[go: up one dir, main page]

CN113084797B - A Dynamic Cooperative Control Method of Dual-Arm Redundant Manipulators Based on Task Decomposition - Google Patents

A Dynamic Cooperative Control Method of Dual-Arm Redundant Manipulators Based on Task Decomposition Download PDF

Info

Publication number
CN113084797B
CN113084797B CN202110269727.XA CN202110269727A CN113084797B CN 113084797 B CN113084797 B CN 113084797B CN 202110269727 A CN202110269727 A CN 202110269727A CN 113084797 B CN113084797 B CN 113084797B
Authority
CN
China
Prior art keywords
arm
arms
control
speed
dual
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110269727.XA
Other languages
Chinese (zh)
Other versions
CN113084797A (en
Inventor
张勤
刘丰溥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN202110269727.XA priority Critical patent/CN113084797B/en
Publication of CN113084797A publication Critical patent/CN113084797A/en
Application granted granted Critical
Publication of CN113084797B publication Critical patent/CN113084797B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • B25J9/1664Programme controls characterised by programming, planning systems for manipulators characterised by motion, path, trajectory planning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • B25J9/1664Programme controls characterised by programming, planning systems for manipulators characterised by motion, path, trajectory planning
    • B25J9/1666Avoiding collision or forbidden zones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1679Programme controls characterised by the tasks executed
    • B25J9/1682Dual arm manipulator; Coordination of several manipulators

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)

Abstract

The invention discloses a dynamic cooperative control method of double-arm redundant mechanical arms based on task decomposition, which comprises the following steps: giving a target task of two arms; selecting a plurality of characteristic points for the two arms; establishing a kinematic equation of a double-arm system, and solving the position and the speed of a control point of a double arm; establishing a self-obstacle avoidance task of two arms through a control point, establishing a joint speed general solution equation of the redundant mechanical arm, and adding a dynamic decision factor and the self-obstacle avoidance task of the two arms; until both arms complete the target task. The dynamic decision control method for redundant double-arm kinematics task decomposition is realized, and different control strategies can be adopted according to the real-time motion states of double arms, so that the double arms can complete given target tasks on the basis of ensuring safety.

Description

一种基于任务分解的双臂冗余机械臂动态协同控制方法A Dynamic Cooperative Control Method of Dual-Arm Redundant Manipulators Based on Task Decomposition

技术领域technical field

本发明属于双臂机器人的决策控制技术领域,涉及一种基于任务分解的双臂冗余机械臂动态协同控制方法。The invention belongs to the technical field of decision-making control of a dual-arm robot, and relates to a dynamic cooperative control method of dual-arm redundant mechanical arms based on task decomposition.

背景技术Background technique

随着科技的发展和工业生产的进步,单机械臂系统往往难以满足机器人的自动化、智能化要求,双冗余机械臂系统凭借其高适应性、强协作性与高灵活性被作为机器人研究的重点之一。因为双臂系统存在的操作空间重叠的问题,双臂协调与避碰方法的研究是双臂系统的重点。With the development of science and technology and the progress of industrial production, it is often difficult for a single manipulator system to meet the automation and intelligence requirements of robots. The dual redundant manipulator system is used as a research tool for robotics due to its high adaptability, strong collaboration and high flexibility. One of the key points. Because of the problem of overlapping operating spaces in the dual-arm system, the research on dual-arm coordination and collision avoidance methods is the focus of the dual-arm system.

目前,针对双臂的协调控制问题,已经有多种方法和策略。很多研究的重点在运动控制的过程中,让双臂保持合理的安全距离;或者在可行空间中求取一条无碰路径。针对双臂自避障的问题求解,目前有以下解决办法:At present, there are many methods and strategies for the coordinated control of the arms. The focus of many studies is to keep the arms at a reasonable safe distance during the motion control process; or to find a collision-free path in the feasible space. To solve the problem of self-obstacle avoidance with both arms, there are currently the following solutions:

(1)在构型空间中规划一条从起点到终点的无碰路径;(1) Plan a collision-free path from the start point to the end point in the configuration space;

(2)将初始的规划路径归一化,建立协调空间,改变路径点上的速度使双臂在发生碰撞前互相避让;(2) Normalize the initial planned path, establish a coordination space, and change the speed on the path point to make the arms avoid each other before collision;

(3)将双臂之间的距离作为运动控制的限制条件,维持双臂的安全距离;(3) The distance between the arms is used as the limiting condition for motion control to maintain a safe distance between the arms;

(4)为双臂建立势场,双臂之间互有斥力,引导双臂保持较为安全的距离。(4) A potential field is established for the arms, and there is mutual repulsion between the arms, which guides the arms to maintain a relatively safe distance.

但是,在上述方法中,多自由度的双臂系统在构型空间与协调空间存在高维计算的问题。多自由度机械臂系统具有较高的计算复杂度,难以满足实时控制的及时性要求;限制双臂距离函数仅仅考虑了双臂之间的相对距离,没有将相对速度作为考虑内容,在机械臂高速运行时,难以避免高速迫近发生碰撞的特殊情况。吴长征等人在《双臂机器人自碰撞检测及其运动规划》中提出了一种基于空间向量几何距离的机械臂自碰撞检测的方法,并通过改进的人工势场法,将线性斥力作为算子进行自避障规划。构造势场等方法通过对机械臂连杆的积分构建相应的场函数,将场函数作为机械臂控制的依据。一方面三维空间下构建场提高了计算复杂度,另一方面势场法存在使机械臂陷入局部极小值的问题,最终难以完成任务。针对上述问题,本方法一方面将双臂之间的相对速度作为控制依据之一,可应对双臂之间高速迫近的危险情况;另一方面直接在工作空间构造避障任务,避免了场函数或其他空间的转化,提高了规划效率,增强了机械臂控制的实时性。However, in the above method, the multi-degree-of-freedom dual-arm system has high-dimensional calculation problems in configuration space and coordination space. The multi-degree-of-freedom manipulator system has high computational complexity, and it is difficult to meet the timeliness requirements of real-time control; the distance function of the restricted arms only considers the relative distance between the arms, and does not take the relative speed as a consideration. When running at high speed, it is difficult to avoid the special situation of impending collision at high speed. Wu Changzheng and others proposed a method of self-collision detection of manipulators based on space vector geometric distance in "Self-collision detection and motion planning of dual-arm robots", and through the improved artificial potential field method, the linear repulsion is used as the algorithm The child performs self-obstacle avoidance planning. Methods such as constructing the potential field construct the corresponding field function by integrating the connecting rod of the manipulator, and use the field function as the basis for the control of the manipulator. On the one hand, the construction field in three-dimensional space increases the computational complexity; on the other hand, the potential field method has the problem of causing the manipulator to fall into a local minimum, and it is difficult to complete the task in the end. In view of the above problems, on the one hand, this method uses the relative speed between the two arms as one of the control basis, which can deal with the dangerous situation of approaching high speed between the two arms; on the other hand, it directly constructs the obstacle avoidance task in the workspace, avoiding the Or the transformation of other spaces, which improves the planning efficiency and enhances the real-time performance of the manipulator control.

发明内容Contents of the invention

本发明的目的在于克服上述现有技术的缺点,提供一种基于任务分解的双臂冗余机械臂动态协同控制方法。The purpose of the present invention is to overcome the above-mentioned shortcomings of the prior art, and provide a dynamic cooperative control method for dual-arm redundant manipulators based on task decomposition.

本发明至少通过如下技术方案之一实现。The present invention is realized through at least one of the following technical solutions.

一种基于任务分解的双臂冗余机械臂动态协同控制方法,包括以下步骤:A method for dynamic cooperative control of dual-arm redundant manipulators based on task decomposition, comprising the following steps:

步骤1、给定双臂各自的目标任务;Step 1, given the respective target tasks of both arms;

步骤2、在双臂设置多个特征点,表示双臂所在的空间位置;Step 2. Set multiple feature points on the arms to indicate the spatial position of the arms;

步骤3、建立双臂系统的运动学方程,求解特征点的空间位置并相应确定控制点的空间位置,获取双臂控制点空间速度;Step 3. Establish the kinematic equation of the dual-arm system, solve the spatial position of the feature point and determine the spatial position of the control point accordingly, and obtain the spatial velocity of the dual-arm control point;

步骤4、确定双臂的自避障任务,建立冗余机械臂的关节速度通解方程,并加入动态决策因子和双臂的自避障任务;Step 4. Determine the self-obstacle avoidance task of both arms, establish the joint velocity general solution equation of the redundant mechanical arm, and add dynamic decision factors and the self-obstacle avoidance task of both arms;

步骤5、判断双臂是否完成目标任务,如未完成,至步骤3。Step 5. Determine whether the arms have completed the target task, if not, go to step 3.

优选的,步骤1具体为:给定机械臂末端在笛卡尔空间的目标位置:Preferably, step 1 is specifically: given the target position of the end of the manipulator in Cartesian space:

[xd,yd,zd][x d ,y d ,z d ]

其中,xd,yd,zd分别为机械臂基座坐标系下的三维坐标值。Among them, x d , y d , z d are the three-dimensional coordinate values in the coordinate system of the base of the manipulator, respectively.

优选的,步骤2具体为:在双臂的关节与连杆处设定多个特征点,在机械臂的各个关节中心处设置特征点,并在机械臂的前三个连杆的中心处设置特征点。Preferably, step 2 is specifically: setting multiple feature points at the joints and connecting rods of the arms, setting feature points at the centers of each joint of the mechanical arm, and setting the feature points at the centers of the first three connecting rods of the mechanical arm Feature points.

优选的,确定控制点的空间位置具体如下:Preferably, determining the spatial position of the control point is specifically as follows:

以某一侧臂基座坐标系作为参考坐标系,通过正运动学方程获得双臂2n个特征点的位置,用Pri(i=1,2,…,n)代表该侧臂第i个特征点的位置,n表示特征点数量,用Plj(j=1,2,…,n)代表另一侧臂臂第j个特征点的位置:Taking the base coordinate system of a certain side arm as the reference coordinate system, the positions of the 2n feature points of the double arm are obtained through the positive kinematic equation, and P ri (i=1,2,...,n) represents the i-th point of the side arm The position of the feature point, n represents the number of feature points, and P lj (j=1,2,...,n) represents the position of the jth feature point of the other side arm:

Pri=fri(qr)=(xri,yri,zri)P ri =f ri (q r )=(x ri ,y ri ,z ri )

fri(·)为点Pri处的正运动学公式,qr为该侧臂的关节角度向量,(xri,yri,zri)为Pri的三维空间坐标值;f ri (·) is the forward kinematics formula at point P ri , q r is the joint angle vector of the side arm, (x ri , y ri , z ri ) is the three-dimensional space coordinate value of P ri ;

Pli=fli(ql)+[0,L,0]=(xli,yli,zli)P li =f li (q l )+[0,L,0]=(x li ,y li ,z li )

fli(·)为点Pli处的正运动学公式,ql为另一侧臂的关节角度向量,(xli,yli,zli)为Pli的坐标值;计算双臂各个特征点之间的距离,用dij代表一侧臂第i个特征点和另一侧臂第j个特征点之间的距离:f li (·) is the forward kinematics formula at point P li , q l is the joint angle vector of the other arm, (x li , y li , z li ) is the coordinate value of P li ; calculate the characteristics of both arms The distance between points, use d ij to represent the distance between the i-th feature point of one side arm and the j-th feature point of the other side arm:

dij=‖Pri-Pljd ij =‖P ri -P lj

维护一个n×n的距离为D,并选定双臂特征点距离最短的两个特征点作为双臂的控制点,用Pr代表一侧臂的控制点位置,用Pl代表另一侧臂的控制点位置。Maintain a distance of n×n as D, and select the two feature points with the shortest distance between the feature points of the arms as the control points of the arms, use P r to represent the control point position of one arm, and use P l to represent the other side The control point position of the arm.

优选的,步骤3中,通过雅可比矩阵获取双臂控制点空间速度。Preferably, in step 3, the space velocity of the dual-arm control point is obtained through the Jacobian matrix.

优选的,获取双臂控制点空间速度具体为:Preferably, to obtain the space velocity of the dual-arm control point is specifically:

通过双臂的关节速度向量和控制点处的雅可比矩阵,获得控制点处的笛卡尔空间速度,用vr代表一侧臂的控制点速度,用vl代表另一侧臂的控制点速度:Through the joint velocity vector of both arms and the Jacobian matrix at the control point, the Cartesian space velocity at the control point is obtained, v r represents the control point velocity of one arm, and v l represents the control point velocity of the other arm :

Figure BDA0002973759400000031
Figure BDA0002973759400000031

Figure BDA0002973759400000032
Figure BDA0002973759400000032

其中,Jr和Jl分别为Pr与Pl的雅可比矩阵,

Figure BDA0002973759400000033
Figure BDA0002973759400000034
分别为双臂此时的关节速度向量。Among them, J r and J l are the Jacobian matrix of P r and P l respectively,
Figure BDA0002973759400000033
and
Figure BDA0002973759400000034
are the joint velocity vectors of both arms at this time.

优选的,所述步骤4具体为:Preferably, the step 4 is specifically:

确定两个控制点的相对位置向量PaDetermine the relative position vector P a of two control points:

Pa=Pr-Pl P a =P r -P l

设定回退速度为vb,扩大双臂控制点距离的速度,速度方向与相对位置向量方向相同,速度的大小随着控制点距离变化:Set the retreat speed as v b , expand the speed of the distance between the control points of the arms, the direction of the speed is the same as the direction of the relative position vector, and the magnitude of the speed changes with the distance of the control points:

Figure BDA0002973759400000035
Figure BDA0002973759400000035

式中,d表示双臂控制点之间的空间距离,γb控制避障速度随d变化的快慢,σb为避障速度开始产生作用的控制阈值;In the formula, d represents the spatial distance between the control points of the two arms, γ b controls the speed of the obstacle avoidance speed changing with d, and σ b is the control threshold at which the obstacle avoidance speed starts to work;

确定两个控制点的相对速度向量vaDetermine the relative velocity vector v a of two control points:

va=vl-vr v a =v l -v r

相对位置向量与相对速度向量之间的夹角

Figure BDA0002973759400000036
The angle between the relative position vector and the relative velocity vector
Figure BDA0002973759400000036

Figure BDA0002973759400000037
Figure BDA0002973759400000037

设定闪避速度vd,当一侧臂持续迫近时,另一侧臂相应的控制点产生向侧面闪避的速度,其方向正交于相对位置向量和相对速度向量,其大小随着控制点距离变化:Set the dodge speed v d , when one side arm continues to approach, the corresponding control point of the other side arm produces a sideways dodge speed, its direction is orthogonal to the relative position vector and relative speed vector, and its magnitude varies with the distance from the control point Variety:

Figure BDA0002973759400000038
Figure BDA0002973759400000038

式中,γd控制动态决策因子随d变化的快慢,γd为动态决策因子开始产生作用的控制阈值参数;In the formula, γ d controls the speed at which the dynamic decision-making factor changes with d, and γ d is the control threshold parameter at which the dynamic decision-making factor starts to take effect;

将回退速度与闪避速度相加获得躲避速度vhAdd the retreat speed and dodge speed to get the dodge speed v h :

vh=vb+vd v h =v b +v d

通过控制点的雅可比矩阵将躲避速度映射到关节空间

Figure BDA0002973759400000041
Map evasion velocities to joint space via the Jacobian matrix of the control points
Figure BDA0002973759400000041

Figure BDA0002973759400000042
Figure BDA0002973759400000042

式中

Figure BDA0002973759400000043
为控制点的雅可比矩阵的广义逆矩阵;In the formula
Figure BDA0002973759400000043
is the generalized inverse matrix of the Jacobian matrix of the control points;

对于冗余机械臂,假设其自由度为m,其第i个关节角度为qi(i=1,2,…,m),对应关节角度向量为q,完成目标轨迹yd所需关节速度的通解为:For redundant manipulators, assuming that its degree of freedom is m, its i-th joint angle is q i (i=1, 2, ..., m), the corresponding joint angle vector is q, and the joint speed required to complete the target trajectory y d The general solution is:

Figure BDA0002973759400000044
Figure BDA0002973759400000044

式中,J为目标轨迹yd对应的雅可比矩阵,J+为J的广义逆矩阵,Im为m阶单位矩阵,k为任意的m维空间矢量,

Figure BDA0002973759400000045
为目标轨迹的微分函数。In the formula, J is the Jacobian matrix corresponding to the target trajectory y d , J + is the generalized inverse matrix of J, I m is the m-order unit matrix, k is an arbitrary m-dimensional space vector,
Figure BDA0002973759400000045
is the differential function of the target trajectory.

优选的,所述加入动态决策因子α为:Preferably, the added dynamic decision factor α is:

Figure BDA0002973759400000046
Figure BDA0002973759400000046

其中动态决策因子α为:Among them, the dynamic decision factor α is:

Figure BDA0002973759400000047
Figure BDA0002973759400000047

式中,d表示双臂控制点之间的空间距离,γ控制动态决策因子随d变化的快慢,σ为动态决策因子开始产生作用的控制阈值;In the formula, d represents the spatial distance between the control points of the two arms, γ controls the speed at which the dynamic decision-making factor changes with d, and σ is the control threshold at which the dynamic decision-making factor begins to work;

将机械臂实现自避障动作时各轴关节的角速度作为机械臂运动的子运动:The angular velocity of each axis joint when the robot arm realizes the self-obstacle avoidance action is taken as the sub-motion of the robot arm movement:

Figure BDA0002973759400000048
Figure BDA0002973759400000048

优选的,机械臂的当前位置与目标位置的误差在阈值内,则说明双臂完成目标任务,如果机械臂的当前位置与目标位置的误差超过阈值,则返回步骤3。Preferably, if the error between the current position of the robotic arm and the target position is within the threshold, it means that both arms have completed the target task. If the error between the current position of the robotic arm and the target position exceeds the threshold, return to step 3.

优选的,所述步骤5具体为:Preferably, the step 5 is specifically:

通过正运动学方程获取机械臂的当前位置与姿态:Obtain the current position and attitude of the robotic arm through the forward kinematics equation:

Pe=fe(q)=[xe,ye,ze]P e =f e (q)=[x e ,y e ,z e ]

其中,Pe是机械臂末端的位置,fe(·)为机械臂末端的正运动学公式,q为机械臂当前的关节角度向量,[xe,ye,ze]为Pe的空间坐标值;Among them, P e is the position of the end of the manipulator, f e ( ) is the forward kinematics formula of the end of the manipulator, q is the current joint angle vector of the manipulator, [x e , y e , z e ] is the value of P e Space coordinate value;

给定误差阈值∈,如果机械臂的当前位置与目标位置的误差在阈值内:Given an error threshold ∈, if the error between the current position of the manipulator and the target position is within the threshold:

Figure BDA0002973759400000051
Figure BDA0002973759400000051

控制结束,如果机械臂的当前位置与目标位置的误差超过阈值:Control ends, if the error between the current position of the robot arm and the target position exceeds the threshold:

Figure BDA0002973759400000052
Figure BDA0002973759400000052

回至步骤3。Go back to step 3.

与现有技术相比,本发明具有以下有益效果:Compared with the prior art, the present invention has the following beneficial effects:

通过多个特征点代表机械臂的空间位置,简化了多连杆结构的空间表达。综合考虑双臂控制点的相对距离和相对速度,建立双臂的自避障任务。利用动态决策因子,使双臂在不同情况下实现不同的控制策略。The space position of the manipulator is represented by multiple feature points, which simplifies the space expression of the multi-link structure. Considering the relative distance and relative speed of the control points of the dual arms, the self-obstacle avoidance task of the dual arms is established. Using dynamic decision-making factors, the arms can implement different control strategies in different situations.

附图说明Description of drawings

图1为本实例的机械臂构型图;Fig. 1 is the mechanical arm configuration diagram of this example;

图2为本实例的双臂特征点选取示意图;Fig. 2 is a schematic diagram of the feature point selection of the arms in this example;

图3为实例1在使用任务分解的动态决策控制方法时的右臂各关节角度位置仿真结果示意图;3 is a schematic diagram of the simulation results of the angle positions of the joints of the right arm when using the dynamic decision-making control method of task decomposition in Example 1;

图4为实例1在使用任务分解的动态决策控制方法时的左臂各关节角度位置仿真结果示意图;4 is a schematic diagram of the simulation results of the angle positions of the joints of the left arm when using the dynamic decision-making control method of task decomposition in Example 1;

图5为实例1在不使用任务分解的动态决策控制方法时的右臂关节各角度位置仿真结果示意图;5 is a schematic diagram of the simulation results of the angle positions of the right arm joints when the dynamic decision-making control method of task decomposition is not used in Example 1;

图6为实例1在不使用任务分解的动态决策控制方法时的左臂关节各角度位置仿真结果示意图;6 is a schematic diagram of the simulation results of the angle positions of the left arm joints when the dynamic decision-making control method of task decomposition is not used in Example 1;

图7为实例1在使用任务分解的动态决策控制方法时双臂最短距离示意图;Fig. 7 is a schematic diagram of the shortest distance of both arms when using the dynamic decision-making control method of task decomposition in Example 1;

图8为实例1在不使用任务分解的动态决策控制方法时双臂最短距离示意图;Fig. 8 is a schematic diagram of the shortest distance of both arms when the dynamic decision-making control method of task decomposition is not used in Example 1;

图9为实例1在使用任务分解的动态决策控制方法时右臂末端位置示意图;Fig. 9 is a schematic diagram of the position of the end of the right arm when using the dynamic decision-making control method of task decomposition in Example 1;

图10为实例2双臂位置示意图;Figure 10 is a schematic diagram of the position of the arms of Example 2;

图11为实例2在使用任务分解的动态决策控制方法时双臂位置实线示意图;Figure 11 is a schematic diagram of the solid line of the position of the arms when using the dynamic decision-making control method of task decomposition in Example 2;

图12为实例2在不使用任务分解的动态决策控制方法时双臂位置虚线示意图;Figure 12 is a schematic diagram of the dotted line of the position of the arms when the dynamic decision-making control method of task decomposition is not used in Example 2;

图13为实例2在不使用任务分解的动态决策控制方法时双臂位置示意图;Figure 13 is a schematic diagram of the position of the arms when the dynamic decision-making control method of task decomposition is not used in Example 2;

图14为实例2在不使用任务分解的动态决策控制方法时双臂末端位置示意图;Figure 14 is a schematic diagram of the position of the ends of the arms when the dynamic decision-making control method of task decomposition is not used in Example 2;

图15为实例2在使用任务分解的动态决策控制方法时双臂末端位置图;Figure 15 is a diagram of the position of the ends of the arms when using the dynamic decision-making control method of task decomposition in Example 2;

图16为实例2在使用任务分解的动态决策控制方法时双臂末端位置示意图;16 is a schematic diagram of the position of the ends of the arms when using the dynamic decision-making control method of task decomposition in Example 2;

图17为实例3在使用任务分解的动态决策控制方法时双臂末端位置示意图;17 is a schematic diagram of the position of the ends of the arms when using the dynamic decision-making control method of task decomposition in Example 3;

图18为实例3在使用任务分解的动态决策控制方法时双臂末端位置示意图;Figure 18 is a schematic diagram of the position of the ends of the arms when using the dynamic decision-making control method of task decomposition in Example 3;

图19为实例3在不使用任务分解的动态决策控制方法时双臂末端位置示意图;Figure 19 is a schematic diagram of the position of the ends of the arms when the dynamic decision-making control method of task decomposition is not used in Example 3;

图20为实例3在不使用任务分解的动态决策控制方法时双臂末端位置示意图;Figure 20 is a schematic diagram of the position of the ends of the arms when the dynamic decision-making control method of task decomposition is not used in Example 3;

图21为实例3在不使用任务分解的动态决策控制方法时双臂末端位置示意图;Figure 21 is a schematic diagram of the position of the ends of the arms when the dynamic decision-making control method of task decomposition is not used in Example 3;

图22为实例3在使用任务分解的动态决策控制方法时双臂末端位置示意图;Figure 22 is a schematic diagram of the position of the ends of the arms when using the dynamic decision-making control method of task decomposition in Example 3;

图23为实例3在使用任务分解的动态决策控制方法时双臂末端位置示意图;Figure 23 is a schematic diagram of the position of the ends of the arms when using the dynamic decision-making control method of task decomposition in Example 3;

图24为实例4在使用任务分解的动态决策控制方法时双臂末端位置示意图;Figure 24 is a schematic diagram of the position of the ends of the arms when using the dynamic decision-making control method of task decomposition in Example 4;

图25为实例4在使用任务分解的动态决策控制方法时双臂末端位置示意图;Figure 25 is a schematic diagram of the position of the ends of the arms when using the dynamic decision-making control method of task decomposition in Example 4;

图26为实例4在不使用任务分解的动态决策控制方法时双臂末端位置示意图;Figure 26 is a schematic diagram of the position of the ends of the arms when the dynamic decision-making control method of task decomposition is not used in Example 4;

图27为实例4在不使用任务分解的动态决策控制方法时双臂末端位置示意图;Figure 27 is a schematic diagram of the position of the ends of the arms when the dynamic decision-making control method of task decomposition is not used in Example 4;

图28为实例4在不使用任务分解的动态决策控制方法时双臂末端位置示意图;Figure 28 is a schematic diagram of the position of the ends of the arms when the dynamic decision-making control method of task decomposition is not used in Example 4;

图29为实例4在使用任务分解的动态决策控制方法时双臂末端位置示意图;Figure 29 is a schematic diagram of the position of the ends of the arms when using the dynamic decision-making control method of task decomposition in Example 4;

图30为实例4在使用任务分解的动态决策控制方法时双臂末端位置示意图。Fig. 30 is a schematic diagram of the position of the ends of the arms when the dynamic decision-making control method of task decomposition is used in Example 4.

具体实施方式Detailed ways

下面将结合本发明实施例中的附图,对本发明实施例进行清晰、完整地描述。The embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention.

如图1和图2所示,本实施例一种基于任务分解的双臂冗余机械臂动态协同控制方法,包括以下步骤:As shown in Figures 1 and 2, a method for dynamic cooperative control of dual-arm redundant manipulators based on task decomposition in this embodiment includes the following steps:

步骤1、给定双臂各自的目标任务,即给定机械臂末端在笛卡尔空间的目标位置:Step 1. Given the respective target tasks of both arms, that is, the target position of the end of the given manipulator in Cartesian space:

[xd,yd,zd][x d ,y d ,z d ]

其中,xd,yd,zd分别为机械臂基座坐标系下的三维坐标值。Among them, x d , y d , and z d are the three-dimensional coordinate values in the coordinate system of the base of the manipulator, respectively.

步骤2、在双臂的关节与连杆处设定多个特征点,在机械臂的各个关节中心处设置特征点,并在较长连杆的中心处设置特征点。特征点近似表示双臂所在的空间位置,多个特征点作为双臂系统的空间表达。Step 2. Set multiple feature points at the joints and connecting rods of the arms, set feature points at the center of each joint of the robot arm, and set feature points at the center of the longer connecting rod. The feature points approximately represent the spatial position of the dual arm, and multiple feature points serve as the spatial expression of the dual arm system.

步骤3、建立双臂系统的运动学方程,求解特征点的空间位置并确定控制点的空间位置,通过雅可比矩阵获取双臂控制点空间速度,具体为:Step 3. Establish the kinematic equation of the dual-arm system, solve the spatial position of the feature point and determine the spatial position of the control point, and obtain the spatial velocity of the dual-arm control point through the Jacobian matrix, specifically:

以右臂基座坐标系作为参考坐标系,通过正运动学方程获得双臂各个特征点的位置:Taking the base coordinate system of the right arm as the reference coordinate system, the position of each feature point of the double arm is obtained through the positive kinematic equation:

Pri=fri(qr)=(xri,yri,zri)P ri = f ri (q r ) = (x ri , y ri , z ri )

其中,(xri,yri,zri)为点Pri的三维空间坐标值,fri(·)为点Pri处的正运动学公式,qr为右臂的关节向量,Pri(i=1,2,…,n)代表右臂第i个特征点的位置,n表示特征点的数量,用Plj(j=1,2,…,n)代表左臂第j个特征点的位置:Among them, (x ri , y ri , z ri ) is the three-dimensional space coordinate value of point P ri , f ri ( ) is the positive kinematics formula at point P ri , q r is the joint vector of the right arm, P ri ( i=1, 2,...,n) represents the position of the i-th feature point on the right arm, n represents the number of feature points, and P lj (j=1, 2,...,n) represents the j-th feature point on the left arm s position:

Pli=fli(ql)+[0,L,0]=(xli,yli,zli)P li =f li (q l )+[0, L, 0]=(x li , y li , z li )

其中,fli(·)为点Pli处的正运动学公式,ql为左臂的关节向量,(xli,yli,zli)为Pli的三维空间坐标值。Among them, f li (·) is the forward kinematics formula at point P li , q l is the joint vector of the left arm, (x li , y li , z li ) is the three-dimensional space coordinate value of P li .

计算双臂各个特征点之间的距离,用dij代表右臂第i个特征点和左臂第j个特征点之间的距离:Calculate the distance between each feature point of both arms, and use d ij to represent the distance between the i-th feature point of the right arm and the j-th feature point of the left arm:

dij=‖Pri-Pljd ij =‖P ri -P lj

维护一个n×n的距离为D,并选定双臂特征点距离最短的两个特征点作为双臂的控制点,用Pr代表右臂的控制点位置,用Pl代表左臂的控制点位置。Maintain a distance of n×n as D, and select the two feature points with the shortest distance between the feature points of the arms as the control points of the arms, use P r to represent the control point position of the right arm, and use P l to represent the control point of the left arm point location.

通过此时双臂的关节速度向量和控制点处的雅可比矩阵,可获得控制点处的笛卡尔空间速度:The Cartesian space velocity at the control point can be obtained by the joint velocity vector of the arms at this time and the Jacobian matrix at the control point:

Figure BDA0002973759400000071
Figure BDA0002973759400000071

Figure BDA0002973759400000072
Figure BDA0002973759400000072

其中,Jr和Jl分别为Pr与Pl的雅可比矩阵,

Figure BDA0002973759400000073
Figure BDA0002973759400000074
分别为右臂与左臂此时的关节速度向量,vr代表右臂的控制点速度,vl代表左臂的控制点速度。Among them, J r and J l are the Jacobian matrix of P r and P l respectively,
Figure BDA0002973759400000073
and
Figure BDA0002973759400000074
are the joint velocity vectors of the right arm and the left arm at this time, v r represents the control point velocity of the right arm, and v l represents the control point velocity of the left arm.

步骤4、确定双臂的自避障任务,建立冗余机械臂的关节速度通解方程,并加入动态决策因子和双臂的自避障任务,具体为:Step 4. Determine the self-obstacle avoidance task of both arms, establish the joint velocity general solution equation of the redundant manipulator, and add the dynamic decision-making factor and the self-obstacle avoidance task of both arms, specifically:

确定两个控制点的相对位置向量PaDetermine the relative position vector P a of two control points:

Pa=Pr-Pl P a =P r -P l

设定回退速度vb:扩大双臂控制点距离的速度。其方向与相对位置向量相同,其大小随着控制点距离变化:Set the retreat speed v b : the speed of expanding the distance between the control points of both arms. Its direction is the same as the relative position vector, and its magnitude varies with the control point distance:

Figure BDA0002973759400000075
Figure BDA0002973759400000075

式中,d表示双臂控制点之间的空间距离,γb控制避障速度随d变化的快慢,σb为避障速度开始产生作用的控制阈值;In the formula, d represents the spatial distance between the control points of the two arms, γ b controls the speed of the obstacle avoidance speed changing with d, and σ b is the control threshold at which the obstacle avoidance speed starts to work;

确定两个控制点的相对速度向量vaDetermine the relative velocity vector v a of two control points:

va=vl-vr v a =v l -v r

相对位置向量与相对速度向量之间的夹角

Figure BDA0002973759400000081
The angle between the relative position vector and the relative velocity vector
Figure BDA0002973759400000081

Figure BDA0002973759400000082
Figure BDA0002973759400000082

设定闪避速度vd:向侧面闪避持续迫近的左臂控制点。其方向正交于相对位置向量和相对速度向量,其大小随着控制点距离变化:Set dodge speed v d : Dodge sideways to the approaching left arm control point. Its direction is orthogonal to the relative position vector and relative velocity vector, and its magnitude varies with the distance from the control point:

Figure BDA0002973759400000083
Figure BDA0002973759400000083

式中,d表示双臂控制点之间的空间距离,γb控制避障速度随d变化的快慢,σb为避障速度开始产生作用的控制阈值。In the formula, d represents the spatial distance between the control points of the two arms, γ b controls the speed of the obstacle avoidance speed changing with d, and σ b is the control threshold at which the obstacle avoidance speed starts to work.

将回退速度与闪避速度相加获得躲避速度vhAdd the retreat speed and dodge speed to get the dodge speed v h :

vh=vb+vd v h =v b +v d

通过控制点的雅可比矩阵将躲避速度映射到关节空间

Figure BDA0002973759400000084
Map evasion velocities to joint space via the Jacobian matrix of the control points
Figure BDA0002973759400000084

Figure BDA0002973759400000085
Figure BDA0002973759400000085

式中

Figure BDA0002973759400000086
为控制点的雅可比矩阵的广义逆矩阵。In the formula
Figure BDA0002973759400000086
is the generalized inverse of the Jacobian matrix for the control points.

对于冗余机械臂,假设其自由度为m,其第i个关节角度为qi(i=1,2,…,m),对应关节向量为q,完成目标轨迹yd所需关节速度的通解为For redundant manipulators, assuming that its degree of freedom is m, its i-th joint angle is q i (i=1, 2,..., m), the corresponding joint vector is q, and the required joint speed to complete the target trajectory y d is General interpretation is

Figure BDA0002973759400000087
Figure BDA0002973759400000087

式中,J为yd目标轨迹对应的雅可比矩阵,J+为J的广义逆矩阵,Im为m阶单位矩阵,k为任意的m维空间矢量,

Figure BDA0002973759400000088
为目标轨迹的微分函数。In the formula, J is the Jacobian matrix corresponding to the y d target trajectory, J + is the generalized inverse matrix of J, I m is the m-order unit matrix, k is an arbitrary m-dimensional space vector,
Figure BDA0002973759400000088
is the differential function of the target trajectory.

加入动态决策因子α:Add dynamic decision factor α:

Figure BDA0002973759400000089
Figure BDA0002973759400000089

其中动态决策因子α为:Among them, the dynamic decision factor α is:

Figure BDA00029737594000000810
Figure BDA00029737594000000810

将机械臂实现自避障动作时各轴关节的角速度作为机械臂运动的子运动。The angular velocity of each axis joint when the robot arm realizes the self-obstacle avoidance action is taken as the sub-motion of the robot arm movement.

Figure BDA00029737594000000811
Figure BDA00029737594000000811

步骤5、判断双臂是否完成目标任务,如未完成,至步骤3。Step 5. Determine whether the arms have completed the target task, if not, go to step 3.

通过正运动学方程获取机械臂的当前位置与姿态:Obtain the current position and attitude of the robotic arm through the forward kinematics equation:

Pe=fe(q)=[xe,ye,ze]P e = f e (q) = [x e , y e , z e ]

其中,Pe是机械臂末端的位置,fe(·)为机械臂末端的正运动学公式,q为机械臂当前的关节向量,[xe,ye,ze]为Pe的三维空间坐标值。Among them, P e is the position of the end of the manipulator, f e ( ) is the forward kinematics formula of the end of the manipulator, q is the current joint vector of the manipulator, [x e , y e , z e ] is the three - dimensional Space coordinate value.

给定误差阈值∈,如果机械臂的当前位置与目标位置的误差在一定阈值内:Given an error threshold ∈, if the error between the current position of the robot arm and the target position is within a certain threshold:

Figure BDA0002973759400000091
Figure BDA0002973759400000091

控制方法结束。如果机械臂的当前位置与目标位置的误差超过阈值:The control method ends. If the error between the current position of the robot arm and the target position exceeds the threshold:

Figure BDA0002973759400000092
Figure BDA0002973759400000092

回至步骤3。Go back to step 3.

下面将本发明的方法应用到具体的实例1中:Method of the present invention is applied in concrete example 1 below:

1)给定目标位置:1) Given a target location:

2)左臂目标位置:[0.300;-0.300;0.000],2) Left arm target position: [0.300; -0.300; 0.000],

3)左臂当前位置:3) The current position of the left arm:

4)ql[0.1;-1.27;-1.574;-0.3045;2.854;0.0]→[-0.4930;-0.8244;-1.1924;-0.3680;3.1993;0.0]4) q l [0.1; -1.27; -1.574; -0.3045; 2.854; 0.0] → [-0.4930; -0.8244; -1.1924; -0.3680; 3.1993; 0.0]

5)右臂目标位置:[0.500;0.200;-0.250],5) Right arm target position: [0.500; 0.200; -0.250],

6)右臂当前位置:6) The current position of the right arm:

7)qr[0.538;-0.883;-0.8633;-0.13;2.643;0]→[-0.1959;-0.4492;-1.8690;-1.3579;0.8448;-0.0258]7) q r [0.538; -0.883; -0.8633; -0.13; 2.643; 0] → [-0.1959; -0.4492; -1.8690;

仿真结果如图3、图4、图7中实线、图8和图9所示,通过仿真结果可以看出,当使用冗余双臂运动学任务分解的动态决策控制方法时,双臂在保证安全距离的同时末端都已到达目标位置,保证安全的基础上完成目标任务。如图5、图6、图7中虚线所示,当不使用冗余双臂运动学任务分解的动态决策控制方法时,双臂在运动初期就已经发生了碰撞,无法继续完成任务,运动失败。The simulation results are shown in Fig. 3, Fig. 4, the solid line in Fig. 7, Fig. 8 and Fig. 9. It can be seen from the simulation results that when the dynamic decision-making control method of redundant dual-arm kinematic task decomposition is used, the While ensuring a safe distance, both ends have reached the target position, and the target task is completed on the basis of ensuring safety. As shown by the dotted lines in Figure 5, Figure 6, and Figure 7, when the dynamic decision-making control method of kinematic task decomposition of redundant arms is not used, the arms have already collided at the beginning of the movement, and the task cannot be continued, and the movement fails .

下面将本发明的方法应用到具体的实例2中:Method of the present invention is applied in concrete example 2 below:

1)给定目标位置:1) Given a target location:

2)左臂目标位置:[0.350;-0.260;0.050],2) Left arm target position: [0.350; -0.260; 0.050],

3)左臂当前位置:3) The current position of the left arm:

4)ql[0.1;-1.27;-1.574;-0.3045;2.854;0.0]→[-0.3791;-1.1397;-1.4941;-0.3544;2.8478;0.0]4) q l [0.1; -1.27; -1.574; -0.3045; 2.854; 0.0] → [-0.3791; -1.1397; -1.4941; -0.3544; 2.8478; 0.0]

5)右臂目标位置:[0.500;0.250;-0.200],5) Right arm target position: [0.500; 0.250; -0.200],

6)右臂当前位置:6) The current position of the right arm:

7)qr[0.538;-0.883;-0.8633;-0.13;2.643;0]→[-0.0275;-0.6141;-1.8763;-1.2149;0.9729;-0.0115]7) q r [0.538; -0.883; -0.8633; -0.13; 2.643; 0] → [-0.0275; -0.6141; -1.8763;

仿真结果如图10、图11、图14中实线、图15和图16所示,通过仿真结果可以看出,当使用冗余双臂运动学任务分解的动态决策控制方法时,双臂在保证安全距离的同时末端都已到达目标位置,保证安全的基础上完成目标任务。如图12、图13、图14中虚线所示,当不使用冗余双臂运动学任务分解的动态决策控制方法时,双臂在运动初期就已经发生了碰撞,无法继续完成任务,运动失败。The simulation results are shown in Fig. 10, Fig. 11, the solid line in Fig. 14, Fig. 15 and Fig. 16. From the simulation results, it can be seen that when using the dynamic decision-making control method of redundant dual-arm kinematic task decomposition, the dual-arm While ensuring a safe distance, both ends have reached the target position, and the target task is completed on the basis of ensuring safety. As shown by the dotted lines in Figure 12, Figure 13, and Figure 14, when the dynamic decision-making control method of redundant dual-arm kinematics task decomposition is not used, the arms have already collided in the early stage of motion, and cannot continue to complete the task, and the motion fails .

下面将本发明的方法应用到具体的实例3中:Method of the present invention is applied in concrete example 3 below:

1)给定目标位置:1) Given a target location:

2)左臂目标位置:[0.320;-0.280;0.025],2) Left arm target position: [0.320; -0.280; 0.025],

3)左臂当前位置:3) The current position of the left arm:

4)ql[0.1;-1.27;-1.574;-0.3045;2.854;0.0]→[-0.4866;-1.2512;-1.7589;-0.5077;2.6847;0.0]4) q l [0.1; -1.27; -1.574; -0.3045; 2.854; 0.0] → [-0.4866; -1.2512; -1.7589; -0.5077; 2.6847; 0.0]

5)右臂目标位置:[0.450;0.230;-0.200],5) Right arm target position: [0.450; 0.230; -0.200],

6)右臂当前位置:6) The current position of the right arm:

7)qr[0.538;-0.883;-0.8633;-0.13;2.643;0]→[-0.1263;-0.6679;-2.1252;-1.4080;0.8633;-0.0179]7) q r [0.538; -0.883; -0.8633; -0.13; 2.643; 0] → [-0.1263; -0.6679; -2.1252;

仿真结果如图17、图18、图21中实线、图22和图23所示,通过仿真结果可以看出,当使用冗余双臂运动学任务分解的动态决策控制方法时,双臂在保证安全距离的同时末端都已到达目标位置,保证安全的基础上完成目标任务。如图19、图20、图21中虚线所示,当不使用冗余双臂运动学任务分解的动态决策控制方法时,双臂在运动初期就已经发生了碰撞,无法继续完成任务,运动失败。The simulation results are shown in Fig. 17, Fig. 18, the solid line in Fig. 21, Fig. 22 and Fig. 23. From the simulation results, it can be seen that when the dynamic decision-making control method of redundant dual-arm kinematic task decomposition is used, the dual-arm While ensuring a safe distance, both ends have reached the target position, and the target task is completed on the basis of ensuring safety. As shown by the dotted lines in Figure 19, Figure 20, and Figure 21, when the dynamic decision-making control method of redundant dual-arm kinematic task decomposition is not used, the arms have already collided in the early stage of motion, and cannot continue to complete the task, and the motion fails .

下面将本发明的方法应用到具体的实例4中:Method of the present invention is applied in concrete example 4 below:

1)给定目标位置:1) Given a target location:

2)左臂目标位置:[0.320;-0.260;-0.050],2) Left arm target position: [0.320; -0.260; -0.050],

3)左臂当前位置:3) The current position of the left arm:

4)ql[0.1;-1.27;-1.574;-0.3045;2.854;0.0]→[-0.3855;-0.9143;-1.5747;-0.6605;3.0188;0.0]4) q l [0.1; -1.27; -1.574; -0.3045; 2.854; 0.0] → [-0.3855; -0.9143; -1.5747; -0.6605; 3.0188; 0.0]

5)右臂目标位置:[0.450;0.220;-0.250],5) Right arm target position: [0.450; 0.220; -0.250],

6)右臂当前位置:6) The current position of the right arm:

7)qr[0.538;-0.883;-0.8633;-0.13;2.643;0]→[-0.0956;-0.4515;-2.0497;-1.5670;0.9600;-0.0159]7) q r [0.538; -0.883; -0.8633; -0.13; 2.643; 0] → [-0.0956; -0.4515; -2.0497; -1.5670;

仿真结果如图24、图25、图28中实线、图29和图30所示,通过仿真结果可以看出,当使用冗余双臂运动学任务分解的动态决策控制方法时,双臂在保证安全距离的同时末端都已到达目标位置,保证安全的基础上完成目标任务。如图26、图27、图28中虚线所示,当不使用冗余双臂运动学任务分解的动态决策控制方法时,双臂在运动初期就已经发生了碰撞,无法继续完成任务,运动失败。The simulation results are shown in Figure 24, Figure 25, the solid line in Figure 28, Figure 29 and Figure 30. From the simulation results, it can be seen that when using the dynamic decision-making control method of redundant dual-arm kinematic task decomposition, the dual-arm While ensuring a safe distance, both ends have reached the target position, and the target task is completed on the basis of ensuring safety. As shown by the dotted lines in Figure 26, Figure 27, and Figure 28, when the dynamic decision-making control method of redundant dual-arm kinematic task decomposition is not used, the arms have already collided in the early stage of motion, and cannot continue to complete the task, and the motion fails .

以上内容仅为说明本发明的技术思想,不能以此限定本发明的保护范围,凡是按照本发明提出的技术思想,在技术方案基础上所做的任何改动,均落入本发明权利要求书的保护范围之内。The above content is only to illustrate the technical ideas of the present invention, and cannot limit the protection scope of the present invention. Any changes made on the basis of the technical solutions according to the technical ideas proposed in the present invention shall fall within the scope of the claims of the present invention. within the scope of protection.

Claims (9)

1.一种基于任务分解的双臂冗余机械臂动态协同控制方法,其特征在于,包括以下步骤:1. A dual-arm redundant mechanical arm dynamic cooperative control method based on task decomposition, is characterized in that, comprises the following steps: 步骤1、给定双臂各自的目标任务;Step 1, given the respective target tasks of both arms; 步骤2、在双臂设置多个特征点,表示双臂所在的空间位置;Step 2. Set multiple feature points on the arms to indicate the spatial position of the arms; 步骤3、建立双臂系统的运动学方程,求解特征点的空间位置并相应确定控制点的空间位置,获取双臂控制点空间速度;Step 3. Establish the kinematic equation of the dual-arm system, solve the spatial position of the feature point and determine the spatial position of the control point accordingly, and obtain the spatial velocity of the dual-arm control point; 步骤4、确定双臂的自避障任务,建立冗余机械臂的关节速度通解方程,并加入动态决策因子和双臂的自避障任务;步骤4具体为:Step 4. Determine the self-obstacle avoidance task of both arms, establish the joint velocity general solution equation of the redundant manipulator, and add dynamic decision factors and the self-obstacle avoidance task of both arms; step 4 is specifically: 确定两个控制点的相对位置向量PaDetermine the relative position vector P a of two control points: Pa=Pr-Pl P a =P r -P l 式中,Pr代表一侧臂的控制点位置,用Pl代表另一侧臂的控制点位置In the formula, P r represents the control point position of one arm, and P l represents the control point position of the other arm 设定回退速度为vb,扩大双臂控制点距离的速度,速度方向与相对位置向量方向相同,速度的大小随着控制点距离变化:Set the retreat speed as v b , expand the speed of the distance between the control points of the arms, the direction of the speed is the same as the direction of the relative position vector, and the magnitude of the speed changes with the distance of the control points:
Figure FDA0003835421720000011
Figure FDA0003835421720000011
式中,d表示双臂控制点之间的空间距离,γb控制避障速度随d变化的快慢,σb为避障速度开始产生作用的控制阈值;In the formula, d represents the spatial distance between the control points of the two arms, γ b controls the speed of the obstacle avoidance speed changing with d, and σ b is the control threshold at which the obstacle avoidance speed starts to work; 确定两个控制点的相对速度向量vaDetermine the relative velocity vector v a of two control points: va=vl-vr v a =v l -v r 式中,vr代表一侧臂的控制点速度,vl代表另一侧臂的控制点速度;In the formula, v r represents the control point velocity of one arm, and v l represents the control point velocity of the other arm; 相对位置向量与相对速度向量之间的夹角
Figure FDA0003835421720000012
The angle between the relative position vector and the relative velocity vector
Figure FDA0003835421720000012
Figure FDA0003835421720000013
Figure FDA0003835421720000013
设定闪避速度vd,当一侧臂持续迫近时,另一侧臂相应的控制点产生向侧面闪避的速度,其方向正交于相对位置向量和相对速度向量,其大小随着控制点距离变化:Set the dodge speed v d , when one side arm continues to approach, the corresponding control point of the other side arm produces a sideways dodge speed, its direction is orthogonal to the relative position vector and relative speed vector, and its magnitude varies with the distance from the control point Variety:
Figure FDA0003835421720000014
Figure FDA0003835421720000014
式中,d表示双臂控制点之间的空间距离,γd控制避障速度随d变化的快慢,σd为避障速度开始产生作用的控制阈值;In the formula, d represents the spatial distance between the control points of the two arms, γ d controls the speed at which the obstacle avoidance speed changes with d, and σ d is the control threshold at which the obstacle avoidance speed begins to work; 将回退速度与闪避速度相加获得躲避速度vhAdd the retreat speed and dodge speed to get the dodge speed v h : vh=vb+vd v h =v b +v d 通过控制点的雅可比矩阵将躲避速度映射到关节空间
Figure FDA0003835421720000021
Map evasion velocities to joint space via the Jacobian matrix of the control points
Figure FDA0003835421720000021
Figure FDA0003835421720000022
Figure FDA0003835421720000022
式中
Figure FDA0003835421720000023
为控制点的雅可比矩阵的广义逆矩阵;
In the formula
Figure FDA0003835421720000023
is the generalized inverse matrix of the Jacobian matrix of the control points;
对于冗余机械臂,假设其自由度为m,其第i个关节角度为qi(i=1,2,…,m),对应关节角度向量为q,完成目标轨迹yd所需关节速度的通解为:For a redundant robotic arm, assuming that its degree of freedom is m, its i-th joint angle is q i (i=1,2,…,m), the corresponding joint angle vector is q, and the joint speed required to complete the target trajectory y d The general solution is:
Figure FDA0003835421720000024
Figure FDA0003835421720000024
式中,J为目标轨迹yd对应的雅可比矩阵,J+为J的广义逆矩阵,Im为m阶单位矩阵,k为任意的m维空间矢量,
Figure FDA0003835421720000025
为目标轨迹的微分函数;
In the formula, J is the Jacobian matrix corresponding to the target trajectory y d , J + is the generalized inverse matrix of J, I m is the m-order unit matrix, k is an arbitrary m-dimensional space vector,
Figure FDA0003835421720000025
is the differential function of the target trajectory;
步骤5、判断双臂是否完成目标任务,如未完成,至步骤3。Step 5. Determine whether the arms have completed the target task, if not, go to step 3.
2.根据权利要求1所述的基于任务分解的双臂冗余机械臂动态协同控制方法,其特征在于,步骤1具体为:给定机械臂末端在笛卡尔空间的目标位置:2. The dual-arm redundant manipulator dynamic cooperative control method based on task decomposition according to claim 1, wherein step 1 is specifically: given the target position of the end of the manipulator in Cartesian space: [xd,yd,zd][x d ,y d ,z d ] 其中,xd,yd,zd分别为机械臂基座坐标系下的三维坐标值。Among them, x d , y d , z d are the three-dimensional coordinate values in the coordinate system of the base of the manipulator, respectively. 3.根据权利要求2所述的基于任务分解的双臂冗余机械臂动态协同控制方法,其特征在于,步骤2具体为:在双臂的关节与连杆处设定多个特征点,在机械臂的各个关节中心处设置特征点,并在机械臂的前三个连杆的中心处设置特征点。3. The dynamic cooperative control method of dual-arm redundant manipulators based on task decomposition according to claim 2, wherein step 2 is specifically: setting a plurality of feature points at the joints and connecting rods of both arms, and Set feature points at the centers of each joint of the manipulator, and set feature points at the centers of the first three links of the manipulator. 4.根据权利要求3所述的基于任务分解的双臂冗余机械臂动态协同控制方法,其特征在于,确定控制点的空间位置具体如下:4. the dual-arm redundant manipulator dynamic cooperative control method based on task decomposition according to claim 3, is characterized in that, the spatial position of determining control point is specifically as follows: 以某一侧臂基座坐标系作为参考坐标系,通过正运动学方程获得双臂2n个特征点的位置,用Pri(i=1,2,…,n)代表该侧臂第i个特征点的位置,n表示特征点数量,用Plj(j=1,2,…,n)代表另一侧臂臂第j个特征点的位置:Taking the base coordinate system of a certain side arm as the reference coordinate system, the positions of the 2n feature points of the double arm are obtained through the positive kinematic equation, and P ri (i=1,2,...,n) represents the i-th point of the side arm The position of the feature point, n represents the number of feature points, and P lj (j=1,2,...,n) represents the position of the jth feature point of the other side arm: Pri=fri(qr)=(xri,yri,zri)P ri =f ri (q r )=(x ri ,y ri ,z ri ) fri(·)为点Pri处的正运动学公式,qr为该侧臂的关节角度向量,(xri,yri,zri)为Pri的三维空间坐标值;f ri (·) is the forward kinematics formula at point P ri , q r is the joint angle vector of the side arm, (x ri , y ri , z ri ) is the three-dimensional space coordinate value of P ri ; Pli=fli(ql)+[0,L,0]=(xli,yli,zli)P li =f li (q l )+[0,L,0]=(x li ,y li ,z li ) fli(·)为点Pli处的正运动学公式,ql为另一侧臂的关节角度向量,(xli,yli,zli)为Pli的坐标值;计算双臂各个特征点之间的距离,用dij代表一侧臂第i个特征点和另一侧臂第j个特征点之间的距离:f li (·) is the forward kinematics formula at point P li , q l is the joint angle vector of the other arm, (x li , y li , z li ) is the coordinate value of P li ; calculate the characteristics of both arms The distance between points, use d ij to represent the distance between the i-th feature point of one side arm and the j-th feature point of the other side arm: dij=‖Pri-Pljd ij =‖P ri -P lj 维护一个n×n的距离为D,并选定双臂特征点距离最短的两个特征点作为双臂的控制点,用Pr代表一侧臂的控制点位置,用Pl代表另一侧臂的控制点位置。Maintain a distance of n×n as D, and select the two feature points with the shortest distance between the feature points of the arms as the control points of the arms, use P r to represent the control point position of one arm, and use P l to represent the other side The control point position of the arm. 5.根据权利要求4所述的基于任务分解的双臂冗余机械臂动态协同控制方法,其特征在于,步骤3中,通过雅可比矩阵获取双臂控制点空间速度。5. The dynamic cooperative control method of dual-arm redundant manipulators based on task decomposition according to claim 4, characterized in that, in step 3, the space velocity of the dual-arm control points is obtained through the Jacobian matrix. 6.根据权利要求5所述的基于任务分解的双臂冗余机械臂动态协同控制方法,其特征在于,获取双臂控制点空间速度具体为:6. The dynamic cooperative control method of dual-arm redundant manipulators based on task decomposition according to claim 5, wherein obtaining the spatial velocity of the dual-arm control points is specifically: 通过双臂的关节速度向量和控制点处的雅可比矩阵,获得控制点处的笛卡尔空间速度,用vr代表一侧臂的控制点速度,用vl代表另一侧臂的控制点速度:Through the joint velocity vector of both arms and the Jacobian matrix at the control point, the Cartesian space velocity at the control point is obtained, v r represents the control point velocity of one arm, and v l represents the control point velocity of the other arm :
Figure FDA0003835421720000031
Figure FDA0003835421720000031
Figure FDA0003835421720000032
Figure FDA0003835421720000032
其中,Jr和Jl分别为Pr与Pl的雅可比矩阵,
Figure FDA0003835421720000033
Figure FDA0003835421720000034
分别为双臂此时的关节速度向量。
Among them, J r and J l are the Jacobian matrix of P r and P l respectively,
Figure FDA0003835421720000033
and
Figure FDA0003835421720000034
are the joint velocity vectors of both arms at this time.
7.根据权利要求6所述的基于任务分解的双臂冗余机械臂动态协同控制方法,其特征在于,所述加入动态决策因子α为:7. The dynamic cooperative control method of dual-arm redundant manipulators based on task decomposition according to claim 6, wherein the dynamic decision factor α added is:
Figure FDA0003835421720000035
Figure FDA0003835421720000035
其中动态决策因子α为:Among them, the dynamic decision factor α is:
Figure FDA0003835421720000036
Figure FDA0003835421720000036
式中,d表示双臂控制点之间的空间距离,γ控制动态决策因子随d变化的快慢,σ为动态决策因子开始产生作用的控制阈值;In the formula, d represents the spatial distance between the control points of the two arms, γ controls the speed at which the dynamic decision-making factor changes with d, and σ is the control threshold at which the dynamic decision-making factor begins to work; 将机械臂实现自避障动作时各轴关节的角速度作为机械臂运动的子运动:The angular velocity of each axis joint when the robot arm realizes the self-obstacle avoidance action is taken as the sub-motion of the robot arm movement:
Figure FDA0003835421720000037
Figure FDA0003835421720000037
8.根据权利要求7所述的基于任务分解的双臂冗余机械臂动态协同控制方法,其特征在于,机械臂的当前位置与目标位置的误差在阈值内,则说明双臂完成目标任务,如果机械臂的当前位置与目标位置的误差超过阈值,则返回步骤3。8. The dynamic cooperative control method of dual-arm redundant manipulators based on task decomposition according to claim 7, wherein the error between the current position of the manipulator and the target position is within a threshold, indicating that both arms have completed the target task, If the error between the current position of the robot arm and the target position exceeds the threshold, return to step 3. 9.根据权利要求8所述的基于任务分解的双臂冗余机械臂动态协同控制方法,其特征在于,所述步骤5具体为:9. The dual-arm redundant mechanical arm dynamic cooperative control method based on task decomposition according to claim 8, wherein the step 5 is specifically: 通过正运动学方程获取机械臂的当前位置与姿态:Obtain the current position and attitude of the robotic arm through the forward kinematics equation: Pe=fe(q)=[xe,ye,ze]P e =f e (q)=[x e ,y e ,z e ] 其中,Pe是机械臂末端的位置,fe(·)为机械臂末端的正运动学公式,q为机械臂当前的关节角度向量,[xe,ye,ze]为Pe的空间坐标值;Among them, P e is the position of the end of the manipulator, f e ( ) is the forward kinematics formula of the end of the manipulator, q is the current joint angle vector of the manipulator, [x e , y e , z e ] is the value of P e Space coordinate value; 给定误差阈值∈,如果机械臂的当前位置与目标位置的误差在阈值内:Given an error threshold ∈, if the error between the current position of the manipulator and the target position is within the threshold:
Figure FDA0003835421720000041
Figure FDA0003835421720000041
控制结束,如果机械臂的当前位置与目标位置的误差超过阈值:Control ends, if the error between the current position of the robot arm and the target position exceeds the threshold:
Figure FDA0003835421720000042
Figure FDA0003835421720000042
回至步骤3。Go back to step 3.
CN202110269727.XA 2021-03-12 2021-03-12 A Dynamic Cooperative Control Method of Dual-Arm Redundant Manipulators Based on Task Decomposition Active CN113084797B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110269727.XA CN113084797B (en) 2021-03-12 2021-03-12 A Dynamic Cooperative Control Method of Dual-Arm Redundant Manipulators Based on Task Decomposition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110269727.XA CN113084797B (en) 2021-03-12 2021-03-12 A Dynamic Cooperative Control Method of Dual-Arm Redundant Manipulators Based on Task Decomposition

Publications (2)

Publication Number Publication Date
CN113084797A CN113084797A (en) 2021-07-09
CN113084797B true CN113084797B (en) 2022-11-18

Family

ID=76667053

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110269727.XA Active CN113084797B (en) 2021-03-12 2021-03-12 A Dynamic Cooperative Control Method of Dual-Arm Redundant Manipulators Based on Task Decomposition

Country Status (1)

Country Link
CN (1) CN113084797B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114131606B (en) * 2021-12-07 2024-05-10 亿嘉和科技股份有限公司 Task scheduling method for double-arm inspection robot

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0720915A (en) * 1993-07-06 1995-01-24 Fanuc Ltd Synchronism control method for robot
JP6696341B2 (en) * 2016-07-29 2020-05-20 セイコーエプソン株式会社 Control method
CN108638058B (en) * 2018-04-23 2021-04-30 深圳雪糕侠机器人服务有限公司 Attitude decision dynamic planning method
CN110421556B (en) * 2019-06-14 2022-07-19 河北工业大学 Track planning method for real-time collision avoidance of redundant double-arm service robot and stable operation method

Also Published As

Publication number Publication date
CN113084797A (en) 2021-07-09

Similar Documents

Publication Publication Date Title
US12145277B2 (en) Framework of robotic online motion planning
CN106503373A (en) The method for planning track that a kind of Dual-robot coordination based on B-spline curves is assembled
CN109397271B (en) A 7-DOF anthropomorphic robotic arm and its control method and system
Kabir et al. Generation of synchronized configuration space trajectories of multi-robot systems
US9043030B2 (en) Manipulator and path generation method thereof
WO2023024317A1 (en) Robot obstacle avoidance method and apparatus, and robot
CN107957684A (en) A kind of robot three-dimensional based on pseudo-velocity vector field is without touching method for planning track
CN106844951B (en) A method and system for solving the inverse kinematics of a hyper-redundant robot based on piecewise geometry
CN114589701B (en) Damping least square-based multi-joint mechanical arm obstacle avoidance inverse kinematics method
CN107414825A (en) Industrial robot smoothly captures the motion planning system and method for mobile object
CN111791234A (en) Anti-collision control algorithm for working positions of multiple robots in narrow space
Walker et al. Robot-human handovers based on trust
CN105234930B (en) Control method of motion of redundant mechanical arm based on configuration plane
CN117655468A (en) Portal frame arc welding robot path planning method and system
Yang et al. Collision avoidance trajectory planning for a dual-robot system: Using a modified APF method
CN113084797B (en) A Dynamic Cooperative Control Method of Dual-Arm Redundant Manipulators Based on Task Decomposition
CN108326854A (en) A kind of inverse kinematics method of multi-joint mechanical arm spatial function track movement
Tang et al. Coordinated motion planning of dual-arm space robot with deep reinforcement learning
CN108638057B (en) Double-arm motion planning method for humanoid robot
Obe et al. Genetic algorithm based optimal trajectories planning for robot manipulators on assigned paths
An et al. Application of an improved particle swarm optimization algorithm in inverse kinematics solutions of manipulators
Spencer et al. Collision avoidance techniques for tele-operated and autonomous manipulators in overlapping workspaces
CN112936279B (en) Method for solving shortest time of target grabbing operation of mobile operation robot
Qian et al. Path planning approach for redundant manipulator based on Jacobian pseudoinverse-RRT algorithm
Chen et al. A novel autonomous obstacle avoidance path planning method for manipulator in joint space

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant