[go: up one dir, main page]

CN113114136B - A Gradient Power Amplifier Based on Adaptive Predictive Control and Its Design Method - Google Patents

A Gradient Power Amplifier Based on Adaptive Predictive Control and Its Design Method Download PDF

Info

Publication number
CN113114136B
CN113114136B CN202110419600.1A CN202110419600A CN113114136B CN 113114136 B CN113114136 B CN 113114136B CN 202110419600 A CN202110419600 A CN 202110419600A CN 113114136 B CN113114136 B CN 113114136B
Authority
CN
China
Prior art keywords
circuit
output
pid
power amplifier
microprocessor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110419600.1A
Other languages
Chinese (zh)
Other versions
CN113114136A (en
Inventor
王平
田训
柳学功
李锡涛
王慧悦
梁家祺
武超
阎鑫龙
李倩文
陈靖翰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University
Original Assignee
Chongqing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University filed Critical Chongqing University
Priority to CN202110419600.1A priority Critical patent/CN113114136B/en
Publication of CN113114136A publication Critical patent/CN113114136A/en
Application granted granted Critical
Publication of CN113114136B publication Critical patent/CN113114136B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)

Abstract

本发明涉及一种基于自适应预测控制的梯度功率放大器及其设计方法,属于电子电路领域。一种基于自适应预测控制的梯度功率放大器装置主要包括四桥臂功率电路和快速反馈预测电路;微处理器根据梯度功率放大器输出的响应曲线,通过调节PID电路中的数字电位器将PID控制参数调至最优,并计算出系统输出响应时间常数τ;微处理器通过调整快速预测电路中的数字电位器阻值实现预测系数与系统输出响应时间常数τ相匹配;然后将快速预测电路与PID电路进行级联,从而实现在不同应用场景下梯度功率放大器的自适应参数匹配,以及对控制电路输出信号的快速预测控制,从而提高梯度功率放大器的输出响应速度和精度。

Figure 202110419600

The invention relates to a gradient power amplifier based on adaptive predictive control and a design method thereof, belonging to the field of electronic circuits. A gradient power amplifier device based on adaptive predictive control mainly includes a four-arm power circuit and a fast feedback predictive circuit; the microprocessor adjusts the PID control parameters by adjusting the digital potentiometer in the PID circuit according to the response curve output by the gradient power amplifier. Adjust to the optimum and calculate the system output response time constant τ; the microprocessor adjusts the resistance value of the digital potentiometer in the fast prediction circuit to match the prediction coefficient with the system output response time constant τ; then the fast prediction circuit and the PID The circuits are cascaded to realize adaptive parameter matching of the gradient power amplifier in different application scenarios, and fast predictive control of the output signal of the control circuit, thereby improving the output response speed and accuracy of the gradient power amplifier.

Figure 202110419600

Description

一种基于自适应预测控制的梯度功率放大器及其设计方法A Gradient Power Amplifier Based on Adaptive Predictive Control and Its Design Method

技术领域technical field

本发明属于电子电路领域,涉及一种基于自适应预测控制的梯度功率放大器及其设计方法。The invention belongs to the field of electronic circuits, and relates to a gradient power amplifier based on adaptive predictive control and a design method thereof.

背景技术Background technique

梯度放大器作为MRI系统的核心部件,接收谱仪输出的具有一定时序的X轴、Y轴、Z轴三个方向的梯度信号进行功率放大,通过梯度线圈驱动电流在空间上生成相应的空间编码梯度磁场,实现对成像体素的空间定位。梯度放大器通过变化的电流使梯度线圈周围生成变化的梯度磁场,梯度放大器最终的目的是为MRI提供高性能的梯度磁场,梯度技术的发展可以有效提高成像的速度和质量。梯度磁场所能达到的最大值即为梯度磁场的强度,梯度磁场强度的增大可以有效的提高成像的空间分辨率,并且进行越薄层的成像。所以高性能梯度放大器的设计也就成为了MRI系统设计的重中之重。As the core component of the MRI system, the gradient amplifier receives the gradient signals output by the spectrometer in the three directions of the X-axis, Y-axis, and Z-axis with a certain time sequence for power amplification, and generates corresponding spatial encoding gradients in space through the gradient coil drive current. The magnetic field realizes the spatial positioning of the imaging voxel. The gradient amplifier generates a changing gradient magnetic field around the gradient coil through the changing current. The ultimate goal of the gradient amplifier is to provide a high-performance gradient magnetic field for MRI. The development of gradient technology can effectively improve the imaging speed and quality. The maximum value that the gradient magnetic field can reach is the strength of the gradient magnetic field. The increase of the gradient magnetic field strength can effectively improve the spatial resolution of imaging, and perform imaging with thinner layers. Therefore, the design of high-performance gradient amplifiers has become the top priority of MRI system design.

近几年来,有一些研究机构和厂商开始了对数字电路功率放大器控制系统的研究,并在一些控制方法和结构的研究上有了初步的成效,但其控制系统的性能还远远不能满足高质量成像的要求,并不能投入实际的应用。已经上市的梯度放大器采用的电路结构一般为双H桥拓扑结构,通过数字开关为梯度线圈提供驱动电流。对于这种结构的控制方法各有不同,但一般集中在闭环控制上,采用经典的PID控制算法,并在此基础上进行算法的改进以期达到所需的性能,例如状态反馈、前馈控制、延时补偿等。In recent years, some research institutions and manufacturers have begun to study the control system of digital circuit power amplifiers, and have achieved preliminary results in the research of some control methods and structures, but the performance of the control system is far from satisfying high-level requirements. Quality imaging is required and cannot be put into practical application. The circuit structure adopted by the gradient amplifiers already on the market is generally a double H-bridge topology, and the driving current is provided for the gradient coil through a digital switch. There are different control methods for this structure, but they generally focus on closed-loop control, using the classic PID control algorithm, and improving the algorithm on this basis in order to achieve the required performance, such as state feedback, feedforward control, Delay compensation, etc.

梯度功率放大器的关键问题是输出梯度电流信号的高精度、快速跟踪输出以及针对不同应用系统的自适应参数整定调整。目前经典的PID控制算法仍然面临着许多问题,在实际的核磁共振成像系统应用中,研究一套快速、稳定、高精度以及控制参数自适应整定调整的梯度功率放大器系统成了目前应用中的迫切需求。The key issues of the gradient power amplifier are the high precision of the output gradient current signal, the fast tracking output and the adaptive parameter setting adjustment for different application systems. At present, the classic PID control algorithm still faces many problems. In the actual application of nuclear magnetic resonance imaging system, it is urgent to study a set of gradient power amplifier system with fast, stable, high-precision and adaptive adjustment of control parameters. need.

发明内容Contents of the invention

有鉴于此,本发明的目的在于提供一种基于自适应预测控制的梯度功率放大器及其设计方法。可以实现梯度功率放大器快速、高精度电流输出,解决了梯度功率放大器电流输出响应速度慢、精度低的问题,有效提高了梯度功率放大器输出电流精度与响应速度,同时针对梯度功率放大器应用的不同核磁共振成像系统需求,能够实现自适应参数调整,使其与系统参数相匹配,达到最优控制。In view of this, the object of the present invention is to provide a gradient power amplifier based on adaptive predictive control and a design method thereof. It can realize the fast and high-precision current output of the gradient power amplifier, solve the problem of slow response speed and low precision of the current output of the gradient power amplifier, and effectively improve the output current accuracy and response speed of the gradient power amplifier. The resonance imaging system needs to be able to realize adaptive parameter adjustment to match the system parameters to achieve optimal control.

为达到上述目的,本发明提供如下技术方案:To achieve the above object, the present invention provides the following technical solutions:

一种基于自适应预测控制的梯度功率放大器及其设计方法,包括依次连接的四桥臂功率电路以及快速反馈预测电路;A gradient power amplifier based on adaptive predictive control and its design method, including sequentially connected four-arm power circuits and fast feedback predictive circuits;

四桥臂功率电路包括依次连接的四桥臂驱动电路、四桥臂开关电路、LC滤波电路和电流正反相切换H桥电路组成;The four-bridge arm power circuit consists of a four-bridge arm drive circuit, a four-bridge arm switch circuit, an LC filter circuit and an H-bridge circuit for forward and reverse current switching connected in sequence;

快速反馈预测电路包括依次连接的模拟电路实现的放大器、快速预测电路、PID电路、比较器,以及微处理器、FPGA、DAC转换器、数字电位器和可调电位器和ADC转换器。The fast feedback prediction circuit includes an amplifier realized by analog circuits connected in sequence, a fast prediction circuit, a PID circuit, a comparator, and a microprocessor, FPGA, DAC converter, digital potentiometer and adjustable potentiometer and ADC converter.

一种基于自适应预测控制的梯度功率放大器及其设计方法,该方法包括以下步骤:A gradient power amplifier based on adaptive predictive control and a design method thereof, the method comprising the following steps:

S1:微处理器闭合K1,打开K2,将快速预测电路与PID电路断开,微处理器根据反馈误差信号,调节PID电路中的数字电位器,实现对PID电路相关参数的自动调节,得到最优PID控制下的梯度功率放大器输出响应时间参数τ;S1: The microprocessor closes K1, opens K2, and disconnects the fast prediction circuit from the PID circuit. The microprocessor adjusts the digital potentiometer in the PID circuit according to the feedback error signal to realize the automatic adjustment of the relevant parameters of the PID circuit, and obtain the best Gradient power amplifier output response time parameter τ under optimal PID control;

S2:微处理器打开K1,闭合K2,将快速预测电路与PID电路串联,根据梯度功率放大器的输出响应时间参数τ,计算得到快速预测电路中的数字电位器的电阻值,微处理器调节快速预测电路第二级放大电路和第三级微分电路中的数字电位器参数,使快速预测电路中的预测时间常数与梯度功率放大器的输出响应时间参数τ相匹配,从而实现对反馈误差信号的快速预测输出;S2: The microprocessor opens K1, closes K2, connects the fast prediction circuit in series with the PID circuit, calculates the resistance value of the digital potentiometer in the fast prediction circuit according to the output response time parameter τ of the gradient power amplifier, and the microprocessor adjusts quickly The parameters of the digital potentiometer in the second-stage amplification circuit and the third-stage differential circuit of the prediction circuit make the prediction time constant in the fast prediction circuit match the output response time parameter τ of the gradient power amplifier, so as to realize the fast feedback error signal predicted output;

S3:通过手动方式对电位器进行调节,经ADC转换器后,微处理器能够实时感知手动参数设置,从而控制PID和快速预测电路中的数字电位器,实现梯度功率放大器输出控制参数的人工干预。S3: The potentiometer is adjusted manually. After the ADC converter, the microprocessor can perceive the manual parameter setting in real time, thereby controlling the digital potentiometer in the PID and fast prediction circuit, and realizing the manual intervention of the output control parameters of the gradient power amplifier. .

可选的,所述S1具体包括:Optionally, the S1 specifically includes:

S11:微处理器根据设定值VSET计算直流母线电压VDC,两者之间的关系表达式为:S11: The microprocessor calculates the DC bus voltage V DC according to the set value V SET , and the relational expression between the two is:

Figure BDA0003027382720000021
Figure BDA0003027382720000021

式(1)中KCONVERT为设定值与输出电流之间的转换系数,Rcoil为负载电阻,D为占空比,取60%;In formula (1), K CONVERT is the conversion coefficient between the set value and the output current, R coil is the load resistance, and D is the duty cycle, which is 60%;

根据输出电流大小,微处理器通过DAC和放大器输出信号给可编程直流电源的输出电压调整端,动态调整直流母线电压到期望值VDCAccording to the size of the output current, the microprocessor outputs the signal to the output voltage adjustment terminal of the programmable DC power supply through the DAC and the amplifier, and dynamically adjusts the DC bus voltage to the expected value V DC ;

S12:微处理器根据反馈误差信号VERROR,自动调节PID电路的数字电位器,从而实时改变PID电路中的比例系数Kp、积分系数Ki、微分系数KdS12: The microprocessor automatically adjusts the digital potentiometer of the PID circuit according to the feedback error signal V ERROR , thereby changing the proportional coefficient K p , the integral coefficient K i , and the differential coefficient K d in the PID circuit in real time;

PID电路输出VOUT与VERROR关系表达式为:The relationship expression between PID circuit output V OUT and V ERROR is:

Figure BDA0003027382720000031
Figure BDA0003027382720000031

S13:PID电路输出VOUT与四路移相90°的锯齿波进行比较,产生四路移相90°的PWM波送入FPGA,经处理后产生八路加死区互补的PWM波,送入四桥臂驱动电路,通过调整PWM占空比控制梯度功率放大器的输出电流,FPGA通过对设定值信号的正负极性判断,控制H桥电路开关的选通,从而实现对输出电流的方向控制;S13: The output V OUT of the PID circuit is compared with four 90° phase-shifted sawtooth waves to generate four 90° phase-shifted PWM waves that are sent to the FPGA. The bridge arm drive circuit controls the output current of the gradient power amplifier by adjusting the PWM duty cycle, and the FPGA controls the switching of the H-bridge circuit switch by judging the positive and negative polarity of the set value signal, thereby realizing the direction control of the output current ;

S14:根据不同PID控制参数下输出电流上升下降时间、超调量及震荡时间,调试整定得到系统最优PID控制时的输出响应时间参数τ。S14: According to the output current rise and fall time, overshoot and oscillation time under different PID control parameters, debug and adjust to obtain the output response time parameter τ under the optimal PID control of the system.

可选的,在所述S2中,根据系统参数计算得到与系统匹配的系统控制参数具体包括:Optionally, in said S2, calculating the system control parameters matching the system according to the system parameters specifically includes:

S21:将梯度功率放大器输出电流响应时间参数τ等效为一阶指数速率变化的RC充电信号,τ=R1C1S21: The gradient power amplifier output current response time parameter τ is equivalent to an RC charging signal with a first-order exponential rate change, τ=R 1 C 1 ;

Figure BDA0003027382720000032
Figure BDA0003027382720000032

式(3)中V0为VERROR的初始电压,VF为稳定电压,V1为第一级放大电路输出,VT1为第一级运放输入,VT2为第一级运放输出;In formula (3), V 0 is the initial voltage of V ERROR , V F is the stable voltage, V 1 is the output of the first-stage amplifier circuit, V T1 is the input of the first-stage operational amplifier, and V T2 is the output of the first-stage operational amplifier;

S22:反馈误差信号经过第一级电压跟随电路后,送入第二级放大电路,其中第二级放大电路放大倍数由微处理器通过调整数字电位器dcp1进行控制,S22: After the feedback error signal passes through the first-stage voltage follower circuit, it is sent to the second-stage amplifying circuit, wherein the magnification of the second-stage amplifying circuit is controlled by the microprocessor by adjusting the digital potentiometer dcp1,

Figure BDA0003027382720000033
Figure BDA0003027382720000033

得第二级放大电路输出V2为:The output V 2 of the second-stage amplifier circuit is:

Figure BDA0003027382720000034
Figure BDA0003027382720000034

式(5)中Rdcp1为数字电位器dcp1阻值,R3为反相输入端电阻阻值;In formula (5), R dcp1 is the resistance value of digital potentiometer dcp1, and R 3 is the resistance resistance value of the inverting input terminal;

S23:信号经过第三级微分电路后,得:S23: After the signal passes through the third-stage differential circuit, we get:

Figure BDA0003027382720000035
Figure BDA0003027382720000035

调整微分电路中数字电位器dcp2阻值Rdcp2,使微分电路的时间常数与等效反馈误差信号一致,故Rdcp2C2=R1C1Adjust the resistance value R dcp2 of the digital potentiometer dcp2 in the differential circuit so that the time constant of the differential circuit is consistent with the equivalent feedback error signal, so R dcp2 C 2 =R 1 C 1 ;

第三级微分电路输出V3为:The output V3 of the third stage differential circuit is:

Figure BDA0003027382720000036
Figure BDA0003027382720000036

S24:将第三级微分电路输出V3与第一级放大电路输出V1相加后送到第四级放大电路的同相输入端VIN4+,如下式所示:S24: Add the output V 3 of the third-stage differential circuit and the output V 1 of the first-stage amplifying circuit to the non-inverting input terminal V IN4+ of the fourth-stage amplifying circuit, as shown in the following formula:

Figure BDA0003027382720000041
Figure BDA0003027382720000041

式(8)中R8、R11为加法电路电阻阻值,满足2R8=R11In formula (8), R 8 and R 11 are the resistance value of the addition circuit, satisfying 2R 8 =R 11 ;

调整数字电位器dcp1阻值满足Rdcp1=R3得:Adjust the resistance value of digital potentiometer dcp1 to satisfy R dcp1 = R 3 :

Figure BDA0003027382720000042
Figure BDA0003027382720000042

经过最终运放的放大,得:After the amplification of the final op amp, we get:

Figure BDA0003027382720000043
Figure BDA0003027382720000043

式(10)中Vout为快速预测电路输出,R9、R10为放大电路电阻阻值,满足2R9=R10In formula (10), V out is the output of the fast prediction circuit, and R 9 and R 10 are the resistance values of the amplifier circuit, satisfying 2R 9 =R 10 ;

得:have to:

Vout=VF (11)V out =V F (11)

快速预测电路能够实现对输出电流反馈信号的快速预测输出;The fast prediction circuit can realize the fast prediction output of the output current feedback signal;

S25:微处理器通过选择开关,断开K1,闭合K2,使快速预测电路与PID电路进行级联,快速预测电路输出直接送入PID电路,提高梯度功率放大器输出控制的响应速度。S25: The microprocessor selects the switch to open K1 and close K2 to cascade the fast prediction circuit and the PID circuit, and the output of the fast prediction circuit is directly sent to the PID circuit to improve the response speed of the output control of the gradient power amplifier.

可选的,所述S3具体包括:Optionally, the S3 specifically includes:

S31:通过手动方式对可调电位器进行调节,微处理器通过ADC转换器能够实时感知PID和快速预测电路中的手动参数设置,并计算出对应的数字电位器触头位置参数;S31: Adjust the adjustable potentiometer manually, and the microprocessor can sense the PID and quickly predict the manual parameter setting in the circuit through the ADC converter in real time, and calculate the corresponding digital potentiometer contact position parameter;

S32:微处理器控制PID和快速预测电路中的数字电位器触头到相应的位置,从而实现梯度功率放大器输出电流控制参数的人工干预和调节。S32: The microprocessor controls the contact of the digital potentiometer in the PID and fast prediction circuit to a corresponding position, thereby realizing the manual intervention and adjustment of the output current control parameters of the gradient power amplifier.

本发明的有益效果在于:本发明中微处理器通过选择开关调整快速预测电路接入控制电路,在达到最优PID控制的基础上,将快速预测电路与PID电路级联,微处理器根据得到的系统控制参数调整快速预测电路中第二级放大电路、第三级微分电路数字电位器阻值,使快速预测电路参数与系统参数相匹配,实现对控制过程中控制参数的快速预测,提高了控制系统的控制效果,大大拓宽了所设计方法的应用场景;基于可调电位器、ADC转换器、微处理器、数字电位器实现的动态参数调整,通过手动调整快速预测电路参数,实现在不同应用场景下梯度功率放大器的人工干预与调节,实时调整输出电流控制效果。The beneficial effect of the present invention is that: in the present invention, the microprocessor adjusts the fast prediction circuit access control circuit through the selection switch, and on the basis of achieving optimal PID control, the fast prediction circuit and the PID circuit are cascaded, and the microprocessor obtains the Adjust the resistance value of the digital potentiometer of the second-stage amplifying circuit and the third-stage differential circuit in the rapid prediction circuit to make the fast prediction circuit parameters match the system parameters, realize the rapid prediction of the control parameters in the control process, and improve the system control parameters. The control effect of the control system greatly broadens the application scenarios of the designed method; based on the dynamic parameter adjustment realized by the adjustable potentiometer, ADC converter, microprocessor, and digital potentiometer, the circuit parameters can be quickly predicted by manual adjustment, and realized in different Manual intervention and adjustment of gradient power amplifiers in application scenarios, real-time adjustment of output current control effects.

本发明的其他优点、目标和特征在某种程度上将在随后的说明书中进行阐述,并且在某种程度上,基于对下文的考察研究对本领域技术人员而言将是显而易见的,或者可以从本发明的实践中得到教导。本发明的目标和其他优点可以通过下面的说明书来实现和获得。Other advantages, objects and features of the present invention will be set forth in the following description to some extent, and to some extent, will be obvious to those skilled in the art based on the investigation and research below, or can be obtained from It is taught in the practice of the present invention. The objects and other advantages of the invention may be realized and attained by the following specification.

附图说明Description of drawings

为了使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明作优选的详细描述,其中:In order to make the purpose of the present invention, technical solutions and advantages clearer, the present invention will be described in detail below in conjunction with the accompanying drawings, wherein:

图1为快速预测电路部分原理框图;Figure 1 is a schematic block diagram of the rapid prediction circuit;

图2为快速预测控制电路整体方案图;Fig. 2 is the overall scheme diagram of the fast predictive control circuit;

图3为自适应快速预测控制梯度功率放大器硬件系统整体框图。Fig. 3 is an overall block diagram of the adaptive fast predictive control gradient power amplifier hardware system.

具体实施方式Detailed ways

以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。需要说明的是,以下实施例中所提供的图示仅以示意方式说明本发明的基本构想,在不冲突的情况下,以下实施例及实施例中的特征可以相互组合。Embodiments of the present invention are described below through specific examples, and those skilled in the art can easily understand other advantages and effects of the present invention from the content disclosed in this specification. The present invention can also be implemented or applied through other different specific implementation modes, and various modifications or changes can be made to the details in this specification based on different viewpoints and applications without departing from the spirit of the present invention. It should be noted that the diagrams provided in the following embodiments are only schematically illustrating the basic concept of the present invention, and the following embodiments and the features in the embodiments can be combined with each other in the case of no conflict.

其中,附图仅用于示例性说明,表示的仅是示意图,而非实物图,不能理解为对本发明的限制;为了更好地说明本发明的实施例,附图某些部件会有省略、放大或缩小,并不代表实际产品的尺寸;对本领域技术人员来说,附图中某些公知结构及其说明可能省略是可以理解的。Wherein, the accompanying drawings are for illustrative purposes only, and represent only schematic diagrams, rather than physical drawings, and should not be construed as limiting the present invention; in order to better illustrate the embodiments of the present invention, some parts of the accompanying drawings may be omitted, Enlargement or reduction does not represent the size of the actual product; for those skilled in the art, it is understandable that certain known structures and their descriptions in the drawings may be omitted.

本发明实施例的附图中相同或相似的标号对应相同或相似的部件;在本发明的描述中,需要理解的是,若有术语“上”、“下”、“左”、“右”、“前”、“后”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此附图中描述位置关系的用语仅用于示例性说明,不能理解为对本发明的限制,对于本领域的普通技术人员而言,可以根据具体情况理解上述术语的具体含义。In the drawings of the embodiments of the present invention, the same or similar symbols correspond to the same or similar components; , "front", "rear" and other indicated orientations or positional relationships are based on the orientations or positional relationships shown in the drawings, which are only for the convenience of describing the present invention and simplifying the description, rather than indicating or implying that the referred devices or elements must It has a specific orientation, is constructed and operated in a specific orientation, so the terms describing the positional relationship in the drawings are for illustrative purposes only, and should not be construed as limiting the present invention. For those of ordinary skill in the art, the understanding of the specific meaning of the above terms.

图1为快速预测电路部分原理框图;图2为快速预测控制电路整体方案图;图3为自适应快速预测控制梯度功率放大器硬件系统整体框图。一种基于自适应快速预测控制的梯度功率放大器装置由四桥臂功率电路及快速反馈预测电路组成,四桥臂功率电路包括依次连接的四桥臂驱动电路、四桥臂开关电路、LC滤波电路和电流正反相切换H桥电路组成;快速反馈预测电路包括依次连接的模拟电路实现的放大器、快速预测电路、PID电路、比较器,以及微处理器、FPGA、DAC转换器、数字电位器和可调电位器和ADC转换器,快速预测电路包括依次连接的第一级跟随电路、第二级放大电路、第三级微分电路、第四级放大电路。Figure 1 is a block diagram of part of the rapid prediction circuit; Figure 2 is the overall scheme of the rapid prediction control circuit; Figure 3 is the overall block diagram of the adaptive rapid prediction control gradient power amplifier hardware system. A gradient power amplifier device based on adaptive fast predictive control is composed of a four-arm power circuit and a fast feedback predictive circuit. The four-arm power circuit includes a sequentially connected four-arm drive circuit, four-arm switch circuit, and LC filter circuit. It is composed of an H-bridge circuit with positive and negative current switching; the fast feedback prediction circuit includes amplifiers, fast prediction circuits, PID circuits, comparators, and microprocessors, FPGAs, DAC converters, digital potentiometers and The adjustable potentiometer and ADC converter, and the fast prediction circuit include a first-stage follower circuit, a second-stage amplifying circuit, a third-stage differential circuit, and a fourth-stage amplifying circuit connected in sequence.

本发明提供了一种基于自适应预测控制的梯度功率放大器及其设计方法,该方法包括以下步骤:The invention provides a gradient power amplifier based on adaptive predictive control and a design method thereof, the method comprising the following steps:

S1:微处理器闭合K1,打开K2,将快速预测电路与PID电路断开,微处理器根据反馈误差信号,调节PID电路中的数字电位器,实现对PID电路相关参数的自动调节,得到最优PID控制下的梯度功率放大器输出响应时间参数τ;S1: The microprocessor closes K1, opens K2, and disconnects the fast prediction circuit from the PID circuit. The microprocessor adjusts the digital potentiometer in the PID circuit according to the feedback error signal to realize the automatic adjustment of the relevant parameters of the PID circuit, and obtain the best Gradient power amplifier output response time parameter τ under optimal PID control;

S2:微处理器打开K1,闭合K2,将快速预测电路与PID电路串联,根据梯度功率放大器的输出响应时间参数τ,计算得到快速预测电路中的数字电位器的电阻值,微处理器调节快速预测电路第二级放大电路和第三级微分电路中的数字电位器参数,使快速预测电路中的预测时间常数与梯度功率放大器的输出响应时间参数τ相匹配,从而实现对反馈误差信号的快速预测输出;S2: The microprocessor opens K1, closes K2, connects the fast prediction circuit in series with the PID circuit, calculates the resistance value of the digital potentiometer in the fast prediction circuit according to the output response time parameter τ of the gradient power amplifier, and the microprocessor adjusts quickly The parameters of the digital potentiometer in the second-stage amplification circuit and the third-stage differential circuit of the prediction circuit make the prediction time constant in the fast prediction circuit match the output response time parameter τ of the gradient power amplifier, so as to realize the fast feedback error signal predicted output;

S3:通过手动方式对电位器进行调节,经ADC转换器后,微处理器能够实时感知手动参数设置,从而控制PID和快速预测电路中的数字电位器,实现梯度功率放大器输出控制参数的人工干预。S3: The potentiometer is adjusted manually. After the ADC converter, the microprocessor can perceive the manual parameter setting in real time, thereby controlling the digital potentiometer in the PID and fast prediction circuit, and realizing the manual intervention of the output control parameters of the gradient power amplifier. .

在步骤S1中,具体包括:In step S1, specifically include:

S11:微处理器根据设定值VSET计算直流母线电压VDC,两者之间的关系表达式为:S11: The microprocessor calculates the DC bus voltage V DC according to the set value V SET , and the relational expression between the two is:

Figure BDA0003027382720000061
Figure BDA0003027382720000061

式(1)中KCONVERT为设定值与输出电流之间的转换系数,Rcoil为负载电阻,D为占空比,取60%;In formula (1), K CONVERT is the conversion coefficient between the set value and the output current, R coil is the load resistance, and D is the duty cycle, which is 60%;

根据输出电流大小,微处理器通过DAC和放大器输出信号给可编程直流电源的输出电压调整端,动态调整直流母线电压到期望值VDCAccording to the size of the output current, the microprocessor outputs the signal to the output voltage adjustment terminal of the programmable DC power supply through the DAC and the amplifier, and dynamically adjusts the DC bus voltage to the expected value V DC ;

S12:微处理器根据反馈误差信号VERROR,自动调节PID电路的数字电位器,从而实时改变PID电路中的比例系数Kp、积分系数Ki、微分系数KdS12: The microprocessor automatically adjusts the digital potentiometer of the PID circuit according to the feedback error signal V ERROR , thereby changing the proportional coefficient K p , the integral coefficient K i , and the differential coefficient K d in the PID circuit in real time;

PID电路输出VOUT与VERROR关系表达式为:The relationship expression between PID circuit output V OUT and V ERROR is:

Figure BDA0003027382720000062
Figure BDA0003027382720000062

S13:PID电路输出VOUT与四路移相90°的锯齿波进行比较,产生四路移相90°的PWM波送入FPGA,经处理后产生八路加死区互补的PWM波,送入四桥臂驱动电路,通过调整PWM占空比控制梯度功率放大器的输出电流,FPGA通过对设定值信号的正负极性判断,控制H桥电路开关的选通,从而实现对输出电流的方向控制;S13: The output V OUT of the PID circuit is compared with four 90° phase-shifted sawtooth waves to generate four 90° phase-shifted PWM waves that are sent to the FPGA. The bridge arm drive circuit controls the output current of the gradient power amplifier by adjusting the PWM duty cycle, and the FPGA controls the switching of the H-bridge circuit switch by judging the positive and negative polarity of the set value signal, thereby realizing the direction control of the output current ;

S14:根据不同PID控制参数下输出电流上升下降时间、超调量及震荡时间,调试整定得到系统最优PID控制时的输出响应时间参数τ。S14: According to the output current rise and fall time, overshoot and oscillation time under different PID control parameters, debug and adjust to obtain the output response time parameter τ under the optimal PID control of the system.

在步骤S2中,根据系统参数计算得到与系统匹配的系统控制参数具体包括:In step S2, the system control parameters that match the system are calculated according to the system parameters and specifically include:

S21:将梯度功率放大器输出电流响应时间参数τ等效为一阶指数速率变化的RC充电信号,即τ=R1C1S21: The gradient power amplifier output current response time parameter τ is equivalent to an RC charging signal with a first-order exponential rate change, ie τ=R 1 C 1 .

Figure BDA0003027382720000071
Figure BDA0003027382720000071

式(3)中V0为VERROR的初始电压,VF为稳定电压,V1为第一级放大电路输出,VT1为第一级运放输入,VT2为第一级运放输出;In formula (3), V 0 is the initial voltage of V ERROR , V F is the stable voltage, V 1 is the output of the first-stage amplifier circuit, V T1 is the input of the first-stage operational amplifier, and V T2 is the output of the first-stage operational amplifier;

S22:反馈误差信号经过第一级电压跟随电路后,送入第二级放大电路,其中第二级放大电路放大倍数由微处理器通过调整数字电位器dcp1进行控制,S22: After the feedback error signal passes through the first-stage voltage follower circuit, it is sent to the second-stage amplifying circuit, wherein the magnification of the second-stage amplifying circuit is controlled by the microprocessor by adjusting the digital potentiometer dcp1,

Figure BDA0003027382720000072
Figure BDA0003027382720000072

即得第二级放大电路输出V2为:That is, the output V 2 of the second-stage amplifier circuit is:

Figure BDA0003027382720000073
Figure BDA0003027382720000073

式(5)中Rdcp1为数字电位器dcp1阻值,R3为反相输入端电阻阻值;In formula (5), R dcp1 is the resistance value of digital potentiometer dcp1, and R 3 is the resistance resistance value of the inverting input terminal;

S23:信号经过第三级微分电路后,可得:S23: After the signal passes through the third-stage differential circuit, it can be obtained:

Figure BDA0003027382720000074
Figure BDA0003027382720000074

调整微分电路中数字电位器dcp2阻值Rdcp2,使微分电路的时间常数与等效反馈误差信号一致,故Rdcp2C2=R1C1Adjust the resistance value R dcp2 of the digital potentiometer dcp2 in the differential circuit so that the time constant of the differential circuit is consistent with the equivalent feedback error signal, so R dcp2 C 2 =R 1 C 1 ;

第三级微分电路输出V3为:The output V3 of the third stage differential circuit is:

Figure BDA0003027382720000075
Figure BDA0003027382720000075

S24:将第三级微分电路输出V3与第一级放大电路输出V1相加后送到第四级放大电路的同相输入端VIN4+,如下式所示:S24: Add the output V 3 of the third-stage differential circuit and the output V 1 of the first-stage amplifying circuit to the non-inverting input terminal V IN4+ of the fourth-stage amplifying circuit, as shown in the following formula:

Figure BDA0003027382720000076
Figure BDA0003027382720000076

式(8)中R8、R11为加法电路电阻阻值,满足2R8=R11In formula (8), R 8 and R 11 are the resistance value of the addition circuit, satisfying 2R 8 =R 11 ;

调整数字电位器dcp1阻值满足Rdcp1=R3得:Adjust the resistance value of digital potentiometer dcp1 to satisfy R dcp1 = R 3 :

Figure BDA0003027382720000077
Figure BDA0003027382720000077

经过最终运放的放大,可得:After the amplification of the final op amp, we can get:

Figure BDA0003027382720000081
Figure BDA0003027382720000081

式(10)中Vout为快速预测电路输出,R9、R10为放大电路电阻阻值,满足2R9=R10In formula (10), V out is the output of the fast prediction circuit, and R 9 and R 10 are the resistance values of the amplifier circuit, satisfying 2R 9 =R 10 ;

即得:That is:

Vout=VF (11)V out =V F (11)

即快速预测电路能够实现对输出电流反馈信号的快速预测输出。That is, the fast prediction circuit can realize the fast prediction output of the output current feedback signal.

S25:微处理器通过选择开关,断开K1,闭合K2,使快速预测电路与PID电路进行级联,快速预测电路输出直接送入PID电路,提高梯度功率放大器输出控制的响应速度。S25: The microprocessor selects the switch to open K1 and close K2 to cascade the fast prediction circuit and the PID circuit, and the output of the fast prediction circuit is directly sent to the PID circuit to improve the response speed of the output control of the gradient power amplifier.

在步骤S3中,具体包括:In step S3, specifically include:

S31:通过手动方式对可调电位器进行调节,微处理器通过ADC转换器能够实时感知PID和快速预测电路中的手动参数设置,并计算出对应的数字电位器触头位置参数;S31: Adjust the adjustable potentiometer manually, and the microprocessor can sense the PID and quickly predict the manual parameter setting in the circuit through the ADC converter in real time, and calculate the corresponding digital potentiometer contact position parameter;

S32:微处理器控制PID和快速预测电路中的数字电位器触头到相应的位置,从而实现梯度功率放大器输出电流控制参数的人工干预和调节。S32: The microprocessor controls the contact of the digital potentiometer in the PID and fast prediction circuit to a corresponding position, thereby realizing the manual intervention and adjustment of the output current control parameters of the gradient power amplifier.

最后说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本技术方案的宗旨和范围,其均应涵盖在本发明的权利要求范围当中。Finally, it is noted that the above embodiments are only used to illustrate the technical solutions of the present invention without limitation. Although the present invention has been described in detail with reference to the preferred embodiments, those of ordinary skill in the art should understand that the technical solutions of the present invention can be carried out Modifications or equivalent replacements, without departing from the spirit and scope of the technical solution, should be included in the scope of the claims of the present invention.

Claims (5)

1.一种基于自适应预测控制的梯度功率放大器的设计方法,其特征在于:该方法包括以下步骤:1. a design method based on the gradient power amplifier of adaptive predictive control, it is characterized in that: the method may further comprise the steps: S1:微处理器闭合K1,打开K2,将快速预测电路与PID电路断开,微处理器根据反馈误差信号,调节PID电路中的数字电位器,实现对PID电路相关参数的自动调节,得到最优PID控制下的梯度功率放大器输出响应时间参数τ;S1: The microprocessor closes K1, opens K2, and disconnects the fast prediction circuit from the PID circuit. The microprocessor adjusts the digital potentiometer in the PID circuit according to the feedback error signal to realize the automatic adjustment of the relevant parameters of the PID circuit, and obtain the best Gradient power amplifier output response time parameter τ under optimal PID control; S2:微处理器打开K1,闭合K2,将快速预测电路与PID电路串联,根据梯度功率放大器的输出响应时间参数τ,计算得到快速预测电路中的数字电位器的电阻值,微处理器调节快速预测电路第二级放大电路和第三级微分电路中的数字电位器电阻值,使快速预测电路中的预测时间常数与梯度功率放大器的输出响应时间参数τ相匹配,从而实现对反馈误差信号的快速预测输出;S2: The microprocessor opens K1, closes K2, connects the fast prediction circuit in series with the PID circuit, calculates the resistance value of the digital potentiometer in the fast prediction circuit according to the output response time parameter τ of the gradient power amplifier, and the microprocessor adjusts quickly The resistance value of the digital potentiometer in the second-stage amplifying circuit and the third-stage differential circuit of the prediction circuit makes the prediction time constant in the fast prediction circuit match the output response time parameter τ of the gradient power amplifier, so as to realize the accuracy of the feedback error signal fast prediction output; S3:通过手动方式对可调电位器进行调节,经ADC转换器后,微处理器能够实时感知可调电位器的参数设置,从而控制PID和快速预测电路中的数字电位器,实现梯度功率放大器输出控制参数的人工干预。S3: The adjustable potentiometer is adjusted manually. After the ADC converter, the microprocessor can perceive the parameter setting of the adjustable potentiometer in real time, thereby controlling the digital potentiometer in the PID and fast prediction circuit to realize the gradient power amplifier. Manual intervention of output control parameters. 2.根据权利要求1所述的一种基于自适应预测控制的梯度功率放大器的设计方法,其特征在于:所述S1具体包括:2. the design method of a kind of gradient power amplifier based on adaptive predictive control according to claim 1, is characterized in that: described S1 specifically comprises: S11:微处理器根据设定值VSET计算直流母线电压VDC,两者之间的关系表达式为:S11: The microprocessor calculates the DC bus voltage V DC according to the set value V SET , and the relational expression between the two is:
Figure FDA0003882642020000011
Figure FDA0003882642020000011
式(1)中KCONVERT为设定值与输出电流之间的转换系数,Rcoil为负载电阻,D为占空比,取60%;In formula (1), K CONVERT is the conversion coefficient between the set value and the output current, R coil is the load resistance, and D is the duty cycle, which is 60%; 根据输出电流大小,微处理器通过DAC和放大器输出信号给可编程直流电源的输出电压调整端,动态调整直流母线电压到期望值VDCAccording to the size of the output current, the microprocessor outputs the signal to the output voltage adjustment terminal of the programmable DC power supply through the DAC and the amplifier, and dynamically adjusts the DC bus voltage to the expected value V DC ; S12:微处理器根据反馈误差信号VERROR,自动调节PID电路的数字电位器,从而实时改变PID电路中的比例系数Kp、积分系数Ki、微分系数KdS12: The microprocessor automatically adjusts the digital potentiometer of the PID circuit according to the feedback error signal V ERROR , thereby changing the proportional coefficient K p , the integral coefficient K i , and the differential coefficient K d in the PID circuit in real time; PID电路输出VOUT与VERROR关系表达式为:The relationship expression between PID circuit output V OUT and V ERROR is:
Figure FDA0003882642020000012
Figure FDA0003882642020000012
S13:PID电路输出VOUT与四路移相90°的锯齿波进行比较,产生四路移相90°的PWM波送入FPGA,经处理后产生八路加死区互补的PWM波,送入四桥臂驱动电路,通过调整PWM占空比控制梯度功率放大器的输出电流,FPGA通过对设定值信号的正负极性判断,控制H桥电路开关的选通,从而实现对输出电流的方向控制;S13: The output V OUT of the PID circuit is compared with four 90° phase-shifted sawtooth waves to generate four 90° phase-shifted PWM waves that are sent to the FPGA. The bridge arm drive circuit controls the output current of the gradient power amplifier by adjusting the PWM duty cycle, and the FPGA controls the switching of the H-bridge circuit switch by judging the positive and negative polarity of the set value signal, thereby realizing the direction control of the output current ; S14:根据不同PID控制参数下输出电流上升下降时间、超调量及震荡时间,调试整定得到系统最优PID控制时的输出响应时间参数τ。S14: According to the output current rise and fall time, overshoot and oscillation time under different PID control parameters, debug and adjust to obtain the output response time parameter τ under the optimal PID control of the system.
3.根据权利要求1所述的一种基于自适应预测控制的梯度功率放大器的设计方法,其特征在于:在所述S2中,根据系统参数计算得到与系统匹配的系统控制参数具体包括:3. the design method of a kind of gradient power amplifier based on adaptive predictive control according to claim 1, is characterized in that: in described S2, according to system parameter calculation, the system control parameter that matches with system specifically comprises: S21:将梯度功率放大器输出电流响应时间参数τ等效为一阶指数速率变化的RC充电信号,即τ=R1C1S21: The gradient power amplifier output current response time parameter τ is equivalent to an RC charging signal with a first-order exponential rate change, that is, τ=R 1 C 1 ;
Figure FDA0003882642020000021
Figure FDA0003882642020000021
式(3)中V0为VERROR的初始电压,VF为稳定电压,V1为第一级放大电路输出,VT1为第一级运放输入,VT2为第一级运放输出;In formula (3), V 0 is the initial voltage of V ERROR , V F is the stable voltage, V 1 is the output of the first-stage amplifier circuit, V T1 is the input of the first-stage operational amplifier, and V T2 is the output of the first-stage operational amplifier; S22:反馈误差信号经过第一级电压跟随电路后,送入第二级放大电路,其中第二级放大电路放大倍数由微处理器通过调整数字电位器dcp1进行控制S22: After the feedback error signal passes through the first-stage voltage follower circuit, it is sent to the second-stage amplifying circuit, wherein the magnification of the second-stage amplifying circuit is controlled by the microprocessor by adjusting the digital potentiometer dcp1
Figure FDA0003882642020000022
Figure FDA0003882642020000022
得第二级放大电路输出V2为:The output V 2 of the second-stage amplifier circuit is:
Figure FDA0003882642020000023
Figure FDA0003882642020000023
式(5)中Rdcp1为数字电位器dcp1阻值,R3为反相输入端电阻阻值;In formula (5), R dcp1 is the resistance value of digital potentiometer dcp1, and R 3 is the resistance resistance value of the inverting input terminal; S23:信号经过第三级微分电路后,得:S23: After the signal passes through the third-stage differential circuit, we get:
Figure FDA0003882642020000024
Figure FDA0003882642020000024
调整微分电路中数字电位器dcp2阻值Rdcp2,使微分电路的时间常数与等效反馈误差信号一致,故Rdcp2C2=τ=R1C1Adjust the resistance value R dcp2 of the digital potentiometer dcp2 in the differential circuit so that the time constant of the differential circuit is consistent with the equivalent feedback error signal, so R dcp2 C 2 =τ=R 1 C 1 ; 第三级微分电路输出V3为:The output V3 of the third stage differential circuit is:
Figure FDA0003882642020000025
Figure FDA0003882642020000025
S24:将第三级微分电路输出V3与第一级放大电路输出V1相加后送到第四级放大电路的同相输入端VIN4+,如下式所示:S24: Add the output V 3 of the third-stage differential circuit and the output V 1 of the first-stage amplifying circuit to the non-inverting input terminal V IN4+ of the fourth-stage amplifying circuit, as shown in the following formula:
Figure FDA0003882642020000026
Figure FDA0003882642020000026
式(8)中R8、R11为加法电路电阻阻值,满足2R8=R11In formula (8), R 8 and R 11 are the resistance value of the addition circuit, satisfying 2R 8 =R 11 ; 调整数字电位器dcp1阻值满足Rdcp1=R3得:Adjust the resistance value of digital potentiometer dcp1 to satisfy R dcp1 = R 3 :
Figure FDA0003882642020000031
Figure FDA0003882642020000031
经过最终运放的放大,得:After the amplification of the final op amp, we get:
Figure FDA0003882642020000032
Figure FDA0003882642020000032
式(10)中Vout为快速预测电路输出,R9、R10为放大电路电阻阻值,满足2R9=R10In formula (10), V out is the output of the fast prediction circuit, and R 9 and R 10 are the resistance values of the amplifier circuit, satisfying 2R 9 =R 10 ; 得:have to: Vout=VF (11)V out =V F (11) 快速预测电路能够实现对输出电流反馈信号的快速预测输出;The fast prediction circuit can realize the fast prediction output of the output current feedback signal; S25:微处理器通过选择开关,断开K1,闭合K2,使快速预测电路与PID电路进行级联,快速预测电路输出直接送入PID电路,提高梯度功率放大器输出控制的响应速度。S25: The microprocessor selects the switch to open K1 and close K2 to cascade the fast prediction circuit and the PID circuit, and the output of the fast prediction circuit is directly sent to the PID circuit to improve the response speed of the output control of the gradient power amplifier.
4.根据权利要求1所述的一种基于自适应预测控制的梯度功率放大器的设计方法,其特征在于:所述S3具体包括:4. the design method of a kind of gradient power amplifier based on adaptive predictive control according to claim 1, is characterized in that: described S3 specifically comprises: S31:通过手动方式对可调电位器进行调节,微处理器通过ADC转换器能够实时感知PID和快速预测电路中的手动参数设置,并计算出对应的数字电位器触头位置参数;S31: Adjust the adjustable potentiometer manually, and the microprocessor can sense the PID and quickly predict the manual parameter setting in the circuit through the ADC converter in real time, and calculate the corresponding digital potentiometer contact position parameter; S32:微处理器控制PID和快速预测电路中的数字电位器触头到相应的位置,从而实现梯度功率放大器输出电流控制参数的人工干预和调节。S32: The microprocessor controls the contact of the digital potentiometer in the PID and fast prediction circuit to a corresponding position, thereby realizing the manual intervention and adjustment of the output current control parameters of the gradient power amplifier. 5.一种梯度功率放大器,根据权利要求2所述方法设计,其特征在于:包括依次连接的四桥臂功率电路及快速反馈预测电路;5. A gradient power amplifier, designed according to the method claimed in claim 2, is characterized in that: comprising four bridge arm power circuits and fast feedback predictive circuits connected successively; 四桥臂功率电路包括依次连接的四桥臂驱动电路、四桥臂开关电路、LC滤波电路和电流正反相切换H桥电路组成;The four-bridge arm power circuit consists of a four-bridge arm drive circuit, a four-bridge arm switch circuit, an LC filter circuit and an H-bridge circuit for forward and reverse current switching connected in sequence; 快速反馈预测电路包括依次连接的模拟电路实现的放大器、快速预测电路、PID电路、比较器,以及微处理器、FPGA、DAC转换器、数字电位器、可调电位器和ADC转换器;The fast feedback prediction circuit includes an amplifier realized by sequentially connected analog circuits, a fast prediction circuit, a PID circuit, a comparator, and a microprocessor, FPGA, DAC converter, digital potentiometer, adjustable potentiometer and ADC converter; 微处理器通过选择开关调整快速预测电路接入控制电路,在达到最优PID控制的基础上,将快速预测电路与PID电路级联,微处理器根据得到的系统控制参数调整快速预测电路中第二级放大电路、第三级微分电路数字电位器阻值,使快速预测电路参数与系统参数相匹配,实现对控制过程中控制参数的快速预测。The microprocessor adjusts the fast prediction circuit to be connected to the control circuit through the selection switch. On the basis of achieving the optimal PID control, the fast prediction circuit and the PID circuit are cascaded, and the microprocessor adjusts the first prediction circuit in the fast prediction circuit according to the obtained system control parameters. The resistance value of the digital potentiometer of the two-stage amplifying circuit and the third-stage differential circuit makes the rapid prediction circuit parameters match the system parameters, and realizes the rapid prediction of the control parameters in the control process.
CN202110419600.1A 2021-04-19 2021-04-19 A Gradient Power Amplifier Based on Adaptive Predictive Control and Its Design Method Active CN113114136B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110419600.1A CN113114136B (en) 2021-04-19 2021-04-19 A Gradient Power Amplifier Based on Adaptive Predictive Control and Its Design Method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110419600.1A CN113114136B (en) 2021-04-19 2021-04-19 A Gradient Power Amplifier Based on Adaptive Predictive Control and Its Design Method

Publications (2)

Publication Number Publication Date
CN113114136A CN113114136A (en) 2021-07-13
CN113114136B true CN113114136B (en) 2022-11-25

Family

ID=76718775

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110419600.1A Active CN113114136B (en) 2021-04-19 2021-04-19 A Gradient Power Amplifier Based on Adaptive Predictive Control and Its Design Method

Country Status (1)

Country Link
CN (1) CN113114136B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114545996B (en) * 2022-03-10 2022-12-27 中国科学院半导体研究所 Temperature control circuit of semiconductor laser
CN115542775A (en) * 2022-10-09 2022-12-30 中科微影(泰州)医疗科技有限公司 A Feedback Predictive Control Method for NMR Gradient Power Amplifier

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10201273A (en) * 1997-01-10 1998-07-31 Denso Corp Method and device for measuring steady-state deviation of pid control circuit
CN110995181A (en) * 2019-12-31 2020-04-10 南京磁晨医疗技术有限公司 Gradient power amplifier

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6724191B1 (en) * 2000-05-09 2004-04-20 Admiralty Corporation Systems and methods useful for detecting presence and/or location of various materials
EP1595159A1 (en) * 2003-02-03 2005-11-16 Koninklijke Philips Electronics N.V. Precision gradient amplifier with multiple output voltage levels
WO2010004492A1 (en) * 2008-07-11 2010-01-14 Koninklijke Philips Electronics N.V. Digital amplifier with feedforward and feedback control
CN102508183B (en) * 2011-11-11 2013-09-11 辽宁开普医疗系统有限公司 Digital variable frequency PWM (Pulse Width Modulation) gradient amplifier with adaptively-controlled load
CN102857184B (en) * 2012-09-28 2015-03-04 电子科技大学 Gradient amplifier control device
CN104950273A (en) * 2014-03-28 2015-09-30 辽宁开普医疗系统有限公司 Gradient amplifier applying coupled inductors to output filter
TWI710782B (en) * 2015-04-13 2020-11-21 美商超精細研究股份有限公司 Apparatus and method for providing power to operate at least one gradient coil of magnetic resonance imaging system and magnetic resonance imaging system
NL2015303B1 (en) * 2015-08-13 2017-02-28 Prodrive Tech Bv Electric power converter and MRI system comprising such converter.
US10863919B2 (en) * 2016-08-12 2020-12-15 Shanghai United Imaging Healthcare Co., Ltd. Method and system for gradient power amplifier debugging
CN111478610A (en) * 2020-04-09 2020-07-31 湖南盈晟电子科技有限公司 A Phase Shift Frequency Multiplier Switching Power Amplifier

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10201273A (en) * 1997-01-10 1998-07-31 Denso Corp Method and device for measuring steady-state deviation of pid control circuit
CN110995181A (en) * 2019-12-31 2020-04-10 南京磁晨医疗技术有限公司 Gradient power amplifier

Also Published As

Publication number Publication date
CN113114136A (en) 2021-07-13

Similar Documents

Publication Publication Date Title
CN113114136B (en) A Gradient Power Amplifier Based on Adaptive Predictive Control and Its Design Method
CN102843053B (en) Three-dimensional spatial vector based switch power amplifier of magnetic bearing system
CN100405733C (en) Method and circuit for inverter with variable loop width hysteresis loop current control
CN102223077A (en) Sliding-mode controller of LLC (logic link control) series resonance DC-DC converter and control method thereof
CN103683930A (en) One-cycle Boost PFC converter control method based on load current feedforward
CN102263532A (en) Drive control circuit and focus control circuit
CN109861374B (en) Three-phase full-bridge uninterruptible power supply control method without load current sensor
CN113794249B (en) Digital power box charge-discharge control algorithm and control system
CN109861545A (en) Direct power control method of dual active bridge DC converter based on energy closed loop
CN108768237B (en) State space-based permanent magnet motor proportional resonant controller design method
CN113315413B (en) Design method of filter type second-order terminal discrete sliding mode controller of piezoelectric linear motor
CN205319759U (en) Battery charging converter circuit
CN112865527B (en) Control system and control method for fixed frequency of Boost DC-DC converter based on second-order sliding mode control
GB2456977A (en) Digital controller
CN111555689B (en) Phase current flow sampling system and method based on Kalman filtering
CN113098523B (en) Dual-loop control method and high-precision AC current source based on digital delta-sigma and PID
CN113078834B (en) Inverter and design method based on digital delta-sigma and PID double-loop control
CN108777545B (en) Guide rail vehicle phase-shifted full-bridge charger transformer magnetic bias suppression control method
CN117895793A (en) Control circuit of high-frequency resonant converter
CN103475246B (en) The control method of a kind of single-phase inverter and control system
CN107800202B (en) Wireless transmission impedance matching and voltage regulation circuit
CN114362544B (en) Topological structure of charge control LLC resonant converter and load feedforward method thereof
CN110442177A (en) A power control system
CN116610035A (en) Completely decoupled active disturbance rejection control system and parameter setting method thereof
CN213959776U (en) Low-noise floating ground current source

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant