CN113109403B - Multichannel biomolecule detection chip based on array nano-holes and manufacturing method thereof - Google Patents
Multichannel biomolecule detection chip based on array nano-holes and manufacturing method thereof Download PDFInfo
- Publication number
- CN113109403B CN113109403B CN202110270622.6A CN202110270622A CN113109403B CN 113109403 B CN113109403 B CN 113109403B CN 202110270622 A CN202110270622 A CN 202110270622A CN 113109403 B CN113109403 B CN 113109403B
- Authority
- CN
- China
- Prior art keywords
- silicon oxide
- oxide layer
- layer
- nanowire
- detection chip
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 42
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 15
- 238000000034 method Methods 0.000 claims abstract description 12
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 93
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 89
- 239000010410 layer Substances 0.000 claims description 87
- 239000002070 nanowire Substances 0.000 claims description 56
- 229910052709 silver Inorganic materials 0.000 claims description 29
- 239000004332 silver Substances 0.000 claims description 29
- 239000000758 substrate Substances 0.000 claims description 25
- 238000004806 packaging method and process Methods 0.000 claims description 24
- 239000002131 composite material Substances 0.000 claims description 22
- 239000010408 film Substances 0.000 claims description 21
- 229910052710 silicon Inorganic materials 0.000 claims description 20
- 239000010703 silicon Substances 0.000 claims description 20
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 19
- 238000005538 encapsulation Methods 0.000 claims description 11
- 238000005516 engineering process Methods 0.000 claims description 11
- 229920005575 poly(amic acid) Polymers 0.000 claims description 8
- 239000000243 solution Substances 0.000 claims description 8
- 238000004140 cleaning Methods 0.000 claims description 7
- 239000011241 protective layer Substances 0.000 claims description 7
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 claims description 6
- 239000012528 membrane Substances 0.000 claims description 6
- 229920002120 photoresistant polymer Polymers 0.000 claims description 6
- 238000000605 extraction Methods 0.000 claims description 5
- 238000010884 ion-beam technique Methods 0.000 claims description 5
- 239000010409 thin film Substances 0.000 claims description 5
- 239000002245 particle Substances 0.000 claims description 4
- 238000001020 plasma etching Methods 0.000 claims description 4
- 241000252506 Characiformes Species 0.000 claims description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 3
- 238000001035 drying Methods 0.000 claims description 3
- 238000001523 electrospinning Methods 0.000 claims description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 3
- 239000011261 inert gas Substances 0.000 claims description 3
- 238000004518 low pressure chemical vapour deposition Methods 0.000 claims description 3
- 238000001755 magnetron sputter deposition Methods 0.000 claims description 3
- 239000012266 salt solution Substances 0.000 claims description 3
- -1 silver carboxylate salt Chemical class 0.000 claims description 3
- 238000005245 sintering Methods 0.000 claims description 3
- GGCZERPQGJTIQP-UHFFFAOYSA-N sodium;9,10-dioxoanthracene-2-sulfonic acid Chemical compound [Na+].C1=CC=C2C(=O)C3=CC(S(=O)(=O)O)=CC=C3C(=O)C2=C1 GGCZERPQGJTIQP-UHFFFAOYSA-N 0.000 claims description 3
- 238000000151 deposition Methods 0.000 claims description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 2
- 239000011148 porous material Substances 0.000 claims description 2
- 239000004952 Polyamide Substances 0.000 claims 3
- 229920002647 polyamide Polymers 0.000 claims 3
- 239000011248 coating agent Substances 0.000 claims 2
- 238000000576 coating method Methods 0.000 claims 2
- 238000001259 photo etching Methods 0.000 claims 1
- 238000004080 punching Methods 0.000 claims 1
- 238000005406 washing Methods 0.000 claims 1
- 238000013537 high throughput screening Methods 0.000 abstract description 3
- 238000010586 diagram Methods 0.000 description 10
- 238000005530 etching Methods 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000011161 development Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002331 protein detection Methods 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/28—Electrolytic cell components
- G01N27/30—Electrodes, e.g. test electrodes; Half-cells
- G01N27/327—Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
- G01N27/3275—Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/28—Electrolytic cell components
- G01N27/30—Electrodes, e.g. test electrodes; Half-cells
- G01N27/327—Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
- G01N27/3275—Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
- G01N27/3278—Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction involving nanosized elements, e.g. nanogaps or nanoparticles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/30—Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- Electrochemistry (AREA)
- Analytical Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
Abstract
Description
技术领域technical field
本公开涉及纳米孔分子检测技术领域,尤其涉及一种基于阵列纳米孔的多通道生物分子检测芯片及其制作方法。The present disclosure relates to the technical field of nanopore molecular detection, in particular to a multi-channel biomolecular detection chip based on array nanopores and a manufacturing method thereof.
背景技术Background technique
基于纳米孔技术进行生物分子检测源于库尔特计数器的发明和单通道电流记录技术,通过在两端液池添加电解质溶液,并使用电泳技术驱动生物分子通过纳米孔,测量过孔过程中生物分子由于空间占位引起的纳米孔电流变化,可以进行对过孔生物分子的检测。因此纳米孔检测技术被广泛的应用于DNA检测、蛋白质检测等单分子研究领域,同时也被认为是可用于第三代基因测序的检测技术。但目前的纳米孔检测技术仅驱动生物分子通过单个纳米孔,过孔过程中存在易堵塞、过孔效率低等问题,如何提高过孔效率实现生物分子的高通量筛选是当前亟需解决的问题。The detection of biomolecules based on nanopore technology originated from the invention of the Coulter counter and the single-channel current recording technology. By adding an electrolyte solution to the liquid pool at both ends, and using electrophoresis technology to drive biomolecules through the nanopore, the biological The change of nanopore current caused by molecules due to space occupation can be used to detect through-pore biomolecules. Therefore, nanopore detection technology is widely used in single-molecule research fields such as DNA detection and protein detection, and is also considered to be a detection technology that can be used for third-generation gene sequencing. However, the current nanopore detection technology only drives biomolecules through a single nanopore, and there are problems such as easy clogging and low efficiency during the passage process. How to improve the passage efficiency to achieve high-throughput screening of biomolecules is an urgent need to be solved question.
发明内容Contents of the invention
本公开提供了一种基于阵列纳米孔的多通道生物分子检测芯片及其制作方法,其技术目的是有效地同时检测多个纳米孔通过生物分子的电流变化,进而实现生物分子的快速检测和高通量筛选。The present disclosure provides a multi-channel biomolecule detection chip based on arrayed nanopores and its manufacturing method. Its technical purpose is to effectively detect the current changes of multiple nanopores passing through biomolecules at the same time, and then realize the rapid detection and high-speed detection of biomolecules. Throughput screening.
本公开的上述技术目的是通过以下技术方案得以实现的:The above-mentioned technical purpose of the present disclosure is achieved through the following technical solutions:
一种基于阵列纳米孔的多通道生物分子检测芯片,包括多孔纳米孔膜、至少两个纳米导线和封装层氧化硅,每个所述纳米导线独立分布,所述多孔纳米孔膜包括自下而上连接的下氧化硅层、硅基底和上氧化硅层,所述封装层氧化硅与所述上氧化硅层连接;A multi-channel biomolecular detection chip based on arrayed nanopores, comprising a porous nanoporous membrane, at least two nanowires and an encapsulation layer of silicon oxide, each of the nanowires is independently distributed, and the porous nanopore membrane includes a bottom-up A lower silicon oxide layer, a silicon substrate, and an upper silicon oxide layer are connected on top, and the silicon oxide of the encapsulation layer is connected to the upper silicon oxide layer;
所述纳米导线设在所述上氧化硅层的上表面并通过所述封装层氧化硅进行封装,每个所述纳米导线的一端都设有纳米孔、另一端都设有孔,所述纳米孔贯穿所述封装层氧化硅和所述上氧化硅层,所述孔贯穿所述封装层氧化硅,所述孔作为引出端口连接外部电路;The nanowires are arranged on the upper surface of the upper silicon oxide layer and encapsulated by the silicon oxide encapsulation layer, each of the nanowires is provided with a nanohole at one end and a hole at the other end, and the nanowires A hole penetrates the silicon oxide of the packaging layer and the upper silicon oxide layer, the hole penetrates the silicon oxide of the packaging layer, and the hole is used as a lead-out port to connect to an external circuit;
其中,所述纳米孔在所述封装层氧化硅的上表面呈阵列排列。Wherein, the nanoholes are arranged in an array on the upper surface of the silicon oxide encapsulation layer.
进一步地,在所述上氧化硅层中的所述纳米孔底部的对应位置处:所述硅基底和下氧化硅层都形成了暴露窗口,所述暴露窗口用于让所述纳米孔的底部形成薄膜窗口。Further, at the position corresponding to the bottom of the nanopore in the upper silicon oxide layer: both the silicon substrate and the lower silicon oxide layer form an exposure window, and the exposure window is used to allow the bottom of the nanopore to A film window is formed.
一种基于阵列纳米孔的多通道生物分子检测芯片的制作方法,包括:A method for making a multi-channel biomolecular detection chip based on array nanopores, comprising:
S1:通过低压化学气相沉积的方法,在硅基底的下表面和上表面分别沉积下氧化硅层、上氧化硅层;S1: By low-pressure chemical vapor deposition, deposit a lower silicon oxide layer and an upper silicon oxide layer on the lower surface and the upper surface of the silicon substrate, respectively;
S2:在上氧化硅层上涂抹光刻胶,并进行坚膜形成第一保护层;S2: Apply photoresist on the upper silicon oxide layer, and harden the film to form a first protective layer;
S3:在下氧化硅层上涂抹光刻胶,并进行光刻、显影、清洗、甩干、坚膜,下氧化硅层形成带暴露窗口的第二保护层;S3: Apply photoresist on the lower silicon oxide layer, and perform photolithography, development, cleaning, drying, and hardening, and the lower silicon oxide layer forms a second protective layer with exposed windows;
S4:使用反应离子刻蚀系统,对所述暴露窗口处的氧化硅进行去除,并将硅基底置于氢氧化钾溶液中对硅基底进行刻蚀,获得上氧化硅层下表面的薄膜窗口;S4: using a reactive ion etching system to remove the silicon oxide at the exposed window, and place the silicon substrate in a potassium hydroxide solution to etch the silicon substrate to obtain a film window on the lower surface of the upper silicon oxide layer;
S5:对步骤S4获得的薄膜窗口进行食人鱼溶液清洗,使其表面获得大量羟基;S5: cleaning the film window obtained in step S4 with a piranha solution to obtain a large amount of hydroxyl groups on its surface;
S6:将步骤S5中获得的薄膜窗口置于纳米运动平台上,并测量纳米针头与纳米运动平台之间的电容变化,确定薄膜窗口的位置坐标;S6: placing the film window obtained in step S5 on the nano-motion platform, and measuring the capacitance change between the nano-needle and the nano-motion platform, and determining the position coordinates of the film window;
S7:使用近场电纺技术,在薄膜窗口定向沉积聚酰胺酸纳米线;S7: Directional deposition of polyamic acid nanowires on film windows using near-field electrospinning technology;
S8:将步骤S7中得到的聚酰胺酸纳米线浸入银盐溶液中生成羧酸银盐并清洗,再浸入还原性溶液还原成银颗粒并清洗,反复重复步骤S8,直至形成聚酰胺酸-银复合纳米线;S8: Immerse the polyamic acid nanowires obtained in step S7 in a silver salt solution to generate a silver carboxylate salt and wash it, then immerse it in a reducing solution to reduce it to silver particles and wash it, repeat step S8 repeatedly until polyamic acid-silver is formed Composite nanowires;
S9:对所述聚酰胺酸-银复合纳米线进行惰性气体保护烧结,获得聚酰胺酸-银复合纳米导线;S9: Sintering the polyamic acid-silver composite nanowire under the protection of an inert gas to obtain a polyamic acid-silver composite nanowire;
S10:使用磁控溅射技术,在所述聚酰胺酸-银复合纳米导线上覆盖封装层氧化硅;S10: Using magnetron sputtering technology, covering the encapsulation layer silicon oxide on the polyamic acid-silver composite nanowire;
S11:使用聚焦离子束在所述聚酰胺酸-银复合纳米导线的两端进行打孔、剪薄,获得多通道生物分子检测芯片;S11: using a focused ion beam to punch holes and cut thin at both ends of the polyamic acid-silver composite nanowire to obtain a multi-channel biomolecule detection chip;
其中,每个所述聚酰胺酸-银复合纳米导线的一端打有纳米孔、另一端打有孔,所述纳米孔贯穿所述封装层氧化硅和所述上氧化硅层,所述孔贯穿所述封装层氧化硅,所述孔作为引出端口连接外部电路;Wherein, one end of each polyamic acid-silver composite nanowire is punched with a nanohole, and the other end is punched with a hole, the nanohole runs through the silicon oxide of the packaging layer and the upper silicon oxide layer, and the hole runs through The packaging layer is silicon oxide, and the hole is used as a lead-out port to connect to an external circuit;
其中,所述纳米孔在所述封装层氧化硅的上表面呈阵列排列。Wherein, the nanoholes are arranged in an array on the upper surface of the silicon oxide encapsulation layer.
本公开的有益效果在于:本发明所述的基于阵列纳米孔的多通道生物分子检测芯片及其制作方法,通过多根纳米导线单独检测、控制单个纳米孔中的电流变化,可实现各个纳米孔的开合控制,阻断或允许生物分子过孔;同时可开展生物分子同时多通道过孔,实现生物分子的快速检测与高通量筛选。The beneficial effect of the present disclosure is that: the multi-channel biomolecular detection chip based on arrayed nanopores and its manufacturing method described in the present invention can independently detect and control the current change in a single nanopore through a plurality of nanowires, so that each nanopore can be realized The opening and closing control of biomolecules can be blocked or allowed; at the same time, biomolecules can be simultaneously multi-channeled to achieve rapid detection and high-throughput screening of biomolecules.
附图说明Description of drawings
图1为本发明所述的基于阵列纳米孔的多通道生物分子检测芯片的剖面示意图;1 is a schematic cross-sectional view of a multi-channel biomolecule detection chip based on arrayed nanopores according to the present invention;
图2为本发明所述的基于阵列纳米孔的多通道生物分子检测芯片的截面示意图;2 is a schematic cross-sectional view of a multi-channel biomolecule detection chip based on arrayed nanopores according to the present invention;
图3为本发明所述检测芯片俯视时纳米导线的阵列分布示意图;3 is a schematic diagram of the array distribution of nanowires when the detection chip of the present invention is viewed from above;
图4为本发明所述检测芯片的制作方法的步骤S1的示意图;4 is a schematic diagram of step S1 of the method for manufacturing the detection chip of the present invention;
图5为本发明所述检测芯片的制作方法的步骤S3的示意图;5 is a schematic diagram of step S3 of the method for manufacturing the detection chip of the present invention;
图6为本发明所述检测芯片的制作方法的步骤S4的示意图;6 is a schematic diagram of step S4 of the method for manufacturing the detection chip of the present invention;
图7为本发明所述检测芯片的制作方法的步骤S5的示意图;7 is a schematic diagram of step S5 of the method for manufacturing the detection chip of the present invention;
图8为本发明所述检测芯片的制作方法的步骤S7的示意图;Fig. 8 is a schematic diagram of step S7 of the manufacturing method of the detection chip of the present invention;
图9为本发明所述检测芯片的制作方法的步骤S8的示意图;Fig. 9 is a schematic diagram of step S8 of the manufacturing method of the detection chip of the present invention;
图10为本发明所述检测芯片的制作方法的步骤S9的示意图;Fig. 10 is a schematic diagram of step S9 of the manufacturing method of the detection chip of the present invention;
图11为本发明所述检测芯片的制作方法的步骤S10的示意图;Fig. 11 is a schematic diagram of step S10 of the manufacturing method of the detection chip of the present invention;
图中:1-多孔纳米孔膜;2-纳米导线;3-封装层氧化硅;4-引出端口;5-第一保护层;6-第二保护层;7-暴露窗口;8-纳米孔;9-孔;101-下氧化硅层;102-硅基底;103-上氧化硅层;104-薄膜窗口;201-聚酰胺酸纳米线;202-银颗粒。In the figure: 1-porous nanoporous film; 2-nanometer wire; 3-silicon oxide encapsulation layer; 4-exit port; 5-first protective layer; 6-second protective layer; 7-exposed window; 8-nanopore 9-hole; 101-lower silicon oxide layer; 102-silicon substrate; 103-upper silicon oxide layer; 104-film window; 201-polyamic acid nanowire; 202-silver particles.
具体实施方式Detailed ways
下面将结合附图对本公开技术方案进行详细说明。在本发明的描述中,需要理解地是,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量,仅用来区分不同的组成部分。The technical solution of the present disclosure will be described in detail below in conjunction with the accompanying drawings. In the description of the present invention, it should be understood that the terms "first" and "second" are only used for descriptive purposes, and cannot be interpreted as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features, Used only to distinguish different components.
另外,术语“自上而下”、“上”、“下”、“上表面”、“下表面”、“一端”、“另一端”、“陈列”、“底部”、“中间”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。另外,“内、外”是指相对于各部件本身的轮廓的内、外。In addition, the terms "top-down", "upper", "lower", "upper surface", "lower surface", "one end", "other end", "display", "bottom", "middle", etc. indicate The orientation or positional relationship is based on the orientation or positional relationship shown in the drawings, and is only for the convenience of describing the present invention and simplifying the description, rather than indicating or implying that the referred device or element must have a specific orientation or be configured in a specific orientation. and operation, and therefore should not be construed as limiting the invention. In addition, "inside and outside" means inside and outside with respect to the outline of each member itself.
图1为本发明所述的基于阵列纳米孔的多通道生物分子检测芯片的剖面示意图,如图1所示,该检测芯片包括多孔纳米孔膜1、至少两个纳米导线2和封装层氧化硅3,每个纳米导线2独立分布。该多孔纳米孔膜1包括自下而上连接的下氧化硅层101、硅基底102和上氧化硅层103,封装层氧化硅3则与上氧化硅层103连接。Figure 1 is a schematic cross-sectional view of a multi-channel biomolecular detection chip based on arrayed nanopores according to the present invention. As shown in Figure 1, the detection chip includes a porous
纳米导线2设在上氧化硅层103的上表面并通过封装层氧化硅3进行封装,也就是说纳米导线2设在上氧化硅层103和封装层氧化硅3的中间,如图2所示。每个纳米导线2的一端都设有纳米孔8、另一端都设有孔9,该纳米孔8贯穿封装层氧化硅3和上氧化硅层103,孔9贯穿封装层氧化硅3,孔9作为引出端口4连接外部电路。The
优先地,从图2可知,纳米导线2处于上氧化硅层103和封装层氧化硅3的中间,该纳米导线2的一端为纳米孔8,纳米导线2的该端部基本位于该纳米孔8的中间位置或略偏于中间位置处。因此,该纳米孔8的两端及其中间位置处的纳米导线2都可以作为电极,可以通过纳米导线2分别控制纳米孔8两端的电势。Preferentially, as can be seen from FIG. 2 , the
从图1和图2可以看出,在上氧化硅层103上的纳米孔8的对应位置处,硅基底102和下氧化硅层101都形成了暴露窗口7,该暴露窗口7是为了让上氧化硅层103的纳米孔8的底部成为悬空薄膜(即薄膜窗口104)而刻蚀加工形成的,即通过反应离子刻蚀和化学湿法刻蚀形成的大孔(暴露窗口7),而不是打出来的纳米孔。As can be seen from FIG. 1 and FIG. 2, at the corresponding positions of the
图3为本发明所述检测芯片俯视时纳米导线的阵列分布示意图,如图3所示,纳米导线至少有2个,根据实际需要,上氧化硅层103的上表面可布置有多个纳米导线2,那么每个纳米导线2对应的纳米孔8在封装层氧化硅3的上表面呈阵列排列;同样,纳米导线2一端的孔也呈阵列排列。Figure 3 is a schematic diagram of the array distribution of nanowires when the detection chip of the present invention is viewed from above, as shown in Figure 3, there are at least two nanowires, and according to actual needs, a plurality of nanowires can be arranged on the upper surface of the upper
本公开所述基于阵列纳米孔的多通道生物分子检测芯片的制作方法的附图如图4至图11所示,具体包括:The drawings of the manufacturing method of the multi-channel biomolecular detection chip based on the array nanopore described in the present disclosure are shown in Figure 4 to Figure 11, specifically including:
S1:通过低压化学气相沉积的方法,在硅基底102正反两面沉积下氧化硅层101、上氧化硅层103,如图4所示。S1: A lower
S2:在上氧化硅层103上涂抹光刻胶,并进行坚膜形成第一保护层5。S2: Apply photoresist on the upper
S3:在下氧化硅层101上涂抹光刻胶,并进行光刻、显影、清洗、甩干、坚膜,下氧化硅层101形成带暴露窗口7的第二保护层6,如图5所示。S3: Apply photoresist on the lower
S4:使用反应离子刻蚀系统,对所述暴露窗口7处的氧化硅进行去除,并将硅基底102置于氢氧化钾溶液中对硅基底102进行刻蚀,获得上氧化硅层103下表面的薄膜窗口104,如图6所示。S4: Use a reactive ion etching system to remove the silicon oxide at the
S5:对步骤S4获得的薄膜窗口104进行食人鱼溶液清洗,使其表面获得大量羟基,如图7所示。S5: Cleaning the
S6:将步骤S5中获得的薄膜窗口104置于纳米运动平台上,并测量纳米针头与纳米运动平台之间的电容变化,确定薄膜窗口104的位置坐标。S6: Place the
步骤S6中,纳米运动平台是放置固定整个芯片的部分,纳米运动平台上安装有基板,该基板一般为金属基板,检测芯片固定在金属基板上,且通过纳米运动平台控制水平移动,测量纳米针头与纳米运动平台之间的电容变化,实际就是测量纳米针头与金属基板之间的电容变化。In step S6, the nano-motion platform is the part where the entire chip is placed and fixed. A substrate is installed on the nano-motion platform. The substrate is generally a metal substrate. The detection chip is fixed on the metal substrate, and the horizontal movement is controlled by the nano-motion platform to measure the nano needle. The capacitance change between the nano-motion platform is actually the measurement of the capacitance change between the nano-needle and the metal substrate.
S7:使用近场电纺技术,在薄膜窗口104定向沉积聚酰胺酸纳米线201,如图8所示。S7: Using near-field electrospinning technology, directionally deposit polyamic
S8:将步骤S7中得到的聚酰胺酸纳米线201浸入银盐溶液中生成羧酸银盐并清洗,再浸入还原性溶液还原成银颗粒202并清洗,反复重复步骤S8,直至形成聚酰胺酸-银复合纳米线,如图9所示。S8: Immerse the polyamic
S9:对所述聚酰胺酸-银复合纳米线进行惰性气体保护烧结,获得聚酰胺酸-银复合纳米导线2,如图10所示。S9: Sintering the polyamic acid-silver composite nanowire under the protection of an inert gas to obtain a polyamic acid-
S10:使用磁控溅射技术,在所述聚酰胺酸-银复合纳米导线2上覆盖封装层氧化硅3,如图11所示。S10: Cover the polyamic acid-
S11:使用聚焦离子束在所述聚酰胺酸-银复合纳米导线2的两端进行打孔、剪薄,获得多通道生物分子检测芯片。S11: Using a focused ion beam to punch holes and cut thin at both ends of the polyamic acid-
步骤S11,每个聚酰胺酸-银复合纳米导线2的一端打有纳米孔8、另一端打有孔9,该纳米孔8贯穿封装层氧化硅3和上氧化硅层103,且纳米孔8位于薄膜窗口104的上方,同时,纳米孔8在封装层氧化硅3的上表面呈阵列排列;孔9贯穿封装层氧化硅3,且孔9作为引出端口4连接外部电路。Step S11, one end of each polyamic acid-
步骤S11中,对所述聚酰胺酸-银复合纳米导线2的一端进行打孔9时,对引出端口4处的封装层氧化硅3进行剪薄以暴露聚酰胺酸-银复合纳米导线2,然后使用聚焦离子束在所述孔处沉积铂金属,最终得到引出端口4。In step S11, when one end of the polyamic acid-
步骤S4中,对所述硅基底102进行刻蚀时,应充分刻蚀所述硅基底102且不能将上氧化硅层103刻穿。这里的充分刻蚀以不将上氧化硅层103刻穿为标准,具体的刻蚀程度,会根据刻蚀厚度、温度、氢氧化钾浓度而确定。In step S4, when etching the
以上为本公开示范性实施例,本公开的保护范围由权利要求书及其等效物限定。The above are exemplary embodiments of the present disclosure, and the protection scope of the present disclosure is defined by the claims and their equivalents.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110270622.6A CN113109403B (en) | 2021-03-12 | 2021-03-12 | Multichannel biomolecule detection chip based on array nano-holes and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110270622.6A CN113109403B (en) | 2021-03-12 | 2021-03-12 | Multichannel biomolecule detection chip based on array nano-holes and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113109403A CN113109403A (en) | 2021-07-13 |
CN113109403B true CN113109403B (en) | 2023-05-26 |
Family
ID=76711236
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110270622.6A Active CN113109403B (en) | 2021-03-12 | 2021-03-12 | Multichannel biomolecule detection chip based on array nano-holes and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113109403B (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104087505A (en) * | 2014-07-08 | 2014-10-08 | 东南大学 | Multichannel array type DNA (Deoxyribose Nucleic Acid) sequencing system and sequencing method thereof |
CN108735349A (en) * | 2018-04-27 | 2018-11-02 | 东南大学 | A kind of nano silver wire transparent conductive film and preparation method thereof containing ionic liquid |
CN109633154A (en) * | 2018-11-14 | 2019-04-16 | 广东工业大学 | A kind of New Solid nano-pore structure and preparation method thereof |
CN111077185A (en) * | 2019-12-02 | 2020-04-28 | 东南大学 | Multi-degree-of-freedom self-assembly nano robot and manufacturing control method thereof |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8518829B2 (en) * | 2011-04-22 | 2013-08-27 | International Business Machines Corporation | Self-sealed fluidic channels for nanopore array |
-
2021
- 2021-03-12 CN CN202110270622.6A patent/CN113109403B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104087505A (en) * | 2014-07-08 | 2014-10-08 | 东南大学 | Multichannel array type DNA (Deoxyribose Nucleic Acid) sequencing system and sequencing method thereof |
CN108735349A (en) * | 2018-04-27 | 2018-11-02 | 东南大学 | A kind of nano silver wire transparent conductive film and preparation method thereof containing ionic liquid |
CN109633154A (en) * | 2018-11-14 | 2019-04-16 | 广东工业大学 | A kind of New Solid nano-pore structure and preparation method thereof |
CN111077185A (en) * | 2019-12-02 | 2020-04-28 | 东南大学 | Multi-degree-of-freedom self-assembly nano robot and manufacturing control method thereof |
Non-Patent Citations (4)
Title |
---|
Radin Tahvildari 等.Integrating nanopore sensors within microfluidic channel arrays using controlled breakdown.Lab on a Chip.2015,第15卷第1407-1411页. * |
叶佳佳.基于纳米孔测序的磁镊微控系统设计与制造.中国优秀硕士学位论文全文数据库 工程科技II辑.2019,(第05期),第1-56页. * |
尉玉 等.基于二硫化钼固态纳米孔检测DNA分子实验研究.东南大学学报( 自然科学版).2018,第48卷(第1期),第38-44页. * |
袁志山 等.SiN薄膜纳米孔芯片制造工艺实验研究.东南大学学报(自然科学版).2016,第46卷(第46期),第977-981页. * |
Also Published As
Publication number | Publication date |
---|---|
CN113109403A (en) | 2021-07-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8557567B2 (en) | Method for fabricating nanogap and nanogap sensor | |
KR102435604B1 (en) | Multi-electrode structures for molecular sensing devices and methods of making them | |
JP2021056229A (en) | Wafer-scale assembly of insulator-membrane-insulator devices for nanopore sensing | |
KR100958307B1 (en) | Biosensor comprising 3D metal nanowire gap electrode with integrated nanochannel, manufacturing method thereof and bio disc system including the biosensor | |
CN107629958B (en) | Microfluidic chip with three-dimensional graphene interface and preparation method thereof | |
CN102692439B (en) | Microelectrode system having double-spiral structure, electrochemical sensor and preparation method of the microelectrode system having double-spiral structure | |
CN106513066B (en) | A kind of three-dimensional porous graphene micro-fluidic chip and its graphene adherence method | |
WO2003104788A1 (en) | Extracellular potential measuring device and method for fabricating the same | |
US20240204190A1 (en) | Differential suspended single-layer graphene nanopore sensor, and preparation method therefor and use thereof | |
CN107051601B (en) | Detection of nucleic acids micro-fluidic chip and preparation method based on graphene field effect pipe | |
CN101915793A (en) | Sensor structure integrated with microelectrode array and microfluidic channel and its manufacturing method | |
CN111937199B (en) | Methods for making biosensor nanopores | |
CN113109403B (en) | Multichannel biomolecule detection chip based on array nano-holes and manufacturing method thereof | |
US8907684B2 (en) | Nanofluidic channel with embedded transverse nanoelectrodes and method of fabrication for same | |
CN110568025A (en) | humidity sensor based on candle ash nanoparticle layer and preparation method thereof | |
CN107192747B (en) | Variable capacitance type micro-nano biological detection chip and processing method thereof | |
CN110514719B (en) | Circulating tumor DNA identification device and method adopting serial nanopore structure | |
JP6061429B2 (en) | Method for manufacturing apparatus for detecting specimen | |
US20190310225A1 (en) | Microfluidic organic electrochemical transistor sensors for real time nitric oxide detection | |
JP4082142B2 (en) | Solution measuring microelectrode, electrochemical measuring device, electrode manufacturing method, and solution measuring method | |
CN111380929B (en) | A silicon nanowire cell sensor based on FinFET fabrication process | |
JP2005527799A (en) | Vertical impedance sensor structure and method of manufacturing vertical impedance sensor structure | |
CN100373157C (en) | A microsensor for detecting liver fibrosis based on antibody-antigen method | |
CN115121300A (en) | Solid-state nanopore array chip with microfluidic channel and preparation method thereof | |
CN114924127B (en) | A micro-basin array for single cell impedance testing and its preparation method and application |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB03 | Change of inventor or designer information | ||
CB03 | Change of inventor or designer information |
Inventor after: Sha Jing Inventor after: Liu Wei Inventor after: Zheng Fei Inventor after: Zhan Lijian Inventor before: Sha Jing Inventor before: Liu Wei Inventor before: Zheng Fei Inventor before: Zhan Lijian |
|
GR01 | Patent grant | ||
GR01 | Patent grant |