[go: up one dir, main page]

CN113094645A - Hyperspectral data unmixing method based on morphological component constraint optimization - Google Patents

Hyperspectral data unmixing method based on morphological component constraint optimization Download PDF

Info

Publication number
CN113094645A
CN113094645A CN202110267926.7A CN202110267926A CN113094645A CN 113094645 A CN113094645 A CN 113094645A CN 202110267926 A CN202110267926 A CN 202110267926A CN 113094645 A CN113094645 A CN 113094645A
Authority
CN
China
Prior art keywords
noise
hyperspectral data
matrix
unmixing
sparse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110267926.7A
Other languages
Chinese (zh)
Other versions
CN113094645B (en
Inventor
汪顺清
肖亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Science and Technology
Original Assignee
Nanjing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Science and Technology filed Critical Nanjing University of Science and Technology
Priority to CN202110267926.7A priority Critical patent/CN113094645B/en
Publication of CN113094645A publication Critical patent/CN113094645A/en
Application granted granted Critical
Publication of CN113094645B publication Critical patent/CN113094645B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/16Matrix or vector computation, e.g. matrix-matrix or matrix-vector multiplication, matrix factorization
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/15Correlation function computation including computation of convolution operations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/18Complex mathematical operations for evaluating statistical data, e.g. average values, frequency distributions, probability functions, regression analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/04Constraint-based CAD

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Data Mining & Analysis (AREA)
  • Pure & Applied Mathematics (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • General Engineering & Computer Science (AREA)
  • Software Systems (AREA)
  • Algebra (AREA)
  • Databases & Information Systems (AREA)
  • Computing Systems (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Evolutionary Biology (AREA)
  • Operations Research (AREA)
  • Probability & Statistics with Applications (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

The invention discloses a morphological component constraint optimization hyperspectral data unmixing method, which mainly utilizes a batch of hyperspectral data and a pure substance spectrum library to construct a spectrum sample expansion matrix; by estimating the band noise standard deviation and the sparsity structure noise decomposition, use l1Norm to constrain the sparse noise,/2,0The norm constrains the global row sparsity of abundance coefficients of different pure substances; and establishing a morphological component constraint optimized hyperspectral data unmixing model, and alternately iterating to realize linear unmixing of the mixed spectrum. The invention comprehensively considers Gaussian random noise and sparsityThe structural noise influences the linear unmixing precision, the mixed noise is robust, the waveform morphological structure difference between the same batch of spectral data can be effectively overcome, the rapid and high-precision unmixing is realized through optimization iteration, and the root mean square error of the unmixing is less than 0.0025; the method has wide application prospect for rock mineral identification, hyperspectral remote sensing ground object fine identification and the like.

Description

一种形态成分约束优化的高光谱数据解混方法A hyperspectral data unmixing method for morphological component constrained optimization

技术领域technical field

本发明属于高光谱遥感图像处理技术领域,具体涉及一种形态成分约束优化的高光谱数据解混方法。The invention belongs to the technical field of hyperspectral remote sensing image processing, and in particular relates to a hyperspectral data unmixing method for morphological component constraint optimization.

背景技术Background technique

遥感技术是指从远距离空间(航天)或者外太空空间(航空)通过光学传感器获取地物反射的电磁信号,获取所需的目标信息并进行数据分析处理的技术。20世纪80年代以来,随着光学传感器的光谱分辨率逐渐提高,高光谱遥感逐渐成为了领域内的研究热点。高光谱遥感是指利用传感器获取物质表面反射的电磁波信号,在可见光到近红外波段附近光谱分辨率达到10nm的光学遥感技术。由于传感器空间分辨率的限制和地表的复杂多样性,一个像元中往往包含多种地物,该像元被称为混合像元,高光谱数据中广泛存在的混合像元制约了高光谱遥感的发展与应用,因此如何对混合像元进行分解成为了高光谱遥感领域的一个重要研究课题。高光谱解混,或混合像元分解,是一种将混合像元分解为纯物质(称为端元)和对应成分比例(称为丰度系数)的方法,目前在地表分类、精准农业、矿物勘探等领域得到了广泛应用。Remote sensing technology refers to the technology of obtaining electromagnetic signals reflected by ground objects from long-distance space (aerospace) or outer space (aviation) through optical sensors, obtaining the required target information and performing data analysis and processing. Since the 1980s, with the gradual improvement of the spectral resolution of optical sensors, hyperspectral remote sensing has gradually become a research hotspot in the field. Hyperspectral remote sensing refers to an optical remote sensing technology that uses sensors to obtain electromagnetic wave signals reflected from the surface of materials, and has a spectral resolution of 10 nm near the visible light to near-infrared bands. Due to the limitation of the spatial resolution of the sensor and the complex diversity of the surface, a pixel often contains a variety of ground objects, which is called a mixed pixel. The widespread mixed pixels in hyperspectral data restrict hyperspectral remote sensing. Therefore, how to decompose mixed pixels has become an important research topic in the field of hyperspectral remote sensing. Hyperspectral unmixing, or mixed pixel decomposition, is a method of decomposing mixed pixels into pure substances (called endmembers) and corresponding component ratios (called abundance coefficients). Mineral exploration and other fields have been widely used.

目前高光谱解混模型主要可以分为线性混合模型和非线性混合模型两类。非线性混合模型考虑了端元之间的多重散射效应,而线性混合模型忽略了多重散射作用的影响,认为混合像元光谱是端元光谱的线性混合,因此结构简单、物理含义明确、应用也最为广泛。At present, hyperspectral unmixing models can be mainly divided into two categories: linear mixture models and nonlinear mixture models. The nonlinear mixed model considers the multiple scattering effect between endmembers, while the linear mixed model ignores the effect of multiple scattering. It is considered that the mixed pixel spectrum is a linear mixture of the endmember spectrum, so the structure is simple, the physical meaning is clear, and the application is easy. the most extensive.

根据解混过程中是否需要提供光谱库,目前的高光谱数据解混算法可以分为盲源解混算法和半盲源解混算法。盲源解混算法需要先从当前高光谱数据中提取端元,然后再进行丰度反演得到丰度系数。而半盲源解混算法使用由大量纯端元光谱组成的光谱库作为端元字典,然后从端元字典中挑选出合适的端元,并计算对应的丰度系数。由于光谱库中端元的数量远远大于高光谱数据中包含的端元数量,丰度系数会表现出稀疏性,因此这类算法通常会为丰度系数添加稀疏性约束,例如,Iordache M等人考虑到处于局部邻域的混合像元一般是由相同的地物构成,因此为丰度系数施加l2,1范数约束,最后使用拉格朗日方法和交替方向乘子法对模型进行求解[Iordache M D,Bioucas-Dias J M,PlazaA.Collaborative sparse regression for hyperspectral unmixing[J].IEEETransactions on Geoscience and Remote Sensing,2013,52(1):341-354.];Rui Wang等人在使用l1范数约束丰度系数的基础上,提出在光谱维和空间维进行双重加权,同时增强了端元矩阵和丰度矩阵的稀疏性[Wang R,Li H C,Liao W,et al.Double reweightedsparse regression for hyperspectral unmixing[C]//2016 IEEE InternationalGeoscience and Remote Sensing Symposium(IGARSS).IEEE,2016:6986-6989.]。然而,由于传感器的机械故障等因素的影响,高光谱数据在采集与传输过程中不可避免地会受到如高斯噪声、脉冲噪声、条带噪声等各种噪声的污染,这些方法都默认高光谱数据不同波段的高斯噪声强度是相同的,也忽略了脉冲噪声等稀疏噪声的存在,这往往不符合实际情况,且l1范数不能很好地表达丰度系数的结构稀疏性,以致解混算法无法达到较高的精度。According to whether the spectral library needs to be provided in the unmixing process, the current hyperspectral data unmixing algorithms can be divided into blind source unmixing algorithms and semi-blind source unmixing algorithms. The blind source unmixing algorithm needs to extract endmembers from the current hyperspectral data, and then perform abundance inversion to obtain abundance coefficients. The semi-blind source unmixing algorithm uses a spectral library composed of a large number of pure endmember spectra as the endmember dictionary, and then selects the appropriate endmembers from the endmember dictionary and calculates the corresponding abundance coefficient. Since the number of endmembers in the spectral library is much larger than the number of endmembers contained in the hyperspectral data, the abundance coefficients will exhibit sparsity, so such algorithms usually add sparsity constraints to the abundance coefficients, for example, Iordache M et al. Considering that the mixed pixels in the local neighborhood are generally composed of the same ground objects, they impose l 2,1 norm constraints on the abundance coefficients, and finally use the Lagrangian method and the alternating direction multiplier method to carry out the model. Solving [Iordache MD, Bioucas-Dias JM, PlazaA. Collaborative sparse regression for hyperspectral unmixing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 52(1): 341-354.]; Rui Wang et al. are using l 1 On the basis of norm-constrained abundance coefficient, it is proposed to perform double weighting in spectral dimension and spatial dimension, while enhancing the sparsity of endmember matrix and abundance matrix [Wang R, Li HC, Liao W, et al.Double reweightedsparse regression for hyperspectral unmixing[C]//2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). IEEE, 2016:6986-6989.]. However, due to the influence of factors such as the mechanical failure of the sensor, the hyperspectral data will inevitably be polluted by various noises such as Gaussian noise, impulse noise, stripe noise, etc. during the acquisition and transmission process. These methods all default to hyperspectral data. The intensity of Gaussian noise in different bands is the same, and the existence of sparse noise such as impulse noise is ignored, which is often not in line with the actual situation, and the l 1 norm cannot well express the structural sparsity of abundance coefficients, so that the unmixing algorithm Higher accuracy cannot be achieved.

发明内容SUMMARY OF THE INVENTION

本发明的目的在于针对矿物勘探、精准农业、环境监测和灾害评估的高光谱解混问题,提出一种对噪声鲁棒、强稀疏性的形态成分约束优化的高光谱数据解混方法。The purpose of the present invention is to propose a hyperspectral data unmixing method with robustness to noise and strong sparsity constrained optimization of morphological components for the hyperspectral unmixing problems of mineral exploration, precision agriculture, environmental monitoring and disaster assessment.

实现本发明目的的技术解决方案为:一种形态成分约束优化的高光谱数据解混方法,步骤如下:The technical solution for realizing the purpose of the present invention is: a hyperspectral data unmixing method for morphological component constraint optimization, the steps are as follows:

步骤1,输入高光谱数据和端元光谱库;Step 1, input hyperspectral data and endmember spectral library;

步骤2,构造光谱样本扩展矩阵;Step 2, construct the spectrum sample expansion matrix;

步骤3,建立形态成分约束优化的高光谱数据解混模型;基于高光谱数据不同波段的高斯噪声强度不同,且具有其他稀疏噪声的假设,通过估计波段噪声标准差和稀疏性结构噪声分解,使用l1范数约束稀疏噪声,l2,0范数约束不同纯物质丰度系数的全局行稀疏性,建立形态成分约束优化的高光谱数据解混模型;Step 3, establish a hyperspectral data unmixing model optimized by morphological component constraints; based on the assumption that the intensity of Gaussian noise in different bands of the hyperspectral data is different and has other sparse noises, by estimating the standard deviation of the band noise and the sparse structure noise decomposition, use l 1 norm constrains sparse noise, l 2,0 norm constrains the global row sparsity of different pure substance abundance coefficients, and establishes a hyperspectral data unmixing model optimized by morphological component constraints;

步骤4,计算高光谱数据各波段的噪声标准差:首先计算噪声相关矩阵,然后逐波段地计算回归向量,估计噪声,最后计算噪声的标准差;Step 4: Calculate the noise standard deviation of each band of the hyperspectral data: first calculate the noise correlation matrix, then calculate the regression vector by band, estimate the noise, and finally calculate the standard deviation of the noise;

步骤5,交替迭代求解:将模型转化为等价的增广拉格朗日形式,根据交替方向乘子法,对每个变量进行交替迭代求解优化问题,分别使用软阈值限定算子,硬阈值算子对子问题进行求解;Step 5, alternate iterative solution: convert the model into an equivalent augmented Lagrangian form, and solve the optimization problem alternately for each variable according to the alternate direction multiplier method, using the soft threshold limit operator and the hard threshold respectively. The operator solves the subproblems;

步骤6,输出丰度系数。Step 6, output the abundance coefficient.

本发明与现有技术相比,其显著优点为:(1)综合考虑了高斯随机噪声和稀疏性结构噪声对线性解混精度的影响,使用l1范数约束稀疏噪声,l2,0范数约束不同纯物质丰度系数的全局行稀疏性,建立形态成分约束优化的高光谱数据解混模型;(2)用行硬阈值方法求解l2,0范数问题,进一步刻画丰度系数的稀疏性,获得更精确的解;(3)仿真实验结果表明,本发明对混合噪声表现了较好的鲁棒性,可以有效克服同批光谱数据之间的波形形态结构差异性,通过优化迭代实现快速、高精度解混,解混的均方根误差小于0.0025,本发明方法对于岩石矿物识别和高光谱遥感地物精细识别等具有广泛应用前景。Compared with the prior art, the present invention has the following significant advantages: (1) The influence of Gaussian random noise and sparse structure noise on the linear unmixing accuracy is comprehensively considered, and the l1 norm is used to constrain the sparse noise, and the l2,0 norm The global row sparsity of the abundance coefficients of different pure substances is constrained by the number, and the hyperspectral data unmixing model optimized by the morphological component constraints is established; (2) The l2,0 norm problem is solved by the row hard threshold method to further characterize the abundance coefficients. (3) The simulation experiment results show that the invention has good robustness to mixed noise, and can effectively overcome the difference of waveform morphology and structure between the same batch of spectral data. Fast and high-precision unmixing is realized, and the root mean square error of unmixing is less than 0.0025. The method of the invention has wide application prospects for rock mineral identification and hyperspectral remote sensing ground feature fine identification.

附图说明Description of drawings

图1是本发明一种形态成分约束优化的高光谱数据解混方法流程图。Fig. 1 is a flow chart of a hyperspectral data unmixing method for morphological component constraint optimization of the present invention.

图2(a)是生成模拟高光谱数据的真实丰度图。Figure 2(a) is a true abundance map generated from simulated hyperspectral data.

图2(b)是模拟高光谱数据采用SUnSAL算法得到的丰度图。Figure 2(b) is the abundance map obtained from simulated hyperspectral data using the SUnSAL algorithm.

图2(c)是模拟高光谱数据采用CLSUnSAL算法得到的丰度图。Figure 2(c) is the abundance map obtained from simulated hyperspectral data using the CLSUnSAL algorithm.

图2(d)是模拟高光谱数据采用CSUnL0算法得到的丰度图。Figure 2(d) is the abundance map obtained from simulated hyperspectral data using CSUnL0 algorithm.

图2(e)是模拟高光谱数据采用本发明形态成分约束优化的高光谱数据解混方法得到的丰度图。Fig. 2(e) is an abundance map obtained by simulating hyperspectral data using the hyperspectral data unmixing method of morphological component constraint optimization of the present invention.

图3(a)是原始的单条模拟高光谱数据。Figure 3(a) is the original single-strip simulated hyperspectral data.

图3(b)是被高斯噪声和脉冲噪声等稀疏噪声污染的单条高光谱数据。Figure 3(b) is a single piece of hyperspectral data polluted by sparse noise such as Gaussian noise and impulse noise.

图3(c)是不同解混算法的对单条高光谱数据的重构结果。Figure 3(c) is the reconstruction result of a single hyperspectral data by different unmixing algorithms.

图4是在Cuprite数据集上,三种矿物的分布图以及用不同解混算法得到的对应的丰度图。Figure 4 is the distribution map of the three minerals and the corresponding abundance maps obtained by different unmixing algorithms on the Cuprite dataset.

具体实施方式Detailed ways

本发明公开了一种形态成分约束优化的高光谱数据解混方法,通过估计波段噪声标准差和稀疏性结构噪声分解、为稀疏分量和丰度系数添加稀疏性约束来建立解混模型,交替迭代实现混合光谱的线性解混,如图1所示,该方法具体步骤为:The invention discloses a hyperspectral data unmixing method for morphological component constraint optimization. The unmixing model is established by estimating band noise standard deviation and sparse structure noise decomposition, adding sparsity constraints to sparse components and abundance coefficients, and iterating alternately. To realize the linear unmixing of the mixed spectrum, as shown in Figure 1, the specific steps of the method are:

步骤1,输入高光谱数据和端元光谱库。输入一批待解混的高光谱数据

Figure BDA0002972995420000031
yi∈RB和端元光谱库E∈RB×M,B是波段数,P是像元数,M是端元数。Step 1, input hyperspectral data and endmember spectral library. Input a batch of hyperspectral data to be unmixed
Figure BDA0002972995420000031
y i ∈ R B and endmember spectral library E∈R B×M , where B is the number of bands, P is the number of pixels, and M is the number of endmembers.

步骤2,构造光谱样本扩展矩阵。对输入的高光谱数据按照逐像元光谱向量排列形成光谱-像元矩阵Y=[y1,y2,...,yN]∈RB×PStep 2, construct the spectral sample expansion matrix. The input hyperspectral data is arranged according to the pixel-by-pixel spectral vector to form a spectrum-pixel matrix Y=[y 1 , y 2 ,...,y N ]∈R B×P .

步骤3,建立形态成分约束优化的高光谱数据解混模型。基于高光谱数据不同波段的高斯噪声强度不同,且具有其他稀疏噪声的假设,建立高光谱数据解混模型:Step 3, establish a hyperspectral data unmixing model optimized by morphological component constraints. Based on the assumption that the intensity of Gaussian noise in different bands of hyperspectral data is different and has other sparse noise, a hyperspectral data unmixing model is established:

Y=EA+S+NY=EA+S+N

其中,A∈RM×P为丰度系数,每列中的元素表示对应端元光谱在单个混合像元中所占的比例;S∈RB×P为稀疏分量,表示仅污染了高光谱数据少数波段的脉冲噪声、条纹噪声等混合噪声;N∈RB×P为高斯噪声。引入稀疏约束,得到上述模型的优化求解函数:Among them, A∈R M×P is the abundance coefficient, and the elements in each column represent the proportion of the corresponding endmember spectrum in a single mixed pixel; S∈R B×P is the sparse component, indicating that only the hyperspectral is polluted Mixed noises such as impulse noise and stripe noise in a few bands of data; N∈R B×P is Gaussian noise. Introducing the sparse constraint, the optimal solution function of the above model is obtained:

Figure BDA0002972995420000041
s.t.A≥0
Figure BDA0002972995420000041
stA≥0

其中,λ和α为正则化参数,λ>0,α>0;W为对角矩阵,

Figure BDA0002972995420000042
Figure BDA0002972995420000043
对角上的元素为各波段高斯噪声的标准差的倒数;‖·‖F表示矩阵的F范数;
Figure BDA0002972995420000044
表示矩阵的l2,0范数;
Figure BDA0002972995420000045
表示矩阵的l1范数。通过增广拉格朗日乘子法将上式转化为:Among them, λ and α are regularization parameters, λ>0, α>0; W is a diagonal matrix,
Figure BDA0002972995420000042
Figure BDA0002972995420000043
The elements on the diagonal are the reciprocal of the standard deviation of the Gaussian noise in each band; ‖·‖ F represents the F-norm of the matrix;
Figure BDA0002972995420000044
represents the l 2,0 norm of the matrix;
Figure BDA0002972995420000045
represents the l 1 norm of the matrix. The above equation is transformed into:

Figure BDA0002972995420000046
Figure BDA0002972995420000046

其中,V1,V2,V3为辅助变量,D1,D2,D3为拉格朗日乘子,μ>0是惩罚因子,

Figure BDA0002972995420000047
Xi,j表示矩阵X第i行第j列的元素,当Xi,j为非负值时,
Figure BDA0002972995420000048
等于0,否则等于正无穷;Among them, V 1 , V 2 , V 3 are auxiliary variables, D 1 , D 2 , D 3 are Lagrange multipliers, μ>0 is the penalty factor,
Figure BDA0002972995420000047
X i,j represents the element in the i-th row and the j-th column of the matrix X. When X i,j is a non-negative value,
Figure BDA0002972995420000048
equal to 0, otherwise equal to positive infinity;

步骤4,计算高光谱数据各波段的噪声标准差,得到对角矩阵W。步骤如下:Step 4: Calculate the noise standard deviation of each band of the hyperspectral data to obtain a diagonal matrix W. Proceed as follows:

步骤4.1,计算回归向量

Figure BDA0002972995420000049
Step 4.1, calculate the regression vector
Figure BDA0002972995420000049

Figure BDA00029729954200000410
Figure BDA00029729954200000410

其中,

Figure BDA00029729954200000411
表示矩阵
Figure BDA00029729954200000412
的第i行,Z=YT
Figure BDA00029729954200000413
表示相关矩阵,
Figure BDA00029729954200000414
Figure BDA00029729954200000415
表示从矩阵
Figure BDA00029729954200000416
中删除第
Figure BDA00029729954200000417
行和第
Figure BDA00029729954200000418
列后获得的矩阵,
Figure BDA00029729954200000419
表示矩阵
Figure BDA00029729954200000420
的第i行,
Figure BDA00029729954200000421
i=1,…,L;in,
Figure BDA00029729954200000411
representation matrix
Figure BDA00029729954200000412
The ith row of , Z=Y T ,
Figure BDA00029729954200000413
represents the correlation matrix,
Figure BDA00029729954200000414
Figure BDA00029729954200000415
represents the matrix from
Figure BDA00029729954200000416
delete the
Figure BDA00029729954200000417
row and
Figure BDA00029729954200000418
The matrix obtained after columns,
Figure BDA00029729954200000419
representation matrix
Figure BDA00029729954200000420
The i-th row of ,
Figure BDA00029729954200000421
i=1,...,L;

步骤4.2,计算噪声向量

Figure BDA00029729954200000422
Step 4.2, Calculate the noise vector
Figure BDA00029729954200000422

Figure BDA0002972995420000051
Figure BDA0002972995420000051

其中,

Figure BDA0002972995420000052
表示估计噪声
Figure BDA0002972995420000053
的第i行,zi表示矩阵Z的第i行,
Figure BDA0002972995420000054
表示从矩阵Z中删除第
Figure BDA00029729954200000515
列后获得的矩阵;in,
Figure BDA0002972995420000052
represents the estimated noise
Figure BDA0002972995420000053
The ith row of , zi represents the ith row of matrix Z,
Figure BDA0002972995420000054
means to remove the first from the matrix Z
Figure BDA00029729954200000515
The matrix obtained after the columns;

步骤4.3,计算每个波段高斯噪声的标准差的倒数Wii,得到矩阵W:Step 4.3, calculate the reciprocal W ii of the standard deviation of the Gaussian noise of each band, and get the matrix W:

Figure BDA0002972995420000056
Figure BDA0002972995420000056

其中,β表示

Figure BDA0002972995420000057
的均值,P表示光谱采样点个数。Among them, β represents
Figure BDA0002972995420000057
The mean of , and P represents the number of spectral sampling points.

步骤5,交替迭代求解。步骤如下:Step 5, alternate iterative solution. Proceed as follows:

步骤5.1,固定其他变量,更新丰度系数A,Step 5.1, fix other variables, update the abundance coefficient A,

Figure BDA0002972995420000058
Figure BDA0002972995420000058

步骤5.2,固定其他变量,更新稀疏分量S,Step 5.2, fix other variables, update the sparse component S,

Figure BDA0002972995420000059
Figure BDA0002972995420000059

其中,Sτ(·)为软阈值限定算子,且Sτ(x)=sgn(x)max(|x|-τ,0),其中τ为非负参数,sgn(·)表示符号函数;Among them, S τ (·) is the soft threshold limit operator, and S τ (x)=sgn(x)max(|x|-τ,0), where τ is a non-negative parameter, and sgn(·) represents the sign function ;

步骤5.3,固定其他变量,更新辅助变量V1,V2,V3Step 5.3, fix other variables, update auxiliary variables V 1 , V 2 , V 3 ,

Figure BDA00029729954200000510
Figure BDA00029729954200000510

Figure BDA00029729954200000511
Figure BDA00029729954200000511

Figure BDA00029729954200000512
Figure BDA00029729954200000512

其中,

Figure BDA00029729954200000513
表示行硬阈值算子,且
Figure BDA00029729954200000514
其中τ为非负参数,B(i,:)表示矩阵B的第i行;in,
Figure BDA00029729954200000513
represents the row hard threshold operator, and
Figure BDA00029729954200000514
where τ is a non-negative parameter, and B(i,:) represents the i-th row of matrix B;

步骤5.4,固定其他变量,更新拉格朗日乘子D1,D2,D3Step 5.4, fix other variables, update the Lagrange multipliers D 1 , D 2 , D 3 ,

Figure BDA0002972995420000061
Figure BDA0002972995420000061

步骤6,输出丰度系数A。Step 6, output the abundance coefficient A.

本发明的效果可通过以下仿真实验进一步说明:The effect of the present invention can be further illustrated by the following simulation experiments:

仿真条件Simulation conditions

仿真实验采用模拟高光谱数据和真实高光谱数据(Cuprite数据集)。光谱库光谱库来自于美国地质调查局(USGS)发布的地物光谱数据库,包含224个波段、240条纯物质端元。对于模拟高光谱数据,每个波段包含3136个像素,为了更好地模拟实际情况,所有波段都被不同强度(信噪比在20dB~40dB之间)的高斯噪声污染、11个波段(60~70)被30%的脉冲噪声污染、有11个波段(120~130)被条纹噪声污染,即输入的高光谱数据为Y=[y1,y2,...,y3136]∈R224×3136,光谱库为E∈R224×240。真实高光谱数据来源于AVIRIS(机载可见红外成像光谱仪)Cuprite数据集,去除36个水汽吸收和低信噪比波段后(波段号为1-2,105-115,150-170,223-224),选择剩下的188个波段作为研究对象,相应的,将输入光谱库对应的波段也去除,即输入的高光谱数据为Y=[y1,y2,...,y47750]∈R188×47750,光谱库为E∈R188 ×240Simulation experiments use simulated hyperspectral data and real hyperspectral data (Cuprite dataset). Spectral Library The Spectral Library comes from the ground object spectral database released by the United States Geological Survey (USGS), including 224 bands and 240 endmembers of pure substances. For the simulated hyperspectral data, each band contains 3136 pixels. In order to better simulate the actual situation, all the bands are polluted by Gaussian noise of different intensities (signal-to-noise ratio between 20dB and 40dB), 11 bands (60~40dB). 70) Contaminated by 30% impulse noise, 11 bands (120~130) are polluted by stripe noise, that is, the input hyperspectral data is Y=[y 1 ,y 2 ,...,y 3136 ]∈R 224 ×3136 , and the spectral library is E∈R 224×240 . The real hyperspectral data comes from the AVIRIS (Airborne Visible Infrared Imaging Spectrometer) Cuprite dataset, after removing 36 water vapor absorption and low signal-to-noise ratio bands (band numbers are 1-2, 105-115, 150-170, 223-224 ), select the remaining 188 bands as the research object, and correspondingly, remove the bands corresponding to the input spectral library, that is, the input hyperspectral data is Y=[y 1 , y 2 ,...,y 47750 ]∈ R 188×47750 , the spectral library is E∈R 188 ×240 .

本仿真实验采用的评价指标是均方根误差(RMSE,Root Mean Square Error),均方根误差越小说明解混精度越高。The evaluation index used in this simulation experiment is Root Mean Square Error (RMSE, Root Mean Square Error). The smaller the RMSE, the higher the unmixing accuracy.

仿真内容Simulation content

本发明采用模拟高光谱数据和真实高光谱数据(Cuprite数据集)检验算法的解混性能。为测试本发明算法的性能,将提出的一种形态成分约束优化的高光谱数据解混方法(SUnMC)与目前国际上流行的解混算法对比。对比方法包括:基于变量分裂和增广拉格朗日的稀疏解混算法(SUnSAL),基于变量分裂和增广拉格朗日的协同稀疏解混算法(CLSUnSAL),基于l0范数的协同稀疏解混算法(CSUnL0)。The present invention uses simulated hyperspectral data and real hyperspectral data (Cuprite data set) to test the unmixing performance of the algorithm. In order to test the performance of the algorithm of the present invention, a hyperspectral data unmixing method (SUnMC) with morphological component constraint optimization proposed is compared with the currently popular unmixing algorithm in the world. The comparison methods include: Sparse Unmixing Algorithm Based on Variable Splitting and Augmented Lagrangian (SUnSAL), Cooperative Sparse Unmixing Algorithm Based on Variable Splitting and Augmented Lagrangian (CLSUnSAL), Synergistic Based on l 0 Norm Sparse unmixing algorithm (CSUnL0).

仿真实验结果分析Analysis of simulation results

表1为模拟高光谱数据在不同解混算法下均方根误差的对比结果:Table 1 shows the comparison results of the root mean square error of simulated hyperspectral data under different unmixing algorithms:

表1不同算法在模拟高光谱数据上的RMSETable 1 RMSE of different algorithms on simulated hyperspectral data

Figure BDA0002972995420000062
Figure BDA0002972995420000062

Figure BDA0002972995420000071
Figure BDA0002972995420000071

由表1可以看出,在模拟高光谱数据条件下,由于SUnMC将不同波段高斯噪声强度不同以及存在稀疏噪声的情况考虑在内,与其他算法相比,其均方根误差明显更低,解混效果最好。It can be seen from Table 1 that under the condition of simulating hyperspectral data, since SUnMC takes into account the different intensity of Gaussian noise in different bands and the existence of sparse noise, its root mean square error is significantly lower than that of other algorithms. Mixing works best.

图2(a)~图2(e)为用不同解混算法在模拟高光谱数据上得到的丰度图。可以看出,在高斯噪声和脉冲噪声等稀疏噪声的影响下,SUnSAL、CLSUnSAL和CSUnL0获得的丰度图都含有大量的噪声,解混精度不高,相比之下,SunMC对混合噪声表现了较好的鲁棒性,能够得到更接近真实丰度图的结果。Figures 2(a) to 2(e) are abundance maps obtained on simulated hyperspectral data using different unmixing algorithms. It can be seen that under the influence of sparse noise such as Gaussian noise and impulse noise, the abundance maps obtained by SUnSAL, CLSUnSAL and CSUnL0 contain a lot of noise, and the unmixing accuracy is not high. With better robustness, results closer to the true abundance map can be obtained.

为了验证SUnMC对单条光谱解混的有效性,我们取模拟高光谱数据中单个像素上的所有波段作为输入,即输入的单条高光谱数据为y∈R224×1,光谱库为E∈R224×240。图3(a)~图3(c)中分别为原始光谱、被高斯噪声和脉冲噪声等稀疏噪声污染的光谱以及不同解混算法的重构结果。从图3(c)中可以看出,与其他算法相比,SUnMC重构的光谱要更加接近原始光谱,说明SUnMC能具有很好的抗噪性能,能得到较好的结果。In order to verify the effectiveness of SUnMC for single spectral unmixing, we take all the bands on a single pixel in the simulated hyperspectral data as input, that is, the input single hyperspectral data is y ∈ R 224×1 and the spectral library is E ∈ R 224 ×240 . Figures 3(a) to 3(c) show the original spectrum, the spectrum polluted by sparse noise such as Gaussian noise and impulse noise, and the reconstruction results of different unmixing algorithms, respectively. It can be seen from Fig. 3(c) that, compared with other algorithms, the reconstructed spectrum of SUnMC is closer to the original spectrum, indicating that SUnMC has good anti-noise performance and can obtain better results.

图4上显示了Cuprite数据集上SUnSAL、CLSUnSAL、CSUnL0和SUnMC算法得到的明矾石、水铵长石、玉髓三种矿物的丰度图。为了便于对丰度图进行比较分析,我们使用美国地质调查局(USGS)开发的高光谱矿物填图软件Tetracorder来识别光谱所含矿物信息,并生成矿物分布图,如图4中左边一列所示。图中每个像素点表示该点是否属于某种矿物,并不显示该点某种矿物的含量,因此我们在这里只将其作为定性的比较分析,而不将其作为真实丰度图。图4中的最右边一列是SUnMC算法的解混结果,色调越热表示该矿物的含量越高。对于明矾石矿物来说,SUnSAL、CLSUnSAL、CSUnL0与SUnMC算法得到丰度图差别不大,与Tetracorder得到的结果十分相似。而对于水铵长石、玉髓两种矿物,从视觉效果上来看,SUnMC算法得到的丰度图拥有更多的细节,证明我们的算法相比其他算法更加有效。Figure 4 shows the abundance maps of alumite, feldspar, and chalcedony obtained by the SUnSAL, CLSUnSAL, CSUnL0 and SUnMC algorithms on the Cuprite dataset. In order to facilitate the comparative analysis of abundance maps, we used Tetracorder, a hyperspectral mineral mapping software developed by the United States Geological Survey (USGS), to identify the mineral information contained in the spectrum and generate a mineral distribution map, as shown in the left column of Figure 4 . Each pixel in the figure indicates whether the point belongs to a certain mineral, and does not show the content of a certain mineral at that point, so we only use it as a qualitative comparative analysis here, not as a real abundance map. The rightmost column in Figure 4 is the unmixing result of the SUnMC algorithm, with hotter hues indicating higher levels of the mineral. For alumite minerals, the abundance maps obtained by the SUnSAL, CLSUnSAL, CSUnL0 and SUnMC algorithms have little difference, and are very similar to the results obtained by Tetracorder. For the two minerals, feldspar and chalcedony, from the visual effect, the abundance map obtained by the SUnMC algorithm has more details, which proves that our algorithm is more effective than other algorithms.

Claims (6)

1.一种形态成分约束优化的高光谱数据解混方法,其特征在于,包括以下步骤:1. a hyperspectral data unmixing method of morphological component constraint optimization, is characterized in that, comprises the following steps: 步骤1,输入高光谱数据和端元光谱库;Step 1, input hyperspectral data and endmember spectral library; 步骤2,构造光谱样本扩展矩阵;Step 2, construct the spectrum sample expansion matrix; 步骤3,建立形态成分约束优化的高光谱数据解混模型:基于高光谱数据不同波段的高斯噪声强度不同,且具有其他稀疏噪声的假设,通过估计波段噪声标准差和稀疏性结构噪声分解,使用l1范数约束稀疏噪声,l2,0范数约束不同纯物质丰度系数的全局行稀疏性,建立形态成分约束优化的高光谱数据解混模型;Step 3, establish a hyperspectral data unmixing model optimized by morphological component constraints: based on the assumption that the intensity of Gaussian noise in different bands of hyperspectral data is different and has other sparse noises, by estimating the standard deviation of band noise and sparse structure noise decomposition, use l 1 norm constrains sparse noise, l 2,0 norm constrains the global row sparsity of different pure substance abundance coefficients, and establishes a hyperspectral data unmixing model optimized by morphological component constraints; 步骤4,计算高光谱数据各波段的噪声标准差:首先计算噪声相关矩阵,然后逐波段地计算回归向量,估计噪声,最后计算噪声的标准差;Step 4: Calculate the noise standard deviation of each band of the hyperspectral data: first calculate the noise correlation matrix, then calculate the regression vector by band, estimate the noise, and finally calculate the standard deviation of the noise; 步骤5,交替迭代求解:将模型转化为等价的增广拉格朗日形式,根据交替方向乘子法,对每个变量进行交替迭代求解优化问题;Step 5, alternate iterative solution: transform the model into an equivalent augmented Lagrangian form, and solve the optimization problem alternately for each variable according to the alternate direction multiplier method; 步骤6,输出丰度系数。Step 6, output the abundance coefficient. 2.根据权利要求1所述的形态成分约束优化的高光谱数据解混方法,其特征在于,步骤1所述的输入高光谱数据和端元光谱库,具体如下:2. The hyperspectral data unmixing method of morphological component constraint optimization according to claim 1, wherein the input hyperspectral data and endmember spectral library described in step 1 are as follows: 输入一批待解混的高光谱数据
Figure FDA0002972995410000011
和端元光谱库E∈RB×M,B是波段数,P是光谱采样点个数,M是端元数。
Input a batch of hyperspectral data to be unmixed
Figure FDA0002972995410000011
and endmember spectral library E∈R B×M , where B is the number of bands, P is the number of spectral sampling points, and M is the number of endmembers.
3.根据权利要求1所述的形态成分约束优化的高光谱数据解混方法,其特征在于,步骤2所述的构造光谱样本扩展矩阵,具体如下:3. The hyperspectral data unmixing method of morphological component constraint optimization according to claim 1, characterized in that, the construction of the spectral sample expansion matrix described in step 2 is as follows: 对输入的高光谱数据按照逐像元光谱向量排列形成光谱-像元矩阵Y=[y1,y2,...,yN]∈RB×PThe input hyperspectral data is arranged according to the pixel-by-pixel spectral vector to form a spectrum-pixel matrix Y=[y 1 , y 2 ,...,y N ]∈R B×P . 4.根据权利要求1所述的形态成分约束优化的高光谱数据解混方法,其特征在于,步骤3所述的建立形态成分约束优化的高光谱数据解混模型,具体如下:4. The hyperspectral data unmixing method of morphological component constraint optimization according to claim 1, is characterized in that, establishing the hyperspectral data unmixing model of morphological component constraint optimization described in step 3 is as follows: 基于高光谱数据不同波段的高斯噪声强度不同,且具有其他稀疏噪声的假设,建立高光谱数据解混模型:Based on the assumption that the intensity of Gaussian noise in different bands of hyperspectral data is different and has other sparse noise, a hyperspectral data unmixing model is established: Y=EA+S+N (1)Y=EA+S+N (1) 式(1)中,A∈RM×P为丰度系数,每列中的元素表示对应端元光谱在单个混合像元中所占的比例;S∈RB×P为稀疏分量,N∈RB×P为高斯噪声;In formula (1), A∈R M×P is the abundance coefficient, and the elements in each column represent the proportion of the corresponding endmember spectrum in a single mixed pixel; S∈R B×P is the sparse component, N∈ R B×P is Gaussian noise; 引入稀疏约束,得到式(1)中所述模型的优化求解函数:Introducing the sparse constraint, the optimal solution function of the model described in equation (1) is obtained:
Figure FDA0002972995410000021
Figure FDA0002972995410000021
式(2)中,λ和α为正则化参数,λ>0,α>0;W为对角矩阵,
Figure FDA0002972995410000022
对角上的元素为各波段高斯噪声的标准差的倒数;‖·‖F表示矩阵的F范数;
Figure FDA0002972995410000023
表示矩阵的L2,0范数;
Figure FDA0002972995410000024
表示矩阵的l1范数;通过增广拉格朗日乘子法将式(2)转化为:
In formula (2), λ and α are regularization parameters, λ>0, α>0; W is a diagonal matrix,
Figure FDA0002972995410000022
The elements on the diagonal are the reciprocal of the standard deviation of the Gaussian noise in each band; ‖·‖ F represents the F-norm of the matrix;
Figure FDA0002972995410000023
represents the L 2,0 norm of the matrix;
Figure FDA0002972995410000024
Represents the l 1 norm of the matrix; Equation (2) is transformed into:
Figure FDA0002972995410000025
Figure FDA0002972995410000025
式(3)中,V1,V2,V3为辅助变量,D1,D2,D3为拉格朗日乘子,μ>0是惩罚因子,
Figure FDA0002972995410000026
Xi,j表示矩阵X第i行第j列的元素,当Xi,j为非负值时,
Figure FDA0002972995410000027
等于0,否则等于正无穷。
In formula (3), V 1 , V 2 , V 3 are auxiliary variables, D 1 , D 2 , D 3 are Lagrange multipliers, μ>0 is a penalty factor,
Figure FDA0002972995410000026
X i,j represents the element in the i-th row and the j-th column of the matrix X. When X i,j is a non-negative value,
Figure FDA0002972995410000027
equal to 0, otherwise equal to positive infinity.
5.根据权利要求1所述的形态成分约束优化的高光谱数据解混方法,其特征在于,步骤4所述的计算高光谱数据各波段的噪声标准差,得到对角矩阵,包括以下步骤:5. The hyperspectral data unmixing method of morphological component constraint optimization according to claim 1, characterized in that, calculating the noise standard deviation of each band of hyperspectral data described in step 4 to obtain a diagonal matrix, comprising the following steps: 计算回归向量
Figure FDA0002972995410000028
Calculate the regression vector
Figure FDA0002972995410000028
Figure FDA0002972995410000029
Figure FDA0002972995410000029
式(4)中,
Figure FDA00029729954100000210
表示矩阵
Figure FDA00029729954100000211
的第i行,Z=YT
Figure FDA00029729954100000212
表示相关矩阵,
Figure FDA00029729954100000213
Figure FDA00029729954100000214
表示从矩阵
Figure FDA00029729954100000215
中删除第
Figure FDA00029729954100000216
行和第
Figure FDA00029729954100000217
列后获得的矩阵,
Figure FDA00029729954100000218
表示矩阵
Figure FDA00029729954100000219
的第i行,
Figure FDA00029729954100000220
In formula (4),
Figure FDA00029729954100000210
representation matrix
Figure FDA00029729954100000211
The ith row of , Z=Y T ,
Figure FDA00029729954100000212
represents the correlation matrix,
Figure FDA00029729954100000213
Figure FDA00029729954100000214
represents the matrix from
Figure FDA00029729954100000215
delete the
Figure FDA00029729954100000216
row and
Figure FDA00029729954100000217
The matrix obtained after columns,
Figure FDA00029729954100000218
representation matrix
Figure FDA00029729954100000219
The i-th row of ,
Figure FDA00029729954100000220
计算噪声向量
Figure FDA00029729954100000221
Calculate the noise vector
Figure FDA00029729954100000221
Figure FDA00029729954100000222
Figure FDA00029729954100000222
式(5)中,
Figure FDA00029729954100000223
表示估计噪声
Figure FDA00029729954100000224
的第i行,zi表示矩阵Z的第i行,
Figure FDA00029729954100000225
表示从矩阵Z中删除第
Figure FDA00029729954100000226
列后获得的矩阵;
In formula (5),
Figure FDA00029729954100000223
represents the estimated noise
Figure FDA00029729954100000224
The ith row of , zi represents the ith row of matrix Z,
Figure FDA00029729954100000225
means to remove the first from the matrix Z
Figure FDA00029729954100000226
The matrix obtained after the columns;
计算每个波段高斯噪声的标准差的倒数Wii,得到矩阵W:Compute the reciprocal Wi ii of the standard deviation of the Gaussian noise for each band to get the matrix W:
Figure FDA0002972995410000031
Figure FDA0002972995410000031
式(6)中,β表示
Figure FDA0002972995410000032
的均值,P表示光谱采样点个数。
In formula (6), β represents
Figure FDA0002972995410000032
The mean of , and P represents the number of spectral sampling points.
6.根据权利要求1所述的形态成分约束优化的高光谱数据解混方法,其特征在于,步骤5中,交替迭代实现混合光谱的线性解混,包括以下步骤:6. The hyperspectral data unmixing method of morphological component constraint optimization according to claim 1, wherein in step 5, the linear unmixing of the mixed spectrum is realized alternately and iteratively, comprising the following steps: 固定其他变量,更新丰度系数A:Fix other variables and update the abundance coefficient A:
Figure FDA0002972995410000033
Figure FDA0002972995410000033
固定其他变量,更新稀疏分量S:Fix other variables, update the sparse component S:
Figure FDA0002972995410000034
Figure FDA0002972995410000034
式(8)中,Sτ(·)为软阈值限定算子,且Sτ(x)=sgn(x)max(|x|-τ,0),其中τ为非负参数,sgn(·)表示符号函数;In formula (8), S τ (·) is the soft threshold limit operator, and S τ (x)=sgn(x)max(|x|-τ,0), where τ is a non-negative parameter, sgn(· ) represents a symbolic function; 固定其他变量,更新辅助变量V1,V2,V3Fix other variables and update auxiliary variables V 1 , V 2 , V 3 :
Figure FDA0002972995410000035
Figure FDA0002972995410000035
Figure FDA0002972995410000036
Figure FDA0002972995410000036
Figure FDA0002972995410000037
Figure FDA0002972995410000037
式(10)中,
Figure FDA0002972995410000038
表示行硬阈值算子,且
Figure FDA0002972995410000039
其中τ为非负参数,B(i,:)表示矩阵B的第i行;
In formula (10),
Figure FDA0002972995410000038
represents the row hard threshold operator, and
Figure FDA0002972995410000039
where τ is a non-negative parameter, and B(i,:) represents the i-th row of matrix B;
固定其他变量,更新拉格朗日乘子D1,D2,D3Fix other variables and update the Lagrange multipliers D 1 , D 2 , D 3 :
Figure FDA00029729954100000310
Figure FDA00029729954100000310
CN202110267926.7A 2021-03-11 2021-03-11 Hyperspectral data unmixing method based on morphological component constraint optimization Active CN113094645B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110267926.7A CN113094645B (en) 2021-03-11 2021-03-11 Hyperspectral data unmixing method based on morphological component constraint optimization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110267926.7A CN113094645B (en) 2021-03-11 2021-03-11 Hyperspectral data unmixing method based on morphological component constraint optimization

Publications (2)

Publication Number Publication Date
CN113094645A true CN113094645A (en) 2021-07-09
CN113094645B CN113094645B (en) 2024-07-30

Family

ID=76667229

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110267926.7A Active CN113094645B (en) 2021-03-11 2021-03-11 Hyperspectral data unmixing method based on morphological component constraint optimization

Country Status (1)

Country Link
CN (1) CN113094645B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113744154A (en) * 2021-09-03 2021-12-03 浙江理工大学绍兴柯桥研究院有限公司 High-spectral imaging-based highlight detection and elimination method for fiber image
CN116361636A (en) * 2022-12-14 2023-06-30 山东省科学院海洋仪器仪表研究所 Method for reconstructing relevant components and extracting important information in seawater mixed spectrum
CN118072186A (en) * 2023-12-21 2024-05-24 南昌工程学院 A mineral identification and classification method based on hyperspectral unmixing technology
CN118888062A (en) * 2024-09-25 2024-11-01 宝鸡核力材料科技有限公司 Method and system for optimizing rare earth element addition in titanium alloy based on information transmission

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160035100A1 (en) * 2013-03-15 2016-02-04 Ventana Medical Systems, Inc. Spectral Unmixing
CN108734672A (en) * 2018-01-08 2018-11-02 南京理工大学 Based on high-spectral data solution mixing method library of spectra cutting and cooperate with sparse regression
CN109241843A (en) * 2018-08-02 2019-01-18 南京理工大学 Sky spectrum joint multiconstraint optimization nonnegative matrix solution mixing method
CN109886897A (en) * 2019-03-04 2019-06-14 重庆工商大学 A hyperspectral image unmixing device
CN110428454A (en) * 2019-08-13 2019-11-08 电子科技大学中山学院 Hyperspectral unmixing method and device, electronic equipment and storage medium

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160035100A1 (en) * 2013-03-15 2016-02-04 Ventana Medical Systems, Inc. Spectral Unmixing
CN108734672A (en) * 2018-01-08 2018-11-02 南京理工大学 Based on high-spectral data solution mixing method library of spectra cutting and cooperate with sparse regression
CN109241843A (en) * 2018-08-02 2019-01-18 南京理工大学 Sky spectrum joint multiconstraint optimization nonnegative matrix solution mixing method
CN109886897A (en) * 2019-03-04 2019-06-14 重庆工商大学 A hyperspectral image unmixing device
CN110428454A (en) * 2019-08-13 2019-11-08 电子科技大学中山学院 Hyperspectral unmixing method and device, electronic equipment and storage medium

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
严阳;华文深;刘恂;崔子浩;: "高光谱解混方法研究", 激光技术, no. 05, 8 January 2018 (2018-01-08) *
许宁;耿修瑞;尤红建;曹银贵;: "一种基于单形体正化的高光谱数据全约束线性解混方法", 红外与毫米波学报, no. 05, 15 October 2016 (2016-10-15) *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113744154A (en) * 2021-09-03 2021-12-03 浙江理工大学绍兴柯桥研究院有限公司 High-spectral imaging-based highlight detection and elimination method for fiber image
CN116361636A (en) * 2022-12-14 2023-06-30 山东省科学院海洋仪器仪表研究所 Method for reconstructing relevant components and extracting important information in seawater mixed spectrum
CN118072186A (en) * 2023-12-21 2024-05-24 南昌工程学院 A mineral identification and classification method based on hyperspectral unmixing technology
CN118888062A (en) * 2024-09-25 2024-11-01 宝鸡核力材料科技有限公司 Method and system for optimizing rare earth element addition in titanium alloy based on information transmission

Also Published As

Publication number Publication date
CN113094645B (en) 2024-07-30

Similar Documents

Publication Publication Date Title
CN113094645A (en) Hyperspectral data unmixing method based on morphological component constraint optimization
US9317929B2 (en) Decomposition apparatus and method for refining composition of mixed pixels in remote sensing images
CN102314685B (en) A Sparse Unmixing Method for Hyperspectral Images Based on Random Projection
CN108427934B (en) Hyperspectral image mixed pixel decomposition method
CN113128134A (en) Mining area ecological environment evolution driving factor weight quantitative analysis method
CN101221243A (en) Mixed Pixel Decomposition Method of Remote Sensing Image Based on Non-negative Matrix Factorization
CN101140325A (en) A method for synergistically improving the resolution of hyperspectral images with spatial-spectral information
CN103413292B (en) Based on the hyperspectral image nonlinear abundance estimation method of constraint least square
CN112712034B (en) Unmixing method and system for hyperspectral image
CN104978573A (en) Non-negative matrix factorization method applied to hyperspectral image processing
Wang et al. Low-rank tensor completion pansharpening based on haze correction
CN107316309A (en) High spectrum image conspicuousness object detection method based on matrix decomposition
CN118072186B (en) A mineral identification and classification method based on hyperspectral unmixing technology
CN115082337A (en) Hyperspectral mixed noise removing method based on double total variation
Chen et al. Spectral unmixing using a sparse multiple-endmember spectral mixture model
CN114021372A (en) Moon surface mineral quantitative analysis method and system based on moon hyperspectral data
CN116403046A (en) Hyperspectral image classification device and method
CN104268561A (en) Hyperspectral image mixing eliminating method based on structure prior low rank representation
CN115272093A (en) A hyperspectral image unmixing method based on spatial structure information constraints
CN117876250A (en) A hyperspectral image denoising method based on low-rank tensor dual-factor joint optimization
CN113421198A (en) Hyperspectral image denoising method based on subspace non-local low-rank tensor decomposition
CN105957112A (en) Hyper-spectral sub pixel detection method based on fast UNCLS
CN108734672B (en) Hyperspectral data unmixing method based on spectral library cutting and collaborative sparse regression
CN110706212A (en) Mineralization alteration information extraction method, terminal equipment and storage medium
CN114596482A (en) A Nonlinear Unmixing Method for Hyperspectral Images Based on Extended Multilinear Mixing Model

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant