[go: up one dir, main page]

CN113130631B - A kind of heterojunction nanomaterial and its preparation method, thin film, quantum dot light-emitting diode - Google Patents

A kind of heterojunction nanomaterial and its preparation method, thin film, quantum dot light-emitting diode Download PDF

Info

Publication number
CN113130631B
CN113130631B CN201911394057.3A CN201911394057A CN113130631B CN 113130631 B CN113130631 B CN 113130631B CN 201911394057 A CN201911394057 A CN 201911394057A CN 113130631 B CN113130631 B CN 113130631B
Authority
CN
China
Prior art keywords
znmgo
heterojunction
quantum dot
nano
dot light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911394057.3A
Other languages
Chinese (zh)
Other versions
CN113130631A (en
Inventor
郭煜林
吴龙佳
张天朔
李俊杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TCL Technology Group Co Ltd
Original Assignee
TCL Technology Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TCL Technology Group Co Ltd filed Critical TCL Technology Group Co Ltd
Priority to CN201911394057.3A priority Critical patent/CN113130631B/en
Publication of CN113130631A publication Critical patent/CN113130631A/en
Application granted granted Critical
Publication of CN113130631B publication Critical patent/CN113130631B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/80Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
    • H10D62/82Heterojunctions
    • H10D62/826Heterojunctions comprising only Group II-VI materials heterojunctions, e.g. CdTe/HgTe heterojunctions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Luminescent Compositions (AREA)

Abstract

本发明公开了一种异质结纳米材料及其制备方法、薄膜、量子点发光二极管,其中,所述异质结纳米材料的制备方法包括步骤:提供一种ZnMgO纳米颗粒;将所述ZnMgO纳米颗粒加入到硫源水溶液中并加热,在所述ZnMgO纳米颗粒表面生成ZnS层,制得所述异质结纳米材料。本发明异质结纳米材料中,所述ZnS层可钝化ZnMgO纳米颗粒的表面缺陷,改善以所述异质结纳米材料作为电子传输层时与量子点发光层的接触面质量,同时所述ZnMgO纳米颗粒的表面Zn原子与表面S原子紧密结合后,创建了新的电子传递途径,可加速电子传递,从而协同提高量子点发光二极管的发光效率及稳定性。

Figure 201911394057

The invention discloses a heterojunction nano material and a preparation method thereof, a thin film, and a quantum dot light-emitting diode, wherein the preparation method of the heterojunction nano material comprises the steps of: providing a ZnMgO nano particle; The particles are added into the sulfur source aqueous solution and heated to form a ZnS layer on the surface of the ZnMgO nano particles to prepare the heterojunction nano material. In the heterojunction nanomaterial of the present invention, the ZnS layer can passivate the surface defects of ZnMgO nanoparticles, improve the quality of the contact surface with the quantum dot light-emitting layer when the heterojunction nanomaterial is used as the electron transport layer, and at the same time the After the surface Zn atoms of ZnMgO nanoparticles are closely combined with the surface S atoms, a new electron transfer pathway is created, which can accelerate electron transfer, thereby synergistically improving the luminous efficiency and stability of quantum dot light-emitting diodes.

Figure 201911394057

Description

一种异质结纳米材料及其制备方法、薄膜、量子点发光二极管A kind of heterojunction nanomaterial and its preparation method, thin film, quantum dot light-emitting diode

技术领域technical field

本发明涉及量子点发光二极管领域,尤其涉及一种异质结纳米材料及其制备方法、薄膜、量子点发光二极管。The invention relates to the field of quantum dot light-emitting diodes, in particular to a heterojunction nanomaterial, a preparation method thereof, a thin film, and a quantum dot light-emitting diode.

背景技术Background technique

量子点因其具有优异的发光特性,因而在量子点发光二极管(quantum dotlight-emitting diode,QLED)的应用上得到快速发展。量子点具有多种特性,包括:(1)可通过改变颗粒尺寸来调节发射光谱;(2)激发光谱比较宽、发射光谱狭窄、吸收性强;(3)光稳定性很好;(4)荧光寿命较长等。在传统的无机电致发光器件中电子和空穴分别从阴极和阳极注入,然后在发光层复合形成激子发光。宽禁带半导体中导带电子可以在高电场下加速获得足够高的能量撞击QDs使其发光;半导体量子点材料作为一种新型的无机半导体荧光材料,具有重要的商业应用价值。Quantum dots have been rapidly developed in the application of quantum dot light-emitting diodes (QLEDs) due to their excellent light-emitting properties. Quantum dots have many characteristics, including: (1) the emission spectrum can be adjusted by changing the particle size; (2) the excitation spectrum is relatively broad, the emission spectrum is narrow, and the absorption is strong; (3) the photostability is very good; (4) Longer fluorescence lifetime, etc. In traditional inorganic electroluminescent devices, electrons and holes are injected from the cathode and anode respectively, and then recombine in the light-emitting layer to form excitons to emit light. Conduction band electrons in wide bandgap semiconductors can be accelerated under high electric field to obtain high enough energy to hit QDs to make them emit light; semiconductor quantum dot materials, as a new type of inorganic semiconductor fluorescent materials, have important commercial application value.

ZnO是一种直接带隙的n型半导体材料,具有3.37eV的宽禁带和3.7eV的低功函,且具有稳定性好、透明度高、安全无毒等优点,使得ZnO可成为合适的电子传输层材料。ZnO具有很多潜在的优点,其激子束缚能高达60meV,远远高于其他宽禁带半导体材料(GaN为25meV),是室温热能(26meV)的2.3倍,因此ZnO的激子可在室温下稳定存在。其次,ZnO具有六方纤锌矿结构,表现出很强的自发极化;在ZnO基异质结构中,材料的应变会导致ZnO基异质结构产生极化效应,极化产生的极化电场在ZnO异质结面感生出高浓度的界面极化电荷,从而对材料的能带产生调控,进而影响相关结构与器件性能。ZnO is an n-type semiconductor material with a direct band gap, which has a wide band gap of 3.37eV and a low work function of 3.7eV, and has the advantages of good stability, high transparency, safety and non-toxicity, etc., making ZnO a suitable electronic material. transport layer material. ZnO has many potential advantages. Its exciton binding energy is as high as 60meV, which is much higher than that of other wide-bandgap semiconductor materials (GaN is 25meV), and it is 2.3 times of room temperature thermal energy (26meV). Therefore, ZnO excitons can be released at room temperature. Stable existence. Secondly, ZnO has a hexagonal wurtzite structure, which exhibits strong spontaneous polarization; in ZnO-based heterostructures, the strain of the material will cause the polarization effect of the ZnO-based heterostructures, and the polarization electric field generated by the polarization is in the The ZnO heterojunction surface induces a high concentration of interface polarization charges, which can regulate the energy band of the material, and then affect the related structure and device performance.

纳米ZnMgO相对于纳米ZnO,增加合金中Mg的原子分数,合金的导带会随Mg原子分数上升而越来越接近真空能级,与量子点能带之间的注入势垒更低,这可以使电子更高效的注入,因此近年来对ZnMgO的研究也逐渐增多。Mg掺杂提高了ZnO的导带底能级位置,与量子点之间的电子注入势垒减小,同时可降低ZnO对量子点层的荧光猝灭,器件表现出更高的电流密度和亮度。但当ZnMgO纳米颗粒作为电子传输层材料时,ZnMgO表面缺陷如羟基和氧空位不可避免地导致器件性能下降。Compared with nano-ZnO, nano-ZnMgO increases the atomic fraction of Mg in the alloy, and the conduction band of the alloy will be closer to the vacuum energy level with the increase of the Mg atomic fraction, and the injection barrier between the energy band of the quantum dot is lower, which can The injection of electrons is more efficient, so the research on ZnMgO has gradually increased in recent years. Mg doping increases the position of the bottom energy level of the conduction band of ZnO, reduces the electron injection barrier between the quantum dots and reduces the fluorescence quenching of the quantum dot layer by ZnO, and the device shows higher current density and brightness. . However, when ZnMgO nanoparticles are used as electron transport layer materials, ZnMgO surface defects such as hydroxyl groups and oxygen vacancies inevitably lead to device performance degradation.

因此,现有技术还有待于改进。Therefore, prior art still needs to be improved.

发明内容Contents of the invention

本发明的目的在于提供一种异质结纳米材料及其制备方法、薄膜、量子点发光二极管,旨在解决现有技术采用ZnMgO纳米颗粒作为量子点发光二极管的电子传输层材料时,由于ZnMgO纳米颗粒表面存在羟基和氧空位等缺陷而导致量子点发光二极管性能下降的问题。The purpose of the present invention is to provide a heterojunction nanomaterial and its preparation method, thin film, and quantum dot light-emitting diode. There are defects such as hydroxyl groups and oxygen vacancies on the surface of the particles, which lead to the degradation of the performance of quantum dot light-emitting diodes.

本发明的技术方案如下:Technical scheme of the present invention is as follows:

一种异质结纳米材料,其中,包括ZnMgO纳米颗粒以及生长在所述ZnMgO纳米颗粒表面的ZnS层。A heterojunction nano material, which includes ZnMgO nano particles and a ZnS layer grown on the surface of the ZnMgO nano particles.

一种异质结纳米材料的制备方法,其中,包括步骤:A method for preparing a heterojunction nanomaterial, comprising the steps of:

提供一种ZnMgO纳米颗粒;A ZnMgO nanoparticle is provided;

将所述ZnMgO纳米颗粒加入到硫源水溶液中并加热,在所述ZnMgO纳米颗粒表面生成ZnS层,制得所述异质结纳米材料。adding the ZnMgO nanometer particles into the sulfur source aqueous solution and heating to form a ZnS layer on the surface of the ZnMgO nanometer particles to prepare the heterojunction nanomaterial.

所述异质结纳米材料的制备方法,其中,所述ZnMgO纳米颗粒与所述硫源水溶液中的硫元素的质量比为2-4:1。The preparation method of the heterojunction nanomaterial, wherein, the mass ratio of the ZnMgO nanoparticles to the sulfur element in the sulfur source aqueous solution is 2-4:1.

所述异质结纳米材料的制备方法,其中,所述将所述ZnMgO纳米颗粒加入到硫源水溶液中并加热,在所述ZnMgO纳米颗粒表面生成ZnS层,制得所述异质结纳米材料的步骤包括:The preparation method of the heterojunction nanomaterial, wherein, the ZnMgO nanoparticle is added to the sulfur source aqueous solution and heated to generate a ZnS layer on the surface of the ZnMgO nanoparticle to obtain the heterojunction nanomaterial The steps include:

将所述ZnMgO纳米颗粒加入到硫源水溶液中并加热至80-120℃,反应1-3h后,在所述ZnMgO纳米颗粒表面生成ZnS层,制得所述异质结纳米材料。Adding the ZnMgO nano particles into the sulfur source aqueous solution and heating to 80-120° C., and reacting for 1-3 hours, a ZnS layer is formed on the surface of the ZnMgO nano particles to prepare the heterojunction nano material.

所述异质结纳米材料的制备方法,其中,所述硫源水溶液为硫脲水溶液、硫代乙酰胺水溶液和L-半胱氨酸水溶液中的一种或多种。The preparation method of the heterojunction nanomaterial, wherein, the sulfur source aqueous solution is one or more of thiourea aqueous solution, thioacetamide aqueous solution and L-cysteine aqueous solution.

所述异质结纳米材料的制备方法,其中,所述ZnMgO纳米颗粒的制备包括步骤:The preparation method of the heterojunction nanomaterial, wherein, the preparation of the ZnMgO nanoparticles comprises the steps of:

将锌盐、镁盐分散在有机溶剂中,形成混合溶液;Disperse zinc salt and magnesium salt in an organic solvent to form a mixed solution;

向所述混合溶液中加入碱液,反应制得ZnMgO纳米颗粒。Alkaline solution is added to the mixed solution to react to prepare ZnMgO nanoparticles.

所述异质结纳米材料的制备方法,其中,所述锌盐与镁盐的质量比为1:10-20。The preparation method of the heterojunction nanomaterial, wherein the mass ratio of the zinc salt to the magnesium salt is 1:10-20.

所述异质结纳米材料的制备方法,其中,所述碱液的OH-与所述混合溶液中Zn2+的摩尔比为1.5-3:1。The preparation method of the heterojunction nanomaterial, wherein, the molar ratio of OH- in the alkaline solution to Zn 2+ in the mixed solution is 1.5-3:1.

一种薄膜,其中,所述薄膜的材料为本发明所述的异质结纳米材料。A thin film, wherein the material of the thin film is the heterojunction nanomaterial described in the present invention.

一种量子点发光二极管,包括电子传输层,其中,所述电子传输层为本发明所述的薄膜。A quantum dot light-emitting diode, including an electron transport layer, wherein the electron transport layer is the thin film described in the present invention.

有益效果:本发明通过对ZnMgO纳米颗粒进行硫化处理,在所述ZnMgO纳米颗粒表面生成ZnS层,制得异质结纳米材料,所述ZnS层可钝化ZnMgO纳米颗粒的表面缺陷,改善以所述异质结纳米材料作为电子传输层时与量子点发光层的接触面质量,同时所述ZnMgO纳米颗粒的表面Zn原子与表面S原子紧密结合后,创建了新的电子传递途径,可加速电子传递,从而协同提高量子点发光二极管的发光效率及稳定性。另外,本发明提供的异质结纳米材料的制备方法操作简单,适合大面积,大规模制备。Beneficial effects: the present invention generates a ZnS layer on the surface of the ZnMgO nanoparticles by vulcanizing the ZnMgO nanoparticles to obtain a heterojunction nanomaterial. The ZnS layer can passivate the surface defects of the ZnMgO nanoparticles and improve the When the heterojunction nanomaterial is used as an electron transport layer and the quality of the contact surface of the quantum dot light-emitting layer, at the same time, after the surface Zn atoms of the ZnMgO nanoparticles are closely combined with the surface S atoms, a new electron transfer path is created, which can accelerate electrons. transfer, thereby synergistically improving the luminous efficiency and stability of quantum dot light-emitting diodes. In addition, the preparation method of the heterojunction nanomaterial provided by the present invention is simple to operate, and is suitable for large-scale and large-scale preparation.

附图说明Description of drawings

图1为本发明实施方式中一种异质结纳米材料的制备方法流程图。Fig. 1 is a flowchart of a method for preparing a heterojunction nanomaterial in an embodiment of the present invention.

图2为本发明实施方式中一种薄膜的制备方法的流程图。Fig. 2 is a flow chart of a thin film preparation method in an embodiment of the present invention.

图3为本发明实施方式中一种正装结构的量子点发光二极管的结构示意图。FIG. 3 is a schematic structural view of a quantum dot light-emitting diode with a front-mounted structure in an embodiment of the present invention.

图4为本发明实施方式中一种倒装结构的量子点发光二极管的结构示意图。FIG. 4 is a schematic structural diagram of a quantum dot light-emitting diode with an inverted structure in an embodiment of the present invention.

具体实施方式Detailed ways

本发明提供一种异质结纳米材料及其制备方法、薄膜、量子点发光二极管,为使本发明的目的、技术方案及效果更加清楚、明确,以下对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。The present invention provides a heterojunction nanomaterial and its preparation method, thin film, and quantum dot light-emitting diode. In order to make the purpose, technical solution and effect of the present invention clearer and clearer, the present invention will be further described in detail below. It should be understood that the specific embodiments described here are only used to explain the present invention, not to limit the present invention.

请参阅图1,图1为本发明提供的一种异质结纳米材料的制备方法较佳实施例的流程图,如图所示,其包括步骤:Please refer to Fig. 1, Fig. 1 is a flowchart of a preferred embodiment of a method for preparing a heterojunction nanomaterial provided by the present invention, as shown in the figure, it includes steps:

S10、提供一种ZnMgO纳米颗粒;S10, providing a ZnMgO nanoparticle;

S20、将所述ZnMgO纳米颗粒加入到硫源水溶液中并加热,在所述ZnMgO纳米颗粒表面生成ZnS层,制得所述异质结纳米材料。S20. Adding the ZnMgO nanoparticles into the sulfur source aqueous solution and heating to form a ZnS layer on the surface of the ZnMgO nanoparticles to prepare the heterojunction nanomaterial.

在本实施例中,通过对ZnMgO纳米颗粒进行硫化处理,在所述ZnMgO纳米颗粒表面生成ZnS层,制得所述异质结纳米材料,ZnS是一种具有宽直接带隙的n型半导体,其具有比较高的电子迁移率(100-150cm2 V-1s-1),从界面能级匹配理论出发,所述异质结纳米材料具有合适的表面功函数,可以很好的促进界面电子传输,有利于电子提取与转移;所述ZnS层可钝化ZnMgO纳米颗粒的表面缺陷,改善以所述异质结纳米材料作为电子传输层时与量子点发光层的接触面质量,同时所述ZnMgO纳米颗粒的表面Zn原子与表面S原子紧密结合后,创建了新的电子传递途径,可加速电子传递,从而协同提高量子点发光二极管的发光效率及稳定性。另外,本发明提供的异质结纳米材料的制备方法操作简单,适合大面积,大规模制备。In this embodiment, the heterojunction nanomaterial is prepared by sulfurizing the ZnMgO nanoparticles to form a ZnS layer on the surface of the ZnMgO nanoparticles. ZnS is an n-type semiconductor with a wide direct band gap. It has a relatively high electron mobility (100-150cm 2 V -1 s -1 ), starting from the interface energy level matching theory, the heterojunction nanomaterial has a suitable surface work function, which can well promote the interface electron Transport, which is beneficial to electron extraction and transfer; the ZnS layer can passivate the surface defects of ZnMgO nanoparticles, improve the quality of the contact surface with the quantum dot light-emitting layer when the heterojunction nanomaterial is used as the electron transport layer, and at the same time the After the surface Zn atoms of ZnMgO nanoparticles are closely combined with the surface S atoms, a new electron transfer pathway is created, which can accelerate electron transfer, thereby synergistically improving the luminous efficiency and stability of quantum dot light-emitting diodes. In addition, the preparation method of the heterojunction nanomaterial provided by the present invention is simple to operate, and is suitable for large-scale and large-scale preparation.

在一些实施方式中,所述ZnMgO纳米颗粒的制备包括步骤:将锌盐、镁盐分散在有机溶剂中,形成混合溶液;向所述混合溶液中加入碱液,反应制得ZnMgO纳米颗粒。In some embodiments, the preparation of the ZnMgO nanoparticles includes the steps of: dispersing zinc salt and magnesium salt in an organic solvent to form a mixed solution; adding lye to the mixed solution to react to prepare ZnMgO nanoparticles.

具体来讲,将所述锌盐和镁盐按照质量比为1:10-20的比例分散在有机溶剂中,形成混合溶液,向所述混合溶液中加入碱液发生缩聚反应,生成ZnMgO纳米颗粒。本实施例中,镁离子的掺杂不仅提高了ZnO的导带底能级位置,减小电子传输层与量子点发光层之间的电子注入势垒,并且可降低ZnO对量子点发光层的荧光猝灭,使得量子点发光二极管表现出更高的电流密度和亮度。Specifically, the zinc salt and the magnesium salt are dispersed in an organic solvent at a mass ratio of 1:10-20 to form a mixed solution, and lye is added to the mixed solution to undergo polycondensation reaction to generate ZnMgO nanoparticles . In this embodiment, the doping of magnesium ions not only improves the position of the bottom energy level of the conduction band of ZnO, reduces the electron injection barrier between the electron transport layer and the quantum dot light-emitting layer, but also reduces the impact of ZnO on the quantum dot light-emitting layer. Fluorescence quenching makes quantum dot light-emitting diodes exhibit higher current density and brightness.

在一些实施方式中,所述混合溶液中,锌离子与镁离子的总浓度为0.1-1M。In some embodiments, the total concentration of zinc ions and magnesium ions in the mixed solution is 0.1-1M.

在一些实施方式中,向所述混合溶液中滴加碱液,搅拌1-4h,得到一种澄清透明溶液,待所述澄清透明溶液冷却后用丙酮析出,离心后用有机醇溶剂溶解,制得所述ZnMgO纳米颗粒。在本实施例中,所述碱液的OH-与所述混合溶液中Zn2+的摩尔比为1.5-3:1,所述碱液的pH值为12-14。In some embodiments, lye is added dropwise to the mixed solution and stirred for 1-4 hours to obtain a clear and transparent solution. After the clear and transparent solution is cooled, it is precipitated with acetone, and after centrifugation, it is dissolved with an organic alcohol solvent to prepare Obtain the ZnMgO nanoparticles. In this embodiment, the molar ratio of OH of the lye to Zn 2+ in the mixed solution is 1.5-3:1, and the pH of the lye is 12-14.

在一些实施方式中,所述锌盐为氯化锌、硝酸锌、醋酸锌和二水合乙酸锌中的一种或多种,但不限于此。In some embodiments, the zinc salt is one or more of zinc chloride, zinc nitrate, zinc acetate and zinc acetate dihydrate, but not limited thereto.

在一些实施方式中,所述镁盐为氯化镁、硝酸镁、醋酸镁和二水合乙酸镁中的一种或多种,但不限于此。In some embodiments, the magnesium salt is one or more of magnesium chloride, magnesium nitrate, magnesium acetate and magnesium acetate dihydrate, but is not limited thereto.

在一些实施方式中,所述有机溶剂为DMF、DMSO和异丙醇中的一种或多种,但不限于此。In some embodiments, the organic solvent is one or more of DMF, DMSO and isopropanol, but is not limited thereto.

在一些实施方式中,所述碱液为氢氧化钠溶液、氢氧化钾溶液和四甲基氢氧化铵溶液中的一种或多种,但不限于此。In some embodiments, the lye is one or more of sodium hydroxide solution, potassium hydroxide solution and tetramethylammonium hydroxide solution, but is not limited thereto.

在一些实施方式中,向所述ZnMgO纳米颗粒加入到硫源水溶液中并加热至80-120℃,反应1-3h后,在所述ZnMgO纳米颗粒表面生成ZnS层,制得异质结纳米材料。本实施例中,所述ZnMgO纳米颗粒与硫源水溶液在加热条件下发生水热反应,在所述ZnMgO纳米颗粒表面生成ZnS层,制得所述异质结纳米材料,ZnS是一种具有宽直接带隙的n型半导体,其具有比较高的电子迁移率(100-150cm2 V-1s-1),从界面能级匹配理论出发,所述ZnMgO-ZnS异质结构纳米颗粒具有合适的表面功函数,可以很好的促进界面电子传输,有利于电子提取与转移;所述ZnS层可钝化ZnMgO纳米颗粒的表面缺陷,改善以所述异质结纳米材料作为电子传输层时与量子点发光层的接触面质量,同时所述ZnMgO纳米颗粒的表面Zn原子与表面S原子紧密结合后,创建了新的电子传递途径,可加速电子传递,从而协同提高量子点发光二极管的发光效率及稳定性。In some embodiments, the ZnMgO nanoparticles are added to the sulfur source aqueous solution and heated to 80-120°C, and after reacting for 1-3h, a ZnS layer is formed on the surface of the ZnMgO nanoparticles to obtain a heterojunction nanomaterial . In this example, the ZnMgO nanoparticles and the sulfur source aqueous solution undergo a hydrothermal reaction under heating conditions, and a ZnS layer is formed on the surface of the ZnMgO nanoparticles to obtain the heterojunction nanomaterial. ZnS is a kind of An n-type semiconductor with a direct band gap, which has a relatively high electron mobility (100-150cm 2 V -1 s -1 ), starting from the theory of interface energy level matching, the ZnMgO-ZnS heterostructure nanoparticles have a suitable The surface work function can well promote interface electron transport, which is beneficial to electron extraction and transfer; the ZnS layer can passivate the surface defects of ZnMgO nanoparticles, and improve the contact with quantum when the heterojunction nanomaterial is used as the electron transport layer. At the same time, after the surface Zn atoms of the ZnMgO nanoparticles are closely combined with the surface S atoms, a new electron transfer pathway can be created, which can accelerate electron transfer, thereby synergistically improving the luminous efficiency and efficiency of quantum dot light-emitting diodes. stability.

在一些实施方式中,所述ZnMgO纳米颗粒与所述硫源水溶液中的硫元素的质量比为2-4:1。所述ZnMgO-ZnS异质结构纳米颗粒中ZnMgO与硫源中硫元素的质量比对材料组成影响较大,从而影响器件性能,本实施例中,当硫源用量过多时,ZnMgO-ZnS异质结构纳米颗粒中的组成大部分为ZnS;当硫源用量太低时,则生成的ZnS无法有效结合在所述ZnMgO纳米颗粒表面。In some embodiments, the mass ratio of the ZnMgO nanoparticles to the sulfur element in the sulfur source aqueous solution is 2-4:1. The mass ratio of ZnMgO in the ZnMgO-ZnS heterostructure nanoparticles to the sulfur element in the sulfur source has a great influence on the material composition, thereby affecting the device performance. In this embodiment, when the sulfur source is used too much, the ZnMgO-ZnS heterogeneous The composition of the structural nanoparticles is mostly ZnS; when the amount of the sulfur source is too low, the generated ZnS cannot be effectively combined on the surface of the ZnMgO nanoparticles.

在一些实施方式中,所述硫源水溶液为硫脲水溶液、硫代乙酰胺水溶液和L-半胱氨酸水溶液中的一种或多种,但不限于此。In some embodiments, the sulfur source aqueous solution is one or more of thiourea aqueous solution, thioacetamide aqueous solution and L-cysteine aqueous solution, but is not limited thereto.

在一些实施方式中,还提供一种异质结纳米材料,其包括ZnMgO纳米颗粒以及生长在所述ZnMgO纳米颗粒表面的ZnS层。In some embodiments, a heterojunction nanomaterial is also provided, which includes ZnMgO nanoparticles and a ZnS layer grown on the surface of the ZnMgO nanoparticles.

在一些实施方式中,还提供一种薄膜的制备方法,如图2所示,其包括步骤:In some embodiments, also provide a kind of preparation method of thin film, as shown in Figure 2, it comprises steps:

S100、将锌盐、镁盐分散在有机溶剂中,形成混合溶液;S100, dispersing the zinc salt and the magnesium salt in an organic solvent to form a mixed solution;

S200、向所述混合溶液中加入碱液,反应制得ZnMgO纳米颗粒;S200, adding lye to the mixed solution to react to prepare ZnMgO nanoparticles;

S300、将所述ZnMgO纳米颗粒加入到硫源水溶液中并加热,在所述ZnMgO纳米颗粒表面生成ZnS层,制得异质结纳米材料;S300, adding the ZnMgO nanoparticles into the sulfur source aqueous solution and heating to form a ZnS layer on the surface of the ZnMgO nanoparticles to prepare a heterojunction nanomaterial;

S400、将所述纳米异质结材料分散在有机溶剂后制备成膜,制得所述薄膜。S400. Dispersing the nano-heterojunction material in an organic solvent to prepare a film to obtain the film.

本实施例通过对ZnMgO纳米颗粒进行硫化处理,在所述ZnMgO纳米颗粒表面生成ZnS层,制得异质结纳米材料,ZnS是一种具有宽直接带隙的n型半导体,其具有比较高的电子迁移率(100-150cm2 V-1s-1),从界面能级匹配理论出发,所述异质结纳米材料具有合适的表面功函数,可以很好的促进界面电子传输,有利于电子提取与转移;所述ZnS层可钝化ZnMgO纳米颗粒的表面缺陷,改善薄膜(电子传输层)与量子点发光层的接触面质量,同时所述ZnMgO纳米颗粒的表面Zn原子与表面S原子紧密结合后,创建了新的电子传递途径,可加速电子传递,从而协同提高量子点发光二极管的发光效率及稳定性。另外,本发明提供的薄膜的制备方法操作简单,适合大面积,大规模制备。In this embodiment, a ZnS layer is formed on the surface of the ZnMgO nanoparticles by vulcanizing the ZnMgO nanoparticles to obtain a heterojunction nanomaterial. ZnS is an n-type semiconductor with a wide direct band gap, which has a relatively high Electron mobility (100-150cm 2 V -1 s -1 ), starting from the interface energy level matching theory, the heterojunction nanomaterial has a suitable surface work function, which can well promote the interface electron transport, which is beneficial to the Extraction and transfer; the ZnS layer can passivate the surface defects of ZnMgO nanoparticles, improve the contact surface quality of the thin film (electron transport layer) and the quantum dot light-emitting layer, and the surface Zn atoms of the ZnMgO nanoparticles are closely connected to the surface S atoms After the combination, a new electron transfer pathway is created, which can accelerate electron transfer, thereby synergistically improving the luminous efficiency and stability of quantum dot light-emitting diodes. In addition, the preparation method of the thin film provided by the invention is simple to operate and is suitable for large-scale and large-scale preparation.

在一些实施方式中,还提供一种薄膜,其中,所述薄膜的材料为异质结材料,所述异质结纳米材料包括ZnMgO纳米颗粒以及生长在所述ZnMgO纳米颗粒表面的ZnS层。In some embodiments, a thin film is also provided, wherein the material of the thin film is a heterojunction material, and the heterojunction nanomaterial includes ZnMgO nanoparticles and a ZnS layer grown on the surface of the ZnMgO nanoparticles.

下面通过实施例对薄膜的制备方法进行详细说明。The method for preparing the film will be described in detail below through examples.

实施例1Example 1

下面以利用氯化锌、氯化镁、氢氧化钠、硫脲为例进行详细介绍:The following is a detailed introduction using zinc chloride, magnesium chloride, sodium hydroxide, and thiourea as examples:

1、将氯化锌、氯化镁按照质量比为1:20的比例加入到DMF中形成总浓度为0.5M溶液,室温下滴加0.6M NaOH乙醇溶液(摩尔比OH-:Zn2+=(1.5~3.0):1,pH=12~14),继续搅拌1.5h得到澄清透明溶液,用丙酮析出,离心后收集,制得ZnMgO纳米颗粒;1. Add zinc chloride and magnesium chloride to DMF at a mass ratio of 1:20 to form a solution with a total concentration of 0.5M, and add 0.6M NaOH ethanol solution dropwise at room temperature (molar ratio OH - : Zn 2+ =(1.5 ~3.0): 1, pH=12~14), continue to stir for 1.5h to obtain a clear and transparent solution, precipitate with acetone, collect after centrifugation, and obtain ZnMgO nanoparticles;

2、将上述制得的ZnMgO纳米颗粒置于高压反应釜中,加入硫脲水溶液(质量比ZnMgO:S=2:1),在100℃下反应2h,制得ZnMgO-ZnS异质结构纳米颗粒,用少量乙醇溶解,得到ZnMgO-ZnS异质结构纳米颗粒溶液,将所述ZnMgO-ZnS异质结构纳米颗粒溶液用匀胶机在处理过的ITO上旋涂并进行退火处理,得到薄膜。2. Put the ZnMgO nanoparticles prepared above in a high-pressure reactor, add thiourea aqueous solution (mass ratio ZnMgO:S=2:1), and react at 100°C for 2 hours to prepare ZnMgO-ZnS heterostructure nanoparticles , dissolved with a small amount of ethanol to obtain a ZnMgO-ZnS heterostructure nanoparticle solution, which is spin-coated on the treated ITO with a homogenizer and annealed to obtain a thin film.

实施例2Example 2

下面以六水合硝酸锌、;氯化镁、硫代乙酰胺、氢氧化钾为例进行详细介绍:The following takes zinc nitrate hexahydrate, magnesium chloride, thioacetamide, and potassium hydroxide as examples for a detailed introduction:

1、将硝酸锌、氯化镁按照质量比为1:20加入到DMF中形成总浓度为0.5M溶液,室温下滴加0.6M KOH乙醇溶液(摩尔比OH-:Zn2+=(1.5~3.0):1,pH=12~14),继续搅拌1.5h得到澄清透明溶液。用丙酮析出,离心后收集,制得ZnMgO纳米颗粒;1. Add zinc nitrate and magnesium chloride to DMF at a mass ratio of 1:20 to form a solution with a total concentration of 0.5M, and add 0.6M KOH ethanol solution dropwise at room temperature (molar ratio OH - : Zn 2+ = (1.5~3.0) : 1, pH=12~14), continue stirring for 1.5h to obtain a clear and transparent solution. Precipitate with acetone, collect after centrifugation, and make ZnMgO nanoparticles;

2、将上述制得的ZnMgO纳米颗粒置于高压反应釜中,加入硫代乙酰胺水溶液(质量比ZnMgO:S=2:1),在100℃下反应2h,制得ZnMgO-ZnS异质结构纳米颗粒,用少量乙醇溶解,得到ZnMgO-ZnS异质结构纳米颗粒溶液,将所述ZnMgO-ZnS异质结构纳米颗粒溶液用匀胶机在处理过的ITO上旋涂并进行退火处理,得到薄膜。2. Put the above-prepared ZnMgO nanoparticles in a high-pressure reactor, add thioacetamide aqueous solution (mass ratio ZnMgO:S=2:1), and react at 100°C for 2 hours to obtain a ZnMgO-ZnS heterostructure Nanoparticles are dissolved with a small amount of ethanol to obtain a ZnMgO-ZnS heterostructure nanoparticle solution, and the ZnMgO-ZnS heterostructure nanoparticle solution is spin-coated on the treated ITO with a homogenizer and annealed to obtain a thin film .

实施例3Example 3

下面以利用二水合醋酸锌、二水醋酸镁、L-半胱氨酸、四甲基氢氧化铵为例进行详细介绍:The following is a detailed introduction using zinc acetate dihydrate, magnesium acetate dihydrate, L-cysteine, and tetramethylammonium hydroxide as examples:

1、将醋酸锌、氯化镁(质量比Mg:Zn=1:20)加入到DMF中形成总浓度为0.5M溶液,室温下滴加0.6M四甲基氢氧化铵乙醇溶液(摩尔比OH-:Zn2+=(1.5~3.0):1,pH=12~14),继续搅拌1.5h得到澄清透明溶液。用丙酮析出,离心后收集,制得ZnMgO纳米颗粒;1. Add zinc acetate and magnesium chloride (mass ratio Mg:Zn=1:20) into DMF to form a solution with a total concentration of 0.5M, and add dropwise 0.6M tetramethylammonium hydroxide ethanol solution at room temperature (molar ratio OH- : Zn 2+ =(1.5-3.0): 1, pH=12-14), continue stirring for 1.5h to obtain a clear and transparent solution. Precipitate with acetone, collect after centrifugation, and make ZnMgO nanoparticles;

2、将上述制得的ZnMgO纳米颗粒置于高压反应釜中,加入硫脲水溶液(质量比ZnMgO:S=2:1),在100℃下反应2h,制得ZnMgO-ZnS异质结构纳米颗粒,用少量乙醇溶解,得到ZnMgO-ZnS异质结构纳米颗粒溶液,将所述ZnMgO-ZnS异质结构纳米颗粒溶液用匀胶机在处理过的ITO上旋涂并进行退火处理,得到薄膜。2. Put the ZnMgO nanoparticles prepared above in a high-pressure reactor, add thiourea aqueous solution (mass ratio ZnMgO:S=2:1), and react at 100°C for 2 hours to prepare ZnMgO-ZnS heterostructure nanoparticles , dissolved with a small amount of ethanol to obtain a ZnMgO-ZnS heterostructure nanoparticle solution, which is spin-coated on the treated ITO with a homogenizer and annealed to obtain a thin film.

在一些实施方式中,还提供一种量子点发光二极管,包括电子传输层,其中,所述电子传输层为本发明所述的薄膜。In some embodiments, there is also provided a quantum dot light-emitting diode, including an electron transport layer, wherein the electron transport layer is the thin film described in the present invention.

在一些实施方式中,所述量子点发光二极管包括层叠设置的阳极、量子点发光层、电子传输层和阴极,其中,所述电子传输层为本发明所述的薄膜。In some embodiments, the quantum dot light-emitting diode includes a stacked anode, a quantum dot light-emitting layer, an electron transport layer and a cathode, wherein the electron transport layer is the thin film described in the present invention.

在一些具体的实施方式中,所述量子点发光二极管包括层叠设置的阳极、空穴传输层、量子点发光层、电子传输层和阴极,其中,所述电子传输层为本发明所述的薄膜。In some specific embodiments, the quantum dot light-emitting diode includes a stacked anode, a hole transport layer, a quantum dot light-emitting layer, an electron transport layer and a cathode, wherein the electron transport layer is the thin film described in the present invention .

需要说明的是,本发明不限于上述结构的量子点发光二极管,还可进一步包括界面功能层或界面修饰层,包括但不限于电子阻挡层、空穴阻挡层、电极修饰层、隔离保护层中的一种或多种。本发明所述量子点发光二极管可以部分封装、全封装或不封装。It should be noted that the present invention is not limited to the quantum dot light-emitting diode with the above structure, and may further include an interface functional layer or an interface modification layer, including but not limited to an electron blocking layer, a hole blocking layer, an electrode modification layer, and an isolation protection layer. one or more of . The quantum dot light emitting diode of the present invention can be partially encapsulated, fully encapsulated or not encapsulated.

下面对含电子传输层的量子点发光二极管及其制备方法做详细说明:The quantum dot light-emitting diode with an electron transport layer and its preparation method are described in detail below:

根据所述量子点发光二极管发光类型的不同,所述量子点发光二极管可分为正装结构的量子点发光二极管和倒装结构的量子点发光二极管。According to the different light emitting types of the quantum dot light emitting diodes, the quantum dot light emitting diodes can be divided into quantum dot light emitting diodes with a front-mounted structure and quantum dot light-emitting diodes with a flip-chip structure.

作为其中一种实施方式,当所述量子点发光二极管为正装结构时,如图3所示,所述QLED器件包括从下往上叠层设置的阳极2(所述阳极2叠层设置于衬底1上)、空穴传输层3、量子点发光层4、电子传输层5和阴极6,其中,所述电子传输层5为本发明所述的薄膜。As one of the implementations, when the quantum dot light-emitting diode is a front-mounted structure, as shown in Figure 3, the QLED device includes an anode 2 stacked from bottom to top (the anode 2 is stacked on the substrate Bottom 1), hole transport layer 3, quantum dot luminescent layer 4, electron transport layer 5 and cathode 6, wherein the electron transport layer 5 is the thin film described in the present invention.

作为其中另一实施方式中,当所述量子点发光二极管为倒装结构时,如图4所示,所述QLED器件包括从下往上叠层设置的阴极6(所述阴极6叠层设置于衬底1上)、电子传输层5、量子点发光层4、空穴传输层3和阳极2,其中,所述电子传输层5为本发明所述的薄膜。As another embodiment, when the quantum dot light-emitting diode is a flip-chip structure, as shown in Figure 4, the QLED device includes a cathode 6 stacked from bottom to top (the cathode 6 is stacked on the substrate 1), an electron transport layer 5, a quantum dot light-emitting layer 4, a hole transport layer 3 and an anode 2, wherein the electron transport layer 5 is the thin film described in the present invention.

在一些实施方式中,所述阳极的材料选自掺杂金属氧化物;其中,所述掺杂金属氧化物包括但不限于铟掺杂氧化锡(ITO)、氟掺杂氧化锡(FTO)、锑掺杂氧化锡(ATO)、铝掺杂氧化锌(AZO)、镓掺杂氧化锌(GZO)、铟掺杂氧化锌(IZO)、镁掺杂氧化锌(MZO)、铝掺杂氧化镁(AMO)中的一种或多种。In some embodiments, the material of the anode is selected from doped metal oxide; wherein, the doped metal oxide includes but not limited to indium doped tin oxide (ITO), fluorine doped tin oxide (FTO), Antimony doped tin oxide (ATO), aluminum doped zinc oxide (AZO), gallium doped zinc oxide (GZO), indium doped zinc oxide (IZO), magnesium doped zinc oxide (MZO), aluminum doped magnesium oxide One or more of (AMO).

在一些实施方式中,所述空穴传输层的材料选自具有良好空穴传输能力的有机材料,例如可以为但不限于聚(9,9-二辛基芴-CO-N-(4-丁基苯基)二苯胺)(TFB)、聚乙烯咔唑(PVK)、聚(N,N'双(4-丁基苯基)-N,N'-双(苯基)联苯胺)(Poly-TPD)、聚(9,9-二辛基芴-共-双-N,N-苯基-1,4-苯二胺)(PFB)、4,4’,4”-三(咔唑-9-基)三苯胺(TCTA)、4,4'-二(9-咔唑)联苯(CBP)、N,N’-二苯基-N,N’-二(3-甲基苯基)-1,1’-联苯-4,4’-二胺(TPD)、N,N’-二苯基-N,N’-(1-萘基)-1,1’-联苯-4,4’-二胺(NPB)、掺杂石墨烯、非掺杂石墨烯、C60、F8、氧化铜、氧化镍、三氧化钨和三氧化钼中的一种或多种。In some embodiments, the material of the hole transport layer is selected from organic materials with good hole transport capability, such as but not limited to poly(9,9-dioctylfluorene-CO-N-(4- Butylphenyl) diphenylamine) (TFB), polyvinylcarbazole (PVK), poly(N,N'bis(4-butylphenyl)-N,N'-bis(phenyl)benzidine)( Poly-TPD), poly(9,9-dioctylfluorene-co-bis-N,N-phenyl-1,4-phenylenediamine) (PFB), 4,4',4"-tri(carba Azol-9-yl)triphenylamine (TCTA), 4,4'-bis(9-carbazole)biphenyl (CBP), N,N'-diphenyl-N,N'-bis(3-methyl Phenyl)-1,1'-biphenyl-4,4'-diamine (TPD), N,N'-diphenyl-N,N'-(1-naphthyl)-1,1'-bi One or more of benzene-4,4'-diamine (NPB), doped graphene, non-doped graphene, C60, F8, copper oxide, nickel oxide, tungsten trioxide and molybdenum trioxide.

在一些实施方式中,所述量子点发光层的材料选自红量子点、绿量子点、蓝量子点中的一种或多种,也可选自黄光量子点。具体的,所述量子点发光层的材料选自CdS、CdSe、CdTe、ZnO、ZnS、ZnSe、ZnTe、GaAs、GaP、GaSb、HgS、HgSe、HgTe、InAs、InP、InSb、AlAs、AlP、CuInS、CuInSe、以及各种核壳结构量子点或合金结构量子点中的一种或多种。本发明所述量子点可以选自含镉或者不含镉量子点。该材料的量子点发光层具有激发光谱宽并且连续分布,发射光谱稳定性高等特点。In some embodiments, the material of the quantum dot light-emitting layer is selected from one or more of red quantum dots, green quantum dots, and blue quantum dots, and can also be selected from yellow quantum dots. Specifically, the material of the quantum dot light-emitting layer is selected from CdS, CdSe, CdTe, ZnO, ZnS, ZnSe, ZnTe, GaAs, GaP, GaSb, HgS, HgSe, HgTe, InAs, InP, InSb, AlAs, AlP, CuInS , CuInSe, and one or more of various core-shell structure quantum dots or alloy structure quantum dots. The quantum dots in the present invention can be selected from cadmium-containing or cadmium-free quantum dots. The quantum dot light-emitting layer of the material has the characteristics of wide excitation spectrum and continuous distribution, and high stability of emission spectrum.

在一些实施方式中,所述阴极的材料选自导电碳材料、导电金属氧化物材料和金属材料中的一种或多种;其中导电碳材料包括但不限于掺杂或非掺杂碳纳米管、掺杂或非掺杂石墨烯、掺杂或非掺杂氧化石墨烯、C60、石墨、碳纤维和多孔碳中的一种或多种;导电金属氧化物材料包括但不限于ITO、FTO、ATO和AZO中的一种或多种;金属材料包括但不限于Al、Ag、Cu、Mo、Au、或它们的合金;其中所述金属材料中,其形态包括但不限于致密薄膜、纳米线、纳米球、纳米棒、纳米锥和纳米空心球中的一种或多种。In some embodiments, the material of the cathode is selected from one or more of conductive carbon materials, conductive metal oxide materials and metal materials; wherein the conductive carbon materials include but are not limited to doped or non-doped carbon nanotubes , doped or undoped graphene, doped or undoped graphene oxide, C60, graphite, carbon fiber and porous carbon; conductive metal oxide materials include but not limited to ITO, FTO, ATO and one or more of AZO; metal materials include but not limited to Al, Ag, Cu, Mo, Au, or their alloys; wherein in the metal materials, its morphology includes but not limited to dense films, nanowires, One or more of nanospheres, nanorods, nanocones and nanohollow spheres.

本发明还提供一种正装结构的量子点发光二极管的制备方法,包括如下步骤:The present invention also provides a method for preparing a quantum dot light-emitting diode with a positive structure, comprising the following steps:

提供含阳极的衬底,在阳极上制备空穴传输层;providing a substrate containing an anode, and preparing a hole transport layer on the anode;

在空穴传输层上制备量子点发光层;Prepare a quantum dot luminescent layer on the hole transport layer;

在量子点发光层上制备电子传输层,其中,所述电子传输层为本发明所述的薄膜;preparing an electron transport layer on the quantum dot luminescent layer, wherein the electron transport layer is the thin film of the present invention;

在电子传输层上制备阴极,得到所述量子点发光二极管。A cathode is prepared on the electron transport layer to obtain the quantum dot light emitting diode.

作为其中一实施方式,以ITO导电玻璃作为衬底为例,为了得到高质量的薄膜,所述ITO导电玻璃需要经过预处理过程,基本具体的处理步骤包括:将ITO导电玻璃刻蚀成窄带,随后依次在去离子水、丙酮、无水乙醇、去离子水中分别超声清洗,以除去表面存在的杂质,烘干后用紫外清洗机清洗,即可得到ITO阳极。As one of the implementations, taking ITO conductive glass as the substrate as an example, in order to obtain a high-quality film, the ITO conductive glass needs to undergo a pretreatment process. The basic specific processing steps include: etching the ITO conductive glass into a narrow strip, Then ultrasonically clean them in deionized water, acetone, absolute ethanol and deionized water respectively to remove impurities on the surface. After drying, clean them with an ultraviolet cleaner to obtain the ITO anode.

作为其中一实施方式,将配制好的空穴传输材料的溶液旋涂在ITO上成膜;通过调节溶液的浓度、旋涂速度和旋涂时间来控制膜厚,然后在适当温度下热退火处理,制得空穴传输层;将配制好的空穴传输材料的溶液旋涂在ITO上成膜;将配制好一定浓度的量子点溶液在所述空穴传输层上旋涂成膜,通过调节溶液的浓度、旋涂速度和旋涂时间来控制量子点发光层的厚度,约20~60nm,在适当温度下干燥。As one of the implementation methods, the solution of the prepared hole transport material is spin-coated on ITO to form a film; the film thickness is controlled by adjusting the concentration of the solution, the spin-coating speed and the spin-coating time, and then thermal annealing treatment at an appropriate temperature , to make a hole transport layer; the solution of the prepared hole transport material is spin-coated on ITO to form a film; the prepared quantum dot solution of a certain concentration is spin-coated on the hole transport layer to form a film, by The concentration of the solution, the spin-coating speed and the spin-coating time are used to control the thickness of the quantum dot light-emitting layer, which is about 20-60nm, and dried at an appropriate temperature.

作为其中一实施方式,在量子点发光层上制备电子传输层的步骤具体包括:将配制好一定浓度的异质结纳米材料溶液旋涂于所述量子点发光层上面成膜,通过调节异质结纳米材料溶液的浓度、旋涂速度和旋涂时间来控制电子传输层的厚度,约20~60nm,然后再退火成膜。As one of the implementations, the step of preparing an electron transport layer on the quantum dot light-emitting layer specifically includes: spin-coating a heterojunction nanomaterial solution prepared with a certain concentration on the quantum dot light-emitting layer to form a film, by adjusting the heterojunction The thickness of the electron transport layer is controlled by the concentration of the nanomaterial solution, the spin coating speed and the spin coating time, which is about 20-60nm, and then annealed to form a film.

在一些具体的实施方式中,所述旋涂速度为3000-5000rpm。In some specific embodiments, the spin coating speed is 3000-5000 rpm.

作为其中一实施方式,在电子传输层上制备阴极的步骤具体包括:将沉积完各功能层的衬底置于蒸镀仓中通过掩膜板热蒸镀一层15-30nm的金属银或者铝等作为阴极,或者使用纳米Ag线或者Cu线等,上述材料具有较小的电阻使得载流子能顺利的注入。As one of the implementation methods, the step of preparing the cathode on the electron transport layer specifically includes: placing the substrate on which each functional layer has been deposited in an evaporation chamber and thermally evaporating a layer of 15-30nm metallic silver or aluminum through a mask plate. etc. as the cathode, or use nano-Ag wires or Cu wires, etc., the above-mentioned materials have a small resistance so that carriers can be injected smoothly.

本发明还提供一种倒装结构的量子点发光二极管的制备方法,包括如下步骤:The present invention also provides a method for preparing a quantum dot light-emitting diode with an inverted structure, comprising the following steps:

提供含有阴极的衬底,在所述阴极上制备电子传输层,其中,所述电子传输层为本发明所述的薄膜;A substrate containing a cathode is provided, and an electron transport layer is prepared on the cathode, wherein the electron transport layer is the thin film according to the present invention;

在电子传输层上制备量子点发光层;preparing a quantum dot luminescent layer on the electron transport layer;

在量子点发光层上制备空穴传输层;Prepare a hole transport layer on the quantum dot light-emitting layer;

在空穴传输层上制备阳极,得到量子点发光二极管。An anode is prepared on the hole transport layer to obtain a quantum dot light emitting diode.

作为其中一实施方式,在阴极上制备电子传输层的步骤具体包括:将配制好一定浓度的异质结纳米材料溶液旋涂于所述量子点发光层上面成膜,通过调节异质结纳米材料溶液的浓度、旋涂速度和旋涂时间来控制电子传输层的厚度,约20~60nm,然后再退火成膜。As one of the implementations, the step of preparing an electron transport layer on the cathode specifically includes: spin-coating a heterojunction nanomaterial solution with a certain concentration on the quantum dot light-emitting layer to form a film, and adjusting the heterojunction nanomaterial The concentration of the solution, the spin-coating speed and the spin-coating time are used to control the thickness of the electron transport layer, which is about 20-60nm, and then annealed to form a film.

本发明还包括步骤:对得到的所述量子点发光二极管进行封装处理,所述封装处理可采用常用的机器封装,也可以采用手动封装。优选的,所述封装处理的环境中,氧含量和水含量均低于0.1ppm,以保证量子点发光二极管的稳定性。The present invention also includes the step of: encapsulating the obtained quantum dot light-emitting diodes. The encapsulation process can be carried out by commonly used machine encapsulation or manual encapsulation. Preferably, in the encapsulation environment, both the oxygen content and the water content are lower than 0.1 ppm, so as to ensure the stability of the quantum dot light-emitting diode.

上述各层的制备方法可以是化学法或物理法,其中化学法包括但不限于化学气相沉积法、连续离子层吸附与反应法、阳极氧化法、电解沉积法、共沉淀法中的一种或多种;物理法包括但不限于物理镀膜法或溶液法,其中溶液法包括但不限于旋涂法、印刷法、刮涂法、浸渍提拉法、浸泡法、喷涂法、滚涂法、浇铸法、狭缝式涂布法、条状涂布法;物理镀膜法包括但不限于热蒸发镀膜法、电子束蒸发镀膜法、磁控溅射法、多弧离子镀膜法、物理气相沉积法、原子层沉积法、脉冲激光沉积法中的一种或多种。The preparation method of the above-mentioned layers can be a chemical method or a physical method, wherein the chemical method includes but is not limited to one or Various; physical methods include but not limited to physical coating method or solution method, where solution methods include but not limited to spin coating method, printing method, scrape coating method, dipping and pulling method, soaking method, spraying method, roll coating method, casting method, slit coating method, strip coating method; physical coating methods include but not limited to thermal evaporation coating method, electron beam evaporation coating method, magnetron sputtering method, multi-arc ion coating method, physical vapor deposition method, One or more of atomic layer deposition and pulsed laser deposition.

综上所述,本发明通过对ZnMgO纳米颗粒进行硫化处理,在所述ZnMgO纳米颗粒表面生成ZnS层,制得异质结纳米材料,所述ZnS层可钝化ZnMgO纳米颗粒的表面缺陷,改善薄膜(电子传输层)与量子点发光层的接触面质量,同时所述ZnMgO纳米颗粒的表面Zn原子与表面S原子紧密结合后,创建了新的电子传递途径,可加速电子传递,从而协同提高量子点发光二极管的发光效率及稳定性。另外,本发明提供的薄膜的制备方法操作简单,适合大面积,大规模制备。In summary, the present invention generates a ZnS layer on the surface of the ZnMgO nanoparticles by vulcanizing the ZnMgO nanoparticles to obtain a heterojunction nanomaterial. The ZnS layer can passivate the surface defects of the ZnMgO nanoparticles and improve The quality of the interface between the thin film (electron transport layer) and the quantum dot light-emitting layer, while the surface Zn atoms of the ZnMgO nanoparticles are closely combined with the surface S atoms to create a new electron transfer pathway, which can accelerate electron transfer, thereby synergistically improving Luminous efficiency and stability of quantum dot light-emitting diodes. In addition, the preparation method of the thin film provided by the invention is simple to operate and is suitable for large-scale and large-scale preparation.

应当理解的是,本发明的应用不限于上述的举例,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,所有这些改进和变换都应属于本发明所附权利要求的保护范围。It should be understood that the application of the present invention is not limited to the above examples, and those skilled in the art can make improvements or transformations according to the above descriptions, and all these improvements and transformations should belong to the protection scope of the appended claims of the present invention.

Claims (8)

1. A preparation method of a heterojunction nano material is characterized by comprising the following steps:
dispersing zinc salt and magnesium salt in an organic solvent to form a mixed solution;
adding alkali liquor into the mixed solution, and reacting to obtain ZnMgO nano-particles;
adding the ZnMgO nano-particles into a sulfur source aqueous solution, heating, and generating a ZnS layer on the surfaces of the ZnMgO nano-particles to prepare the heterojunction nano-material;
the total concentration of zinc ions and magnesium ions in the mixed solution is 0.1-1M.
2. The method for preparing the heterojunction nano-material of claim 1, wherein the mass ratio of the ZnMgO nano-particles to the sulfur element in the sulfur source aqueous solution is 2-4:1.
3. The method for preparing heterojunction nano-material according to claim 1, wherein the step of adding the ZnMgO nanoparticles into a sulfur source aqueous solution and heating to form a ZnS layer on the surface of the ZnMgO nanoparticles to obtain the heterojunction nano-material comprises:
and adding the ZnMgO nano-particles into a sulfur source water solution, heating to 80-120 ℃, reacting for 1-3h, and generating a ZnS layer on the surfaces of the ZnMgO nano-particles to obtain the heterojunction nano-material.
4. The method for preparing the heterojunction nano-material according to claim 1, wherein the sulfur source aqueous solution is one or more of a thiourea aqueous solution, a thioacetamide aqueous solution and an L-cysteine aqueous solution.
5. The preparation method of the heterojunction nano-material according to claim 1, wherein the mass ratio of the zinc salt to the magnesium salt is 1:10-20.
6. The method for preparing a heterojunction nano-material as claimed in claim 1, wherein OH of the alkali solution is - With Zn in the mixed solution 2+ In a molar ratio of 1.5 to 3:1.
7. a thin film, wherein the material of the thin film is the heterojunction nano-material prepared by the preparation method of claim 1.
8. A quantum dot light emitting diode comprising an electron transport layer, wherein the electron transport layer is the film of claim 7.
CN201911394057.3A 2019-12-30 2019-12-30 A kind of heterojunction nanomaterial and its preparation method, thin film, quantum dot light-emitting diode Active CN113130631B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911394057.3A CN113130631B (en) 2019-12-30 2019-12-30 A kind of heterojunction nanomaterial and its preparation method, thin film, quantum dot light-emitting diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911394057.3A CN113130631B (en) 2019-12-30 2019-12-30 A kind of heterojunction nanomaterial and its preparation method, thin film, quantum dot light-emitting diode

Publications (2)

Publication Number Publication Date
CN113130631A CN113130631A (en) 2021-07-16
CN113130631B true CN113130631B (en) 2022-11-29

Family

ID=76768048

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911394057.3A Active CN113130631B (en) 2019-12-30 2019-12-30 A kind of heterojunction nanomaterial and its preparation method, thin film, quantum dot light-emitting diode

Country Status (1)

Country Link
CN (1) CN113130631B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN119318233A (en) * 2022-07-19 2025-01-14 夏普显示科技株式会社 Light emitting element and display device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101565611A (en) * 2009-06-04 2009-10-28 复旦大学 Mg<2+> doped zinc oxide luminescent nanoparticle and the preparation method thereof
CN106229393A (en) * 2016-09-14 2016-12-14 Tcl集团股份有限公司 A kind of light emitting diode and preparation method thereof
EP3530713B1 (en) * 2018-02-21 2025-04-02 Samsung Electronics Co., Ltd. Semiconductor nanocrystal particles, production methods thereof, and devices including the same
JP7098555B2 (en) * 2018-03-02 2022-07-11 株式会社アルバック Manufacturing method of core-shell type quantum dot dispersion liquid and manufacturing method of quantum dot dispersion liquid
CN110526277B (en) * 2019-10-09 2022-08-02 纳晶科技股份有限公司 Preparation method of doped zinc oxide nanocrystal, electron transport layer and light-emitting device

Also Published As

Publication number Publication date
CN113130631A (en) 2021-07-16

Similar Documents

Publication Publication Date Title
CN112018254B (en) A kind of quantum dot light-emitting diode based on benzenethiol derivative and preparation method thereof
KR101575572B1 (en) Light Emitting Device and Method Of Manufacturing Light Emitting Device
CN113130781B (en) Composite material, quantum dot light-emitting diode and preparation method thereof
CN109980097B (en) Preparation method of thin film and QLED device
KR101552662B1 (en) Light Emitting Device and Method Of Manufacturing Hole Injection/Transport layer
JP7640573B2 (en) Nanomaterial, its manufacturing method, and quantum dot light-emitting diode
CN113903865A (en) Zinc oxide nano material, preparation method thereof and luminescent device
CN111384255A (en) Quantum dot light-emitting diode and preparation method thereof
CN110838560B (en) Core-shell nano material, preparation method thereof and quantum dot light-emitting diode
WO2021136044A1 (en) Quantum dot light-emitting diode and manufacturing method therefor
CN111384254B (en) Quantum dot light-emitting diode
CN113130631B (en) A kind of heterojunction nanomaterial and its preparation method, thin film, quantum dot light-emitting diode
KR102706471B1 (en) Electron transport layer, quantum dot light-emitting devices comprising the same, single carrier devices for evaluating the electron transport layer and method for fabricating the same
CN111384277B (en) Composite material, quantum dot light-emitting diode and preparation method thereof
CN113130794B (en) Quantum dot light-emitting diode and preparation method thereof
CN113120952B (en) Zinc sulfide nano material and preparation method thereof, zinc sulfide thin film and quantum dot light-emitting diode
CN114695813A (en) Composite material, preparation method thereof and light emitting diode
CN113823568B (en) Zinc oxide film and preparation method thereof, and quantum dot light emitting diode
CN113809245B (en) Zinc oxide nanomaterial and preparation method thereof, semiconductor device
CN112349870B (en) Quantum dot light-emitting diode and preparation method thereof
CN116096123A (en) A kind of thin film and its preparation method, optoelectronic device and display device
CN113120951A (en) Bimetal co-doped zinc sulfide film, preparation method thereof and quantum dot light-emitting diode
KR20220145889A (en) Nanomaterials, light-emitting diode devices, and methods for manufacturing the same
CN116156918A (en) A kind of nano material and preparation method thereof, electron transport thin film and optoelectronic device
CN116156925A (en) A kind of photoelectric device and its preparation method, display device

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information
CB02 Change of applicant information

Address after: 516006 TCL science and technology building, No. 17, Huifeng Third Road, Zhongkai high tech Zone, Huizhou City, Guangdong Province

Applicant after: TCL Technology Group Co.,Ltd.

Address before: 516006 Guangdong province Huizhou Zhongkai hi tech Development Zone No. nineteen District

Applicant before: TCL Corp.

GR01 Patent grant
GR01 Patent grant