CN113102778B - Three-dimensional synchronous loading device for ultrasonic-assisted laser melting deposition forming of large-volume parts - Google Patents
Three-dimensional synchronous loading device for ultrasonic-assisted laser melting deposition forming of large-volume parts Download PDFInfo
- Publication number
- CN113102778B CN113102778B CN202110365203.0A CN202110365203A CN113102778B CN 113102778 B CN113102778 B CN 113102778B CN 202110365203 A CN202110365203 A CN 202110365203A CN 113102778 B CN113102778 B CN 113102778B
- Authority
- CN
- China
- Prior art keywords
- ultrasonic
- laser melting
- belt pulley
- driving motor
- loading device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000008021 deposition Effects 0.000 title claims abstract description 67
- 230000008018 melting Effects 0.000 title claims abstract description 44
- 238000002844 melting Methods 0.000 title claims abstract description 44
- 230000001360 synchronised effect Effects 0.000 title claims abstract description 25
- 239000000758 substrate Substances 0.000 claims abstract description 25
- 230000015572 biosynthetic process Effects 0.000 claims abstract 3
- 238000000034 method Methods 0.000 abstract description 9
- 230000008520 organization Effects 0.000 abstract 1
- 238000009434 installation Methods 0.000 description 25
- 230000033001 locomotion Effects 0.000 description 19
- 239000013078 crystal Substances 0.000 description 12
- 239000000155 melt Substances 0.000 description 11
- 238000005516 engineering process Methods 0.000 description 7
- 238000007711 solidification Methods 0.000 description 5
- 230000008023 solidification Effects 0.000 description 5
- 239000000654 additive Substances 0.000 description 3
- 230000000996 additive effect Effects 0.000 description 3
- 238000013019 agitation Methods 0.000 description 3
- 210000001787 dendrite Anatomy 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000009466 transformation Effects 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 1
- 238000007712 rapid solidification Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/003—Apparatus, e.g. furnaces
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y30/00—Apparatus for additive manufacturing; Details thereof or accessories therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y40/00—Auxiliary operations or equipment, e.g. for material handling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y80/00—Products made by additive manufacturing
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Transmission Devices (AREA)
- General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
Abstract
Description
技术领域technical field
本发明涉及大体积零件超声辅助激光熔化沉积成形三维同步加载装置。The invention relates to a three-dimensional synchronous loading device for ultrasonic-assisted laser melting deposition forming of large-volume parts.
背景技术Background technique
随着金属增材成形技术和成形设备的发展,采用增材成形技术制造的零件已经被广泛用于航空航天、汽车零件、医疗器械等领域,激光熔化沉积技术作为一种高技术含量的金属增材成形技术同样得到了较大发展。激光熔化沉积技术属于快速凝固技术,采用激光熔化沉积技术成形的零件内会形成大量定向排列的晶体组织,在成形大体积零件时,这一现象尤为突出。由于成形零件体积较大,成形过程中零件内部温度分布不均匀,沿沉积方向上存在极大的温度梯度,使得成形后零件显微组织中存在大量定向排列的晶体,导致零件的力学性能表现出明显的方向性;同时,非均匀温度场以及较快的凝固速度造成零件内部存在大量残余应力,严重降低了成形零件的各项性能。With the development of metal additive forming technology and forming equipment, parts manufactured by additive forming technology have been widely used in aerospace, automotive parts, medical equipment and other fields. Laser melting deposition technology is a high-tech metal additive Material forming technology has also been greatly developed. Laser melting deposition technology is a rapid solidification technology. A large number of oriented crystal structures will be formed in the parts formed by laser melting deposition technology. This phenomenon is particularly prominent when forming large-volume parts. Due to the large volume of the formed parts, the internal temperature distribution of the parts is not uniform during the forming process, and there is a great temperature gradient along the deposition direction, so that there are a large number of oriented crystals in the microstructure of the formed parts, resulting in the mechanical properties of the parts. At the same time, the non-uniform temperature field and the fast solidification speed cause a large amount of residual stress inside the part, which seriously reduces the performance of the formed part.
发明内容SUMMARY OF THE INVENTION
本发明为了解决现有激光熔化沉积制备的大体积零件内存在大量定向排列的晶体组织导致零件的力学性能表现出明显的方向性,以及零件内部存在大量残余应力的问题,提出一种大体积零件超声辅助激光熔化沉积成形三维同步加载装置。In order to solve the problems that the mechanical properties of the parts show obvious directionality due to the presence of a large number of oriented crystal structures in the large-volume parts prepared by the existing laser melting deposition, and the large-volume parts have a large amount of residual stress, a large-volume part is proposed. Ultrasonic-assisted laser melting deposition forming three-dimensional synchronous loading device.
本发明大体积零件超声辅助激光熔化沉积成形三维同步加载装置由滑轨基板、沉积基板、底板、支撑柱、超声振子、内侧环形轨道、外侧环形轨道、楔形底座、数个固定板、圆周向驱动电机、升降驱动电机、径向驱动电机、径向驱动皮带轮、第一带齿皮带、径向驱动电机底座、导向槽、主动皮带轮、从动皮带轮、第二带齿皮带、移动轮和移动轮固定架构成;The three-dimensional synchronous loading device for ultrasonic-assisted laser melting deposition forming of large-volume parts of the present invention is composed of a slide rail substrate, a deposition substrate, a bottom plate, a support column, an ultrasonic vibrator, an inner annular track, an outer annular track, a wedge-shaped base, several fixed plates, and a circumferential drive. Motor, lift drive motor, radial drive motor, radial drive pulley, first toothed belt, radial drive motor base, guide groove, driving pulley, driven pulley, second toothed belt, moving pulley and moving pulley fixed structure;
所述滑轨基板为圆形板,滑轨基板中心开有圆孔,沉积基板设置在滑轨基板中心的圆孔内;滑轨基板上表面圆孔周围设置有同心的内侧环形轨道和外侧环形轨道;底板下表面两侧分别设置有两个移动轮固定架,移动轮固定架上安装有移动轮;其中位于同一侧的两个移动轮设置在内侧环形轨道上,另一侧的两个移动轮设置在外侧环形轨道上;移动轮的驱动轴与圆周向驱动电机的动力输出轴连接;底板上设置有四个呈四角分布的支撑柱;楔形底座设置在底板上表面四个支撑柱之间,楔形底座的尖部朝向沉积基板,楔形底座的下表面为水平面,楔形底座的两个侧面上分别设置有水平的导向槽,导向槽为C形槽;支撑柱的侧壁开有长条形竖向的皮带轮安装槽,楔形底座同一侧的两个支撑柱的皮带轮安装槽的开口相对设置,主动皮带轮设置在皮带轮安装槽的下部,从动皮带轮设置在皮带轮安装槽的上部,第二带齿皮带套设在主动皮带轮和从动皮带轮上,支撑柱的外壁下部设置有升降驱动电机,升降驱动电机的动力输出轴伸入至皮带轮安装槽内,主动皮带轮安装在升降驱动电机的动力输出轴上;皮带轮安装槽外部的第二带齿皮带的外壁上水平设置有平板状的径向驱动电机底座,径向驱动电机底座上设置有径向驱动电机,径向驱动电机的动力输出轴上设置有径向驱动皮带轮,楔形底座同一侧的两个径向驱动皮带轮上套设有第一带齿皮带,楔形底座同一侧的两个径向驱动皮带轮和第一带齿皮带均设置在同一个导向槽内;数个固定板并列设置在楔形底座的上表面,每个固定板上均设置有安装通孔,不同固定板上的安装通孔同心设置,超声振子设置在数个固定板的安装通孔内。The slide rail base plate is a circular plate, the center of the slide rail base plate is provided with a circular hole, and the deposition substrate is arranged in the circular hole in the center of the slide rail base plate; concentric inner annular tracks and outer annular tracks are arranged around the circular hole on the upper surface of the slide rail base plate track; two moving wheel fixing frames are respectively arranged on both sides of the lower surface of the bottom plate, and moving wheels are installed on the moving wheel fixing frame; the two moving wheels on the same side are arranged on the inner ring track, and the two moving wheels on the other side are The wheel is arranged on the outer ring track; the drive shaft of the moving wheel is connected with the power output shaft of the circumferential drive motor; the base plate is provided with four supporting columns distributed in four corners; the wedge-shaped base is arranged between the four supporting columns on the upper surface of the base plate , the tip of the wedge-shaped base faces the deposition substrate, the lower surface of the wedge-shaped base is a horizontal plane, the two sides of the wedge-shaped base are respectively provided with horizontal guide grooves, and the guide grooves are C-shaped grooves; The vertical pulley installation groove, the openings of the pulley installation grooves of the two support columns on the same side of the wedge-shaped base are arranged oppositely, the driving pulley is arranged at the lower part of the pulley installation groove, the driven pulley is arranged at the upper part of the pulley installation groove, and the second belt tooth The belt is sleeved on the driving pulley and the driven pulley, the lower part of the outer wall of the support column is provided with a lift drive motor, the power output shaft of the lift drive motor extends into the pulley installation groove, and the drive pulley is installed on the lift drive motor power output shaft The outer wall of the second toothed belt outside the pulley installation groove is horizontally provided with a flat-plate radial drive motor base, the radial drive motor base is provided with a radial drive motor, and the power output shaft of the radial drive motor is provided with a The radial drive pulley, the two radial drive pulleys on the same side of the wedge-shaped base are sleeved with a first toothed belt, and the two radial drive pulleys and the first toothed belt on the same side of the wedge-shaped base are set in the same guide groove Inside; several fixing plates are arranged side by side on the upper surface of the wedge-shaped base, each fixing plate is provided with installation through holes, the installation through holes on different fixing plates are arranged concentrically, and the ultrasonic vibrator is arranged on the installation through holes of several fixing plates Inside.
本发明原理及有益效果为:The principle and beneficial effects of the present invention are:
1、本发明圆周向驱动电机用于带动移动轮转动,实现底板沿着内侧环形轨道和外侧环形轨道进行圆周向的运动,进而实现超声振子的圆周向的运动;升降驱动电机能够带动第二带齿皮带绕主动皮带轮和从动皮带轮转动,进而实现径向驱动电机底座、径向驱动电机、楔形底座和超声振子的升降;径向驱动电机能够带动径向驱动皮带轮转动,两个径向驱动皮带轮和第一带齿皮带均设置在同一个导向槽内,因此第一带齿皮带能够带动楔形底座和超声振子径向移动,通过上述设置能够实现超声振子的径向、圆周向和高度的三维移动。1. The circumferential drive motor of the present invention is used to drive the moving wheel to rotate, so as to realize the circular motion of the bottom plate along the inner annular track and the outer annular track, thereby realizing the circumferential motion of the ultrasonic vibrator; the lift drive motor can drive the second belt The toothed belt rotates around the driving pulley and the driven pulley, thereby realizing the lifting and lowering of the radial drive motor base, the radial drive motor, the wedge base and the ultrasonic oscillator; the radial drive motor can drive the radial drive pulley to rotate, and the two radial drive pulleys The first toothed belt and the first toothed belt are arranged in the same guide groove, so the first toothed belt can drive the wedge-shaped base and the ultrasonic vibrator to move radially. .
2、本发明将超声场引入到激光熔化沉积成形过程,将超声波加载到激光熔化沉积的工作面,利用高频超声波在沉积熔池内部熔体中产生的高速射流和熔体扰动作用,破碎凝固枝晶,抑制晶体组织定向生长,促进了成形零件内部柱状晶向等轴晶转变,细化了凝固组织,提高了成形零件的各项力学性能。2. In the present invention, the ultrasonic field is introduced into the laser melting deposition forming process, and the ultrasonic wave is loaded into the working surface of the laser melting deposition, and the high-speed jet and melt disturbance produced by the high-frequency ultrasonic wave in the melt inside the deposition molten pool are used to break and solidify. Dendrite inhibits the directional growth of crystal structure, promotes the transformation of columnar crystals to equiaxed crystals in the formed parts, refines the solidification structure, and improves the mechanical properties of the formed parts.
3、本发明通过将超声场引入到激光熔化沉积的工作面,借助高频超声波在沉积熔池内部熔体中产生的熔体扰动作用,加速熔池内熔质搅动,减小了成形过程中沉积熔池内部各区域的温度差异、成分差异和凝固速度差异,降低了成形零件内部的残余应力,提高了成形零件的服役寿命。3. The present invention accelerates the agitation of the melt in the molten pool by introducing the ultrasonic field into the working surface of the laser melting deposition, and accelerates the stirring of the melt in the molten pool with the help of the high-frequency ultrasonic wave in the melt inside the deposition molten pool, and reduces the deposition during the forming process. The temperature difference, composition difference and solidification rate difference of each area inside the molten pool reduce the residual stress inside the formed parts and improve the service life of the formed parts.
4、本发明通过设置圆周向驱动电机、升降驱动电机和径向驱动电机实现超声振子的径向、圆周向和高度的三维移动,便于激光熔化沉积成形时超声波与激光束同步移动,实现超声波实时加载。并且超声振子的三维移动使得超声场覆盖范围扩大,继而能够实现更大体积的零件的激光熔化沉积。4. The present invention realizes the three-dimensional movement of the ultrasonic vibrator in the radial direction, the circumferential direction and the height by setting the circumferential drive motor, the lift drive motor and the radial drive motor, so as to facilitate the synchronous movement of the ultrasonic wave and the laser beam during the laser melting deposition forming, and realize the real-time ultrasonic wave. load. And the three-dimensional movement of the ultrasonic vibrator expands the coverage of the ultrasonic field, thereby enabling the laser melting deposition of larger-volume parts.
附图说明Description of drawings
图1为实施例1中大体积零件超声辅助激光熔化沉积成形三维同步加载装置的结构示意图;1 is a schematic structural diagram of a three-dimensional synchronous loading device for ultrasonic-assisted laser melting deposition forming of large-volume parts in Example 1;
图2为实施例1中大体积零件超声辅助激光熔化沉积成形三维同步加载装置的结构示意图(不含沉积基板);2 is a schematic structural diagram of a three-dimensional synchronous loading device for ultrasonic-assisted laser melting deposition molding of large-volume parts in Example 1 (excluding deposition substrates);
图3为图2的A向视图;Fig. 3 is the A-direction view of Fig. 2;
图4为图2中支撑柱4的B向视图;Fig. 4 is the B-direction view of the
图5为实施例1中超声振子5同一侧的两个驱动皮带轮13和第一带齿皮带14的结构示意图。FIG. 5 is a schematic structural diagram of the two
具体实施方式Detailed ways
本发明技术方案不局限于以下所列举具体实施方式,还包括各具体实施方式间的任意合理组合。The technical solutions of the present invention are not limited to the specific embodiments listed below, but also include any reasonable combination between the specific embodiments.
具体实施方式一:本实施方式大体积零件超声辅助激光熔化沉积成形三维同步加载装置由滑轨基板1、沉积基板2、底板3、支撑柱4、超声振子5、内侧环形轨道6、外侧环形轨道7、楔形底座8、数个固定板9、圆周向驱动电机10、升降驱动电机11、径向驱动电机12、径向驱动皮带轮13、第一带齿皮带14、径向驱动电机底座15、导向槽16、主动皮带轮17、从动皮带轮18、第二带齿皮带19、移动轮20和移动轮固定架21构成;Embodiment 1: The three-dimensional synchronous loading device for ultrasonic-assisted laser melting deposition molding of large-volume parts in this embodiment is composed of a
所述滑轨基板1为圆形板,滑轨基板1中心开有圆孔,沉积基板2设置在滑轨基板1中心的圆孔内;滑轨基板1上表面圆孔周围设置有同心的内侧环形轨道6和外侧环形轨道7;底板3下表面两侧分别设置有两个移动轮固定架21,移动轮固定架21上安装有移动轮20;其中位于同一侧的两个移动轮20设置在内侧环形轨道6上,另一侧的两个移动轮20设置在外侧环形轨道7上;移动轮20的驱动轴与圆周向驱动电机10的动力输出轴连接;底板3上设置有四个呈四角分布的支撑柱4;楔形底座8设置在底板3上表面四个支撑柱4之间,楔形底座8的尖部朝向沉积基板2,楔形底座8的下表面为水平面,楔形底座8的两个侧面上分别设置有水平的导向槽16,导向槽16为C形槽;支撑柱4的侧壁开有长条形竖向的皮带轮安装槽,楔形底座8同一侧的两个支撑柱4的皮带轮安装槽的开口相对设置,主动皮带轮17设置在皮带轮安装槽的下部,从动皮带轮18设置在皮带轮安装槽的上部,第二带齿皮带19套设在主动皮带轮17和从动皮带轮18上,支撑柱4的外壁下部设置有升降驱动电机11,升降驱动电机11的动力输出轴伸入至皮带轮安装槽内,主动皮带轮17安装在升降驱动电机11的动力输出轴上;皮带轮安装槽外部的第二带齿皮带19的外壁上水平设置有平板状的径向驱动电机底座15,径向驱动电机底座15上设置有径向驱动电机12,径向驱动电机12的动力输出轴上设置有径向驱动皮带轮13,楔形底座8同一侧的两个径向驱动皮带轮13上套设有第一带齿皮带14,楔形底座8同一侧的两个径向驱动皮带轮13和第一带齿皮带14均设置在同一个导向槽16内;数个固定板9并列设置在楔形底座8的上表面,每个固定板9上均设置有安装通孔,不同固定板9上的安装通孔同心设置,超声振子5设置在数个固定板9的安装通孔内。The
本实施方式具备以下有益效果:This embodiment has the following beneficial effects:
1、本实施方式圆周向驱动电机10用于带动移动轮20转动,实现底板3沿着内侧环形轨道6和外侧环形轨道7进行圆周向的运动,进而实现超声振子5的圆周向的运动;升降驱动电机11能够带动第二带齿皮带19绕主动皮带轮17和从动皮带轮18转动,进而实现径向驱动电机底座15、径向驱动电机12、楔形底座8和超声振子5的升降;径向驱动电机12能够带动径向驱动皮带轮13转动,两个径向驱动皮带轮13和第一带齿皮带14均设置在同一个导向槽16内,因此第一带齿皮带14能够带动楔形底座8和超声振子5径向移动,通过上述设置能够实现超声振子5的径向、圆周向和高度的三维移动。1. The
2、本实施方式将超声场引入到激光熔化沉积成形过程,将超声波加载到激光熔化沉积的工作面,利用高频超声波在沉积熔池内部熔体中产生的高速射流和熔体扰动作用,破碎凝固枝晶,抑制晶体组织定向生长,促进了成形零件内部柱状晶向等轴晶转变,细化了凝固组织,提高了成形零件的各项力学性能。2. In this embodiment, the ultrasonic field is introduced into the laser melting deposition forming process, the ultrasonic wave is loaded on the working surface of the laser melting deposition, and the high-speed jet and melt disturbance generated in the melt inside the deposition molten pool by high-frequency ultrasonic waves are used to break The solidified dendrite inhibits the directional growth of the crystal structure, promotes the transformation from columnar crystals to equiaxed crystals in the formed parts, refines the solidified structure, and improves the mechanical properties of the formed parts.
3、本实施方式通过将超声场引入到激光熔化沉积的工作面,借助高频超声波在沉积熔池内部熔体中产生的熔体扰动作用,加速熔池内熔质搅动,减小了成形过程中沉积熔池内部各区域的温度差异、成分差异和凝固速度差异,降低了成形零件内部的残余应力,提高了成形零件的服役寿命。3. In this embodiment, by introducing the ultrasonic field into the working surface of the laser melting deposition, the melt disturbance generated in the melt inside the deposition molten pool by high-frequency ultrasonic waves accelerates the agitation of the melt in the molten pool and reduces the amount of time in the forming process. The temperature difference, composition difference and solidification speed difference of each area inside the deposition molten pool reduce the residual stress inside the formed parts and improve the service life of the formed parts.
4、本实施方式通过设置圆周向驱动电机、升降驱动电机和径向驱动电机实现超声振子的径向、圆周向和高度的三维移动,便于激光熔化沉积成形时超声波与激光束同步移动,实现超声波实时加载。并且超声振子的三维移动使得超声场覆盖范围扩大,继而能够实现更大体积的零件的激光熔化沉积。4. This embodiment realizes the three-dimensional movement of the ultrasonic vibrator in the radial direction, the circumferential direction and the height by setting the circumferential drive motor, the lift drive motor and the radial drive motor, which is convenient for the synchronous movement of the ultrasonic wave and the laser beam during the laser melting deposition forming, and realizes the ultrasonic wave. Live loading. And the three-dimensional movement of the ultrasonic vibrator expands the coverage of the ultrasonic field, thereby enabling the laser melting deposition of larger-volume parts.
具体实施方式二:本实施方式与具体实施方式一不同的是:所述径向驱动皮带轮13、主动皮带轮17和从动皮带轮18为带齿皮带轮。Embodiment 2: The difference between this embodiment and
具体实施方式三:本实施方式与体实施一或二不同的是:所述圆周向驱动电机10的壳体固定在底板3下表面。Embodiment 3: The difference between this embodiment and
具体实施方式四:本实施方式与具体实施方式一至三之一不同的是:所述第一带齿皮带14的外壁设置有防滑凸起。Embodiment 4: The difference between this embodiment and one of
具体实施方式五:本实施方式与具体实施方式一至四之一不同的是:所述内侧环形轨道6的上端面均设置有防滑的凸起。Embodiment 5: The difference between this embodiment and one of
具体实施方式六:本实施方式与具体实施方式一至五之一不同的是:所述外侧环形轨道7的上端面均设置有防滑的凸起。Embodiment 6: The difference between this embodiment and one of
具体实施方式七:本实施方式与具体实施方式一至六之一不同的是:所述圆周向驱动电机10为步进电机。Embodiment 7: The difference between this embodiment and one of
具体实施方式八:本实施方式与具体实施方式一至七之一不同的是:所述升降驱动电机11为步进电机。Embodiment 8: The difference between this embodiment and one of
具体实施方式九:本实施方式与具体实施方式一至八之一不同的是:所述径向驱动电机12为步进电机。Embodiment 9: The difference between this embodiment and one of
具体实施方式十:本实施方式与具体实施方式一至九之一不同的是:所述固定板9的数量为3个。Embodiment 10: The difference between this embodiment and one of
具体实施方式十:本实施方式与具体实施方式六或七不同的是:所述防滑的凸起为圆锥形。Embodiment 10: The difference between this embodiment and
实施例1:Example 1:
结合图1-5说明,本实施例大体积零件超声辅助激光熔化沉积成形三维同步加载装置由滑轨基板1、沉积基板2、底板3、支撑柱4、超声振子5、内侧环形轨道6、外侧环形轨道7、楔形底座8、数个固定板9、圆周向驱动电机10、升降驱动电机11、径向驱动电机12、径向驱动皮带轮13、第一带齿皮带14、径向驱动电机底座15、导向槽16、主动皮带轮17、从动皮带轮18、第二带齿皮带19、移动轮20和移动轮固定架21构成;1-5, the three-dimensional synchronous loading device for ultrasonic-assisted laser melting deposition forming of large-volume parts in this embodiment consists of a
所述滑轨基板1为圆形板,滑轨基板1中心开有圆孔,沉积基板2设置在滑轨基板1中心的圆孔内;滑轨基板1上表面圆孔周围设置有同心的内侧环形轨道6和外侧环形轨道7;底板3下表面两侧分别设置有两个移动轮固定架21,移动轮固定架21上安装有移动轮20;其中位于同一侧的两个移动轮20设置在内侧环形轨道6上,另一侧的两个移动轮20设置在外侧环形轨道7上;移动轮20的驱动轴与圆周向驱动电机10的动力输出轴连接;底板3上设置有四个呈四角分布的支撑柱4;楔形底座8设置在底板3上表面四个支撑柱4之间,楔形底座8的尖部朝向沉积基板2,楔形底座8的下表面为水平面,楔形底座8的两个侧面上分别设置有水平的导向槽16,导向槽16为C形槽;支撑柱4的侧壁开有长条形竖向的皮带轮安装槽,楔形底座8同一侧的两个支撑柱4的皮带轮安装槽的开口相对设置,主动皮带轮17设置在皮带轮安装槽的下部,从动皮带轮18设置在皮带轮安装槽的上部,第二带齿皮带19套设在主动皮带轮17和从动皮带轮18上,支撑柱4的外壁下部设置有升降驱动电机11,升降驱动电机11的动力输出轴伸入至皮带轮安装槽内,主动皮带轮17安装在升降驱动电机11的动力输出轴上;皮带轮安装槽外部的第二带齿皮带19的外壁上水平设置有平板状的径向驱动电机底座15,径向驱动电机底座15上设置有径向驱动电机12,径向驱动电机12的动力输出轴上设置有径向驱动皮带轮13,楔形底座8同一侧的两个径向驱动皮带轮13上套设有第一带齿皮带14,楔形底座8同一侧的两个径向驱动皮带轮13和第一带齿皮带14均设置在同一个导向槽16内;数个固定板9并列设置在楔形底座8的上表面,每个固定板9上均设置有安装通孔,不同固定板9上的安装通孔同心设置,超声振子5设置在数个固定板9的安装通孔内;The slide rail substrate 1 is a circular plate, a circular hole is opened in the center of the slide rail substrate 1, and the deposition substrate 2 is arranged in the circular hole in the center of the slide rail substrate 1; The annular track 6 and the outer annular track 7; two moving wheel fixing frames 21 are respectively provided on both sides of the lower surface of the bottom plate 3, and moving wheels 20 are installed on the moving wheel fixing frames 21; wherein the two moving wheels 20 on the same side are arranged on On the inner ring track 6, the two moving wheels 20 on the other side are arranged on the outer ring track 7; the drive shaft of the moving wheel 20 is connected with the power output shaft of the circumferential drive motor 10; The distributed support columns 4; the wedge-shaped base 8 is arranged between the four support columns 4 on the upper surface of the bottom plate 3, the tip of the wedge-shaped base 8 faces the deposition substrate 2, the lower surface of the wedge-shaped base 8 is a horizontal plane, and the two sides of the wedge-shaped base 8 A horizontal guide groove 16 is respectively provided on the upper part, and the guide groove 16 is a C-shaped groove; the side wall of the support column 4 is provided with a long vertical pulley installation groove, and the pulley installation of the two support columns 4 on the same side of the wedge-shaped base 8 The openings of the grooves are arranged oppositely, the driving pulley 17 is arranged at the lower part of the pulley installation groove, the driven pulley 18 is arranged at the upper part of the pulley installation groove, the second toothed belt 19 is sleeved on the driving pulley 17 and the driven pulley 18, the support column The lower part of the outer wall of 4 is provided with a lift drive motor 11, the power output shaft of the lift drive motor 11 extends into the pulley installation groove, the driving pulley 17 is installed on the power output shaft of the lift drive motor 11; the second belt outside the pulley installation groove The outer wall of the toothed belt 19 is horizontally provided with a flat radial drive motor base 15, the radial drive motor base 15 is provided with a radial drive motor 12, and the power output shaft of the radial drive motor 12 is provided with a radial drive pulley 13. The two radial drive pulleys 13 on the same side of the wedge-shaped
所述径向驱动皮带轮13、主动皮带轮17和从动皮带轮18为带齿皮带轮;所述圆周向驱动电机10的壳体固定在底板3下表面;所述第一带齿皮带14的外壁设置有防滑凸起;所述内侧环形轨道6的上端面均设置有防滑的凸起;所述外侧环形轨道7的上端面均设置有防滑的凸起;所述圆周向驱动电机10为步进电机;所述升降驱动电机11为步进电机;所述径向驱动电机12为步进电机;所述固定板9的数量为3个。The
1、本实施例圆周向驱动电机10用于带动移动轮20转动,实现底板3沿着内侧环形轨道6和外侧环形轨道7进行圆周向的运动,进而实现超声振子5的圆周向的运动;升降驱动电机11能够带动第二带齿皮带19绕主动皮带轮17和从动皮带轮18转动,进而实现径向驱动电机底座15、径向驱动电机12、楔形底座8和超声振子5的升降;径向驱动电机12能够带动径向驱动皮带轮13转动,两个径向驱动皮带轮13和第一带齿皮带14均设置在同一个导向槽16内,因此第一带齿皮带14能够带动楔形底座8和超声振子5径向移动,通过上述设置能够实现超声振子5的径向、圆周向和高度的三维移动。1. The
2、本实施例将超声场引入到激光熔化沉积成形过程,将超声波加载到激光熔化沉积的工作面,利用高频超声波在沉积熔池内部熔体中产生的高速射流和熔体扰动作用,破碎凝固枝晶,抑制晶体组织定向生长,促进了成形零件内部柱状晶向等轴晶转变,细化了凝固组织,提高了成形零件的各项力学性能。2. In this embodiment, the ultrasonic field is introduced into the laser melting deposition forming process, and the ultrasonic wave is loaded into the working surface of the laser melting deposition. The solidified dendrite inhibits the directional growth of the crystal structure, promotes the transformation from columnar crystals to equiaxed crystals in the formed parts, refines the solidified structure, and improves the mechanical properties of the formed parts.
3、本实施例通过将超声场引入到激光熔化沉积的工作面,借助高频超声波在沉积熔池内部熔体中产生的熔体扰动作用,加速熔池内熔质搅动,减小了成形过程中沉积熔池内部各区域的温度差异、成分差异和凝固速度差异,降低了成形零件内部的残余应力,提高了成形零件的服役寿命。3. In this embodiment, by introducing the ultrasonic field into the working surface of the laser melting deposition, the melt disturbance generated in the melt inside the deposition molten pool by high-frequency ultrasonic waves accelerates the agitation of the melt in the molten pool and reduces the amount of time during the forming process. The temperature difference, composition difference and solidification speed difference of each area inside the deposition molten pool reduce the residual stress inside the formed parts and improve the service life of the formed parts.
4、本实施例通过设置圆周向驱动电机、升降驱动电机和径向驱动电机实现超声振子的径向、圆周向和高度的三维移动,便于激光熔化沉积成形时超声波与激光束同步移动,实现超声波实时加载。并且超声振子的三维移动使得超声场覆盖范围扩大,继而能够实现更大体积的零件的激光熔化沉积。4. In this embodiment, the three-dimensional movement of the ultrasonic vibrator in the radial direction, the circumferential direction and the height is realized by setting the circumferential driving motor, the lifting driving motor and the radial driving motor, so as to facilitate the synchronous movement of the ultrasonic wave and the laser beam during the laser melting deposition forming, and realize the ultrasonic wave. Live loading. And the three-dimensional movement of the ultrasonic vibrator expands the coverage of the ultrasonic field, thereby enabling the laser melting deposition of larger-volume parts.
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110365203.0A CN113102778B (en) | 2021-04-06 | 2021-04-06 | Three-dimensional synchronous loading device for ultrasonic-assisted laser melting deposition forming of large-volume parts |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110365203.0A CN113102778B (en) | 2021-04-06 | 2021-04-06 | Three-dimensional synchronous loading device for ultrasonic-assisted laser melting deposition forming of large-volume parts |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113102778A CN113102778A (en) | 2021-07-13 |
CN113102778B true CN113102778B (en) | 2022-07-01 |
Family
ID=76713927
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110365203.0A Active CN113102778B (en) | 2021-04-06 | 2021-04-06 | Three-dimensional synchronous loading device for ultrasonic-assisted laser melting deposition forming of large-volume parts |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113102778B (en) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5858974A (en) * | 1981-10-06 | 1983-04-07 | Toshiba Corp | Formation of abrasion resistant covering |
CN203464916U (en) * | 2013-08-23 | 2014-03-05 | 北京航星机器制造有限公司 | System for detecting geometric dimension of narrow inner cavity |
CN104451673A (en) * | 2015-01-14 | 2015-03-25 | 中国石油大学(华东) | Method for preparing ultra-high hardness cladding layer through synchronous ultrasonic vibration assisting laser technology |
CN107252970A (en) * | 2017-07-04 | 2017-10-17 | 广东工业大学 | A kind of laser welding system and method |
CN107598162A (en) * | 2017-08-21 | 2018-01-19 | 陕西天元智能再制造股份有限公司 | Increase material and subtract material with being ultrasonically treated the metal parts composite manufacturing System and method for combined |
WO2018201521A1 (en) * | 2017-05-04 | 2018-11-08 | 江苏大学 | Laser shock and supersonic vibration extrusion co-strengthening device and method |
CN109604603A (en) * | 2019-01-31 | 2019-04-12 | 石家庄铁道大学 | Ultrasonic-assisted laser deposition additive manufacturing method and device |
CN110484914A (en) * | 2019-09-03 | 2019-11-22 | 大连理工大学 | A kind of device and method of servo-actuated ultrasonic wave added Direct Laser deposition Ceramic Reinforced MMCs |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8084086B2 (en) * | 2005-06-30 | 2011-12-27 | University Of Virginia Patent Foundation | Reliant thermal barrier coating system and related methods and apparatus of making the same |
EP2330349B1 (en) * | 2009-12-01 | 2018-10-24 | Siemens Aktiengesellschaft | Pilot burner of a gas turbine engine, combustor, and gas turbine engine |
CN102151829A (en) * | 2011-03-22 | 2011-08-17 | 哈尔滨工业大学 | Assisted densification ultrasonic vibration and deposition device for spray-formed deposition billet |
JP6727044B2 (en) * | 2016-06-30 | 2020-07-22 | 株式会社荏原製作所 | Substrate processing equipment |
CN107470727B (en) * | 2017-07-07 | 2019-01-18 | 扬州大学 | The electrolysis of three-dimensional rotation ultrasonic wave added transforms into organisation of working and its processing method |
CN107283010A (en) * | 2017-08-10 | 2017-10-24 | 山东大学 | Rotary ultrasonic electrode micro-electrochemical machining spark cutting processing unit (plant) and method |
CN110193668A (en) * | 2018-02-27 | 2019-09-03 | 北京三帝科技股份有限公司 | A kind of laser fuse increasing material manufacturing system |
CN109226761A (en) * | 2018-10-31 | 2019-01-18 | 南京理工大学 | A kind of device of the compound increasing material manufacturing of electron beam-supersonic synergic |
CN210916253U (en) * | 2019-07-02 | 2020-07-03 | 辽宁科技大学 | Ultrasonic vibration multidimensional influence laser cladding equipment |
CN112342366A (en) * | 2019-08-07 | 2021-02-09 | 哈船制造科学研究院(烟台)有限公司 | Ultrasonic impact and deposition forming integrated device and technology for improving structure and performance of additive manufacturing metal component |
CN111250701A (en) * | 2020-01-20 | 2020-06-09 | 山东科技大学 | Ultrasonic vibration-assisted laser selective melting and forming device and method |
-
2021
- 2021-04-06 CN CN202110365203.0A patent/CN113102778B/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5858974A (en) * | 1981-10-06 | 1983-04-07 | Toshiba Corp | Formation of abrasion resistant covering |
CN203464916U (en) * | 2013-08-23 | 2014-03-05 | 北京航星机器制造有限公司 | System for detecting geometric dimension of narrow inner cavity |
CN104451673A (en) * | 2015-01-14 | 2015-03-25 | 中国石油大学(华东) | Method for preparing ultra-high hardness cladding layer through synchronous ultrasonic vibration assisting laser technology |
WO2018201521A1 (en) * | 2017-05-04 | 2018-11-08 | 江苏大学 | Laser shock and supersonic vibration extrusion co-strengthening device and method |
CN107252970A (en) * | 2017-07-04 | 2017-10-17 | 广东工业大学 | A kind of laser welding system and method |
CN107598162A (en) * | 2017-08-21 | 2018-01-19 | 陕西天元智能再制造股份有限公司 | Increase material and subtract material with being ultrasonically treated the metal parts composite manufacturing System and method for combined |
CN109604603A (en) * | 2019-01-31 | 2019-04-12 | 石家庄铁道大学 | Ultrasonic-assisted laser deposition additive manufacturing method and device |
CN110484914A (en) * | 2019-09-03 | 2019-11-22 | 大连理工大学 | A kind of device and method of servo-actuated ultrasonic wave added Direct Laser deposition Ceramic Reinforced MMCs |
Non-Patent Citations (2)
Title |
---|
旋转超声辅助加工装置及其工艺研究;斐天河;《电加工与模具》;20160131;62-66 * |
超声场下激光熔凝过程中熔池流场分析;李新宇;《应用激光》;20140331;204-210 * |
Also Published As
Publication number | Publication date |
---|---|
CN113102778A (en) | 2021-07-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20210032728A1 (en) | Unisource high-strength ultrasound-assisted method for casting large-specification 2xxx series aluminium alloy round ingot | |
CN101328600B (en) | An electroforming composite processing device and an electroforming bath for the device | |
CN113102778B (en) | Three-dimensional synchronous loading device for ultrasonic-assisted laser melting deposition forming of large-volume parts | |
CN111889635B (en) | Crystallization molding device | |
CN103212699A (en) | Disc type fixed mould continuous automatic casting machine | |
CN118513539A (en) | Casting mould with scald preventing function | |
CN111360971B (en) | PC prefabricated part production line and fixed die platform thereof | |
CN215845586U (en) | Electromagnetic magnetic stirring crystallization equipment with multiple magnetic positions | |
CN208495711U (en) | A kind of bearing cap casting mould | |
CN1863625A (en) | Electromagnetic agitation method for continuous casting of metal products having an elongate section | |
CN207325902U (en) | A kind of full-automatic spraying pickup all-in-one multifunctional machine | |
WO2025073191A1 (en) | High-frequency micro-amplitude vibration-assisted laser cladding device for large-sized workpiece, and method | |
CN113356059A (en) | Concrete pouring equipment for bridge pier column | |
CN202155488U (en) | Device for improving steel ingot solidification tissue structure method | |
CN107008884B (en) | Cooling mold and method for cooling steel ingot | |
CN209289514U (en) | A mold release device for the production of ceramsite concrete wall panels | |
CN104715881A (en) | Alternating magnetic field generation device | |
CN211440427U (en) | Stopper forming device | |
CN215033431U (en) | A liquid steel solidification simulation device | |
CN217749256U (en) | Cast copper with crystallization vibrating device | |
CN223000918U (en) | A combined inclined top core pulling mechanism | |
CN204603243U (en) | A kind of amorphous band production line and nozzle handbag mechanism of car | |
CN215247695U (en) | Servo direct drive device-based quick-return conveyor with variable motion curve | |
CN111203974A (en) | Production line and production process of concrete prefabricated part | |
CN210308320U (en) | Novel double-disc friction brick press |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |