弦函数通过上述公式(3)进行计算,在此不在赘述。In the device for analyzing the periodic error of the permanent magnet synchronous motor in the embodiment of the present invention, the
本发明实施例中的永磁同步电机周期性误差的分析装置,第二计算模块53,在当前角度信号进行坐标变换过程中,计算初始正弦函数对应的复矢量函数通过上式(4),(5),(6)进行计算,在此不再赘述。In the analysis device for the periodic error of the permanent magnet synchronous motor in the embodiment of the present invention, the
本发明实施例中的永磁同步电机周期性误差的分析装置,分析验证模块根据预设基波频率、第一目标谐波电流频率和第二目标谐波电流频率,通过预设周期性误差分析算法分析验证永磁同步电机周期性误差通过上式(7)与(8)进行计算,在此不再赘述。In the device for analyzing the periodic error of the permanent magnet synchronous motor in the embodiment of the present invention, the analysis and verification module analyzes the periodic error according to the preset fundamental frequency, the first target harmonic current frequency and the second target harmonic current frequency. The algorithm analysis verifies that the periodic error of the permanent magnet synchronous motor is calculated by the above equations (7) and (8), and will not be repeated here.
本发明实施例中的永磁同步电机周期性误差的分析装置,通过永磁同步电机周期性误差分析,有利于根据获知的该周期性误差存在的原因,便于及时进行在线补偿周期性误差,进而改善周期性误差,提高在线补偿精度。In the device for analyzing the periodic error of the permanent magnet synchronous motor in the embodiment of the present invention, through the periodic error analysis of the permanent magnet synchronous motor, it is beneficial to perform online compensation of the periodic error in time according to the known cause of the periodic error, and further Improve periodic error and improve online compensation accuracy.
实施例3Example 3
本发明实施例提供一种永磁同步电机控制系统,如图6所示,包括:An embodiment of the present invention provides a permanent magnet synchronous motor control system, as shown in FIG. 6 , including:
第一轴向电流环PI调节器601,用于接收第一轴向电流信号,并对第一轴向电流信号进行PI调节控制输出第一轴向电压信号。此处第一轴向电流环PI调节器601为d轴电流环PI调节器,可以接收d轴电流指令,在图6中,d轴电流指令为i* d,该d轴电流指令通过第一轴向电流环PI调节器601进行PI调节控制输出d轴电压指令,在图6中,d轴电压指令为u* d。The first axial current
第二轴向电流环PI调节器602,用于接收第二轴向电流信号,并对第二轴向电流信号进行PI调节控制输出第二轴向电压信号。此处的第二轴向电流环PI调节器602为q轴电流环PI调节器,可以接收q轴电流指令,在图6中,q轴电流指令为i* q,该q轴电流指令通过第二轴向电流环PI调节器602输出q轴电压指令,在图6中,d轴电压指令为u* q。The second axial current
第一坐标变换器603,分别与第一轴向电流环PI调节器601和第二轴向电流环PI调节器602连接。第一坐标变换器603可以用Ipark坐标变换器表示。The first coordinate
PWM调制器604,与第一坐标变换器603连接。The PWM modulator 604 is connected to the first coordinate
逆变器605,与PWM调制器604连接。逆变器605,简称Inverter,逆变器605的输入端电压为Udc。The
第二坐标变换器606,分别与第一轴向电流环PI调节器601、第二轴向电流环PI调节器602和第一坐标变换器603连接。第二坐标变换器606可以用Park变换器表示。The second coordinate
电流传感器607,分别与第二坐标变换器606和逆变器605连接。电流传感器607简称Sensor。在图6中,电流传感器607输出三相电流信号,分别为ia、ib、ic。The
永磁同步电机608,与电流传感器607连接。永磁同步电机608简称PMSM。The permanent
旋转变压器609,与永磁同步电机608连接。旋转变压器609可以简称RDC。该旋转变压器609用于检测永磁同步电机608的位置信号,在图6中,旋转变压器609输出的角度为θ。The
角度正余弦变换器610,分别与角度正余弦变换器610、第一坐标变换器603和第二坐标变换器606连接;以简称sinθ/cosθ。The angle sine and
如图7所示,永磁同步电机控制系统,还包括:处理器611,与永磁同步电机608连接,处理器包括存储在计算机可读存储介质上的计算机程序,计算机程序包括程序指令,当程序指令被计算机执行时,使计算机执行实施例1中的永磁同步电机周期性误差分析方法的步骤。在图7中,该永磁同步电机控制系统包括一个或多个处理器611以及存储器613,图7中以一个处理器611为例。As shown in FIG. 7 , the permanent magnet synchronous motor control system further includes: a
执行列表项操作的处理方法的服务器还可以包括:输入装置614和输出装置615。The server performing the processing method of list item operation may further include: an
处理器611、存储器613、输入装置614和输出装置615可以通过总线或者其他方式连接,图6中以通过总线连接为例。The
处理器611可以为中央处理器(Central Processing Unit,CPU)。处理器611还可以为其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等芯片,或者上述各类芯片的组合。The
实施例4Example 4
本发明实施例提供一种计算机可读存储介质,其上存储有计算机指令,该指令被处理器执行时实现实施例1中的永磁同步电机周期性误差分析方法的步骤。该计算机可读存储介质上还存储有当前角度信号、预设谐波频次、预设基波频率、初始正弦函数、复矢量函数、第一目标谐波电流频率、第二目标谐波电流频率、预设周期性误差分析算法等。其中,该计算机可读存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)、随机存储记忆体(RandomAccessMemory,RAM)、快闪存储器(Flash Memory)、硬盘(Hard DiskDrive,缩写:HDD)或固态硬盘(Solid-State Drive,SSD)等;存储介质还可以包括上述种类的存储器的组合。An embodiment of the present invention provides a computer-readable storage medium, on which computer instructions are stored, and when the instructions are executed by a processor, implement the steps of the method for analyzing periodic errors of a permanent magnet synchronous motor in
本领域技术人员可以理解,实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,存储介质可为磁碟、光盘、只读存储记忆体(ROM)或随机存储记忆体(RAM)等。Those skilled in the art can understand that all or part of the processes in the methods of the above embodiments can be completed by instructing relevant hardware through a computer program, and the program can be stored in a computer-readable storage medium, and when the program is executed , which may include the processes of the above-mentioned method embodiments. The storage medium may be a magnetic disk, an optical disk, a read only memory (ROM), or a random access memory (RAM) or the like.
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。Obviously, the above-mentioned embodiments are only examples for clear description, and are not intended to limit the implementation manner. For those of ordinary skill in the art, changes or modifications in other different forms can also be made on the basis of the above description. There is no need and cannot be exhaustive of all implementations here. And the obvious changes or changes derived from this are still within the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010031113.3A CN113131820B (en) | 2020-01-13 | 2020-01-13 | Method and device for analyzing periodic errors of permanent magnet synchronous motor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010031113.3A CN113131820B (en) | 2020-01-13 | 2020-01-13 | Method and device for analyzing periodic errors of permanent magnet synchronous motor |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113131820A CN113131820A (en) | 2021-07-16 |
CN113131820B true CN113131820B (en) | 2022-06-24 |
Family
ID=76771043
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010031113.3A Active CN113131820B (en) | 2020-01-13 | 2020-01-13 | Method and device for analyzing periodic errors of permanent magnet synchronous motor |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113131820B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114061632B (en) * | 2021-10-21 | 2024-03-19 | 上大电气科技(嘉兴)有限公司 | Decoding method of high-precision magnetic encoder for compensating appointed subharmonic |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2194641A1 (en) * | 2008-12-02 | 2010-06-09 | Baumüller Nürnberg GmbH | System for recording the initial pollage of an electromotor runner |
CN108631681A (en) * | 2018-04-18 | 2018-10-09 | 华中科技大学 | A kind of the online compensation method and compensation device of rotary transformer periodic error |
CN109245648A (en) * | 2018-09-07 | 2019-01-18 | 华中科技大学 | A kind of online compensation method of periodic error in output signal of rotary transformer |
CN110417308A (en) * | 2019-07-05 | 2019-11-05 | 南京理工大学 | A compound strategy control method for full speed range of permanent magnet synchronous motor |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9160264B2 (en) * | 2007-11-16 | 2015-10-13 | Hamilton Sundstrand Corporation | Initial rotor position detection and start-up system for a dynamoelectric machine |
US8169172B2 (en) * | 2010-05-03 | 2012-05-01 | Hamilton Sundstrand Corporation | Synchronous disturbance suppression in a variable speed motor drive |
JP5874688B2 (en) * | 2013-06-05 | 2016-03-02 | 株式会社デンソー | Control device |
-
2020
- 2020-01-13 CN CN202010031113.3A patent/CN113131820B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2194641A1 (en) * | 2008-12-02 | 2010-06-09 | Baumüller Nürnberg GmbH | System for recording the initial pollage of an electromotor runner |
CN108631681A (en) * | 2018-04-18 | 2018-10-09 | 华中科技大学 | A kind of the online compensation method and compensation device of rotary transformer periodic error |
CN109245648A (en) * | 2018-09-07 | 2019-01-18 | 华中科技大学 | A kind of online compensation method of periodic error in output signal of rotary transformer |
CN110417308A (en) * | 2019-07-05 | 2019-11-05 | 南京理工大学 | A compound strategy control method for full speed range of permanent magnet synchronous motor |
Non-Patent Citations (5)
Title |
---|
On-Line Compensation of Resolver Periodic Error for PMSM Drives;Dongdong Chen 等;《IEEE TRANSAC TIONS ON INDUSTRY APPLICATIONS》;20190808;第55卷(第6期);第5990-5999页 * |
一种大功率永磁电机旋转变压器位置补偿方法;艾胜 等;《电力电子技术》;20180220;第52卷(第2期);第13-15页 * |
一种旋转变压器误差分析和校正方法;山丹 等;《计算机技术与发展》;20131129;第24卷(第2期);第183-185页 * |
基于比例积分-准谐振控制器的直驱式永磁同步电机转矩脉动抑制方法;张海洋;《电工技术学报》;20171010;第32卷(第19期);第41-50页 * |
基于谐振数字滤波器的直驱式永磁同步电机转矩脉动抑制方法;张海洋 等;《中国电机工程学报》;20170329;第38卷(第4期);第1222-1231页 * |
Also Published As
Publication number | Publication date |
---|---|
CN113131820A (en) | 2021-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100570391C (en) | Real-time detection and analysis method and device for permanent magnet magnetic field distortion of permanent magnet synchronous motor | |
CN107317532B (en) | Predictive current control method and system for permanent magnet synchronous motor based on sliding mode | |
CN110441643A (en) | Inverter power pipe open circuit fault diagnostic method in control system for permanent-magnet synchronous motor | |
CN113131819B (en) | Method and device for compensating periodic error of permanent magnet synchronous motor | |
WO2023240844A1 (en) | Electromagnetic transient modeling method and system for high-efficiency synchronous machine, and device | |
CN113131820B (en) | Method and device for analyzing periodic errors of permanent magnet synchronous motor | |
CN116388633A (en) | Permanent magnet synchronous motor sensorless control method based on vector magnetic circuit | |
CN115811260A (en) | Rotary transformer zero point identification method and device of motor and computer storage medium | |
TANAKA et al. | PMSM Sensorless Control Based on Position Estimation Correction Using All‐Pass Filters | |
CN111800055A (en) | A method and device for determining the average torque of a doubly salient motor | |
WO2021232615A1 (en) | Motor rotor position detection method, device, and motor controller | |
CN118137916A (en) | Rotor angle estimation dynamic compensation method | |
CN117240158A (en) | Motor rotor detection method and device, permanent magnet synchronous motor and storage medium | |
CN110620534A (en) | Method for controlling rotating speed stability of permanent magnet synchronous motor by nonlinear flexible and variable structure sliding mode | |
CN117129907A (en) | Method, device and equipment for detecting turn-to-turn short circuit of three-phase synchronous motor | |
CN109756143A (en) | A fault-tolerant control method and device for a three-phase four-switch inverter | |
CN116054667A (en) | Current harmonic suppression method and device for electrolytic capacitor-free driving system | |
CN116566268A (en) | Motor zero position initial angle calibration method, device, motor controller and system | |
CN115459653A (en) | Motor control method, device, medium and electronic device | |
WO2022257132A1 (en) | Power driving system, electric vehicle, and method for reducing noise generated by reducer | |
CN116500437A (en) | Inductance detection method for reluctance motor and motor detection device | |
CN114204866B (en) | Rotor speed and position determining method of permanent magnet synchronous motor | |
CN114563100A (en) | Permanent magnet synchronous motor temperature monitoring method and device and vehicle | |
CN111181447B (en) | Motor group current sensor cooperation system based on self-generated detection signal and correction method | |
CN118554832A (en) | Method and device for determining current of permanent magnet synchronous motor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |