CN113110430A - Model-free fixed-time accurate trajectory tracking control method for unmanned ship - Google Patents
Model-free fixed-time accurate trajectory tracking control method for unmanned ship Download PDFInfo
- Publication number
- CN113110430A CN113110430A CN202110362532.XA CN202110362532A CN113110430A CN 113110430 A CN113110430 A CN 113110430A CN 202110362532 A CN202110362532 A CN 202110362532A CN 113110430 A CN113110430 A CN 113110430A
- Authority
- CN
- China
- Prior art keywords
- model
- time
- fixed
- tracking control
- designed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/0206—Control of position or course in two dimensions specially adapted to water vehicles
Landscapes
- Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Feedback Control In General (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
Abstract
Description
技术领域technical field
本发明涉及无人船快速、精准跟踪控制技术领域,具体而言,尤其涉及一种无人船无模型固定时间精准轨迹跟踪控制方法。The invention relates to the technical field of fast and precise tracking control of unmanned ships, in particular, to a model-free fixed-time precise trajectory tracking control method for unmanned ships.
背景技术Background technique
近年来,无人水面艇(unmanned surface vehicle,USVs)已被广泛地应用于水质监测、海洋探测、水下地形测量等工程实践和科学实验中。由于上述原因,越来越多的学者关注USV的轨迹跟踪,并在该领域取得了一些成果。为了保证USV能在复杂的海洋条件下实现精确的轨迹跟踪,许多研究者考虑到外部干扰、系统不确定性和执行器的动力学因素,设计出合适的跟踪器。由于收敛性能好,抗扰动和抗不确定性能力强,因此采用滑动模式控制(sliding mode control,SMC)方法来解决精确的轨迹跟踪问题。例如,采用辐射基函数神经网络和扰动观测器相结合的自适应SMC方法,处理USV模型的不确定性和复杂扰动,实现了快速响应、突出的收敛性能和高精度跟踪。In recent years, unmanned surface vehicles (USVs) have been widely used in engineering practice and scientific experiments such as water quality monitoring, ocean exploration, and underwater topographic measurement. Due to the above reasons, more and more scholars pay attention to the trajectory tracking of USV, and have achieved some results in this field. In order to ensure that the USV can achieve accurate trajectory tracking under complex ocean conditions, many researchers have designed suitable trackers considering external disturbances, system uncertainties, and actuator dynamics. Due to the good convergence performance and strong anti-disturbance and anti-uncertainty ability, the sliding mode control (SMC) method is adopted to solve the precise trajectory tracking problem. For example, an adaptive SMC method combining a radiation basis function neural network and a disturbance observer is used to deal with the uncertainties and complex disturbances of the USV model, achieving fast response, outstanding convergence performance, and high-precision tracking.
考虑到动态不确定性和时变扰动,针对USV开发了一种快速的非奇异值SMC方法来跟踪参考轨迹,并比现有的非奇异值SMC歧管获得更快的收敛速度。利用事件触发的SMC跟踪系统的策略,该方法具有外部干扰,可以减少控制更新并保证系统的渐近稳定性以及资源使用和成本的优化。此外,SMC方法旨在接收有限时间收敛。与指令滤波SMC结合的有限时间策略已被用于自主飞艇,以追求更好的跟踪性能。但是,上述文献忽略了系统的不确定性,尽管它们在收敛速率方面取得了不错的表现。考虑到USV轨迹跟踪系统的参数不确定性,扰动和执行器故障,提出了一种自适应控制与时变SMC相结合的新型有限时容错跟踪控制器。控制器可以在有限时间内确保USV跟踪参考轨迹,且不需要已知惯性参数。研究人员分别开发了一种有限时间SMC方法和基于负齐次控制有限时间控制方案与观测技术相结合,以消除不确定性和时变干扰对轨迹的负面影响。另外,有限时间方案可以实现良好的收敛速度,但是收敛时间受初始状态的影响。针对这一问题,提出了一种固定时间控制方案,并在控制领域取得了许多成就。基于双极限齐次理论设计了一种新颖的固定时间非奇异滑模流形,实现了在设定时间内对无人飞行器的轨迹跟踪,但扰动的上限需要事先知道。考虑到无人飞行器的状态约束和系统不确定性,付等人开发了一种新的障碍李雅普诺夫函数,以确保固定时间稳定不违背状态约束。Considering the dynamic uncertainties and time-varying disturbances, a fast non-singular value SMC method is developed for USV to track the reference trajectory and obtain faster convergence than existing non-singular value SMC manifolds. Utilizing the strategy of event-triggered SMC tracking system, the method has external disturbances, which can reduce control updates and guarantee the asymptotic stability of the system and the optimization of resource usage and cost. Furthermore, the SMC method is designed to receive finite-time convergence. A finite-time strategy combined with command filtering SMC has been used for autonomous airships in pursuit of better tracking performance. However, the aforementioned literature ignores the uncertainty of the system, although they achieve good performance in terms of convergence rate. Considering the parameter uncertainty, disturbance and actuator failure of USV trajectory tracking system, a novel finite-time fault-tolerant tracking controller combining adaptive control and time-varying SMC is proposed. The controller can ensure that the USV tracks the reference trajectory for a limited time and does not require known inertial parameters. The researchers separately developed a finite-time SMC method and a finite-time control scheme based on negative homogeneous control combined with observational techniques to remove the negative effects of uncertainty and time-varying disturbances on the trajectory. In addition, the finite-time scheme can achieve good convergence speed, but the convergence time is affected by the initial state. Aiming at this problem, a fixed-time control scheme is proposed, and many achievements have been made in the field of control. A novel fixed-time non-singular sliding-mode manifold is designed based on the double-limit homogeneous theory, which realizes the trajectory tracking of the UAV within the set time, but the upper limit of the disturbance needs to be known in advance. Considering the state constraints and system uncertainty of UAVs, Fu et al. developed a new obstacle Lyapunov function to ensure that the fixed-time stability does not violate the state constraints.
