CN113131031B - A method of recycling waste batteries to prepare ultra-low mercury catalyst - Google Patents
A method of recycling waste batteries to prepare ultra-low mercury catalyst Download PDFInfo
- Publication number
- CN113131031B CN113131031B CN202110387829.1A CN202110387829A CN113131031B CN 113131031 B CN113131031 B CN 113131031B CN 202110387829 A CN202110387829 A CN 202110387829A CN 113131031 B CN113131031 B CN 113131031B
- Authority
- CN
- China
- Prior art keywords
- chloride
- ultra
- waste batteries
- mercury
- cadmium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 claims abstract description 61
- 229910052753 mercury Inorganic materials 0.000 claims abstract description 61
- 239000003054 catalyst Substances 0.000 claims abstract description 49
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 47
- 239000010926 waste battery Substances 0.000 claims abstract description 44
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims abstract description 36
- 239000000843 powder Substances 0.000 claims abstract description 36
- 238000000034 method Methods 0.000 claims abstract description 34
- 238000004064 recycling Methods 0.000 claims abstract description 30
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 claims abstract description 28
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 24
- 229910052793 cadmium Inorganic materials 0.000 claims abstract description 24
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 claims abstract description 24
- 229910052802 copper Inorganic materials 0.000 claims abstract description 24
- 239000010949 copper Substances 0.000 claims abstract description 24
- 229910017052 cobalt Inorganic materials 0.000 claims abstract description 23
- 239000010941 cobalt Substances 0.000 claims abstract description 23
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims abstract description 23
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims abstract description 23
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 23
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims abstract description 22
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 22
- 239000011701 zinc Substances 0.000 claims abstract description 22
- 239000000284 extract Substances 0.000 claims abstract description 18
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 14
- 238000003756 stirring Methods 0.000 claims description 25
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims description 20
- 238000000605 extraction Methods 0.000 claims description 14
- 239000007788 liquid Substances 0.000 claims description 13
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 claims description 12
- YKYOUMDCQGMQQO-UHFFFAOYSA-L cadmium dichloride Chemical compound Cl[Cd]Cl YKYOUMDCQGMQQO-UHFFFAOYSA-L 0.000 claims description 12
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 claims description 12
- ORTQZVOHEJQUHG-UHFFFAOYSA-L copper(II) chloride Chemical compound Cl[Cu]Cl ORTQZVOHEJQUHG-UHFFFAOYSA-L 0.000 claims description 10
- 229910021380 Manganese Chloride Inorganic materials 0.000 claims description 6
- GLFNIEUTAYBVOC-UHFFFAOYSA-L Manganese chloride Chemical compound Cl[Mn]Cl GLFNIEUTAYBVOC-UHFFFAOYSA-L 0.000 claims description 6
- 229910021586 Nickel(II) chloride Inorganic materials 0.000 claims description 6
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 claims description 6
- 229910000019 calcium carbonate Inorganic materials 0.000 claims description 6
- GVPFVAHMJGGAJG-UHFFFAOYSA-L cobalt dichloride Chemical compound [Cl-].[Cl-].[Co+2] GVPFVAHMJGGAJG-UHFFFAOYSA-L 0.000 claims description 6
- 238000001035 drying Methods 0.000 claims description 6
- 239000011565 manganese chloride Substances 0.000 claims description 6
- 235000002867 manganese chloride Nutrition 0.000 claims description 6
- 229940099607 manganese chloride Drugs 0.000 claims description 6
- QMMRZOWCJAIUJA-UHFFFAOYSA-L nickel dichloride Chemical compound Cl[Ni]Cl QMMRZOWCJAIUJA-UHFFFAOYSA-L 0.000 claims description 6
- 238000002791 soaking Methods 0.000 claims description 6
- 239000011592 zinc chloride Substances 0.000 claims description 6
- 235000005074 zinc chloride Nutrition 0.000 claims description 6
- RCTYPNKXASFOBE-UHFFFAOYSA-M chloromercury Chemical group [Hg]Cl RCTYPNKXASFOBE-UHFFFAOYSA-M 0.000 claims description 3
- 239000006228 supernatant Substances 0.000 claims description 2
- 230000001105 regulatory effect Effects 0.000 claims 2
- 229910052751 metal Inorganic materials 0.000 abstract description 15
- 230000015572 biosynthetic process Effects 0.000 abstract description 12
- 238000003786 synthesis reaction Methods 0.000 abstract description 12
- 239000003795 chemical substances by application Substances 0.000 abstract description 6
- 238000006555 catalytic reaction Methods 0.000 abstract 1
- 230000003647 oxidation Effects 0.000 abstract 1
- 238000007254 oxidation reaction Methods 0.000 abstract 1
- 239000002994 raw material Substances 0.000 abstract 1
- 239000002184 metal Substances 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 7
- 239000002699 waste material Substances 0.000 description 7
- 229960002523 mercuric chloride Drugs 0.000 description 5
- LWJROJCJINYWOX-UHFFFAOYSA-L mercury dichloride Chemical compound Cl[Hg]Cl LWJROJCJINYWOX-UHFFFAOYSA-L 0.000 description 5
- 229960001939 zinc chloride Drugs 0.000 description 5
- 229960003280 cupric chloride Drugs 0.000 description 4
- 150000002739 metals Chemical class 0.000 description 4
- 238000011084 recovery Methods 0.000 description 4
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000005997 Calcium carbide Substances 0.000 description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 2
- 239000005977 Ethylene Substances 0.000 description 2
- OJIJEKBXJYRIBZ-UHFFFAOYSA-N cadmium nickel Chemical compound [Ni].[Cd] OJIJEKBXJYRIBZ-UHFFFAOYSA-N 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 239000000706 filtrate Substances 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000005660 chlorination reaction Methods 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 229940079721 copper chloride Drugs 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 1
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 239000002905 metal composite material Substances 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- -1 stirs Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/54—Reclaiming serviceable parts of waste accumulators
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B7/00—Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/84—Recycling of batteries or fuel cells
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Organic Chemistry (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Materials Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Metallurgy (AREA)
- Geology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Processing Of Solid Wastes (AREA)
- Catalysts (AREA)
Abstract
本发明公开了一种回收废旧电池制备超低汞触媒的方法。以拆解废旧电池所得的电池粉为原料,与稀盐酸在氧化的条件下进行萃取,得到萃取液;按重量计,加入调整剂,调整萃取液中的主要元素汞、锌、锰、铜、镉、镍和钴的比例为3‑5∶2‑6∶2‑6∶1‑5∶1‑5∶0.1‑2∶0.1‑2,得调整溶液,加入活性炭浸泡、干燥,制得氯乙烯合成催化用的超低汞触媒。通过对废旧电池中的有价金属元素进行分离,制备得到氯乙烯合成催化剂,实现废旧电池的回收利用。The invention discloses a method for preparing an ultra-low mercury catalyst by recycling waste batteries. The battery powder obtained by dismantling the used batteries is used as the raw material, and extracted with dilute hydrochloric acid under the condition of oxidation to obtain an extract; by weight, an adjusting agent is added to adjust the main elements of mercury, zinc, manganese, copper, and copper in the extract. The ratio of cadmium, nickel and cobalt is 3-5: 2-6: 2-6: 1-5: 1-5: 0.1-2: 0.1-2, to adjust the solution, add activated carbon to soak and dry to obtain vinyl chloride Ultra-low mercury catalyst for synthetic catalysis. By separating the valuable metal elements in the waste battery, the vinyl chloride synthesis catalyst is prepared, and the recycling and utilization of the waste battery is realized.
Description
技术领域technical field
本发明涉及一种回收废旧电池制备超低汞触媒的方法,属于废旧电池回收利用技术领域。The invention relates to a method for recycling waste batteries to prepare ultra-low mercury catalysts, and belongs to the technical field of waste battery recycling.
背景技术Background technique
中国是全球最大的电池生产和消费大国,一次电池的产量已远超过美国和日本,位居全球第一;二次电池产量也仅居日本和韩国之后,位居世界第三。2011年我国电池产量约达到372.66亿只,其中一次电池341.6亿只,二次电池(铅酸电池1.4亿只,锂离子电池29.66亿只)。随着智能手机、数码相机、新能源汽车等行业对二次电池的广泛应用和技术更新,必然产生废旧的电池,因此废旧电池的回收循环利用显得尤为重要。China is the world's largest battery producer and consumer. The output of primary batteries has far surpassed that of the United States and Japan, ranking first in the world; the output of secondary batteries is also ranked third in the world after Japan and South Korea. In 2011, my country's battery output reached about 37.266 billion, including 34.16 billion primary batteries and secondary batteries (140 million lead-acid batteries and 2.966 billion lithium-ion batteries). With the wide application and technological update of secondary batteries in industries such as smart phones, digital cameras, and new energy vehicles, waste batteries will inevitably be generated. Therefore, the recycling of waste batteries is particularly important.
目前对废旧电池的回收利用,通常是焙烧、还原其中的单质有价金属,如中国专利CN103031441B的废旧镍氢电池中金属元素回收方法,该废旧镍氢电池中金属元素回收方法包括还原焙烧、回收稀土元素、回收锰、回收镍和钴等步骤。中国专利CN101451246B公开了一种废镍镉电池中的金属的回收方法,该方法包括将由除去废镍镉电池中的有机物质后得到的废渣与一种能使废渣中的金属充分溶解成离子状态的溶液接触,以使废渣中的金属以离子形式存在;然后过滤得到滤液,其中,该方法还包括将所述滤液在电流密度为80-120A/m2、pH值为2以下的条件下进行电解,得到金属镉。对于废旧电池的回收,存在有价金属回收单一,利用率不足,成本较高等问题。At present, the recycling of waste batteries is usually roasting and reducing the elemental valuable metals therein, such as the method for recovering metal elements in waste nickel-hydrogen batteries of Chinese patent CN103031441B. The method for recovering metal elements in waste nickel-hydrogen batteries includes reduction roasting, recycling Rare earth elements, recovery of manganese, recovery of nickel and cobalt, etc. Chinese patent CN101451246B discloses a method for recovering metals in waste nickel-cadmium batteries. The method comprises combining waste residues obtained by removing organic substances in waste nickel-cadmium batteries with a metal that can fully dissolve metals in waste residues into ionic states. contacting the solution so that the metal in the waste residue exists in the form of ions; then filtering to obtain a filtrate, wherein the method further comprises electrolyzing the filtrate under the condition that the current density is 80-120A/m , and the pH value is below 2, Get metal cadmium. For the recycling of used batteries, there are problems such as single recovery of valuable metals, insufficient utilization rate and high cost.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于,提供一种回收废旧电池制备超低汞触媒的方法。通过对废旧电池中的有价金属元素进行分离,制备得到氯乙烯合成催化剂,实现废旧电池的回收利用。The purpose of the present invention is to provide a method for recycling waste batteries to prepare ultra-low mercury catalysts. By separating the valuable metal elements in the waste battery, the vinyl chloride synthesis catalyst is prepared, and the recycling and utilization of the waste battery is realized.
本发明的技术方案:Technical scheme of the present invention:
一种回收废旧电池制备超低汞触媒的方法,以拆解废旧电池所得的电池粉中萃取分离有价元素,制备氯乙烯合成超低汞触媒,包括以下步骤:A method for recycling waste batteries to prepare ultra-low mercury catalysts, extracting and separating valuable elements from battery powder obtained by dismantling waste batteries, and preparing vinyl chloride synthesis ultra-low mercury catalysts, comprising the following steps:
S1、将拆解废旧电池所得的电池粉与稀盐酸进行搅拌、萃取,取萃取液;S1, stirring and extracting the battery powder obtained from dismantling the waste battery and dilute hydrochloric acid, and taking the extract;
S2、所述萃取液进行过滤分离后,分析萃取液中的汞、锌、锰、铜、镉、镍和钴含量,按重量计,加入调整剂,调整萃取液中的汞、锌、锰、铜、镉、镍和钴的比例为3-5∶2-6∶2-6∶1-5∶1-5∶0.1-2∶0.1-2,得调整溶液;S2, after the extraction liquid is filtered and separated, analyze the mercury, zinc, manganese, copper, cadmium, nickel and cobalt content in the extraction liquid, add a regulator by weight, adjust the mercury, zinc, manganese, The ratio of copper, cadmium, nickel and cobalt is 3-5:2-6:2-6:1-5:1-5:0.1-2:0.1-2, and the solution must be adjusted;
S3、所述调整溶液加入活性炭浸泡、干燥,制得超低汞触媒催化剂。S3, adding activated carbon to the adjustment solution for soaking and drying to obtain an ultra-low mercury catalyst.
前述的回收废旧电池制备超低汞触媒的方法,所述步骤s1为电池粉与稀盐酸加入搅拌槽中,在40℃-70℃下,滴加双氧水搅拌反应20-120分钟,盐酸浓度0.3-1mol/L,至电池粉不再溶解为止,取上清液,加碳酸钙粉去除硫酸根离子后得萃取液。The aforementioned method of recycling waste batteries to prepare ultra-low mercury catalyst, the step s1 is to add battery powder and dilute hydrochloric acid into a stirring tank, and at 40°C-70°C, dropwise add hydrogen peroxide to stir and react for 20-120 minutes, and the concentration of hydrochloric acid is 0.3- 1mol/L, until the battery powder is no longer dissolved, take the supernatant, add calcium carbonate powder to remove sulfate ions, and obtain an extract.
前述的回收废旧电池制备超低汞触媒的方法,所述步骤s1为电池粉与稀盐酸加入搅拌槽中,在50℃-60℃下,滴加双氧水搅拌反应40-100分钟,盐酸浓度0.5-0.8mol/L。The aforementioned method of recycling waste batteries to prepare an ultra-low mercury catalyst, the step s1 is to add battery powder and dilute hydrochloric acid into a stirring tank, and at 50°C-60°C, dropwise add hydrogen peroxide to stir and react for 40-100 minutes, and the concentration of hydrochloric acid is 0.5-100 minutes. 0.8mol/L.
前述的回收废旧电池制备超低汞触媒的方法,所述的调整剂为氯化汞、氯化锌、氯化锰、氯化铜、氯化镉、氯化镍和氯化钴。In the aforementioned method of recycling waste batteries to prepare an ultra-low mercury catalyst, the adjusting agents are mercuric chloride, zinc chloride, manganese chloride, copper chloride, cadmium chloride, nickel chloride and cobalt chloride.
前述的回收废旧电池制备超低汞触媒的方法,所述调整溶液中的汞、锌、锰、铜、镉、镍和钴的比例为3-4∶3-5∶3-5∶2-4∶2-4∶0.5-1.5∶0.5-1.5。Aforesaid method for preparing ultra-low mercury catalyst by recycling waste batteries, the ratio of mercury, zinc, manganese, copper, cadmium, nickel and cobalt in the adjustment solution is 3-4:3-5:3-5:2-4 : 2-4: 0.5-1.5: 0.5-1.5.
前述的回收废旧电池制备超低汞触媒的方法,所述调整溶液中的汞、锌、锰、铜、镉、镍和钴的比例为4∶5∶5∶3∶3∶1∶1。In the aforementioned method for preparing an ultra-low mercury catalyst by recycling waste batteries, the ratio of mercury, zinc, manganese, copper, cadmium, nickel and cobalt in the adjustment solution is 4:5:5:3:3:1:1.
有益效果:Beneficial effects:
现行拆解回收废旧电池所得的电池粉中,含:Mn 10-12%;Ni 32-35%;Co10-20%;此外还含有铜、镉、汞等重金属元素和其它杂质元素。回收单一金属的回收成本非常高,不经济。申请人前期研究发现:回收废旧电池里面的金属元素经氯化萃取后,可以用来制备氯乙烯合成用的超低汞触媒催化剂。The current battery powder obtained by dismantling and recycling waste batteries contains: Mn 10-12%; Ni 32-35%; Co10-20%; in addition, it also contains copper, cadmium, mercury and other heavy metal elements and other impurity elements. The cost of recycling a single metal is very high and not economical. The applicant's previous research found that the metal elements in the recycled waste batteries can be used to prepare ultra-low mercury catalysts for the synthesis of vinyl chloride after chlorination and extraction.
氯乙烯是世界五大合成树脂之一聚氯乙烯(PVC)的单体,主要由电石乙炔法和石油乙烯法工艺生产。中国的能源结构“富煤、贫油、少气”,决定了在未来相当长时间内,电石乙炔法将继续是我国氯乙烯生产的主要工艺,即氯化汞催化乙炔和氯化氢反应生成氯乙烯。受国际限汞公约限制,需要研发新的高效的超低汞触媒催化剂替代传统氯化汞触媒催化剂。Vinyl chloride is the monomer of polyvinyl chloride (PVC), one of the five major synthetic resins in the world, and is mainly produced by the calcium carbide acetylene method and the petroleum ethylene method. China's energy structure is "rich in coal, lean in oil, and less in gas", which determines that for a long time in the future, the calcium carbide acetylene process will continue to be the main process for the production of vinyl chloride in my country, that is, mercury chloride catalyzes the reaction of acetylene and hydrogen chloride to generate vinyl chloride . Restricted by the International Convention on the Limitation of Mercury, it is necessary to develop new and efficient ultra-low mercury catalysts to replace traditional mercury chloride catalysts.
经申请人研究发现,拆解回收废旧电池所得的电池粉中的金属元素可以用于制备多金属复合的超低汞触媒,用于氯乙烯催化剂,但不同厂家、批次回收的电池粉,各种元素含量还有一定差异性,因此本发明将电池粉和稀盐酸混合,滴加双氧水搅拌、萃取得到含汞、锌、锰、铜、镉、镍和钴的金属离子萃取液,根据萃取液中各离子含量,加入调整剂,调整萃取液中的汞、锌、锰、铜、镉、镍和钴的比例,制备得到超低汞触媒催化剂,可用于氯乙烯合成。The applicant's research found that the metal elements in the battery powder obtained by dismantling and recycling waste batteries can be used to prepare multi-metal composite ultra-low mercury catalysts for vinyl chloride catalysts. There is also a certain difference in the content of each element, so the present invention mixes battery powder and dilute hydrochloric acid, adds hydrogen peroxide, stirs, and extracts to obtain a metal ion extract containing mercury, zinc, manganese, copper, cadmium, nickel and cobalt. The content of each ion in the extract is adjusted by adding a regulator to adjust the ratio of mercury, zinc, manganese, copper, cadmium, nickel and cobalt in the extract to prepare an ultra-low mercury catalyst catalyst, which can be used for vinyl chloride synthesis.
为进一步证明本发明制备的催化剂的催化效果,发明人用所述的汞、锌、锰、铜、镉、镍和钴的比例为4∶5∶5∶3∶3∶1∶1调整溶液,制备了一批5吨超低汞触媒催化剂,在内蒙宜化化工有限公司66#转化器上试验(表1实施例2),用其它比例的调整溶液,制备了10吨超低汞触媒催化剂,在内蒙宜化化工有限公司56#、68#转化器上试验(表1实施例1、3)结果表明:本发明用拆解电池所得的电池粉制备的氯乙烯合成催化剂,合成氯乙烯时,反应温度110-150℃,收率65-98%,氯乙烯纯度96.7-97.2%,氯乙烯的选择性达96-100%;氯乙烯粗产品经精馏后纯度达99.99V/%。能够满足氯乙烯的生产要求。In order to further prove the catalytic effect of the catalyst prepared by the present invention, the inventor adjusted the solution with the ratio of mercury, zinc, manganese, copper, cadmium, nickel and cobalt as 4:5:5:3:3:1:1, A batch of 5 tons of ultra-low mercury catalysts was prepared, which was tested on the 66# converter of Inner Mongolia Yihua Chemical Co., Ltd. (Example 2 in Table 1), and 10 tons of ultra-low mercury catalysts were prepared with other ratios of adjustment solutions, The results of tests on 56# and 68# converters of Inner Mongolia Yihua Chemical Co., Ltd. (Examples 1 and 3 in Table 1) show that: the vinyl chloride synthesis catalyst prepared by the battery powder obtained by disassembling the battery of the present invention, when synthesizing vinyl chloride, The reaction temperature is 110-150°C, the yield is 65-98%, the purity of vinyl chloride is 96.7-97.2%, and the selectivity of vinyl chloride is 96-100%; the purity of the crude vinyl chloride product after rectification reaches 99.99V/%. It can meet the production requirements of vinyl chloride.
表1氯乙烯合成试验的检测结果The detection result of table 1 vinyl chloride synthesis test
通过对表1氯乙烯合成试验结果分析可知,本发明回收废旧电池制备的超低汞触媒生产氯乙烯,反应温度110-150℃,收率65-98%,氯乙烯纯度96.7-97.2%,氯乙烯的选择性达96-100%;氯乙烯粗产品经精馏后纯度达99.99V/%。能够满足氯乙烯的生产要求。Through the analysis of the results of the vinyl chloride synthesis test in Table 1, it can be seen that the ultra-low mercury catalyst prepared by recycling waste batteries in the present invention produces vinyl chloride, the reaction temperature is 110-150 ° C, the yield is 65-98%, the purity of vinyl chloride is 96.7-97.2%, the chlorine The selectivity of ethylene reaches 96-100%; the purity of the crude vinyl chloride product after rectification reaches 99.99V/%. It can meet the production requirements of vinyl chloride.
本发明的技术方案,提出了电池粉制备氯乙烯催化剂的工艺方法,以及催化效率高的催化剂配比。实现了电池粉中金属元素的综合回收高效利用。The technical scheme of the present invention proposes a process method for preparing vinyl chloride catalyst from battery powder, and a catalyst ratio with high catalytic efficiency. The comprehensive recovery and efficient utilization of metal elements in battery powder are realized.
具体实施方式Detailed ways
下面结合实施例对本发明作进一步的说明,但并不作为对本发明限制的依据。对于未特别注明的结构或工艺,均为本领域的常规现有技术。The present invention will be further described below in conjunction with the examples, but not as a basis for limiting the present invention. For structures or processes that are not specified in particular, they are all conventional prior art in the art.
实施例:回收废旧电池制备超低汞触媒的方法,以拆解废旧电池所得的电池粉中萃取分离有价元素,制备氯乙烯合成超低汞触媒,包括以下步骤:Embodiment: The method for reclaiming waste battery to prepare ultra-low mercury catalyst, to extract and separate valuable elements from the battery powder obtained by dismantling the waste battery, to prepare vinyl chloride synthesis ultra-low mercury catalyst, comprising the following steps:
S1、将拆解废旧电池所得的电池粉与稀盐酸进行搅拌、萃取,取萃取液;S1, stirring and extracting the battery powder obtained from dismantling the waste battery and dilute hydrochloric acid, and taking the extract;
S2、所述萃取液进行过滤分离后,分析萃取液中的汞、锌、锰、铜、镉、镍和钴含量,按重量计,加入调整剂,调整萃取液中的汞、锌、锰、铜、镉、镍和钴的比例为3-5∶2-6∶2-6∶1-5∶1-5∶0.1-2∶0.1-2,得调整溶液;S2, after the extraction liquid is filtered and separated, analyze the mercury, zinc, manganese, copper, cadmium, nickel and cobalt content in the extraction liquid, add a regulator by weight, adjust the mercury, zinc, manganese, The ratio of copper, cadmium, nickel and cobalt is 3-5:2-6:2-6:1-5:1-5:0.1-2:0.1-2, and the solution must be adjusted;
S3、所述调整溶液加入活性炭浸泡、干燥,制得超低汞触媒催化剂。S3, adding activated carbon to the adjustment solution for soaking and drying to obtain an ultra-low mercury catalyst.
所述步骤s1为电池粉与稀盐酸加入搅拌槽中,在40℃-70℃下,滴加双氧水搅拌反应20-120分钟,盐酸浓度0.3-1mol/L,加碳酸钙粉去除硫酸根离子后得萃取液。In the step s1, the battery powder and dilute hydrochloric acid are added into the stirring tank, and at 40°C-70°C, hydrogen peroxide is added dropwise for a stirring reaction for 20-120 minutes, the concentration of hydrochloric acid is 0.3-1mol/L, and calcium carbonate powder is added to remove sulfate ions. Get the extract.
所述步骤s1为电池粉与稀盐酸加入搅拌槽中,在50℃-60℃下,滴加双氧水搅拌反应40-100分钟,盐酸浓度0.5-0.8mol/L。The step s1 is to add battery powder and dilute hydrochloric acid into a stirring tank, and at 50°C-60°C, dropwise add hydrogen peroxide for stirring reaction for 40-100 minutes, and the concentration of hydrochloric acid is 0.5-0.8 mol/L.
所述的调整剂为氯化汞、氯化锌、氯化锰、氯化铜、氯化镉、氯化镍和氯化钴。The adjusting agents are mercuric chloride, zinc chloride, manganese chloride, cupric chloride, cadmium chloride, nickel chloride and cobalt chloride.
更好的是,所述调整溶液中的汞、锌、锰、铜、镉、镍和钴的比例为3-4∶3-5∶3-5∶2-4∶2-4∶0.5-1.5∶0.5-1.5。所述调整溶液中的汞、锌、锰、铜、镉、镍和钴的最佳比例为4∶5∶5∶3∶3∶1∶1。Preferably, the ratio of mercury, zinc, manganese, copper, cadmium, nickel and cobalt in the adjustment solution is 3-4:3-5:3-5:2-4:2-4:0.5-1.5 : 0.5-1.5. The optimum ratio of mercury, zinc, manganese, copper, cadmium, nickel and cobalt in the adjustment solution is 4:5:5:3:3:1:1.
下面结合具体情况提供下面实施例The following embodiments are provided below in conjunction with specific circumstances
实施例1。Example 1.
一种回收废旧电池制备超低汞触媒的方法,以拆解废旧电池所得的电池粉中萃取分离有价元素,制备氯乙烯合成超低汞触媒,包括以下步骤:A method for recycling waste batteries to prepare ultra-low mercury catalysts, extracting and separating valuable elements from battery powder obtained by dismantling waste batteries, and preparing vinyl chloride synthesis ultra-low mercury catalysts, comprising the following steps:
S1、将拆解废旧电池所得的电池粉与稀盐酸进行搅拌、萃取,取萃取液;S1, stirring and extracting the battery powder obtained from dismantling the waste battery and dilute hydrochloric acid, and taking the extract;
S2、所述萃取液进行过滤分离后,分析萃取液中的汞、锌、锰、铜、镉、镍和钴含量,按重量计,加入调整剂,调整萃取液中的汞、锌、锰、铜、镉、镍和钴的比例为4∶2∶2∶1∶1∶0.1∶0.1,得调整溶液;S2, after the extraction liquid is filtered and separated, analyze the mercury, zinc, manganese, copper, cadmium, nickel and cobalt content in the extraction liquid, add a regulator by weight, adjust the mercury, zinc, manganese, The ratio of copper, cadmium, nickel and cobalt is 4:2:2:1:1:0.1:0.1, and the solution must be adjusted;
S3、所述调整溶液加入活性炭浸泡、干燥,制得催化剂。S3, adding activated carbon to the adjustment solution for soaking and drying to obtain a catalyst.
所述步骤s1为电池粉与稀盐酸加入搅拌槽中,在50℃-60℃下,滴加双氧水搅拌反应40-100分钟,盐酸浓度0.5-0.8mol/L。加碳酸钙粉去除硫酸根离子后得萃取液。The step s1 is to add battery powder and dilute hydrochloric acid into a stirring tank, and at 50°C-60°C, dropwise add hydrogen peroxide for stirring reaction for 40-100 minutes, and the concentration of hydrochloric acid is 0.5-0.8 mol/L. Add calcium carbonate powder to remove sulfate ions to obtain an extract.
所述的调整剂为氯化汞、氯化锌、氯化锰、氯化铜、氯化镉、氯化镍和氯化钴。The adjusting agents are mercuric chloride, zinc chloride, manganese chloride, cupric chloride, cadmium chloride, nickel chloride and cobalt chloride.
实施例2。Example 2.
一种回收废旧电池制备超低汞触媒的方法,以拆解废旧电池所得的电池粉中萃取分离有价元素,制备氯乙烯合成超低汞触媒,包括以下步骤:A method for recycling waste batteries to prepare ultra-low mercury catalysts, extracting and separating valuable elements from battery powder obtained by dismantling waste batteries, and preparing vinyl chloride synthesis ultra-low mercury catalysts, comprising the following steps:
S1、将拆解废旧电池所得的电池粉与稀盐酸进行搅拌、萃取,取萃取液;S1, stirring and extracting the battery powder obtained from dismantling the waste battery and dilute hydrochloric acid, and taking the extract;
S2、所述萃取液进行过滤分离后,分析萃取液中的汞、锌、锰、铜、镉、镍和钴含量,按重量计,加入调整剂,调整萃取液中的汞、锌、锰、铜、镉、镍和钴的比例为4∶5∶5∶3∶3∶1∶1,得调整溶液;S2, after the extraction liquid is filtered and separated, analyze the mercury, zinc, manganese, copper, cadmium, nickel and cobalt content in the extraction liquid, add a regulator by weight, adjust the mercury, zinc, manganese, The ratio of copper, cadmium, nickel and cobalt is 4:5:5:3:3:1:1, and the solution must be adjusted;
S3、所述调整溶液加入活性炭浸泡、干燥,制得催化剂。S3, adding activated carbon to the adjustment solution for soaking and drying to obtain a catalyst.
前述的回收废旧电池制备超低汞触媒的方法,所述步骤s1为电池粉与稀盐酸加入搅拌槽中,在60℃下,滴加双氧水搅拌反应70分钟,盐酸浓度0.7mol/L。加碳酸钙粉去除硫酸根离子后得萃取液。In the aforementioned method of recycling waste batteries to prepare ultra-low mercury catalyst, the step s1 is to add battery powder and dilute hydrochloric acid into a stirring tank, and at 60°C, dropwise add hydrogen peroxide to stir and react for 70 minutes, and the concentration of hydrochloric acid is 0.7mol/L. Add calcium carbonate powder to remove sulfate ions to obtain an extract.
所述的调整剂为氯化汞、氯化锌、氯化锰、氯化铜、氯化镉、氯化镍和氯化钴。The adjusting agents are mercuric chloride, zinc chloride, manganese chloride, cupric chloride, cadmium chloride, nickel chloride and cobalt chloride.
实施例3。Example 3.
一种回收废旧电池制备超低汞触媒的方法,以拆解废旧电池所得的电池粉中萃取分离有价元素,制备氯乙烯合成超低汞触媒,包括以下步骤:A method for recycling waste batteries to prepare ultra-low mercury catalysts, extracting and separating valuable elements from battery powder obtained by dismantling waste batteries, and preparing vinyl chloride synthesis ultra-low mercury catalysts, comprising the following steps:
S1、将拆解废旧电池所得的电池粉与稀盐酸进行搅拌、萃取,取萃取液;S1, stirring and extracting the battery powder obtained from dismantling the waste battery and dilute hydrochloric acid, and taking the extract;
S2、所述萃取液进行过滤分离后,分析萃取液中的汞、锌、锰、铜、镉、镍和钴含量,按重量计,加入调整剂,调整萃取液中的汞、锌、锰、铜、镉、镍和钴的比例为3∶6∶6∶5∶5∶1∶1,得调整溶液;S2, after the extraction liquid is filtered and separated, analyze the mercury, zinc, manganese, copper, cadmium, nickel and cobalt content in the extraction liquid, add a regulator by weight, adjust the mercury, zinc, manganese, The ratio of copper, cadmium, nickel and cobalt is 3:6:6:5:5:1:1, and the solution must be adjusted;
S3、所述调整溶液加入活性炭浸泡、干燥,制得催化剂。S3, adding activated carbon to the adjustment solution for soaking and drying to obtain a catalyst.
所述步骤s1为电池粉与稀盐酸加入搅拌槽中,在60℃下,滴加双氧水搅拌反应80分钟,盐酸浓度0.6mol/L。加碳酸钙粉去除硫酸根离子后得萃取液。In the step s1, the battery powder and dilute hydrochloric acid are added to the stirring tank, and at 60° C., hydrogen peroxide is added dropwise for a stirring reaction for 80 minutes, and the concentration of hydrochloric acid is 0.6 mol/L. Add calcium carbonate powder to remove sulfate ions to obtain an extract.
所述的调整剂为氯化汞、氯化锌、氯化锰、氯化铜、氯化镉、氯化镍和氯化钴。The adjusting agents are mercuric chloride, zinc chloride, manganese chloride, cupric chloride, cadmium chloride, nickel chloride and cobalt chloride.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110387829.1A CN113131031B (en) | 2021-04-09 | 2021-04-09 | A method of recycling waste batteries to prepare ultra-low mercury catalyst |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110387829.1A CN113131031B (en) | 2021-04-09 | 2021-04-09 | A method of recycling waste batteries to prepare ultra-low mercury catalyst |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113131031A CN113131031A (en) | 2021-07-16 |
CN113131031B true CN113131031B (en) | 2022-07-15 |
Family
ID=76775890
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110387829.1A Active CN113131031B (en) | 2021-04-09 | 2021-04-09 | A method of recycling waste batteries to prepare ultra-low mercury catalyst |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113131031B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115739108B (en) * | 2022-12-05 | 2023-06-06 | 广东省科学院生态环境与土壤研究所 | Resource utilization method of waste lithium ion battery |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN86104831A (en) * | 1986-07-19 | 1988-05-04 | 浙江工学院 | Produce the hydrogen-chlorine fuel cell of hydrochloric acid and recovering electric energy |
US6994930B1 (en) * | 2002-08-21 | 2006-02-07 | The United States Of America As Represented By The United States Department Of Energy | Direct fired reciprocating engine and bottoming high temperature fuel cell hybrid |
CN102441409A (en) * | 2011-11-25 | 2012-05-09 | 贵州大学 | Composite low-mercury catalyst for synthesizing chloroethylene |
CN102489306A (en) * | 2011-11-25 | 2012-06-13 | 贵州大学 | Low-mercury catalyst for synthesizing vinyl chloride |
CN105032455A (en) * | 2015-08-05 | 2015-11-11 | 新疆兵团现代绿色氯碱化工工程研究中心(有限公司) | Ultralow-mercury catalyst used for acetylene hydrochlorination |
CN108855095A (en) * | 2018-02-08 | 2018-11-23 | 贵州理工学院 | Methane reforming multicore shell hollow type catalyst nickel-nisiloy hydrochlorate-SiO2Preparation method |
CN109097583A (en) * | 2018-08-22 | 2018-12-28 | 昆明理工大学 | A kind of method that clean and effective recycles useless low mercury catalyst |
CN109897964A (en) * | 2019-03-22 | 2019-06-18 | 宁波行殊新能源科技有限公司 | Manganese-containing material recovery and regeneration method |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2931706B1 (en) * | 2008-05-28 | 2010-12-24 | Inst Francais Du Petrole | CATALYST BASED ON CRYSTALLIZED MATERIAL COMPRISING HIERARCHISED AND ORGANIZED POROSITY SILICON AND IMPROVED PROCESS FOR TREATING HYDROCARBON LOADS |
US20160045841A1 (en) * | 2013-03-15 | 2016-02-18 | Transtar Group, Ltd. | New and improved system for processing various chemicals and materials |
-
2021
- 2021-04-09 CN CN202110387829.1A patent/CN113131031B/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN86104831A (en) * | 1986-07-19 | 1988-05-04 | 浙江工学院 | Produce the hydrogen-chlorine fuel cell of hydrochloric acid and recovering electric energy |
US6994930B1 (en) * | 2002-08-21 | 2006-02-07 | The United States Of America As Represented By The United States Department Of Energy | Direct fired reciprocating engine and bottoming high temperature fuel cell hybrid |
CN102441409A (en) * | 2011-11-25 | 2012-05-09 | 贵州大学 | Composite low-mercury catalyst for synthesizing chloroethylene |
CN102489306A (en) * | 2011-11-25 | 2012-06-13 | 贵州大学 | Low-mercury catalyst for synthesizing vinyl chloride |
CN105032455A (en) * | 2015-08-05 | 2015-11-11 | 新疆兵团现代绿色氯碱化工工程研究中心(有限公司) | Ultralow-mercury catalyst used for acetylene hydrochlorination |
CN108855095A (en) * | 2018-02-08 | 2018-11-23 | 贵州理工学院 | Methane reforming multicore shell hollow type catalyst nickel-nisiloy hydrochlorate-SiO2Preparation method |
CN109097583A (en) * | 2018-08-22 | 2018-12-28 | 昆明理工大学 | A kind of method that clean and effective recycles useless low mercury catalyst |
CN109897964A (en) * | 2019-03-22 | 2019-06-18 | 宁波行殊新能源科技有限公司 | Manganese-containing material recovery and regeneration method |
Also Published As
Publication number | Publication date |
---|---|
CN113131031A (en) | 2021-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110835682B (en) | Method for cooperatively treating positive and negative active materials of waste lithium ion battery | |
CN108559846B (en) | Method for comprehensively recovering anode material of waste lithium ion battery | |
CN113772649A (en) | A method for preparing battery-grade iron phosphate by recycling and regenerating waste lithium iron phosphate cathode powder | |
CN113802002B (en) | Method for recovering valuable metals in lithium battery by wet process | |
CN110669933B (en) | Method for removing fluorine in nickel-cobalt-manganese solution | |
US11952289B2 (en) | Method for preparing nickel sulfate from nickel-iron-copper alloy | |
KR20170061206A (en) | Collection method of precursor material using disposed lithum-ion battery | |
CN111304441A (en) | Method for removing impurities from waste battery leachate | |
CN115627346B (en) | A method for recycling waste lithium battery positive electrode material | |
KR101997983B1 (en) | A Preparing Method Of Nickel-Cobalt-Manganese Complex Sulphate Solution Having Low Concentration Of Calcium Ion By Recycling A Wasted Lithium Secondary Battery Cathode Material | |
CN113249574A (en) | Method for recovering aluminum in waste positive plate by utilizing selective leaching and application thereof | |
CN109797294A (en) | The method of nickel, cobalt is recycled in a kind of magnesium water | |
CN113131031B (en) | A method of recycling waste batteries to prepare ultra-low mercury catalyst | |
CN113528824A (en) | Method for recovering elemental copper from waste lithium ion battery powder and application | |
CN113122725A (en) | Method for improving metal recovery rate and purity of waste lithium battery | |
CN115072688B (en) | Method for recycling all components of waste lithium iron phosphate battery | |
CN113086996A (en) | Recycling method of waste ternary fluorine-doped battery positive electrode material | |
CN110541070B (en) | Method for comprehensively extracting valuable metals from white alloy | |
CN110735039A (en) | Electrolytic manganese metal anode mud treatment method | |
CN110540252A (en) | method for preparing battery-grade cobalt sulfate and high-purity germanium dioxide from white alloy | |
CN110684900B (en) | Method for improving manganese leaching rate in low-grade manganese ore | |
CN115571925B (en) | Method for recycling and preparing lithium carbonate and ternary precursor from waste lithium batteries | |
TWI705142B (en) | Method for recycling silver and tantalum from waste tantalum capacitors | |
CN114438334A (en) | Green cobalt slag recovery process | |
CN113101943A (en) | A kind of method for preparing acetylene hydrochlorination catalyst with electrozinc purification residue |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |