[go: up one dir, main page]

CN113130890B - A lithium ion battery - Google Patents

A lithium ion battery Download PDF

Info

Publication number
CN113130890B
CN113130890B CN201911411859.0A CN201911411859A CN113130890B CN 113130890 B CN113130890 B CN 113130890B CN 201911411859 A CN201911411859 A CN 201911411859A CN 113130890 B CN113130890 B CN 113130890B
Authority
CN
China
Prior art keywords
carbonate
lithium
cyclic carbonate
ion battery
aqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911411859.0A
Other languages
Chinese (zh)
Other versions
CN113130890A (en
Inventor
邓永红
艾关杰
林木崇
钱韫娴
胡时光
王勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jingmen Xinzhoubang New Materials Co ltd
Original Assignee
Shenzhen Capchem Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Capchem Technology Co Ltd filed Critical Shenzhen Capchem Technology Co Ltd
Priority to CN201911411859.0A priority Critical patent/CN113130890B/en
Priority to PCT/CN2020/136344 priority patent/WO2021135921A1/en
Publication of CN113130890A publication Critical patent/CN113130890A/en
Application granted granted Critical
Publication of CN113130890B publication Critical patent/CN113130890B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)

Abstract

本发明属于新能源技术领域,特别是涉及一种锂离子电池。所述锂离子电池包括正极、负极、隔膜以及非水电解液,所述正极包括正极活性材料,所述正极活性材料中包含锂钴氧化物;所述非水电解液包括第一环状碳酸酯和不同于所述第一环状碳酸酯的第二环状碳酸酯;所述第一环状碳酸酯为氟代环状碳酸酯;所述第一环状碳酸酯的重量百分数为12%~22%,所述第二环状碳酸酯的重量百分数小于等于2%。其中,第二环状碳酸酯的含量降到了较低的水平,使得电解液被氧化产气的副反应程度大幅降低,减少电池产气,第一环状碳酸酯作为电解液中的高介电常数溶剂使用,具有比第二环状碳酸酯更好的负极成膜作用,能保证较好的循环性能。The invention belongs to the technical field of new energy, and in particular relates to a lithium ion battery. The lithium-ion battery comprises a positive pole, a negative pole, a separator and a non-aqueous electrolyte, the positive pole comprises a positive active material, and the positive active material comprises lithium cobalt oxide; the non-aqueous electrolyte comprises the first cyclic carbonate and a second cyclic carbonate different from the first cyclic carbonate; the first cyclic carbonate is a fluorinated cyclic carbonate; the weight percentage of the first cyclic carbonate is 12% to 22%, the weight percentage of the second cyclic carbonate is less than or equal to 2%. Among them, the content of the second cyclic carbonate is reduced to a low level, which greatly reduces the degree of side reaction of the electrolyte being oxidized to produce gas, and reduces battery gas production. The first cyclic carbonate acts as a high dielectric in the electrolyte The use of a constant solvent has a better negative electrode film-forming effect than the second cyclic carbonate, and can ensure better cycle performance.

Description

一种锂离子电池A lithium ion battery

技术领域technical field

本发明属于新能源技术领域,特别是涉及一种锂离子电池。The invention belongs to the technical field of new energy sources, and in particular relates to a lithium ion battery.

背景技术Background technique

随着新能源汽车对续航里程的不断提高和3C数码产品轻薄化的不断发展,电池行业越来越要求锂离子电池高能量密度化。设计高能量密度的锂离子电池可以从以下几个方面着手:1)提高正极材料克容量;2)提高电池放电平台;3)提电池中活性材料的比例;提升锂离子电池的充电的截止电压是增大电池能量密度的重要途径之一,因为随着充电截止电压的提高,正极材料可以实现更高的克容量发挥,且放电平台有明显提高,两方面的作用对能量密度的提升具有立竿见影的效果。With the continuous improvement of the cruising range of new energy vehicles and the continuous development of thinner and lighter 3C digital products, the battery industry is increasingly demanding high energy density of lithium-ion batteries. Designing lithium-ion batteries with high energy density can start from the following aspects: 1) increase the gram capacity of positive electrode materials; 2) improve the battery discharge platform; 3) increase the proportion of active materials in the battery; increase the cut-off voltage of lithium-ion batteries It is one of the important ways to increase the energy density of the battery, because with the increase of the charge cut-off voltage, the positive electrode material can achieve a higher gram capacity, and the discharge platform is significantly improved. The effects of the two aspects have an immediate effect on the improvement of the energy density. Effect.

随着电池电压的逐渐提高,正极材料进入更高的脱锂态,材料结构稳定性会变差,且表面的氧化性也明显提高。材料结构的不稳定性及其高氧化性在极片/电解液界面表现地尤其明显,具体表现为:电池发生产气,内阻快速增长,容量急剧下降。电池产气会导致内压增大,更进一步可能会发展为电池的爆炸、燃烧等危险情况,因此高电压电池和电解液需要匹配。As the battery voltage gradually increases, the positive electrode material enters a higher delithiation state, the structural stability of the material will deteriorate, and the oxidation of the surface will also increase significantly. The instability of the material structure and its high oxidation are especially evident at the electrode/electrolyte interface. The specific manifestations are: the battery generates gas, the internal resistance increases rapidly, and the capacity drops sharply. The gas production of the battery will lead to an increase in internal pressure, which may further develop into dangerous situations such as explosion and combustion of the battery. Therefore, high-voltage batteries and electrolytes need to be matched.

公知的,环状的碳酸乙烯酯(EC)由于具有高介电常数能够为电解液提供高电导率,其负极成膜作用的溶剂又能保证电池良好的循环性能,被广泛应用于非水锂二次电池中。然而,EC的耐高电压稳定性较差,容易在高电压正极上被氧化分解产气,导致电池性能衰减。碳酸丙烯酯(PC)具有更好的耐高电压性能及与EC相当的介电常数和更宽的低温液相温度,在锂离子电池中也有广泛的应用,然而PC不能在负极发生成膜反应,过多的PC替代会导致循环性能劣化。氟代碳酸乙烯酯(FEC)由于其具有较高的分解电压和抗氧化性,同时具有较好的成膜特性,目前作为添加剂普遍用于高电压锂离子以保证高电压电池的循环性能。但FEC作为高电压电池的电解液的添加剂时,电解液更容易产气,导致电池在高温存储和高温循环过程中内压增大,电池发生鼓包、胀气、甚至爆炸。It is well known that cyclic ethylene carbonate (EC) can provide high conductivity for the electrolyte due to its high dielectric constant, and its negative electrode film-forming solvent can ensure good cycle performance of the battery, so it is widely used in non-aqueous lithium in the secondary battery. However, the high-voltage stability of EC is poor, and it is easy to be oxidized and decomposed to produce gas on the high-voltage positive electrode, resulting in attenuation of battery performance. Propylene carbonate (PC) has better high voltage resistance, a dielectric constant comparable to EC, and a wider low-temperature liquidus temperature. It is also widely used in lithium-ion batteries. However, PC cannot produce a film-forming reaction on the negative electrode. , too much PC substitution will lead to degradation of cycle performance. Fluoroethylene carbonate (FEC) is currently widely used as an additive in high-voltage lithium-ion to ensure the cycle performance of high-voltage batteries due to its high decomposition voltage and oxidation resistance, as well as good film-forming properties. However, when FEC is used as an additive to the electrolyte of a high-voltage battery, the electrolyte is more likely to generate gas, which leads to an increase in the internal pressure of the battery during high-temperature storage and high-temperature cycling, and the battery bulges, swells, and even explodes.

发明内容Contents of the invention

本发明所要解决的技术问题是:针对现有的高电压锂离子电池高温存储和高温循环过程中产气的问题,提供一种锂离子电池。The technical problem to be solved by the present invention is to provide a lithium-ion battery for the problem of gas production during high-temperature storage and high-temperature cycle of the existing high-voltage lithium-ion battery.

为解决上述技术问题,本发明实施例提供一种锂离子电池,包括正极、负极、隔膜以及非水电解液,所述正极包括正极活性材料,所述正极活性材料中包含锂钴氧化物;In order to solve the above technical problems, an embodiment of the present invention provides a lithium ion battery, including a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte, the positive electrode includes a positive electrode active material, and the positive electrode active material contains lithium cobalt oxide;

所述非水电解液包括第一环状碳酸酯和不同于所述第一环状碳酸酯的第二环状碳酸酯;The non-aqueous electrolyte includes a first cyclic carbonate and a second cyclic carbonate different from the first cyclic carbonate;

所述第一环状碳酸酯为氟代环状碳酸酯;The first cyclic carbonate is a fluorinated cyclic carbonate;

以所述锂离子电池非水电解液的总重量为100%计,所述第一环状碳酸酯的重量百分数为12%~22%,所述第二环状碳酸酯的重量百分数小于等于2%。Based on the total weight of the non-aqueous electrolyte of the lithium-ion battery as 100%, the weight percentage of the first cyclic carbonate is 12% to 22%, and the weight percentage of the second cyclic carbonate is less than or equal to 2 %.

可选地,所述第一环状碳酸酯包括氟代碳酸乙烯酯;所述第二环状碳酸酯为非氟元素取代或未取代的环状碳酸酯。Optionally, the first cyclic carbonate includes fluoroethylene carbonate; the second cyclic carbonate is a non-fluorine substituted or unsubstituted cyclic carbonate.

可选的,所述未取代的环状碳酸酯为碳原子数为1-10的环状碳酸酯。Optionally, the unsubstituted cyclic carbonate is a cyclic carbonate with 1-10 carbon atoms.

可选的,所述非氟元素取代的环状碳酸酯为氰基、含氧烃基、含硅烃基、烷基、醚基、含硫烃基取代的环状碳酸酯。Optionally, the non-fluorine-substituted cyclic carbonate is a cyclic carbonate substituted by a cyano group, an oxygen-containing hydrocarbon group, a silicon-containing hydrocarbon group, an alkyl group, an ether group, or a sulfur-containing hydrocarbon group.

可选地,所述正极活性材料表面包覆有金属氧化物或内部掺杂有其他元素;所述金属氧化物为氧化镁和/或氧化铝;所述掺杂的元素选自Li、K、Mg、Ca、Al、Cr、Cu、Ni、Ti、Nd、B和P中的一种或多种。Optionally, the surface of the positive electrode active material is coated with metal oxide or doped with other elements inside; the metal oxide is magnesium oxide and/or aluminum oxide; the doped element is selected from Li, K, One or more of Mg, Ca, Al, Cr, Cu, Ni, Ti, Nd, B and P.

可选地,所述锂离子电池充电截止电压为4.35V及以上。Optionally, the charging cut-off voltage of the lithium-ion battery is 4.35V or above.

可选地,以所述锂离子电池非水电解液的总重量为100%计,所述第一环状碳酸酯占非水电解液的重量百分数为14%~20%,所述第二环状碳酸酯占非水电解液的重量百分数为小于等于0.5%。Optionally, based on 100% of the total weight of the lithium-ion battery non-aqueous electrolyte, the weight percentage of the first cyclic carbonate in the non-aqueous electrolyte is 14% to 20%, and the second ring The weight percentage of the carbonic acid ester in the non-aqueous electrolyte solution is less than or equal to 0.5%.

可选地,所述第一环状碳酸酯包括氟代碳酸乙烯酯;所述第二环状碳酸酯为非氟元素取代或未取代的环状碳酸酯。Optionally, the first cyclic carbonate includes fluoroethylene carbonate; the second cyclic carbonate is a non-fluorine substituted or unsubstituted cyclic carbonate.

可选地,所述第二环状碳酸酯包括碳酸亚乙酯、碳酸亚丙酯、碳酸-1,2-亚丁酯、碳酸-2,3-亚丁酯、碳酸-1,2-亚戊酯、碳酸-2,3-亚戊酯中的一种或多种。Optionally, the second cyclic carbonate includes ethylene carbonate, propylene carbonate, 1,2-butylene carbonate, 2,3-butylene carbonate, 1,2-pentylene carbonate , one or more of -2,3-pentylene carbonate.

可选地,所述非水电解液还包括线性碳酸酯和/或羧酸酯,以所述锂离子电池非水电解液的总重量为100%计,所述羧酸酯和/或所述线性碳酸酯占所述非水电解液重量百分数总和为50%~65%。Optionally, the non-aqueous electrolyte also includes linear carbonate and/or carboxylate, and the total weight of the lithium-ion battery non-aqueous electrolyte is 100%, and the carboxylate and/or the The linear carbonate accounts for 50% to 65% of the total weight percentage of the non-aqueous electrolytic solution.

可选地,所述线性碳酸酯包括碳酸二乙酯、碳酸二丙酯、碳酸甲乙酯、碳酸甲丙酯和碳酸乙丙酯中的一种或多种;Optionally, the linear carbonate includes one or more of diethyl carbonate, dipropyl carbonate, ethyl methyl carbonate, methyl propyl carbonate and ethylene propyl carbonate;

所述羧酸酯包括乙酸乙酯、乙酸丙酯、丙酸甲酯、丙酸乙酯、丙酸丙酯、γ-丁内酯、γ-戊内酯、γ-己内酯、σ-戊内酯和ε-己内酯中的一种或多种。The carboxylic acid ester includes ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, propyl propionate, γ-butyrolactone, γ-valerolactone, γ-caprolactone, σ-valerolactone One or more of lactone and ε-caprolactone.

可选地,所述非水电解液还包括添加剂,以所述锂离子电池非水电解液的总重量为100%计,所述添加剂的重量百分数为1-20%;Optionally, the non-aqueous electrolyte also includes additives, and the weight percentage of the additives is 1-20% based on 100% of the total weight of the lithium-ion battery non-aqueous electrolyte;

所述添加剂包括碳酸亚乙烯酯、1,3-丙烷磺酸内酯、二腈类化合物、三腈类化合物中的一种或多种;The additive includes one or more of vinylene carbonate, 1,3-propane sultone, dinitrile compounds, and trinitrile compounds;

所述二腈类化合物包括丁二腈、戊二腈、己二腈、庚二腈、辛二腈、壬二腈、癸二腈中的一种或多种,并且以所述锂离子电池非水电解液的总重量为100%计,所述二腈类化合物的重量百分数为0.1%~10%;所述1,3-丙烷磺酸内酯的重量百分数为1~10%。The dinitrile compound includes one or more of succinonitrile, glutaronitrile, adiponitrile, pimelonitrile, suberonitrile, azelanitrile, sebaconitrile, and the lithium ion battery is not Based on the total weight of the water electrolytic solution as 100%, the weight percentage of the dinitrile compound is 0.1%-10%; the weight percentage of the 1,3-propane sultone is 1-10%.

可选地,所述非水电解液还包括锂盐,所述锂盐包括六氟磷酸锂、高氯酸锂、四氟硼酸锂、双氟草酸硼酸锂、二(三氟甲基磺酰)亚胺锂和双氟磺酰亚胺锂盐中的一种或多种,且所述锂盐浓度为0.1M~2M。Optionally, the non-aqueous electrolytic solution also includes a lithium salt, and the lithium salt includes lithium hexafluorophosphate, lithium perchlorate, lithium tetrafluoroborate, lithium difluorooxalate borate, lithium bis(trifluoromethylsulfonyl)imide and one or more of lithium salts of bisfluorosulfonimide, and the concentration of the lithium salts is 0.1M-2M.

本发明实施例提供的锂离子电池中,正极材料包含锂钴氧化物,其表面可以催化氟代碳酸乙烯酯发生原位成膜反应而起到保护作用,在非水电解液中,增加第一环状碳酸酯氟代环状碳酸酯的含量,使其作为电解液中的高介电常数溶剂使用,且第二环状碳酸酯的含量降到了较低的水平,使得电解液被氧化产气的副反应程度大幅降低,减少电池产气,改善高温存储性能。且氟代环状碳酸酯具有比第二环状碳酸酯更好的负极成膜作用,能保证较好的循环性能。In the lithium ion battery provided by the embodiment of the present invention, the positive electrode material includes lithium cobalt oxide, and its surface can catalyze the in-situ film-forming reaction of fluoroethylene carbonate to play a protective role. In the non-aqueous electrolyte, the first The content of cyclic carbonate fluorinated cyclic carbonate makes it used as a high dielectric constant solvent in the electrolyte, and the content of the second cyclic carbonate is reduced to a lower level, so that the electrolyte is oxidized to produce gas The degree of side reactions is greatly reduced, reducing battery gas production and improving high-temperature storage performance. Moreover, the fluorinated cyclic carbonate has a better negative electrode film-forming effect than the second cyclic carbonate, and can ensure better cycle performance.

具体实施方式detailed description

为了使本发明所解决的技术问题、技术方案及有益效果更加清楚明白,以下结合实施例,对本发明进行进一步的详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。In order to make the technical problems, technical solutions and beneficial effects solved by the present invention clearer, the present invention will be further described in detail below in conjunction with the embodiments. It should be understood that the specific embodiments described here are only used to explain the present invention, not to limit the present invention.

本发明实施例提供的一种锂离子电池,包括正极、负极、隔膜以及非水电解液,所述正极包括正极活性材料,所述正极活性材料中包含锂钴氧化物;A lithium-ion battery provided in an embodiment of the present invention includes a positive electrode, a negative electrode, a diaphragm, and a non-aqueous electrolyte, the positive electrode includes a positive electrode active material, and the positive electrode active material includes lithium cobalt oxide;

所述负极包括负极活性材料,所述负极活性材料包括硬碳、软碳、石墨、含硅材料中的一种或多种。The negative electrode includes a negative electrode active material, and the negative electrode active material includes one or more of hard carbon, soft carbon, graphite, and silicon-containing materials.

在一些实施例中,所述电池正极和所述电池负极之间隔有所述隔膜,所述隔膜为锂离子电池领域的常规隔膜,这里不再赘述。In some embodiments, the separator is separated between the positive electrode of the battery and the negative electrode of the battery, and the separator is a conventional separator in the field of lithium-ion batteries, which will not be repeated here.

所述非水电解液包括第一环状碳酸酯和不同于所述第一环状碳酸酯的第二环状碳酸酯;所述第一环状碳酸酯为氟代环状碳酸酯;以所述锂离子电池非水电解液的总重量为100%计,所述第一环状碳酸酯的重量百分数为12%~22%,所述第二环状碳酸酯的重量百分数小于等于2%。The non-aqueous electrolyte comprises a first cyclic carbonate and a second cyclic carbonate different from the first cyclic carbonate; the first cyclic carbonate is a fluorinated cyclic carbonate; Based on the total weight of the non-aqueous electrolyte of the lithium ion battery as 100%, the weight percentage of the first cyclic carbonate is 12%-22%, and the weight percentage of the second cyclic carbonate is less than or equal to 2%.

传统的,在以第二环状碳酸酯(如EC、PC)作为高介电常数溶剂的电解液中,第二环状碳酸酯一般占电解液重量10%~30%,第一环状碳酸酯氟代环状碳酸酯(如FEC)通常作为可选的负极成膜添加剂少量加入(10%以下),而第一环状碳酸酯虽然能够改善循环性能但会导致明显产气,影响电池的高温存储性能。Traditionally, in an electrolyte that uses a second cyclic carbonate (such as EC, PC) as a high dielectric constant solvent, the second cyclic carbonate generally accounts for 10% to 30% by weight of the electrolyte, and the first cyclic carbonate Ester fluorinated cyclic carbonate (such as FEC) is usually added in a small amount (less than 10%) as an optional negative electrode film-forming additive, and although the first cyclic carbonate can improve the cycle performance, it will cause obvious gas production and affect the battery life. High temperature storage performance.

发明人通过大量实验分析发现,以钴酸锂为正极活性材料的锂电池体系存在高温储存产气的问题,本发明提供的实施例中,正极活性材料中包含锂钴氧化物,非水电解液中使用第一环状碳酸酯氟代环状碳酸酯(如FEC)作为高介电常数溶剂使用,且不同于第一环状碳酸酯的第二环状碳酸酯含量降低到了较低的水平时,使用该非水电解液的锂离子电池表现出优秀的高温存储性能,不产气并有良好的容量保持和恢复性能,同时电池具有良好的循环性能。The inventor has found through a large number of experimental analysis that the lithium battery system using lithium cobaltate as the positive electrode active material has the problem of high-temperature storage and gas production. When the first cyclic carbonate fluorinated cyclic carbonate (such as FEC) is used as a high dielectric constant solvent, and the content of the second cyclic carbonate different from the first cyclic carbonate is reduced to a lower level , the lithium-ion battery using the non-aqueous electrolyte exhibits excellent high-temperature storage performance, does not produce gas and has good capacity retention and recovery performance, and the battery has good cycle performance.

在一实施例中,所述正极活性材料表面包覆有金属氧化物或内部掺杂有其他元素;所述金属氧化物为氧化镁和/或氧化铝;所述掺杂的元素选自Li、K、Mg、Ca、Al、Cr、Cu、Ni、Ti、Nd、B和P中的一种或多种。In one embodiment, the surface of the positive electrode active material is coated with metal oxide or doped with other elements inside; the metal oxide is magnesium oxide and/or aluminum oxide; the doped element is selected from Li, One or more of K, Mg, Ca, Al, Cr, Cu, Ni, Ti, Nd, B and P.

在一实施例中,所述锂离子电池充电截止电压为4.35V及以上,在本发明的一个优选实施例中,充电截止电压为4.45V。In one embodiment, the charging cut-off voltage of the lithium-ion battery is 4.35V or above, and in a preferred embodiment of the present invention, the charging cut-off voltage is 4.45V.

在一实施例中,以所述锂离子电池非水电解液的总重量为100%计,所述第一环状碳酸酯占非水电解液的重量百分数为14%~20%,具体的,所述第一环状碳酸酯的重量百分比可以为14%、14.5%、15%、15.5%、16%、16.5%、17%、17.5%、18%、18.5%、19%、19.5%、20%。所述第二环状碳酸酯占非水电解液的重量百分数为小于等于0.5%。In one embodiment, based on 100% of the total weight of the non-aqueous electrolyte of the lithium-ion battery, the weight percentage of the first cyclic carbonate in the non-aqueous electrolyte is 14% to 20%, specifically, The weight percent of the first cyclic carbonate can be 14%, 14.5%, 15%, 15.5%, 16%, 16.5%, 17%, 17.5%, 18%, 18.5%, 19%, 19.5%, 20% %. The weight percentage of the second cyclic carbonate in the non-aqueous electrolyte is less than or equal to 0.5%.

所述第二环状碳酸酯的含量降低到一定水平,使用第一环状碳酸酯氟代环状碳酸酯作为电解液中的高介电常数溶剂,非水电解液被氧化产气的副反应程度大幅降低,减少了产气。更优选的,当所述第二环状碳酸酯重量比为0时,电解液产气非常少,表现出优良的高温存储性能。The content of the second cyclic carbonate is reduced to a certain level, and the first cyclic carbonate fluorinated cyclic carbonate is used as a high dielectric constant solvent in the electrolyte, and the non-aqueous electrolyte is oxidized to generate gas. The degree is greatly reduced, reducing gas production. More preferably, when the weight ratio of the second cyclic carbonate is 0, the electrolyte produces very little gas and exhibits excellent high-temperature storage performance.

在一实施例中,所述第一环状碳酸酯包括氟代碳酸乙烯酯;所述第二环状碳酸酯为非氟元素取代或未取代的环状碳酸酯。In one embodiment, the first cyclic carbonate includes fluoroethylene carbonate; the second cyclic carbonate is a non-fluorine substituted or unsubstituted cyclic carbonate.

在一实施例中,所述未取代的环状碳酸酯为碳原子数为1-10的环状碳酸酯,所述非氟元素取代的环状碳酸酯为氰基、含氧烃基、含硅烃基、烷基、醚基、含硫烃基取代的环状碳酸酯。In one embodiment, the unsubstituted cyclic carbonate is a cyclic carbonate with 1-10 carbon atoms, and the non-fluorine substituted cyclic carbonate is a cyano group, an oxygen-containing hydrocarbon group, a silicon-containing Cyclic carbonates substituted by hydrocarbon groups, alkyl groups, ether groups, and sulfur-containing hydrocarbon groups.

在一实施例中,所述第二环状碳酸酯包括碳酸亚乙酯、碳酸亚丙酯、碳酸-1,2-亚丁酯、碳酸-2,3-亚丁酯、碳酸-1,2-亚戊酯、碳酸-2,3-亚戊酯中的一种或多种。In one embodiment, the second cyclic carbonate includes ethylene carbonate, propylene carbonate, 1,2-butylene carbonate, 2,3-butylene carbonate, 1,2-butylene carbonate, One or more of pentyl ester and 2,3-pentylene carbonate.

需要说明的是,以上化合物是本发明所要求保护的部分化合物,但不仅限于此,不应理解为对本发明的限制。It should be noted that the above compounds are part of the compounds claimed in the present invention, but not limited thereto, and should not be construed as limiting the present invention.

在一实施例中,所述非水电解液还包括线性碳酸酯和/或羧酸酯,采用低粘度的羧酸酯有机溶剂与链状碳酸酯有机溶剂的混合液作为所述锂离子电池的非水电解液的溶剂,能够降低非水电解液的粘度。In one embodiment, the non-aqueous electrolytic solution also includes linear carbonate and/or carboxylate, and a mixed solution of low-viscosity carboxylate organic solvent and chain carbonate organic solvent is used as the lithium-ion battery. The solvent of the nonaqueous electrolytic solution can reduce the viscosity of the nonaqueous electrolytic solution.

以所述锂离子电池非水电解液的总重量为100%计,所述羧酸酯和/或所述线性碳酸酯占所述非水电解液重量百分数总和为50%~65%,具体的,所述羧酸酯和所述线性碳酸酯的重量比总和可以为50%、52%、54%、55%、56%、58%、60%、62%、64%、65%。Based on the total weight of the non-aqueous electrolyte of the lithium-ion battery as 100%, the total weight percentage of the carboxylate and/or the linear carbonate in the non-aqueous electrolyte is 50% to 65%, specifically , the sum of the weight ratio of the carboxylate and the linear carbonate can be 50%, 52%, 54%, 55%, 56%, 58%, 60%, 62%, 64%, 65%.

在一实施例中,所述线性碳酸酯包括碳酸二乙酯、碳酸二丙酯、碳酸甲乙酯、碳酸甲丙酯和碳酸乙丙酯中的一种或多种。In one embodiment, the linear carbonate includes one or more of diethyl carbonate, dipropyl carbonate, ethyl methyl carbonate, methyl propyl carbonate and ethylene propyl carbonate.

在一实施例中,所述羧酸酯包括乙酸乙酯、乙酸丙酯、丙酸甲酯、丙酸乙酯、丙酸丙酯、γ-丁内酯、γ-戊内酯、γ-己内酯、σ-戊内酯和ε-己内酯中的一种或多种。In one embodiment, the carboxylic acid ester includes ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, propyl propionate, γ-butyrolactone, γ-valerolactone, γ-hexyl One or more of lactone, σ-valerolactone and ε-caprolactone.

在一实施例中,所述非水电解液还包括添加剂,以所述锂离子电池非水电解液的总重量为100%计,所述添加剂的重量百分数为1-20%;所述添加剂包括碳酸亚乙烯酯、1,3-丙烷磺酸内酯、二腈类化合物、三腈类化合物中的一种或多种。In one embodiment, the non-aqueous electrolyte also includes additives, and the weight percentage of the additives is 1-20% based on 100% of the total weight of the lithium-ion battery non-aqueous electrolyte; the additives include One or more of vinylene carbonate, 1,3-propane sultone, dinitrile compounds, and trinitrile compounds.

所述二腈类化合物包括丁二腈、戊二腈、己二腈、庚二腈、辛二腈、壬二腈、癸二腈中的一种或多种,并且以所述锂离子电池非水电解液的总重量为100%计,所述二腈类化合物的重量百分数为0.1%~10%;所述1,3-丙烷磺酸内酯的重量百分数为1~10%。The dinitrile compound includes one or more of succinonitrile, glutaronitrile, adiponitrile, pimelonitrile, suberonitrile, azelanitrile, sebaconitrile, and the lithium ion battery is not Based on the total weight of the water electrolytic solution as 100%, the weight percentage of the dinitrile compound is 0.1%-10%; the weight percentage of the 1,3-propane sultone is 1-10%.

需要说明的是,以上化合物是本发明所要求保护的部分化合物,但不仅限于此,不应理解为对本发明的限制。It should be noted that the above compounds are part of the compounds claimed in the present invention, but not limited thereto, and should not be construed as limiting the present invention.

本发明方案中对于锂盐没有特殊限制,可采用现有的各种物质。In the scheme of the present invention, there is no special limitation on the lithium salt, and various existing substances can be used.

在一实施例中,所述锂盐包括六氟磷酸锂、高氯酸锂、四氟硼酸锂、双氟草酸硼酸锂、二(三氟甲基磺酰)亚胺锂和双氟磺酰亚胺锂盐中的一种或多种,且所述锂盐浓度为0.1M~2M,优选的为0.8M~1.5M。In one embodiment, the lithium salt includes lithium hexafluorophosphate, lithium perchlorate, lithium tetrafluoroborate, lithium difluorooxalate borate, lithium bis(trifluoromethylsulfonyl)imide and lithium salt of bisfluorosulfonylimide One or more of them, and the lithium salt concentration is 0.1M-2M, preferably 0.8M-1.5M.

以下通过实施例对本发明进行进一步的说明。The present invention is further described by way of examples below.

实施例1Example 1

1)非水电解液的制备1) Preparation of non-aqueous electrolyte

将35%碳酸二乙酯(DEC)和28%丙酸丙酯(PP)进行混合,加入22%的氟代碳酸乙烯酯(FEC),再加入按电解液的总重量计15%的六氟磷酸锂(LiPF6)。Mix 35% diethyl carbonate (DEC) and 28% propyl propionate (PP), add 22% fluoroethylene carbonate (FEC), and then add 15% lithium hexafluorophosphate ( LiPF 6 ).

2)正极板的制备2) Preparation of positive plate

按93:4:3的质量比混合正极活性材料钴酸锂(LiCoO2),导电碳黑Super-P和粘结剂聚偏二氟乙烯(PVDF),然后将它们分散在N-甲基-2-吡咯烷酮(NMP)中,得到正极浆料。将浆料均匀涂布在铝箔的两面上,经过烘干、压延和真空干燥,并用超声波焊机焊上铝制引出线后得到正极板。Mix positive active material lithium cobaltate (LiCoO 2 ), conductive carbon black Super-P and binder polyvinylidene fluoride (PVDF) at a mass ratio of 93:4:3, and then disperse them in N-methyl- 2-pyrrolidone (NMP) to obtain positive electrode slurry. The slurry is uniformly coated on both sides of the aluminum foil, dried, calendered and vacuum-dried, and an aluminum lead-out wire is welded by an ultrasonic welder to obtain a positive plate.

3)负极板的制备3) Preparation of negative plate

按94:1:2.5:2.5的质量比混合负极活性材料人造石墨,导电碳黑Super-P,粘结剂丁苯橡胶(SBR)和羧甲基纤维素(CMC),然后将它们分散在去离子水中,得到负极浆料。将浆料涂布在铜箔的两面上,经过烘干、压延和真空干燥,并用超声波焊机焊上镍制引出线后得到负极板。Mix negative electrode active material artificial graphite, conductive carbon black Super-P, binder styrene-butadiene rubber (SBR) and carboxymethyl cellulose (CMC) according to the mass ratio of 94:1:2.5:2.5, and then disperse them in the deionized water to obtain negative electrode slurry. The slurry is coated on both sides of the copper foil, dried, calendered and vacuum dried, and a nickel lead-out wire is welded by an ultrasonic welder to obtain a negative plate.

4)电芯的制备4) Preparation of batteries

在正极板和负极板之间放置厚度为20μm的聚乙烯微孔膜作为隔膜,然后将正极板、负极板和隔膜组成的三明治结构进行卷绕,再将卷绕体压扁后放入铝塑膜包装袋,然后于85℃下烘烤24hr,得到待注液的电芯。A polyethylene microporous membrane with a thickness of 20 μm is placed between the positive plate and the negative plate as a separator, and then the sandwich structure composed of the positive plate, negative plate and separator is wound, and then the wound body is flattened and placed in an aluminum plastic film packaging bag, and then baked at 85°C for 24 hours to obtain the cell to be filled with liquid.

5)电芯的注液和化成5) Injection and formation of batteries

在露点控制在-40℃以下的手套箱中,将上述制备的非水电解液注入电芯中,电解液的量要保证充满电芯中的空隙。然后按以下步骤进行化成:0.05C恒流充电180min,0.1C恒流充电240min,搁置1hr后真空整形封口,然后进一步以0.2C的电流恒流充电至4.45V,常温搁置24hr后,以0.2C的电流恒流放电至3.0V。In a glove box with a dew point controlled below -40°C, inject the non-aqueous electrolyte solution prepared above into the battery cell, and the amount of the electrolyte solution should ensure that the gaps in the battery core are filled. Then carry out the formation according to the following steps: 0.05C constant current charging for 180min, 0.1C constant current charging for 240min, vacuum shaping and sealing after shelving for 1hr, and then further charging with a constant current of 0.2C to 4.45V, after 24hr at room temperature, charging at 0.2C The current constant current discharge to 3.0V.

实施例2Example 2

与实施例1的工艺相同,如表1中所示,不同之处在于:Identical with the technique of embodiment 1, as shown in table 1, difference is:

所述非水电解液的制备步骤中,以所述非水电解液的总重量为100%计,所述非水电解液中加入33%丙酸丙酯(PP),加入12%的氟代碳酸乙烯酯(FEC)。除此之外,在实施例1的基础上再加入重量计为3%的1,3-丙烷磺酸内酯(1,3-PS)和2%的丁二腈(SN)作为添加剂。In the preparation step of the non-aqueous electrolytic solution, based on the total weight of the non-aqueous electrolytic solution as 100%, 33% propyl propionate (PP) is added to the non-aqueous electrolytic solution, and 12% fluorinated Ethylene carbonate (FEC). Besides, on the basis of Example 1, 3% by weight of 1,3-propane sultone (1,3-PS) and 2% of succinonitrile (SN) were added as additives.

实施例3Example 3

与实施例1的工艺相同,如表1中所示,不同之处在于:Identical with the technique of embodiment 1, as shown in table 1, difference is:

所述非水电解液的制备步骤中,以所述非水电解液的总重量为100%计,所述非水电解液中加入30%丙酸丙酯(PP),加入15%的氟代碳酸乙烯酯(FEC)。除此之外,在实施例1的基础上再加入重量计为3%的1,3-丙烷磺酸内酯(1,3-PS)和2%的丁二腈(SN)作为添加剂。In the preparation step of the non-aqueous electrolytic solution, based on the total weight of the non-aqueous electrolytic solution as 100%, 30% propyl propionate (PP) is added to the non-aqueous electrolytic solution, and 15% fluorinated Ethylene carbonate (FEC). Besides, on the basis of Example 1, 3% by weight of 1,3-propane sultone (1,3-PS) and 2% of succinonitrile (SN) were added as additives.

实施例4Example 4

与实施例1的工艺相同,如表1中所示,不同之处在于:Identical with the technique of embodiment 1, as shown in table 1, difference is:

所述非水电解液的制备步骤中,以所述非水电解液的总重量为100%计,所述非水电解液中加入29%丙酸丙酯(PP),加入15%的氟代碳酸乙烯酯(FEC),除此之外,在实施例1的基础上再加入重量计为1%的碳酸乙烯酯(EC)、重量计为3%的1,3-丙烷磺酸内酯(1,3-PS)和2%的丁二腈(SN)。In the preparation step of the non-aqueous electrolytic solution, 29% propyl propionate (PP) is added to the non-aqueous electrolytic solution based on the total weight of the non-aqueous electrolytic solution, and 15% fluorinated Ethylene carbonate (FEC), in addition, on the basis of embodiment 1, adding weight is 1% ethylene carbonate (EC), weight is 3% 1,3-propane sultone ( 1,3-PS) and 2% succinonitrile (SN).

实施例5Example 5

与实施例1的工艺相同,如表1中所示,不同之处在于:Identical with the technique of embodiment 1, as shown in table 1, difference is:

所述非水电解液的制备步骤中,以所述非水电解液的总重量为100%计,所述非水电解液中加入29%丙酸丙酯(PP),加入15%的氟代碳酸乙烯酯(FEC),除此之外,在实施例1的基础上再加入重量计为1%碳酸丙烯酯(PC)、3%的1,3-丙烷磺酸内酯(1,3-PS)和2%的丁二腈(SN)。In the preparation step of the non-aqueous electrolytic solution, 29% propyl propionate (PP) is added to the non-aqueous electrolytic solution based on the total weight of the non-aqueous electrolytic solution, and 15% fluorinated Ethylene carbonate (FEC), in addition, on the basis of embodiment 1, add weight and be 1% propylene carbonate (PC), 3% 1,3-propane sultone (1,3- PS) and 2% succinonitrile (SN).

实施例6Example 6

与实施例1的工艺相同,如表1中所示,不同之处在于:Identical with the technique of embodiment 1, as shown in table 1, difference is:

所述非水电解液的制备步骤中,以所述非水电解液的总重量为100%计,所述非水电解液中加入29%丙酸丙酯(PP),加入15%的氟代碳酸乙烯酯(FEC),除此之外,在实施例1的基础上再加入重量计为0.5%的碳酸乙烯酯(EC)、0.5%碳酸丙烯酯(PC)、3%的1,3-丙烷磺酸内酯(1,3-PS)和2%的丁二腈(SN)。In the preparation step of the non-aqueous electrolytic solution, 29% propyl propionate (PP) is added to the non-aqueous electrolytic solution based on the total weight of the non-aqueous electrolytic solution, and 15% fluorinated Ethylene carbonate (FEC), in addition, on the basis of embodiment 1, add weight and be 0.5% ethylene carbonate (EC), 0.5% propylene carbonate (PC), 3% 1,3- Propane sultone (1,3-PS) and 2% succinonitrile (SN).

实施例7Example 7

与实施例1的工艺相同,如表1中所示,不同之处在于:Identical with the technique of embodiment 1, as shown in table 1, difference is:

所述非水电解液的制备步骤中,以所述非水电解液的总重量为100%计,所述非水电解液中加入23%丙酸丙酯(PP),加入22%的氟代碳酸乙烯酯(FEC),除此之外,在实施例1的基础上再加入重量计为3%的1,3-丙烷磺酸内酯(1,3-PS)和2%的丁二腈(SN)作为添加剂。In the preparation step of the non-aqueous electrolytic solution, based on the total weight of the non-aqueous electrolytic solution as 100%, 23% propyl propionate (PP) was added to the non-aqueous electrolytic solution, and 22% fluorinated Ethylene carbonate (FEC), in addition, on the basis of embodiment 1, add weight again and be 3% 1,3-propane sultone (1,3-PS) and 2% succinonitrile (SN) as an additive.

对比例1Comparative example 1

与实施例1的工艺相同,如表1中所示,不同之处在于:Identical with the technique of embodiment 1, as shown in table 1, difference is:

所述非水电解液的制备步骤中,以所述非水电解液的总重量为100%计,所述非水电解液中加入28%丙酸丙酯(PP),加入5%的氟代碳酸乙烯酯(FEC),除此之外,在实施例1的基础上再加入重量计为12%的碳酸乙烯酯(EC)和5%碳酸丙烯酯(PC)。In the preparation step of the non-aqueous electrolytic solution, based on the total weight of the non-aqueous electrolytic solution as 100%, 28% propyl propionate (PP) was added to the non-aqueous electrolytic solution, and 5% fluorinated Ethylene carbonate (FEC), in addition, on the basis of embodiment 1, add 12% ethylene carbonate (EC) and 5% propylene carbonate (PC) by weight.

对比例2Comparative example 2

与实施例1的工艺相同,如表1中所示,不同之处在于:Identical with the technique of embodiment 1, as shown in table 1, difference is:

所述非水电解液的制备步骤中,以所述非水电解液的总重量为100%计,所述非水电解液中加入23%丙酸丙酯(PP),加入5%的氟代碳酸乙烯酯(FEC),除此之外,在实施例1的基础上再加入重量计为12%的碳酸乙烯酯(EC)和5%碳酸丙烯酯(PC),以及3%的1,3-丙烷磺酸内酯(1,3-PS)和2%的丁二腈(SN)。In the preparation step of the non-aqueous electrolytic solution, 23% propyl propionate (PP) is added to the non-aqueous electrolytic solution based on the total weight of the non-aqueous electrolytic solution, and 5% fluorinated Ethylene carbonate (FEC), in addition, on the basis of embodiment 1, add weight and be 12% ethylene carbonate (EC) and 5% propylene carbonate (PC), and 3% 1,3 - Propane sultone (1,3-PS) and 2% of succinonitrile (SN).

对比例3Comparative example 3

与实施例1的工艺相同,如表1中所示,不同之处在于:Identical with the technique of embodiment 1, as shown in table 1, difference is:

所述非水电解液的制备步骤中,以所述非水电解液的总重量为100%计,所述非水电解液中加入37%丙酸丙酯(PP),加入8%的氟代碳酸乙烯酯(FEC),除此之外,在实施例1的基础上再加入重量计为3%的1,3-丙烷磺酸内酯(1,3-PS)和2%的丁二腈(SN)作为添加剂。In the preparation step of the non-aqueous electrolytic solution, 37% propyl propionate (PP) is added to the non-aqueous electrolytic solution, and 8% fluorinated Ethylene carbonate (FEC), in addition, on the basis of embodiment 1, add weight again and be 3% 1,3-propane sultone (1,3-PS) and 2% succinonitrile (SN) as an additive.

对比例4Comparative example 4

与实施例1的工艺相同,如表1中所示,不同之处在于:Identical with the technique of embodiment 1, as shown in table 1, difference is:

所述非水电解液的制备步骤中,以所述非水电解液的总重量为100%计,所述非水电解液中加入20%丙酸丙酯(PP),加入25%的氟代碳酸乙烯酯(FEC),除此之外,在实施例1的基础上再加入重量计为3%的1,3-丙烷磺酸内酯(1,3-PS)和2%的丁二腈(SN)作为添加剂。In the preparation step of the non-aqueous electrolytic solution, based on the total weight of the non-aqueous electrolytic solution as 100%, 20% propyl propionate (PP) is added to the non-aqueous electrolytic solution, and 25% fluorinated Ethylene carbonate (FEC), in addition, on the basis of embodiment 1, add weight again and be 3% 1,3-propane sultone (1,3-PS) and 2% succinonitrile (SN) as an additive.

对比例5Comparative example 5

与实施例1的工艺相同,如表1中所示,不同之处在于:Identical with the technique of embodiment 1, as shown in table 1, difference is:

所述非水电解液的制备步骤中,以所述非水电解液的总重量为100%计,所述非水电解液中加入25%丙酸丙酯(PP),加入15%的氟代碳酸乙烯酯(FEC),除此之外,在实施例1的基础上再加入5%的碳酸乙烯酯(EC)、3%的1,3-丙烷磺酸内酯(1,3-PS)和2%的丁二腈(SN)。In the preparation step of the non-aqueous electrolytic solution, based on the total weight of the non-aqueous electrolytic solution as 100%, 25% propyl propionate (PP) is added to the non-aqueous electrolytic solution, and 15% of Ethylene carbonate (FEC), in addition, on the basis of Example 1, add 5% ethylene carbonate (EC), 3% 1,3-propane sultone (1,3-PS) and 2% succinonitrile (SN).

对比例6Comparative example 6

与实施例1的工艺相同,如表1中所示,不同之处在于:Identical with the technique of embodiment 1, as shown in table 1, difference is:

所述非水电解液的制备步骤中,以所述非水电解液的总重量为100%计,所述非水电解液中加入25%丙酸丙酯(PP),加入15%的氟代碳酸乙烯酯(FEC),除此之外,在实施例1的基础上再加入重量计为5%碳酸丙烯酯(PC),以及3%的1,3-丙烷磺酸内酯(1,3-PS)和2%的丁二腈(SN)。In the preparation step of the non-aqueous electrolytic solution, based on the total weight of the non-aqueous electrolytic solution as 100%, 25% propyl propionate (PP) is added to the non-aqueous electrolytic solution, and 15% of Ethylene carbonate (FEC), in addition, on the basis of embodiment 1, add weight again and be 5% propylene carbonate (PC), and 3% 1,3-propane sultone (1,3 -PS) and 2% succinonitrile (SN).

对比例7Comparative example 7

与实施例1的工艺相同,如表1中所示,不同之处在于:Identical with the technique of embodiment 1, as shown in table 1, difference is:

所述非水电解液的制备步骤中,以所述非水电解液的总重量为100%计,所述非水电解液中加入25%丙酸丙酯(PP),加入15%的氟代碳酸乙烯酯(FEC),除此之外,在实施例1的基础上再加入重量计为2%的碳酸乙烯酯(EC)、3%碳酸丙烯酯(PC),以及3%的1,3-丙烷磺酸内酯(1,3-PS)和2%的丁二腈(SN)。In the preparation step of the non-aqueous electrolytic solution, based on the total weight of the non-aqueous electrolytic solution as 100%, 25% propyl propionate (PP) is added to the non-aqueous electrolytic solution, and 15% of Ethylene carbonate (FEC), in addition, on the basis of embodiment 1, add weight and be 2% ethylene carbonate (EC), 3% propylene carbonate (PC), and 3% 1,3 - Propane sultone (1,3-PS) and 2% of succinonitrile (SN).

对比例8Comparative example 8

与实施例1的工艺相同,如表1中所示,不同之处在于:Identical with the technique of embodiment 1, as shown in table 1, difference is:

所述非水电解液的制备步骤中,以所述非水电解液的总重量为100%计,所述非水电解液中加入28%丙酸丙酯(PP),加入22%的氟代碳酸乙烯酯(FEC)。In the preparation step of the non-aqueous electrolytic solution, based on the total weight of the non-aqueous electrolytic solution as 100%, 28% propyl propionate (PP) was added to the non-aqueous electrolytic solution, and 22% fluorinated Ethylene carbonate (FEC).

所述正极板的制备步骤中,使用NCM111作为正极活性材料。In the preparation step of the positive electrode plate, NCM111 is used as the positive electrode active material.

表1示出了以上实施例和对比例中的电解液溶剂各组分用量加入情况。Table 1 shows the dosage of each component of the electrolyte solvent in the above examples and comparative examples.

表1电解液溶剂的各组分用量(重量百分比)The consumption of each component of table 1 electrolyte solvent (percentage by weight)

ECEC PCPC FECFEC DECDEC PPPP LiPF6LiPF6 1,3-PS1,3-PS SNSN 正极活性材料positive active material 对比例1Comparative example 1 1212 55 55 3535 2828 1515 LiCoO<sub>2</sub>LiCoO<sub>2</sub> 对比例2Comparative example 2 1212 55 55 3535 23twenty three 1515 33 22 LiCoO<sub>2</sub>LiCoO<sub>2</sub> 对比例3Comparative example 3 88 3535 3737 1515 33 22 LiCoO<sub>2</sub>LiCoO<sub>2</sub> 对比例4Comparative example 4 2525 3535 2020 1515 33 22 LiCoO<sub>2</sub>LiCoO<sub>2</sub> 对比例5Comparative example 5 55 1515 3535 2525 1515 33 22 LiCoO<sub>2</sub>LiCoO<sub>2</sub> 对比例6Comparative example 6 55 1515 3535 2525 1515 33 22 LiCoO<sub>2</sub>LiCoO<sub>2</sub> 对比例7Comparative example 7 22 33 1515 3535 2525 1515 33 22 LiCoO<sub>2</sub>LiCoO<sub>2</sub> 对比例8Comparative example 8 22twenty two 3535 2828 1515 NCM111NCM111 实施例1Example 1 22twenty two 3535 2828 1515 LiCoO<sub>2</sub>LiCoO<sub>2</sub> 实施例2Example 2 1212 3535 3333 1515 33 22 LiCoO<sub>2</sub>LiCoO<sub>2</sub> 实施例3Example 3 1515 3535 3030 1515 33 22 LiCoO<sub>2</sub>LiCoO<sub>2</sub> 实施例4Example 4 11 1515 3535 2929 1515 33 22 LiCoO<sub>2</sub>LiCoO<sub>2</sub> 实施例5Example 5 11 1515 3535 2929 1515 33 22 LiCoO<sub>2</sub>LiCoO<sub>2</sub> 实施例6Example 6 0.50.5 0.50.5 1515 3535 2929 1515 33 22 LiCoO<sub>2</sub>LiCoO<sub>2</sub> 实施例7Example 7 22twenty two 3535 23twenty three 1515 33 22 LiCoO<sub>2</sub>LiCoO<sub>2</sub>

性能测试Performance Testing

对上述实施例1~7和对比例1~8制备得到的锂离子电池进行如下性能测试The following performance tests were carried out on the lithium-ion batteries prepared in the above-mentioned Examples 1-7 and Comparative Examples 1-8

1)高温循环性能测试1) High temperature cycle performance test

将电池置于恒温45℃的烘箱中,以1C的电流恒流充电至4.45V然后恒压充电至电流下降至0.03C,然后以1C的电流恒流放电至3.0V,如此循环300圈,记录第1圈的放电容量和第300圈的放电容量,计算高温循环的容量保持率,以评估其高温循环性能。Put the battery in an oven with a constant temperature of 45°C, charge it with a constant current of 1C to 4.45V, then charge it with a constant voltage until the current drops to 0.03C, and then discharge it with a constant current of 1C to 3.0V, and cycle 300 times in this way, record The discharge capacity of the first cycle and the discharge capacity of the 300th cycle were calculated to calculate the capacity retention rate of the high-temperature cycle to evaluate its high-temperature cycle performance.

容量保持率的计算公式如下:The calculation formula of capacity retention rate is as follows:

容量保持率(%)=第300圈的放电容量/第1圈的放电容量×100%Capacity retention rate (%) = discharge capacity of the 300th cycle / discharge capacity of the 1st cycle × 100%

2)高温储存性能测试2) High temperature storage performance test

将化成后的电池在常温下用0.5C恒流恒压充至4.45V,测量电池初始放电容量及初始电池厚度,然后再60℃储存21天后,等电池冷却至常温再测电池最终厚度,计算电池厚度膨胀率;之后以0.3C放电至3V测量电池的保持容量和恢复容量。计算公式如下:Charge the formed battery to 4.45V with 0.5C constant current and constant voltage at room temperature, measure the initial discharge capacity and initial battery thickness of the battery, and then store it at 60°C for 21 days, wait for the battery to cool to room temperature and then measure the final thickness of the battery, calculate Battery thickness expansion rate; then discharge at 0.3C to 3V to measure the holding capacity and recovery capacity of the battery. Calculated as follows:

电池容量保持率(%)=保持容量/初始容量×100%;Battery capacity retention rate (%) = retention capacity/initial capacity × 100%;

电池容量恢复率(%)=恢复容量/初始容量×100%;Battery capacity recovery rate (%) = recovery capacity / initial capacity × 100%;

电池厚度膨胀率(%)=(最终厚度-初始厚度)/初始厚度×100%。Battery thickness expansion rate (%)=(final thickness-initial thickness)/initial thickness×100%.

3)高温储存性能测试3) High temperature storage performance test

将化成后的电池在常温下用0.5C恒流恒压充至4.45V,测量电池初始放电容量及初始电池厚度,然后再85℃储存6小时后,等电池冷却至常温再测电池最终厚度,计算电池厚度膨胀率;之后以0.3C放电至3V测量电池的保持容量和恢复容量。计算公式如下:Charge the formed battery to 4.45V with 0.5C constant current and constant voltage at room temperature, measure the initial discharge capacity and initial battery thickness of the battery, and then store it at 85°C for 6 hours, wait for the battery to cool to room temperature and then measure the final thickness of the battery. Calculate the thickness expansion rate of the battery; then discharge it at 0.3C to 3V to measure the holding capacity and recovery capacity of the battery. Calculated as follows:

电池容量保持率(%)=保持容量/初始容量×100%;Battery capacity retention rate (%) = retention capacity/initial capacity × 100%;

电池容量恢复率(%)=恢复容量/初始容量×100%;Battery capacity recovery rate (%) = recovery capacity / initial capacity × 100%;

电池厚度膨胀率(%)=(最终厚度-初始厚度)/初始厚度×100%。Battery thickness expansion rate (%)=(final thickness-initial thickness)/initial thickness×100%.

将计算得到的测试结果填入表2中。Fill in the calculated test results in Table 2.

表2Table 2

Figure GDA0002400082050000121
Figure GDA0002400082050000121

Figure GDA0002400082050000131
Figure GDA0002400082050000131

实施例1和对比例1比较,说明FEC含量在12%-22%范围之间且EC与PC总含量低于电解液重量2%以下的电解液有更好的高温存储性能和高温循环性能,尤其能明显改善产气问题,体积膨胀率明显降低。Comparing Example 1 with Comparative Example 1, it shows that the electrolyte solution whose FEC content is in the range of 12%-22% and the total content of EC and PC is less than 2% by weight of the electrolyte solution has better high-temperature storage performance and high-temperature cycle performance, In particular, the problem of gas production can be significantly improved, and the volume expansion rate is significantly reduced.

实施例1和对比例8比较,说明FEC含量在12%-22%范围之间且EC与PC总含量低于电解液重量2%以下的电解液匹配高电压钴酸锂正极材料比匹配NMC111正极材料有更好的存储性能,这可能是FEC能在钴酸锂正极表面被催化成膜并阻止进一步的反应,而不能在NMC111上发生成膜反应。Comparing Example 1 and Comparative Example 8, it shows that the FEC content is in the range of 12%-22% and the total content of EC and PC is lower than 2% of the weight of the electrolyte. The electrolyte matches the high voltage lithium cobaltate positive electrode material ratio and matches the NMC111 positive electrode The material has better storage performance, which may be because FEC can be catalyzed to form a film on the surface of lithium cobaltate positive electrode and prevent further reactions, but the film-forming reaction cannot occur on NMC111.

实施例2-7与对比例2比较,说明电解液中FEC含量在12%-22%范围之间且EC与PC总含量低于电解液重量2%以下后,电池的高温存储性能特别是气胀改善尤为明显,高温循环性能也有明显的改善。The comparison between Examples 2-7 and Comparative Example 2 shows that when the FEC content in the electrolyte is in the range of 12%-22% and the total content of EC and PC is less than 2% by weight of the electrolyte, the high-temperature storage performance of the battery is especially good. The swelling improvement is particularly obvious, and the high-temperature cycle performance is also significantly improved.

实施例2,3,7与对比例3-4比较,说明FEC在12%-22%之间且EC与PC总含量低于1%时,电池能有较好的高温存储和循环性能,且FEC含量优选的为14%~20%。FEC含量低于12%时且EC与PC总含量低于2%时,电池虽然具有较好的高温存储性能,但是高温循环性能差,并出现循环跳水的现象,原因可能是:电解液中高介电常数的溶剂含量过少导致电解液的电导率太低,循环过程中随着FEC的持续消耗会进一步降低电导率,这导致电池充放电时正负极的电位的极化越来越大,很快达到充放电截至电压而不能正常发挥容量,而更严重的是负极极化大到其电位低于析锂电位后,负极析锂而循环跳水。FEC含量不能大于22%的原因:当FEC含量大于22%且EC与PC总含量低于2%时,电池的高温循环性能无明显影响,说明电导率和负极成膜保护是足够的,但是高温存储性能却也开始变差,原因目前还不清楚,推测是过多的FEC与LiPF6形成的溶剂化结构稳定性变差,引起电解液的分解。Comparing Examples 2, 3, and 7 with Comparative Examples 3-4, it shows that when the FEC is between 12%-22% and the total content of EC and PC is less than 1%, the battery can have better high-temperature storage and cycle performance, and The FEC content is preferably 14% to 20%. When the FEC content is less than 12% and the total content of EC and PC is less than 2%, although the battery has good high-temperature storage performance, the high-temperature cycle performance is poor, and the phenomenon of cycle diving occurs. The reason may be: high dielectric strength in the electrolyte Too little solvent content in the electrical constant leads to too low conductivity of the electrolyte. During the cycle, the continuous consumption of FEC will further reduce the conductivity, which leads to an increasing polarization of the potential of the positive and negative electrodes when the battery is charged and discharged. It will soon reach the cut-off voltage of charging and discharging, and the capacity cannot be normally exerted. What is more serious is that after the negative electrode is polarized so much that its potential is lower than the lithium analysis potential, the negative electrode will decompose lithium and cyclically dive. The reason why the FEC content cannot be greater than 22%: When the FEC content is greater than 22% and the total content of EC and PC is less than 2%, the high-temperature cycle performance of the battery has no obvious effect, indicating that the conductivity and negative electrode film-forming protection are sufficient, but high temperature However, the storage performance also began to deteriorate. The reason is still unclear. It is speculated that the stability of the solvation structure formed by too much FEC and LiPF6 deteriorates, causing the electrolyte to decompose.

实施例7与实施例1比较,说明在FEC在12%-22%之间且EC与PC总含量低于2%的电解液中,加入1,3-PS和二腈类化合物SN,电池的高温存储和高温循环性能有更加显著的提高。Comparing Example 7 with Example 1, it shows that adding 1,3-PS and dinitrile compound SN to the electrolyte solution with FEC between 12% and 22% and the total content of EC and PC less than 2%, the battery's High-temperature storage and high-temperature cycle performance are more significantly improved.

实施例3-6与对比例5-7比较,说明电解液中FEC在12%-22%之间时,EC与PC总含量须低于2%的后,电池才能有良好的存储不产气性能,并保存较好的循环性能,原因还不清楚。Comparing Examples 3-6 with Comparative Examples 5-7, it shows that when the FEC in the electrolyte is between 12%-22%, the total content of EC and PC must be less than 2%, so that the battery can have good storage without gas production performance, and preserve better cycle performance, the reason is unclear.

对比例1-2比较,在常规EC+PC溶剂的电解液中,增加1,3-PS和腈类添加剂SN更有利于改善电池的存储和循环性能。Compared with Comparative Examples 1-2, in the conventional EC+PC solvent electrolyte, adding 1,3-PS and nitrile additive SN is more conducive to improving the storage and cycle performance of the battery.

以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. Any modifications, equivalent replacements and improvements made within the spirit and principles of the present invention should be included in the protection of the present invention. within range.

Claims (7)

1.一种锂离子电池,包括正极、负极、隔膜以及非水电解液,其特征在于,1. a lithium ion battery, comprising positive pole, negative pole, diaphragm and non-aqueous electrolyte, is characterized in that, 所述正极包括正极活性材料,所述正极活性材料为LiCOO2The positive electrode includes a positive electrode active material, and the positive electrode active material is LiCO O 2 ; 所述非水电解液包括第一环状碳酸酯和不同于所述第一环状碳酸酯的第二环状碳酸酯;The non-aqueous electrolyte includes a first cyclic carbonate and a second cyclic carbonate different from the first cyclic carbonate; 所述第一环状碳酸酯为氟代环状碳酸酯;The first cyclic carbonate is a fluorinated cyclic carbonate; 以所述锂离子电池非水电解液的总重量为100%计,所述第一环状碳酸酯的重量百分数为12%~22%,所述第二环状碳酸酯的重量百分数小于等于2%;Based on the total weight of the non-aqueous electrolyte of the lithium-ion battery as 100%, the weight percentage of the first cyclic carbonate is 12% to 22%, and the weight percentage of the second cyclic carbonate is less than or equal to 2 %; 所述第一环状碳酸酯包括氟代碳酸乙烯酯;The first cyclic carbonate comprises fluoroethylene carbonate; 所述第二环状碳酸酯为非氟元素取代或未取代的饱和环状碳酸酯;The second cyclic carbonate is a non-fluorine-substituted or unsubstituted saturated cyclic carbonate; 所述第二环状碳酸酯由选自碳酸亚乙酯、碳酸亚丙酯、碳酸-1,2-亚丁酯、碳酸-2,3-亚丁酯、碳酸-1,2-亚戊酯、碳酸-2,3-亚戊酯中的一种或多种组成;The second cyclic carbonate is selected from ethylene carbonate, propylene carbonate, 1,2-butylene carbonate, 2,3-butylene carbonate, 1,2-pentylene carbonate, carbonic acid - one or more components of 2,3-pentylene ester; 所述锂离子电池充电截止电压为4.45V及以上。The charging cut-off voltage of the lithium ion battery is 4.45V or above. 2.如权利要求1所述的锂离子电池,其特征在于,所述正极活性材料表面包覆有金属氧化物或内部掺杂有其他元素;所述金属氧化物为氧化镁和/或氧化铝;所述掺杂的元素选自Li、K、Mg、Ca、Al、Cr、Cu、Ni、Ti、Nd、B和P中的一种或多种。2. The lithium ion battery as claimed in claim 1, wherein the surface of the positive electrode active material is coated with metal oxide or internally doped with other elements; the metal oxide is magnesium oxide and/or aluminum oxide ; The doping element is selected from one or more of Li, K, Mg, Ca, Al, Cr, Cu, Ni, Ti, Nd, B and P. 3.如权利要求1或2所述的锂离子电池,其特征在于,以所述锂离子电池非水电解液的总重量为100%计,所述第一环状碳酸酯占非水电解液的重量百分数为14%~20%,所述第二环状碳酸酯占非水电解液的重量百分数为小于等于0.5%。3. The lithium-ion battery as claimed in claim 1 or 2, wherein the total weight of the non-aqueous electrolyte of the lithium-ion battery is 100%, and the first cyclic carbonate accounts for 100% of the non-aqueous electrolyte. The weight percentage of the non-aqueous electrolyte is 14%-20%, and the weight percentage of the second cyclic carbonate in the non-aqueous electrolyte is less than or equal to 0.5%. 4.如权利要求1所述的锂离子电池,其特征在于,所述非水电解液还包括线性碳酸酯和/或羧酸酯,以所述锂离子电池非水电解液的总重量为100%计,所述羧酸酯和/或所述线性碳酸酯占所述非水电解液重量百分数总和为50%~65%。4. Lithium-ion battery as claimed in claim 1, is characterized in that, described non-aqueous electrolytic solution also comprises linear carbonate and/or carboxylate, is 100% with the gross weight of described lithium-ion battery non-aqueous electrolytic solution. %, the total weight percentage of the carboxylic acid ester and/or the linear carbonate in the non-aqueous electrolyte solution is 50% to 65%. 5.如权利要求4所述的锂离子电池,其特征在于,所述线性碳酸酯包括碳酸二乙酯、碳酸二丙酯、碳酸甲乙酯、碳酸甲丙酯和碳酸乙丙酯中的一种或多种;5. lithium ion battery as claimed in claim 4, is characterized in that, described linear carbonate comprises one in diethyl carbonate, dipropyl carbonate, ethyl methyl carbonate, methyl propyl carbonate and ethyl propyl carbonate one or more kinds; 所述羧酸酯包括乙酸乙酯、乙酸丙酯、丙酸甲酯、丙酸乙酯、丙酸丙酯、γ-丁内酯、γ-戊内酯、γ-己内酯、σ-戊内酯和ε-己内酯中的一种或多种。The carboxylic acid ester includes ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, propyl propionate, γ-butyrolactone, γ-valerolactone, γ-caprolactone, σ-valerolactone One or more of lactone and ε-caprolactone. 6.如权利要求1所述的锂离子电池,其特征在于,所述非水电解液还包括添加剂,以所述锂离子电池非水电解液的总重量为100%计,所述添加剂的重量百分数为1-20%;6. The lithium-ion battery as claimed in claim 1, wherein the non-aqueous electrolyte also includes an additive, and the weight of the additive is 100% based on the total weight of the non-aqueous electrolyte of the lithium-ion battery. The percentage is 1-20%; 所述添加剂包括碳酸亚乙烯酯、1,3-丙烷磺酸内酯、二腈类化合物、三腈类化合物中的一种或多种;The additive includes one or more of vinylene carbonate, 1,3-propane sultone, dinitrile compounds, and trinitrile compounds; 所述二腈类化合物包括丁二腈、戊二腈、己二腈、庚二腈、辛二腈、壬二腈、癸二腈中的一种或多种,并且以所述锂离子电池非水电解液的总重量为100%计,所述二腈类化合物的重量百分数为0.1%~10%;所述1,3-丙烷磺酸内酯的重量百分数为1~10%。The dinitrile compound includes one or more of succinonitrile, glutaronitrile, adiponitrile, pimelonitrile, suberonitrile, azelanitrile, sebaconitrile, and the lithium ion battery is not Based on the total weight of the water electrolytic solution as 100%, the weight percentage of the dinitrile compound is 0.1%-10%; the weight percentage of the 1,3-propane sultone is 1-10%. 7.如权利要求1所述的锂离子电池,其特征在于,所述非水电解液还包括锂盐,所述锂盐包括六氟磷酸锂、高氯酸锂、四氟硼酸锂、双氟草酸硼酸锂、二(三氟甲基磺酰)亚胺锂和双氟磺酰亚胺锂盐中的一种或多种,且所述锂盐浓度为0.1M~2M。7. The lithium ion battery according to claim 1, wherein the non-aqueous electrolytic solution also includes a lithium salt, and the lithium salt includes lithium hexafluorophosphate, lithium perchlorate, lithium tetrafluoroborate, lithium difluorooxalate borate , one or more of lithium bis(trifluoromethylsulfonyl)imide and lithium bisfluorosulfonylimide, and the concentration of the lithium salt is 0.1M-2M.
CN201911411859.0A 2019-12-31 2019-12-31 A lithium ion battery Active CN113130890B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201911411859.0A CN113130890B (en) 2019-12-31 2019-12-31 A lithium ion battery
PCT/CN2020/136344 WO2021135921A1 (en) 2019-12-31 2020-12-15 Lithium ion battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911411859.0A CN113130890B (en) 2019-12-31 2019-12-31 A lithium ion battery

Publications (2)

Publication Number Publication Date
CN113130890A CN113130890A (en) 2021-07-16
CN113130890B true CN113130890B (en) 2023-01-17

Family

ID=76686488

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911411859.0A Active CN113130890B (en) 2019-12-31 2019-12-31 A lithium ion battery

Country Status (2)

Country Link
CN (1) CN113130890B (en)
WO (1) WO2021135921A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113921904B (en) * 2021-09-18 2024-04-05 东莞市创明电池技术有限公司 Electrolyte and lithium secondary battery
CN114300735B (en) * 2021-11-26 2023-09-08 深圳新宙邦科技股份有限公司 lithium secondary battery
CN114089204B (en) * 2021-11-30 2023-11-21 蜂巢能源科技(无锡)有限公司 Battery capacity diving inflection point prediction method and device
CN115995553A (en) * 2022-11-18 2023-04-21 珠海冠宇电池股份有限公司 a battery
CN116231105A (en) * 2022-12-14 2023-06-06 珠海冠宇电池股份有限公司 Battery cell
CN117441254A (en) * 2023-03-27 2024-01-23 宁德新能源科技有限公司 Electrolyte for secondary battery, and electronic device
CN118572196A (en) * 2024-08-02 2024-08-30 远景动力技术(鄂尔多斯市)有限公司 Electrolyte and lithium ion secondary battery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104362346A (en) * 2014-10-14 2015-02-18 东莞新能源科技有限公司 Lithium ion battery
CN109950620A (en) * 2017-12-20 2019-06-28 深圳新宙邦科技股份有限公司 A kind of non-aqueous electrolyte and lithium ion battery

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001250585A (en) * 2000-03-02 2001-09-14 Mitsubishi Cable Ind Ltd Charging method of lithium ion secondary battery
CN101090165A (en) * 2006-06-14 2007-12-19 三洋电机株式会社 Non-aqueous electrolyte solution for secondary battery and non-aqueous electrolyte secondary battery using the electrolyte solution
WO2008123014A1 (en) * 2007-03-06 2008-10-16 Ube Industries, Ltd. tert-BUTYLPHENYL SULFONATE COMPOUND, NONAQUEOUS ELECTROLYTE SOLUTION FOR LITHIUM SECONDARY BATTERY USING THE SAME, AND LITHIUM SECONDARY BATTERY USING THE SAME
CN105591155A (en) * 2014-10-22 2016-05-18 上海中聚佳华电池科技有限公司 High voltage electrolyte for lithium ion battery
CN105186036B (en) * 2015-09-08 2018-03-20 宁德新能源科技有限公司 Electrolyte and the lithium ion battery including the electrolyte
CN105406121B (en) * 2015-12-16 2018-08-14 东莞市杉杉电池材料有限公司 A kind of matching silicon-carbon cathode lithium-ion battery electrolytes and silicon-carbon cathode lithium ion battery
CN109075386B (en) * 2017-01-20 2021-12-28 株式会社Lg化学 Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery including the same
JP6945435B2 (en) * 2017-12-18 2021-10-06 三菱ケミカル株式会社 Non-aqueous electrolyte solution and non-aqueous electrolyte solution secondary battery using it
CN109768278A (en) * 2018-12-15 2019-05-17 华南理工大学 A lithium-ion battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104362346A (en) * 2014-10-14 2015-02-18 东莞新能源科技有限公司 Lithium ion battery
CN109950620A (en) * 2017-12-20 2019-06-28 深圳新宙邦科技股份有限公司 A kind of non-aqueous electrolyte and lithium ion battery

Also Published As

Publication number Publication date
WO2021135921A1 (en) 2021-07-08
CN113130890A (en) 2021-07-16

Similar Documents

Publication Publication Date Title
CN113130890B (en) A lithium ion battery
CN114094109B (en) Lithium ion battery
CN115117452B (en) Lithium ion battery
CN114068936B (en) Lithium Ion Battery
CN114639872B (en) A lithium ion battery
CN109585921B (en) A lithium ion battery non-aqueous electrolyte and lithium ion battery
CN115064770B (en) Lithium ion battery
CN105336987A (en) Non-aqueous electrolyte of lithium ion battery and lithium ion battery
US20240136577A1 (en) Secondary Battery
CN114497692A (en) Secondary battery
WO2023124831A1 (en) Lithium-ion battery
WO2023246279A1 (en) Lithium secondary battery
CN114628773B (en) A lithium ion battery
CN105140562A (en) A kind of electrolytic solution containing phthalonitrile and lithium ion battery using the electrolytic solution
JP2016048624A (en) Lithium secondary battery
WO2023179456A1 (en) Non-aqueous electrolyte and secondary battery
CN105789698A (en) Non-aqueous electrolyte of lithium ion battery and lithium ion battery
CN114361588A (en) Lithium ion battery
CN112928328A (en) Lithium ion battery electrolyte containing silane sulfonamide compound and lithium ion secondary battery
CN113130970B (en) Lithium ion battery
CN115207440B (en) A lithium ion battery
WO2023000889A1 (en) Non-aqueous electrolyte and lithium-ion battery
CN118315680A (en) Lithium ion battery
US20240194871A1 (en) Lithium iron phosphate battery
CN114142085A (en) Non-aqueous electrolyte for lithium ion battery, lithium ion battery and preparation method thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20230627

Address after: No. 305, Yangzhu West Road, Duodao District, High tech Zone, Jingmen City, Hubei Province, 448000

Patentee after: Jingmen Xinzhoubang New Materials Co.,Ltd.

Address before: 518118 Shatuo Tongfu Industrial Zone, Pingshan New District, Shenzhen City, Guangdong Province

Patentee before: SHENZHEN CAPCHEM TECHNOLOGY Co.,Ltd.

TR01 Transfer of patent right