为了进一步处理干扰的不利影响,科研人员提出了几种方法,例如扰动观测器,自适应模糊控制和智能学习算法等。例如,研究人员设计了一种自构造神经,在线模糊逼近集总未知。有学者研究了一种扰动观测器去辨识和补偿扰动。此外,有学者设计了一种固定时间扰动观测器,可以在一个固定时间内精准辨识复杂扰动。实际上,由于物理限制,执行器饱和通常发生在控制系统中。如果执行器长期处于饱和状态会损坏执行器,严重降低轨迹跟踪精度。有研究人员利用屏障利雅普诺夫和非线性观测器来处理执行器饱和与干扰的影响。考虑参数不确定性,未知干扰和执行器非线性,研究人员通过结合自适应控制方法解决了输入饱和问题。此外有科研人员设计了一个辅助系统来抵消输入饱和的影响,但是该方案需要确保不确定性是有界的。但是,在无人船固定时间轨迹跟踪控制领域中,现存文献中并未对输入饱和产生的影响进行处理,这可能会显著地降低控制品质甚至造成系统不稳定。To further deal with the adverse effects of disturbances, researchers have proposed several methods, such as disturbance observers, adaptive fuzzy control, and intelligent learning algorithms. For example, the researchers designed a self-constructing neural that online fuzzy approximation lumped unknowns. Some scholars have studied a disturbance observer to identify and compensate disturbances. In addition, some scholars have designed a fixed-time disturbance observer, which can accurately identify complex disturbances within a fixed time. In practice, actuator saturation often occurs in control systems due to physical limitations. If the actuator is in a saturated state for a long time, it will damage the actuator and seriously reduce the trajectory tracking accuracy. Researchers have used barrier Ryapunov and nonlinear observers to deal with the effects of actuator saturation and disturbance. Considering parameter uncertainty, unknown disturbances, and actuator nonlinearity, the researchers address the input saturation problem by incorporating adaptive control methods. In addition, researchers have designed an auxiliary system to offset the effect of input saturation, but the scheme needs to ensure that the uncertainty is bounded. However, in the field of fixed-time trajectory tracking control of unmanned ships, the existing literature has not dealt with the effects of input saturation, which may significantly reduce the control quality and even cause system instability.
发明内容SUMMARY OF THE INVENTION
根据上述提出的技术问题,而提供一种无人船无模型固定时间精准轨迹跟踪控制方法。本发明主要考虑带有输入饱和以及复杂扰动的USV模型,设计一种固定时间集总不确定观测器,将外界未知扰动项和未知水动力系数项视为集总不确定项,在一个固定时间内对其进行精准、快速的观测和补偿;设计一种具有固定时间稳定特性的快速非奇异终端滑模,将固定时间思想融入滑模控制技术当中;设计一个自适应辅助系统,消除输入饱和对系统造成的负面影响;设计一种无模型固定时间精准轨迹跟踪控制策略,使得遭遇复杂洋流扰动、完全未知系统动态以及输入饱和的无人船跟踪上期望轨迹在一个固定时间内。According to the technical problems raised above, a model-free fixed-time precise trajectory tracking control method for an unmanned ship is provided. The present invention mainly considers the USV model with input saturation and complex disturbance, and designs a fixed-time lumped uncertainty observer. Accurate and fast observation and compensation for it; design a fast non-singular terminal sliding mode with fixed time stability characteristics, and integrate the fixed time idea into the sliding mode control technology; design an adaptive auxiliary system to eliminate the input saturation effect The negative impact caused by the system; design a model-free fixed-time accurate trajectory tracking control strategy, so that the unmanned ship encountering complex ocean current disturbance, completely unknown system dynamics and input saturation can track the desired trajectory within a fixed time.
本发明采用的技术手段如下:The technical means adopted in the present invention are as follows:
一种无人船无模型固定时间精准轨迹跟踪控制方法,包括如下步骤:A model-free fixed-time precise trajectory tracking control method for an unmanned ship, comprising the following steps:
S1、构建带有输入饱和以及复杂扰动的USV模型;S1. Build a USV model with input saturation and complex perturbations;
S2、基于构建的所述USV模型,设计固定时间集总观测器;S2. Design a fixed-time lumped observer based on the constructed USV model;
S3、基于设计的所述固定时间集总观测器,设计自适应辅助系统;S3. Design an adaptive auxiliary system based on the designed fixed-time lumped observer;
S4、基于设计的所述自适应辅助系统,设计快速非奇异终端滑模;S4. Based on the designed adaptive auxiliary system, design a fast non-singular terminal sliding mode;
S5、基于上述步骤S2-S4设计的所述固定时间集总观测器、自适应辅助系统以及快速非奇异终端滑模,设计无模型固定时间精确跟踪控制策略。S5. Based on the fixed-time lumped observer, the adaptive auxiliary system and the fast non-singular terminal sliding mode designed in the above steps S2-S4, a model-free fixed-time precise tracking control strategy is designed.
进一步地,所述步骤S1具体包括:Further, the step S1 specifically includes:
S11、考虑输入饱和以及复杂扰动,构建USV模型,如下:S11. Consider input saturation and complex disturbances, and construct a USV model as follows:
其中,η=[x y ψ]T表示地球坐标系OXY中的位置和航向,v=[u v r]T表示附体坐标系中的速度向量,G(η,v)=-C(v)v-D(v)表示系统动态,C(v)表示对角矩阵,C(v)=-CT(v);D(v)表示阻尼矩阵,d=MRTδ且δ=[δ1,δ2,δ3]T表示复杂的时变扰动,M表示惯性,M=MT>0;τ表示控制输入受到执行器饱和的限制,τi,max是执行器可以提供的最大扭矩,τc,i是理想的控制输入,i=u,v,r;Among them, η=[xy ψ] T represents the position and heading in the earth coordinate system OXY, v=[uvr] T represents the velocity vector in the attached coordinate system, G(η,v)=-C(v)vD(v) represents the system dynamics, C(v) represents the diagonal matrix, C(v)=-C T (v); D(v) represents the damping matrix, d=MR T δ and δ=[δ 1 ,δ 2 ,δ 3 ] T represents complex time-varying disturbance, M represents inertia, M=M T >0; τ indicates that the control input is limited by actuator saturation, τ i,max is the maximum torque that the actuator can provide, τ c,i is the ideal control input, i=u,v,r;
S12、基于构建的所述USV模型,引入如下矩阵:S12. Based on the constructed USV model, the following matrix is introduced:
则存在如下的等式成立:Then the following equation holds:
S13、期望轨迹方程由下式给出:S13. The desired trajectory equation is given by:
其中,Q(ηd,vd)=-C(vd)vd-D(vd)vd,ηd=[xd yd ψd]T和vd=[ud vd rd]T分别表示期望的位置和速度矢量;where Q(η d ,v d )=-C(v d )v d -D(v d )v d , η d =[x d y d ψ d ] T and v d =[u d v d r d ] T represents the desired position and velocity vector, respectively;
S14、对上述公式中的ν,νd引入以下变换:S14. Introduce the following transformations to ν and ν d in the above formula:
其中,代表引入的辅助变量, 代表期望状态下的辅助变量,R代表与实际状态相关的变量矩阵,R=R(ψ),Rd代表与期望状态相关的变量矩阵,Rd=R(ψd);in, represents the introduced auxiliary variable, represents the auxiliary variable in the desired state, R represents the variable matrix related to the actual state, R=R(ψ), R d represents the variable matrix related to the desired state, R d =R(ψ d );
S15、对上述公式(1)、(3)以及(5)进行组合,得到:S15. Combine the above formulas (1), (3) and (5) to obtain:
其中,H(η,ν)表示引入的中间变量, where H(η,ν) represents the introduced intermediate variable,
S16、对上述公式(3)、(4)以及(5)进行组合,得到:S16. Combine the above formulas (3), (4) and (5) to obtain:
其中,Γ(ηd,νd)表示引入的中间变量,用来简化运算 Among them, Γ(η d ,ν d ) represents the intermediate variable introduced to simplify the operation
S17、根据上述公式(6)和(7),得到无人船轨迹跟踪误差控制系统如下所示:S17. According to the above formulas (6) and (7), the trajectory tracking error control system of the unmanned ship is obtained as follows:
其中,Ω=Ω(η,ν,ηd,νd,δ)表示包含了未知扰动和未建模动态的集总未知项,具体表示如下:in, Ω=Ω(η,ν,η d ,ν d ,δ) represents the lumped unknown term including unknown disturbances and unmodeled dynamics, which is specifically expressed as follows:
Ω(·)=RM-1G(η,ν)+d-RdM-1τd-RdM-1Q(ηd,νd)。Ω(·)=RM −1 G(η, ν)+dR d M −1 τ d −R d M −1 Q(η d , ν d ).
进一步地,所述步骤S2中设计的固定时间集总观测器,具体如下:Further, the fixed-time lumped observer designed in the step S2 is as follows:
其中,观测器系数λ1,λ2,λ3分别表示满足一定约束条件的常数参数,λ1,λ2,λ3>0,λ3>d,β1,β2分别表示观测器幂指数,β1,β2满足β1>1,0<β2<1,观测器变量z1,z2分别表示Ω(·)的估计值。Among them, the observer coefficients λ 1 , λ 2 , λ 3 represent constant parameters satisfying certain constraints, respectively, λ 1 , λ 2 , λ 3 >0, λ 3 >d, β 1 , β 2 represent the observer power exponents, respectively , β 1 , β 2 satisfy β 1 >1, 0<β 2 <1, the observer variables z 1 , z 2 respectively represent Estimated value of Ω(·).
进一步地,所述步骤S3中设计的自适应辅助系统,具体如下:Further, the adaptive assistance system designed in the step S3 is specifically as follows:
其中,χ1=[χ1,u χ1,v χ1,r]T,χ2=[χ2,u χ2,v χ2,r]T表示辅助变量,c1,c2表示合适的参数矩阵,Δτ=τc-τ,τc和τ分别代表不考虑执行器约束与执行器约束后的控制输入。Wherein, χ 1 =[χ 1,u χ 1,v χ 1,r ] T ,χ 2 =[χ 2,u χ 2,v χ 2,r ] T represents auxiliary variables, and c 1 ,c 2 represents appropriate The parameter matrix of Δτ=τ c −τ, τ c and τ represent the control input without considering the actuator constraints and the actuator constraints, respectively.
进一步地,所述步骤S4具体包括:Further, the step S4 specifically includes:
S41、设计一个固定时间快速非奇异终端滑模,如下:S41. Design a fixed-time fast non-singular terminal sliding mode as follows:
其中,σ=[σu σv σr]T,e1=ηe-χ1=[e1,u e1,v e1,r]T,γ1,γ2>0,n1>1,f(e1)表示如下:where σ=[σ u σ v σ r ] T , e 1 =η e -χ 1 =[e 1,u e 1,v e 1,r ] T , γ 1 , γ 2 >0, n 1 >1, f(e 1 ) is expressed as follows:
其中,ε是一个极小的正常数,0<n2<1,1<n3<n4,n1,n2,n3,n4,γ1,γ2之间存在如下关系:Among them, ε is a very small constant, 0<n 2 <1, 1<n 3 <n 4 , n 1 , n 2 , n 3 , n 4 , γ 1 , γ 2 have the following relationship:
S42、对设计的所述固定时间快速非奇异终端滑模进行求导,得到:S42, derivation of the designed fixed-time fast non-singular terminal sliding mode, to obtain:
其中,可描述为:in, can be described as:
其中:in:
进一步地,所述步骤S5中设计的无模型固定时间精确跟踪控制策略具体如下:Further, the model-free fixed-time precise tracking control strategy designed in the step S5 is as follows:
其中,αj表示满足一定条件的常数参数,αj>0(j=1,2,3),m1,m2是正奇数,并且满足m1>m2。Among them, α j represents a constant parameter satisfying a certain condition, α j >0 (j=1, 2, 3), m 1 , m 2 are positive odd numbers and satisfy m 1 >m 2 .
进一步地,所述步骤S5中还包括引入辅助变量gsat来消除由符号不连续引起的潜在颤动的步骤,具体为:Further, the step S5 also includes the step of introducing an auxiliary variable g sat to eliminate the potential jitter caused by the discontinuity of the symbol, specifically:
其中,gsat表示辅助变量,φ、χ、σ均表示满足一定条件的常数系数。Among them, g sat represents auxiliary variables, and φ, χ, and σ all represent constant coefficients that satisfy certain conditions.
较现有技术相比,本发明具有以下优点:Compared with the prior art, the present invention has the following advantages:
1、本发明提供的无人船无模型固定时间精准轨迹跟踪控制方法,能够保证同时遭遇输入饱和、复杂环境扰动以及模型动态完全未知的无人船在一个期望时间内精准地跟踪上期望轨迹,获得更快的收敛速度与跟踪精度以及更强的鲁棒性。1. The model-free fixed-time precise trajectory tracking control method for an unmanned ship provided by the present invention can ensure that an unmanned ship that encounters input saturation, complex environmental disturbances and completely unknown model dynamics at the same time can accurately track a desired trajectory within a desired time period, Get faster convergence and tracking accuracy and greater robustness.
2、本发明提供的无人船无模型固定时间精准轨迹跟踪控制方法,克服了传统滑模策略中的奇异性和收敛速度慢的问题。同时,将无人船轨迹跟踪控制系统中的外界扰动和未建模动态项视为集总的不确定项,通过设计固定时间集总观测器,对其在一个预定时间内快速辨识与补偿。从而实现了不依赖无人船模型的精准轨迹跟踪控制。严格的数学证明和仿真试验验证了所设计的轨迹跟踪控制策略的有效性和优越性。2. The model-free fixed-time precise trajectory tracking control method provided by the present invention overcomes the problems of singularity and slow convergence speed in the traditional sliding mode strategy. At the same time, the external disturbances and unmodeled dynamic items in the trajectory tracking control system of the unmanned ship are regarded as lumped uncertain items, and a fixed-time lumped observer is designed to quickly identify and compensate them within a predetermined time. Thus, precise trajectory tracking control without relying on the unmanned ship model is realized. Strict mathematical proof and simulation experiments verify the effectiveness and superiority of the designed trajectory tracking control strategy.
基于上述理由本发明可在无人船快速、精准跟踪控制等领域广泛推广。Based on the above reasons, the present invention can be widely promoted in the fields of fast and precise tracking control of unmanned ships.
附图说明Description of drawings
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图做以简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。In order to illustrate the embodiments of the present invention or the technical solutions in the prior art more clearly, the following briefly introduces the accompanying drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description These are some embodiments of the present invention, and for those of ordinary skill in the art, other drawings can also be obtained from these drawings without any creative effort.
图1为本发明方法流程图。Fig. 1 is the flow chart of the method of the present invention.
图2为本发明实施例提供的无人船三自由度数学模型。FIG. 2 is a three-degree-of-freedom mathematical model of an unmanned ship provided by an embodiment of the present invention.
图3为本发明实施例提供的控制策略框架图。FIG. 3 is a frame diagram of a control strategy provided by an embodiment of the present invention.
图4为本发明实施例提供的轨迹跟踪曲线图。FIG. 4 is a trajectory tracking curve diagram provided by an embodiment of the present invention.
图5为本发明实施例提供的位置跟踪曲线图。FIG. 5 is a position tracking curve diagram provided by an embodiment of the present invention.
图6为本发明实施例提供的位置跟踪误差曲线图。FIG. 6 is a position tracking error curve diagram according to an embodiment of the present invention.
图7为本发明实施例提供的速度跟踪曲线图。FIG. 7 is a speed tracking curve diagram provided by an embodiment of the present invention.
图8为本发明实施例提供的速度跟踪误差曲线图。FIG. 8 is a speed tracking error curve diagram provided by an embodiment of the present invention.
图9为本发明实施例提供的集总未知观测曲线图。FIG. 9 is a graph of a lumped unknown observation provided by an embodiment of the present invention.
图10为本发明实施例提供的速度跟踪误差曲线图。FIG. 10 is a speed tracking error curve diagram provided by an embodiment of the present invention.
图11为本发明实施例提供的饱和控制输入曲线图。FIG. 11 is a graph of a saturation control input provided by an embodiment of the present invention.
图12为本发明实施例提供的不同初始状态下轨迹跟踪曲线图。FIG. 12 is a trajectory tracking curve diagram under different initial states provided by an embodiment of the present invention.
图13为本发明实施例提供的不同初始状态下位置跟踪曲线图。FIG. 13 is a position tracking curve diagram under different initial states provided by an embodiment of the present invention.
图14为本发明实施例提供的不同初始状态下的位置跟踪误差曲线图。FIG. 14 is a position tracking error curve diagram under different initial states provided by an embodiment of the present invention.
图15为本发明实施例提供的不同初始状态下速度跟踪曲线图。FIG. 15 is a speed tracking curve diagram under different initial states provided by an embodiment of the present invention.
图16为本发明实施例提供的不同初始状态下速度跟踪误差曲线图。FIG. 16 is a speed tracking error curve diagram under different initial states provided by an embodiment of the present invention.
具体实施方式Detailed ways
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。In order to make those skilled in the art better understand the solutions of the present invention, the technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only Embodiments are part of the present invention, but not all embodiments. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。It should be noted that the terms "first", "second" and the like in the description and claims of the present invention and the above drawings are used to distinguish similar objects, and are not necessarily used to describe a specific sequence or sequence. It is to be understood that the data so used may be interchanged under appropriate circumstances such that the embodiments of the invention described herein can be practiced in sequences other than those illustrated or described herein. Furthermore, the terms "comprising" and "having" and any variations thereof, are intended to cover non-exclusive inclusion, for example, a process, method, system, product or device comprising a series of steps or units is not necessarily limited to those expressly listed Rather, those steps or units may include other steps or units not expressly listed or inherent to these processes, methods, products or devices.
如图1所示,本发明提供了一种无人船无模型固定时间精准轨迹跟踪控制方法,包括如下步骤:As shown in FIG. 1 , the present invention provides a model-free fixed-time precise trajectory tracking control method for an unmanned ship, including the following steps:
S1、构建带有输入饱和以及复杂扰动的USV模型;如图2所示,为本发明实施例提供的无人船三自由度数学模型示意图。S1. Construct a USV model with input saturation and complex disturbances; as shown in FIG. 2 , a schematic diagram of a three-degree-of-freedom mathematical model of an unmanned ship provided by an embodiment of the present invention is shown.
具体实施时,作为本发明优选的实施方式,所述步骤S1具体包括:During specific implementation, as a preferred embodiment of the present invention, the step S1 specifically includes:
S11、考虑输入饱和以及复杂扰动,构建USV模型,如下:S11. Consider input saturation and complex disturbances, and construct a USV model as follows:
其中,η=[x y ψ]T表示地球坐标系OXY中的位置和航向,v=[u v r]T表示附体坐标系中的速度向量,G(η,v)=-C(v)v-D(v)表示系统动态,C(v)表示对角矩阵,C(v)=-CT(v);D(v)表示阻尼矩阵,d=MRTδ且δ=[δ1,δ2,δ3]T表示复杂的时变扰动,M表示惯性,M=MT>0;τ表示控制输入受到执行器饱和的限制,τi,max是执行器可以提供的最大扭矩,τc,i是理想的控制输入,i=u,v,r;Among them, η=[xy ψ] T represents the position and heading in the earth coordinate system OXY, v=[uvr] T represents the velocity vector in the attached coordinate system, G(η,v)=-C(v)vD(v) represents the system dynamics, C(v) represents the diagonal matrix, C(v)=-C T (v); D(v) represents the damping matrix, d=MR T δ and δ=[δ 1 ,δ 2 ,δ 3 ] T represents complex time-varying disturbance, M represents inertia, M=M T >0; τ indicates that the control input is limited by actuator saturation, τ i,max is the maximum torque that the actuator can provide, τ c,i is the ideal control input, i=u,v,r;
S12、基于构建的所述USV模型,引入如下矩阵:S12. Based on the constructed USV model, the following matrix is introduced:
则存在如下的等式成立:Then the following equation holds:
S13、期望轨迹方程由下式给出:S13. The desired trajectory equation is given by:
其中,Q(ηd,vd)=-C(vd)vd-D(vd)vd,ηd=[xd yd ψd]T和vd=[ud vd rd]T分别表示期望的位置和速度矢量;where Q(η d ,v d )=-C(v d )v d -D(v d )v d , η d =[x d y d ψ d ] T and v d =[u d v d r d ] T represents the desired position and velocity vector, respectively;
S14、对上述公式中的ν,νd引入以下变换:S14. Introduce the following transformations to ν and ν d in the above formula:
其中,代表引入的辅助变量, 代表期望状态下的辅助变量,R代表与实际状态相关的变量矩阵,R=R(ψ),Rd代表与期望状态相关的变量矩阵,Rd=R(ψd);in, represents the introduced auxiliary variable, represents the auxiliary variable in the desired state, R represents the variable matrix related to the actual state, R=R(ψ), R d represents the variable matrix related to the desired state, R d =R(ψ d );
S15、对上述公式(1)、(3)以及(5)进行组合,得到:S15. Combine the above formulas (1), (3) and (5) to obtain:
其中,H(η,ν)表示引入的中间变量, where H(η,ν) represents the introduced intermediate variable,
S16、对上述公式(3)、(4)以及(5)进行组合,得到:S16. Combine the above formulas (3), (4) and (5) to obtain:
其中,Γ(ηd,νd)表示引入的中间变量,用来简化运算 Among them, Γ(η d ,ν d ) represents the intermediate variable introduced to simplify the operation
S17、根据上述公式(6)和(7),得到无人船轨迹跟踪误差控制系统如下所示:S17. According to the above formulas (6) and (7), the trajectory tracking error control system of the unmanned ship is obtained as follows:
其中,Ω=Ω(η,ν,ηd,νd,δ)表示包含了未知扰动和未建模动态的集总未知项,具体表示如下:in, Ω=Ω(η,ν,η d ,ν d ,δ) represents the lumped unknown term including unknown disturbances and unmodeled dynamics, which is specifically expressed as follows:
Ω(·)=RM-1G(η,ν)+d-RdM-1τd-RdM-1Q(ηd,νd)。Ω(·)=RM −1 G(η, ν)+dR d M −1 τ d −R d M −1 Q(η d , ν d ).
假设1:假设(15)中的集总未知是可微且有界的,并且满足:Assumption 1: Assume that the lumped unknown in (15) is differentiable and bounded and satisfies:
||Ω(·)||≤d||Ω(·)||≤d
其中,常数d<∞,||*||表示标准的欧几里得范数。Among them, the constant d<∞, ||*|| represents the standard Euclidean norm.
在本实施例中,系统动态矩阵C(v),D(v)和向量d都是完全未知的,并且矩阵C(v),D(v)受海洋中风浪流的变化而变化。本发明的目的是为遇到复杂的未知和输入饱和影响的无人船设计一种无模型固定时间轨迹跟踪控制方案。该方案可以保证跟踪误差ηe,νe在一个设定时间内收敛到以原点为中心的小范围内,并且闭环系统固定时间稳定。In this embodiment, the system dynamic matrices C(v), D(v) and the vector d are completely unknown, and the matrices C(v), D(v) are changed by the changes of wind, wave and current in the ocean. The purpose of the present invention is to design a model-free fixed-time trajectory tracking control scheme for unmanned ships that encounter complex unknown and input saturation effects. This scheme can ensure that the tracking errors η e , ν e converge to a small range centered on the origin within a set time, and the closed-loop system is stable for a fixed time.
S2、基于构建的所述USV模型,设计固定时间集总观测器;S2. Design a fixed-time lumped observer based on the constructed USV model;
具体实施时,作为本发明优选的实施方式,为了获得高精度的跟踪性能,有必要准确地辨识和补偿轨迹跟踪误差控制系统中集总未知项,因此,所述步骤S2中设计的固定时间集总观测器,具体如下:During specific implementation, as a preferred embodiment of the present invention, in order to obtain high-precision tracking performance, it is necessary to accurately identify and compensate the lumped unknown items in the trajectory tracking error control system. Therefore, the fixed time set designed in step S2 The total observer, as follows:
其中,观测器系数λ1,λ2,λ3分别表示满足一定约束的常数参数,λ1,λ2,λ3>0,λ3>d,β1,β2表示满足一定约束的常数指数幂,并且β1>1,0<β2<1,观测变量z1,z2分别表示中间变量集总扰动Ω(·)的估计值。Among them, the observer coefficients λ 1 , λ 2 , λ 3 represent constant parameters satisfying certain constraints, respectively, λ 1 , λ 2 , λ 3 >0, λ 3 >d, β 1 , β 2 represent constant exponents satisfying certain constraints power, and β 1 >1, 0 <β 2 <1, the observed variables z 1 , z 2 represent intermediate variables respectively An estimate of the lumped disturbance Ω(·).
S3、基于设计的所述固定时间集总观测器,设计自适应辅助系统;S3. Design an adaptive auxiliary system based on the designed fixed-time lumped observer;
实际上,由于执行器饱和的限制,执行器常常无法提供足够的控制力矩,具体实施时,作为本发明优选的实施方式,为了处理输入饱和,所述步骤S3中设计的自适应辅助系统,具体如下:In fact, due to the limitation of actuator saturation, the actuator often cannot provide sufficient control torque. During specific implementation, as a preferred embodiment of the present invention, in order to deal with input saturation, the adaptive assistance system designed in step S3, specifically as follows:
其中,χ1=[χ1,u χ1,v χ1,r]T,χ2=[χ2,u χ2,v χ2,r]T表示辅助变量,c1,c2表示合适的参数矩阵,Δτ=τc-τ,τc和τ分别代表不考虑执行器约束与执行器约束后的控制输入。Wherein, χ 1 =[χ 1,u χ 1,v χ 1,r ] T ,χ 2 =[χ 2,u χ 2,v χ 2,r ] T represents auxiliary variables, and c 1 ,c 2 represents appropriate The parameter matrix of Δτ=τ c −τ, τ c and τ represent the control input without considering the actuator constraints and the actuator constraints, respectively.
S4、基于设计的所述自适应辅助系统,设计快速非奇异终端滑模;S4. Based on the designed adaptive auxiliary system, design a fast non-singular terminal sliding mode;
具体实施时,作为本发明优选的实施方式,所述步骤S4具体包括:During specific implementation, as a preferred embodiment of the present invention, the step S4 specifically includes:
S41、设计一个固定时间快速非奇异终端滑模,如下:S41. Design a fixed-time fast non-singular terminal sliding mode as follows:
其中,σ=[σu σv σr]T,e1=ηe-χ1=[e1,u e1,v e1,r]T,γ1,γ2>0,n1>1,f(e1)表示如下:where σ=[σ u σ v σ r ] T , e 1 =η e -χ 1 =[e 1,u e 1,v e 1,r ] T , γ 1 , γ 2 >0, n 1 >1, f(e 1 ) is expressed as follows:
其中,ε是一个极小的正常数,0<n2<1,1<n3<n4,n1,n2,n3,n4,γ1,γ2之间存在如下关系:Among them, ε is a very small constant, 0<n 2 <1, 1<n 3 <n 4 , n 1 , n 2 , n 3 , n 4 , γ 1 , γ 2 have the following relationship:
S42、对设计的所述固定时间快速非奇异终端滑模进行求导,得到:S42, derivation of the designed fixed-time fast non-singular terminal sliding mode, to obtain:
其中,可描述为:in, can be described as:
其中:in:
S5、基于上述步骤S2-S4设计的所述固定时间集总观测器、自适应辅助系统以及快速非奇异终端滑模,设计无模型固定时间精确跟踪控制策略。S5. Based on the fixed-time lumped observer, the adaptive auxiliary system and the fast non-singular terminal sliding mode designed in the above steps S2-S4, a model-free fixed-time precise tracking control strategy is designed.
具体实施时,作为本发明优选的实施方式,所述步骤S5中设计的无模型固定时间精确跟踪控制策略具体如下:During specific implementation, as a preferred embodiment of the present invention, the model-free fixed-time precise tracking control strategy designed in step S5 is specifically as follows:
其中,αj表示满足一定条件的常数参数,αj>0(j=1,2,3),m1,m2是正奇数,并且满足m1>m2。Among them, α j represents a constant parameter satisfying a certain condition, α j >0 (j=1, 2, 3), m 1 , m 2 are positive odd numbers and satisfy m 1 >m 2 .
具体实施时,作为本发明优选的实施方式,所述步骤S5中还包括引入gsat来消除由符号不连续引起的潜在颤动的步骤,具体为:During specific implementation, as a preferred embodiment of the present invention, the step S5 also includes the step of introducing g sat to eliminate potential jitter caused by symbol discontinuity, specifically:
其中,gsat表示辅助变量,φ、χ、σ均代表满足一定条件的常数参数。Among them, g sat represents auxiliary variables, and φ, χ, and σ all represent constant parameters that satisfy certain conditions.
综上所述,本发明中所设计的固定时间集总观测器,在一个固定时间内可以实现对包含环境扰动与未建模动态的集总未知项实现精准的观测。本发明所设计的无模型固定时间轨迹跟踪控制方案,可以使得同时遭遇输入饱和、复杂环境扰动以及模型动态完全未知的无人船在一个期望时间内精准地跟踪上期望轨迹,而且收敛时间与无人船初始状态无关而只与所设计的参数有关。To sum up, the fixed-time lumped observer designed in the present invention can realize accurate observation of lumped unknown items including environmental disturbances and unmodeled dynamics within a fixed time. The model-free fixed-time trajectory tracking control scheme designed by the present invention can make the unmanned ship that encounters input saturation, complex environmental disturbance and completely unknown model dynamics at the same time accurately track the desired trajectory within a desired time, and the convergence time is different from that of the unmanned ship. The initial state of the man-ship is independent of the designed parameters.
为了验证本发明方法的有效性和优越性,进行了仿真试验,如图4-16所示,本发明方法可以保证同时遭遇输入饱和、复杂环境扰动以及模型动态完全未知的无人船在一个期望时间内精准地跟踪上期望轨迹,获得更快的收敛速度与跟踪精度以及更强的鲁棒性。In order to verify the effectiveness and superiority of the method of the present invention, a simulation test was carried out. As shown in Fig. 4-16, the method of the present invention can ensure that the unmanned ship that encounters input saturation, complex environmental disturbance and completely unknown model dynamics at the same time is in an expected Accurately track the desired trajectory in time, and obtain faster convergence speed, tracking accuracy and stronger robustness.
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。Finally, it should be noted that the above embodiments are only used to illustrate the technical solutions of the present invention, but not to limit them; although the present invention has been described in detail with reference to the foregoing embodiments, those of ordinary skill in the art should understand that: The technical solutions described in the foregoing embodiments can still be modified, or some or all of the technical features thereof can be equivalently replaced; and these modifications or replacements do not make the essence of the corresponding technical solutions deviate from the technical solutions of the embodiments of the present invention. scope.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110362532.XA CN113110430B (en) | 2021-04-02 | 2021-04-02 | A model-free fixed-time precise trajectory tracking control method for unmanned ships |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110362532.XA CN113110430B (en) | 2021-04-02 | 2021-04-02 | A model-free fixed-time precise trajectory tracking control method for unmanned ships |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113110430A true CN113110430A (en) | 2021-07-13 |
CN113110430B CN113110430B (en) | 2024-01-30 |
Family
ID=76713596
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110362532.XA Active CN113110430B (en) | 2021-04-02 | 2021-04-02 | A model-free fixed-time precise trajectory tracking control method for unmanned ships |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113110430B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114661056A (en) * | 2022-05-19 | 2022-06-24 | 浙江大学湖州研究院 | A Differential Surface Unmanned Vessel Trajectory Tracking Method Considering Servo Control of Thrusters |
CN117111481A (en) * | 2023-10-24 | 2023-11-24 | 哈尔滨工程大学三亚南海创新发展基地 | Multi-ship cooperative tracking control system and control method |
CN118244790A (en) * | 2024-05-28 | 2024-06-25 | 山东科技大学 | A fixed-time trajectory tracking control method for airships with time-varying error constraints |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB201509487D0 (en) * | 2015-06-02 | 2015-07-15 | Marine Electrical Consulating Ltd | Method and apparatus for adaptive motion compensation |
CN108828955A (en) * | 2018-08-16 | 2018-11-16 | 大连海事大学 | Precise Track Tracking Control Method Based on Finite Time Extended State Observer |
CN109164823A (en) * | 2018-09-28 | 2019-01-08 | 浙江工业大学 | A kind of nonsingular set time Attitude tracking control method of rigid-body spacecraft considering actuator constraints problem |
CN110109352A (en) * | 2019-04-11 | 2019-08-09 | 浙江工业大学 | A kind of set time Adaptive Attitude control method of Three Degree Of Freedom quadrotor |
CN110879599A (en) * | 2019-12-12 | 2020-03-13 | 大连海事大学 | Fixed time formation control method based on finite time disturbance observer |
CN110928310A (en) * | 2019-12-12 | 2020-03-27 | 大连海事大学 | Unmanned ship navigation following fixed time formation control method |
CA3067573A1 (en) * | 2019-01-14 | 2020-07-14 | Harbin Engineering University | Target tracking systems and methods for uuv |
CN111624878A (en) * | 2020-05-12 | 2020-09-04 | 曲阜师范大学 | Integral sliding mode obtaining method and system for autonomous water surface robot trajectory tracking |
CN111752280A (en) * | 2020-07-10 | 2020-10-09 | 大连海事大学 | A fixed-time control method for multi-unmanned ship formation based on finite-time uncertain observer |
CN111831011A (en) * | 2020-08-07 | 2020-10-27 | 大连海事大学 | A method for tracking and controlling the plane trajectory of an underwater robot |
-
2021
- 2021-04-02 CN CN202110362532.XA patent/CN113110430B/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB201509487D0 (en) * | 2015-06-02 | 2015-07-15 | Marine Electrical Consulating Ltd | Method and apparatus for adaptive motion compensation |
CN108828955A (en) * | 2018-08-16 | 2018-11-16 | 大连海事大学 | Precise Track Tracking Control Method Based on Finite Time Extended State Observer |
CN109164823A (en) * | 2018-09-28 | 2019-01-08 | 浙江工业大学 | A kind of nonsingular set time Attitude tracking control method of rigid-body spacecraft considering actuator constraints problem |
CA3067573A1 (en) * | 2019-01-14 | 2020-07-14 | Harbin Engineering University | Target tracking systems and methods for uuv |
CN110109352A (en) * | 2019-04-11 | 2019-08-09 | 浙江工业大学 | A kind of set time Adaptive Attitude control method of Three Degree Of Freedom quadrotor |
CN110879599A (en) * | 2019-12-12 | 2020-03-13 | 大连海事大学 | Fixed time formation control method based on finite time disturbance observer |
CN110928310A (en) * | 2019-12-12 | 2020-03-27 | 大连海事大学 | Unmanned ship navigation following fixed time formation control method |
CN111624878A (en) * | 2020-05-12 | 2020-09-04 | 曲阜师范大学 | Integral sliding mode obtaining method and system for autonomous water surface robot trajectory tracking |
CN111752280A (en) * | 2020-07-10 | 2020-10-09 | 大连海事大学 | A fixed-time control method for multi-unmanned ship formation based on finite-time uncertain observer |
CN111831011A (en) * | 2020-08-07 | 2020-10-27 | 大连海事大学 | A method for tracking and controlling the plane trajectory of an underwater robot |
Non-Patent Citations (3)
Title |
---|
RENHUI WANG: "Fixed-time Trajectory Tracking Control of an Unmanned Surface Vehicle", 2020 ICSSE, pages 1 - 6 * |
孟浩: "基于终端滑模的欠驱动船舶航迹跟踪鲁棒控制", 第三十二届中国控制会议论文集, pages 4364 - 4369 * |
王宁: "基于有限时间扰动观测器的无人水面艇精确航迹跟踪控制", 控制与决策, vol. 34, no. 11, pages 2491 - 2497 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114661056A (en) * | 2022-05-19 | 2022-06-24 | 浙江大学湖州研究院 | A Differential Surface Unmanned Vessel Trajectory Tracking Method Considering Servo Control of Thrusters |
CN117111481A (en) * | 2023-10-24 | 2023-11-24 | 哈尔滨工程大学三亚南海创新发展基地 | Multi-ship cooperative tracking control system and control method |
CN117111481B (en) * | 2023-10-24 | 2024-01-26 | 哈尔滨工程大学三亚南海创新发展基地 | Multi-ship cooperative tracking control system and control method |
CN118244790A (en) * | 2024-05-28 | 2024-06-25 | 山东科技大学 | A fixed-time trajectory tracking control method for airships with time-varying error constraints |
CN118244790B (en) * | 2024-05-28 | 2024-08-06 | 山东科技大学 | A fixed-time trajectory tracking control method for airships with time-varying error constraints |
Also Published As
Publication number | Publication date |
---|---|
CN113110430B (en) | 2024-01-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Liu et al. | Distributed adaptive fixed-time robust platoon control for fully heterogeneous vehicles | |
CN108710303B (en) | Spacecraft relative attitude control method containing multi-source disturbance and actuator saturation | |
Jin et al. | Adaptive fault-tolerant consensus for a class of leader-following systems using neural network learning strategy | |
CN113110430B (en) | A model-free fixed-time precise trajectory tracking control method for unmanned ships | |
Ma et al. | Improved adaptive fuzzy output-feedback dynamic surface control of nonlinear systems with unknown dead-zone output | |
Zhao et al. | Observer-critic structure-based adaptive dynamic programming for decentralised tracking control of unknown large-scale nonlinear systems | |
CN111752280A (en) | A fixed-time control method for multi-unmanned ship formation based on finite-time uncertain observer | |
CN106774379B (en) | Intelligent supercoiled strong robust attitude control method | |
CN108241292B (en) | A sliding mode control method for underwater robot based on extended state observer | |
CN115576341A (en) | Unmanned aerial vehicle trajectory tracking control method based on function differentiation and adaptive variable gain | |
CN108406779A (en) | A kind of mechanical arm motion control method based on Unknown Input Observer | |
Shao et al. | Input-and-measurement event-triggered control for flexible air-breathing hypersonic vehicles with asymmetric partial-state constraints | |
CN115981162A (en) | Sliding mode control trajectory tracking method of robot system based on novel disturbance observer | |
CN110362110B (en) | Fixed self-adaptive neural network unmanned aerial vehicle track angle control method | |
CN113110048A (en) | Nonlinear system output feedback adaptive control system and method adopting HOSM observer | |
Chen et al. | Adaptive neural prescribed performance output feedback control of pure feedback nonlinear systems using disturbance observer | |
CN112327638A (en) | Unmanned ship trajectory tracking optimal control method with designated performance and input saturation limitation | |
Li et al. | Learning-observer-based adaptive tracking control of multiagent systems using compensation mechanism | |
Liu et al. | Finite‐time adaptive fuzzy control for a class of output constrained nonlinear systems with dead‐zone | |
Ma et al. | Nonlinear filters-based adaptive fuzzy control of strict-feedback nonlinear systems with unknown asymmetric dead-zone output | |
Mu et al. | Path following control strategy for underactuated unmanned surface vehicle subject to multiple constraints | |
Zhang et al. | A novel disturbance observer design for a larger class of nonlinear strict-feedback systems via improved DSC technique | |
Wei et al. | Adaptive finite‐time neural backstepping control for multi‐input and multi‐output state‐constrained nonlinear systems using tangent‐type nonlinear mapping | |
CN110440778A (en) | A kind of MEMS gyroscope non-overshoot guaranteed cost fuzzy wavelet nerve control method | |
Chen et al. | Finite-time attitude control with chattering suppression for quadrotors based on high-order extended state observer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |