CN113078948B - Downlink transmission optimization method of LiFi-WiFi polymerization system - Google Patents
Downlink transmission optimization method of LiFi-WiFi polymerization system Download PDFInfo
- Publication number
- CN113078948B CN113078948B CN202110325208.0A CN202110325208A CN113078948B CN 113078948 B CN113078948 B CN 113078948B CN 202110325208 A CN202110325208 A CN 202110325208A CN 113078948 B CN113078948 B CN 113078948B
- Authority
- CN
- China
- Prior art keywords
- lifi
- wifi
- link
- power
- distribution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 30
- 238000005457 optimization Methods 0.000 title claims abstract description 20
- 230000005540 biological transmission Effects 0.000 title claims abstract description 16
- 238000006116 polymerization reaction Methods 0.000 title abstract 4
- 238000009826 distribution Methods 0.000 claims abstract description 108
- 239000013598 vector Substances 0.000 claims description 36
- 230000002776 aggregation Effects 0.000 claims description 33
- 238000004220 aggregation Methods 0.000 claims description 33
- 230000003287 optical effect Effects 0.000 claims description 33
- 230000014509 gene expression Effects 0.000 claims description 11
- 230000003321 amplification Effects 0.000 claims description 5
- 238000011478 gradient descent method Methods 0.000 claims description 5
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 5
- 238000002347 injection Methods 0.000 claims description 3
- 239000007924 injection Substances 0.000 claims description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 3
- 238000010586 diagram Methods 0.000 description 16
- 239000000243 solution Substances 0.000 description 13
- 238000004891 communication Methods 0.000 description 5
- 230000007423 decrease Effects 0.000 description 3
- 241000209094 Oryza Species 0.000 description 2
- 235000007164 Oryza sativa Nutrition 0.000 description 2
- 235000009566 rice Nutrition 0.000 description 2
- 101100398248 Arabidopsis thaliana KIN10 gene Proteins 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/11—Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
- H04B10/114—Indoor or close-range type systems
- H04B10/116—Visible light communication
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
- H04Q11/0001—Selecting arrangements for multiplex systems using optical switching
- H04Q11/0062—Network aspects
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W24/00—Supervisory, monitoring or testing arrangements
- H04W24/02—Arrangements for optimising operational condition
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W28/00—Network traffic management; Network resource management
- H04W28/16—Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation based on the type of the allocated resource
- H04W72/0473—Wireless resource allocation based on the type of the allocated resource the resource being transmission power
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
- H04Q11/0001—Selecting arrangements for multiplex systems using optical switching
- H04Q11/0062—Network aspects
- H04Q2011/0086—Network resource allocation, dimensioning or optimisation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D30/00—Reducing energy consumption in communication networks
- Y02D30/70—Reducing energy consumption in communication networks in wireless communication networks
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Quality & Reliability (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
Description
技术领域technical field
本发明属于可见光通信领域,尤其涉及一种LiFi-WiFi聚合系统的下行链路传输优化方法。The invention belongs to the field of visible light communication, and in particular relates to a downlink transmission optimization method of a LiFi-WiFi aggregation system.
背景技术Background technique
物联网设备的数量不断增加,不断给无线网络带来巨大的带宽负担。考虑到在室内环境中产生的无线数据80%以上,可见光通信(VLC)或光保真度(LiFi)在400-790T Hz中具有巨大的免许可证带宽,支持高速数据传输和室内照明同时进行。LiFi利用现成的发光二极管(LED)和光电二极管(PD)作为收发器,可以集成到物联网设备中。虽然LiFi是下一代无线解决方案的竞争对手,但易受阻塞和小信号覆盖仍然给各种室内应用带来许多挑战。The ever-increasing number of IoT devices continues to place a huge bandwidth burden on wireless networks. Considering more than 80% of wireless data generated in indoor environment, visible light communication (VLC) or light fidelity (LiFi) has huge license-free bandwidth in 400-790T Hz, supporting high-speed data transmission and indoor lighting simultaneously . LiFi utilizes off-the-shelf light-emitting diodes (LEDs) and photodiodes (PDs) as transceivers that can be integrated into IoT devices. While LiFi is a competitor to next-generation wireless solutions, susceptibility to blocking and small-signal coverage still pose many challenges for a variety of indoor applications.
发明内容SUMMARY OF THE INVENTION
发明目的:为解决背景技术中存在的技术问题,本发明提出LiFi-WiFi聚合系统的下行链路传输优化方法,包括如下步骤:Purpose of the invention: In order to solve the technical problems existing in the background technology, the present invention proposes a downlink transmission optimization method for a LiFi-WiFi aggregation system, including the following steps:
步骤1,对LiFi-WiFi聚合系统进行设定;
步骤2,求解聚合LiFi-WiFi系统可达速率;
步骤3,求解LiFi-WiFi聚合系统的最优离散星座输入;Step 3, solve the optimal discrete constellation input of the LiFi-WiFi aggregation system;
步骤4,求解基于下界和上界的最优离散星座输入分布。
步骤1包括:考虑一个LiFi-WiFi聚合系统的下行链路传输,其中发射机配备了一个发光二极管LED和一个WiFi天线,接收机配备一个单光子探测器PD和一个射频天线,发射机同时通过LiFi链路和WiFi链路传输信息,其中LiFi链路和WiFi链路的带宽分别为B1和B2;
设表示发送的信号向量,其中x1∈R和x2∈C分别表示LiFi链路的发送信号和WiFi链路的发送信号,R为实数集合,C为复数集合。Assume represents the transmitted signal vector, where x 1 ∈ R and x 2 ∈ C represent the transmitted signal of the LiFi link and the transmitted signal of the WiFi link, respectively, R is the set of real numbers, and C is the set of complex numbers.
步骤1还包括:在LiFi-WiFi聚合系统中,传输的信号分布在离散星座上,设定LiFi链路信号通过M脉冲幅度调制发送,WiFi链路信号通过N-正交幅度调制发送,信号x1取自具有基数M的非负实离散星座集Ω1,表示为:
其中Pr(·)表示求概率;x1,k表示星座点,取值为非负实数;k表示星座点的序号,p1,k表示x1=x1,k的概率;参数A,Pe,1分别表示x1的峰值光功率、平均光功率和电功率门限;where Pr( ) represents the probability; x 1,k represents the constellation point, which is a non-negative real number; k represents the serial number of the constellation point, p 1,k represents the probability of x 1 =x 1,k ; parameter A, P e,1 represent the peak optical power, average optical power and electrical power threshold of x 1 , respectively;
WiFi信号x2取自一个具有基数N的复数离散星座集Ω2,表示为:The WiFi signal x 2 is taken from a complex discrete constellation set Ω 2 with base N, expressed as:
其中x2,l表示星座点,取值为复数,l表示星座点的序号,p2,l表示选择x2,l的概率,Pe,2表示x2的电功率门限。where x 2,l represents the constellation point, which is a complex number, l represents the sequence number of the constellation point, p 2,l represents the probability of selecting x 2,l , and P e,2 represents the electric power threshold of x 2 .
步骤1还包括:设q1∈R和q2∈C分别表示x1的功率放大因子和x2的功率放大因子,q1和q2需满足平均功率约束,即:
其中η1和η2分别表示LiFi链路的功率放大器的效率和WiFi链路的功率放大器的效率,PT表示平均电功率门限,中间参数ε1和ε2分别为:where η 1 and η 2 represent the efficiency of the power amplifier of the LiFi link and the power amplifier of the WiFi link, respectively, P T represents the average electrical power threshold, and the intermediate parameters ε 1 and ε 2 are:
步骤1还包括:对LiFi信号的功率控制需要满足平均光功率和峰值光功率要求,如下所示:
q1A≤Pins,q 1 A≤P ins ,
其中,表示求均值,表示x1的均值;Po和Pins分别表示平均光功率和瞬时光功率门限。in, represents the mean value, Represents the mean value of x 1 ; P o and Pins represent the average optical power and instantaneous optical power threshold, respectively.
步骤1还包括:设表示信道向量,其中g1和g2分别是LiFi链路的信道增益和WiFi链路的信道增益;设y1和y2分别表示来自LiFi链路的接收信号和来自WiFi链路的接收信号,写成如下矢量形式:
其中是来LiFi链路的实高斯噪声,是来自WiFi链路的复高斯噪声,表示均值为0、方差为的高斯分布,表示均值为0、方差为的复高斯分布;in is the real Gaussian noise from the LiFi link, is the complex Gaussian noise from the WiFi link, means that the mean is 0 and the variance is the Gaussian distribution of , means that the mean is 0 and the variance is The complex Gaussian distribution of ;
步骤2包括:
步骤2-1,将聚合LiFi-WiFi系统可达速率RLiFi-WiFi定义为:Step 2-1, define the achievable rate R LiFi-WiFi of the aggregated LiFi-WiFi system as:
其中和分别表示LiFi链路的可达速率和WiFi链路的可达速率,I(x;y)表示信道平均互信息;in and respectively represent the reachable rate of LiFi link and the reachable rate of WiFi link, I(x; y) represents the channel average mutual information;
步骤2-2,基于离散星座点输入的LiFi-WiFi聚合系统,给定LiFi链路和WiFi链路带宽B1和B2,则LiFi-WiFi聚合系统可达速率RLiFi和RWiFi分别为:Step 2-2, based on the LiFi-WiFi aggregation system input by discrete constellation points, given the LiFi link and WiFi link bandwidths B 1 and B 2 , the achievable rates R LiFi and R WiFi of the LiFi-WiFi aggregation system are respectively:
其中,表示求关于z1函数的均值,表示求关于z2函数的均值,表示信道增益g2的共轭;in, means to find the mean of the z 1 function, means to find the mean of the z 2 function, represents the conjugate of the channel gain g2 ;
步骤3包括:Step 3 includes:
步骤3-1:LiFi-WiFi聚合系统的最优离散星座输入问题表述为:Step 3-1: The optimal discrete constellation input problem for the LiFi-WiFi aggregation system is formulated as:
q1≤min(Po/μ,Pins/A),(7c)q 1 ≤min(P o /μ,P ins /A),(7c)
其中,表示LiFi链路星座点的序号,表示WiFi链路星座点的序号;in, Indicates the sequence number of the LiFi link constellation point, Indicates the serial number of the WiFi link constellation point;
步骤3-2:可达速率RLiFi-WiFi写为:Step 3-2: The achievable rate R LiFi-WiFi is written as:
其中,和分别表示LiFi链路的发射功率和WiFi链路的发射功率;in, and represent the transmit power of the LiFi link and the transmit power of the WiFi link, respectively;
步骤3-3:定义约束条件(7e)和(7d)写为:Step 3-3: Definition Constraints (7e) and (7d) are written as:
其中,表示LiFi链路的星座点向量,x1,M表示LiFi链路的第M个星座点,Υ1表示关于向量p集合,p1表示LiFi链路的星座点概率向量,p1,M表示x1=x1,M的概率,表示元素全为1的1×M的行向量,p代表向量;in, Represents the constellation point vector of the LiFi link, x 1, M represents the Mth constellation point of the LiFi link, Υ 1 represents the set of about vectors p, p 1 represents the constellation point probability vector of the LiFi link, p 1, M represents x 1 = probability of x 1,M , Represents a 1×M row vector with all 1 elements, p represents a vector;
定义约束条件(7f)和(7g)写成:definition Constraints (7f) and (7g) are written as:
其中,表示WiFi链路的星座点向量,x2,N表示WiFi链路的第N个星座点,Υ2表示关于向量p集合,p2表示WiFi链路的星座点概率向量,p2,N表示x2=x2,N的概率,表示元素全为1的1×N的行向量;in, Represents the constellation point vector of the WiFi link, x 2,N represents the Nth constellation point of the WiFi link, Υ 2 represents the set about the vector p, p 2 represents the constellation point probability vector of the WiFi link, p 2,N represents x 2 = probability of x 2,N , Represents a 1×N row vector whose elements are all 1s;
引入辅助变量w、r、 Introduce auxiliary variable w, r.
则可达速率RLiFi-WiFi重写为:Then the achievable rate R LiFi-WiFi can be rewritten as:
步骤3-4:问题(7)等效如下问题(14):Steps 3-4: Problem (7) is equivalent to the following problem (14):
p1∈Υ1,p2∈Υ2,(14d)p 1 ∈Υ 1 ,p 2 ∈ Υ 2 ,(14d)
其中τ表示Po/μ,Pins/A中的最小值;in τ represents the minimum value in P o /μ, Pins /A;
问题(14)中,和的功率分配变量只包含在约束(14b)和(14c)中,而分布变量p1和p2只包含在约束(14d)中,问题(14)通过迭代求解以下两个子问题来处理,直到总体问题收敛:In question (14), and The power distribution variables of are only included in constraints (14b) and (14c), while the distribution variables p1 and p2 are only included in constraints (14d), problem ( 14 ) is addressed by iteratively solving the following two subproblems until the overall The problem converges:
功率分配子问题1:给定的p1和p2优化和 Power distribution subproblem 1: optimization given p 1 and p 2 and
概率分布子问题2:给定的和优化p1和p2;Probability Distribution Subproblem 2: Given and optimize p 1 and p 2 ;
对于功率分配子问题1:当给出p1和p2时,问题(14)是一个最优的功率分配问题,如下问题(15)所示:For power allocation subproblem 1: when p 1 and p 2 are given, problem (14) is an optimal power allocation problem, as shown in problem (15) below:
其中,h(·)表示关于的函数;in, h( ) means about The function;
问题(15)对和是一个凸问题,采用注水法解决该问题,并得到最优功率分配和 Question (15) to and is a convex problem, and the water injection method is used to solve the problem and obtain the optimal power distribution and
对于概率分布子问题2:当给出和时,问题(14)表示为如下问题(16):For the probability distribution subproblem 2: when given and , problem (14) is expressed as the following problem (16):
s.t.p1∈Υ1,(16b)stp 1 ∈ Υ 1 , (16b)
p2∈Υ2,(16c)p 2 ∈Υ 2 , (16c)
问题(16)是一个有两个变量p1和p2的凸优化问题,采用不精确梯度下降法,并得到LiFi链路的概率分布p1和WiFi链路的概率分布p2;Problem (16) is a convex optimization problem with two variables p 1 and p 2 , using inexact gradient descent method, and obtain the
综上所述,求解优化问题(7),可以通过迭代求解功率分配子问题(15)和概率分布子问题(16),可以得到最大可达速率RLiFi-WiFi。To sum up, to solve the optimization problem (7), the power distribution sub-problem (15) and the probability distribution sub-problem (16) can be solved iteratively, and the maximum achievable rate R LiFi-WiFi can be obtained.
步骤4包括:
步骤4-1:在离散星座点输入条件下,LiFi链路传输速率RLiFi的上界和下界的闭式表达式分别为Step 4-1: Under the condition of discrete constellation point input, the closed-form expressions of the upper and lower bounds of the LiFi link transmission rate R LiFi are respectively
步骤4-2:在离散星座点输入条件下,给出WiFi链路可达速率的上界和下界,如下所示:Step 4-2: Under the input condition of discrete constellation points, give the upper and lower bounds of the WiFi link achievable rate, as follows:
步骤4-3:让和分别表示RLiFi-WiFi的下界和上界,得到:Step 4-3: Let and Representing the lower and upper bounds of R LiFi-WiFi , respectively, we get:
步骤4-4:基于可达速率的下界,优化LiFi链路和WiFi链路的输入星座点概率分布和功率分配,以获得最大的传输速率下界该优化问题可表示如下:Step 4-4: Based on reachable rate The lower bound of , optimizes the input constellation point probability distribution and power allocation of LiFi link and WiFi link to obtain the maximum transmission rate lower bound The optimization problem can be expressed as follows:
此外,通过定义:Furthermore, by defining:
将改写如下:Will Rewritten as follows:
则问题(20)用如下公式表示:Then problem (20) is expressed by the following formula:
为了解决问题(23),通过迭代求解以下两个子问题,功率分配子问题3和概率分布子问题4,直到整体问题达到收敛为止:To solve problem (23), the following two sub-problems, power distribution sub-problem 3 and
功率分配子问题3:当p1和p2被固定时,优化LiFi链路和WiFi链路的功率分配和问题(23)表述如下问题(24):Power allocation subproblem 3: Optimizing power allocation for LiFi links and WiFi links when p1 and p2 are fixed and Question (23) formulates the following question (24):
采用近似梯度投影法解决问题(24),并得到LiFi和WiFi链路的最优功率分布和 Approximate gradient projection method to solve problem (24) and obtain optimal power distribution for LiFi and WiFi links and
概率分布子问题4:用给定的和优化p1和p2的概率分布,当和固定时,问题(24)表示为如下问题(25):Probability distribution subproblem 4: Using a given and optimize the probability distribution of p1 and p2 , when and When fixed, problem (24) is represented as problem (25) as follows:
s.t.p1∈Υ1,(25b)stp 1 ∈Υ 1 , (25b)
p2∈Υ2,(25c)p 2 ∈Υ 2 ,(25c)
其中,in,
则问题(25)分为两个独立的子问题,分别为问题(26):Then problem (25) is divided into two independent sub-problems, namely problem (26):
s.t.p1∈Υ1,(26b)stp 1 ∈Υ 1 , (26b)
和问题(27)and questions (27)
s.t.p2∈Υ2(27b)stp 2 ∈ Υ 2 (27b)
其中,表示关于p1的函数,表示关于p2的函数;in, represents a function with respect to p 1 , represents a function of p 2 ;
应用Frank-Wolfe方法来解决问题(26)和(27),从而得到LiFi链路p1的概率分布和WiFi链路p2的最优概率分布。The Frank-Wolfe method is applied to solve problems (26) and (27), resulting in the probability distribution of LiFi link p 1 and the optimal probability distribution of WiFi link p 2 .
步骤4-4还包括:将得到的p1,p2带入公式(22),得到最大可达速率下界RL LiFi-WiFi。Steps 4-4 also include: the resulting p 1 , p 2 are brought into formula (22) to obtain the lower bound R L LiFi-WiFi of the maximum achievable rate.
有益效果:本发明所提出的LiFi-WiFi聚合系统框架可以克服频繁的链路切换,从而提高系统数据速率,并提供可靠的通信。本发明提出的LiFi-WiFi聚合系统的下行链路优化方法,导出了具有任意离散分布的精确可达速率表达式,不仅方法计算精度高,求解速度快,而且能得到最优的输入分布和功率分配,从而显著地提高了系统的可达速率和能效。Beneficial effects: The LiFi-WiFi aggregation system framework proposed by the present invention can overcome frequent link switching, thereby increasing the system data rate and providing reliable communication. The downlink optimization method of the LiFi-WiFi aggregation system proposed by the present invention derives an accurate achievable rate expression with any discrete distribution. The method not only has high calculation accuracy and fast solution speed, but also can obtain the optimal input distribution and power distribution, thereby significantly improving the reachability and energy efficiency of the system.
附图说明Description of drawings
下面结合附图和具体实施方式对本发明做更进一步的具体说明,本发明的上述和/或其他方面的优点将会变得更加清楚。The present invention will be further described in detail below in conjunction with the accompanying drawings and specific embodiments, and the advantages of the above-mentioned and/or other aspects of the present invention will become clearer.
图1a为LiFi链路在不同SNR1下各自的最优概率分布{x1,k,p1,k}的变化曲线示意图。Figure 1a is a schematic diagram of the variation curve of the respective optimal probability distribution {x 1,k , p 1,k } of the LiFi link under different SNR 1 .
图1b为LiFi链路在不同SNR1下各自的最优输入位置{x1,k}的变化曲线示意图。Figure 1b is a schematic diagram of the variation curves of the respective optimal input positions {x 1, k } of the LiFi link under different SNR 1 .
图1c为LiFi链路在不同SNR1下各自的可实现速率RLiFi的变化曲线示意图。Figure 1c is a schematic diagram of the change curves of the respective achievable rates R LiFi of LiFi links under different SNR 1 .
图2a为WiFi链路在SNR2=-6dB下的最优概率分布{x2,l,p2,l}的变化曲线示意图。Fig. 2a is a schematic diagram of the variation curve of the optimal probability distribution {x 2,l ,p 2,l } of the WiFi link under the condition of SNR 2 =-6dB.
图2b为WiFi链路在SNR2=4dB下的最优概率分布{x2,l,p2,l}的变化曲线示意图。FIG. 2b is a schematic diagram of the variation curve of the optimal probability distribution {x 2,l , p 2,l } of the WiFi link at SNR 2 =4dB.
图2c为WiFi链路在SNR2=12dB下的最优概率分布{x2,l,p2,l}的变化曲线示意图。FIG. 2c is a schematic diagram of the variation curve of the optimal probability distribution {x 2,l ,p 2,l } of the WiFi link under the condition of SNR 2 =12dB.
图2d为WiFi链路在不同SNR下各自的可达速率RWiFi的变化曲线示意图。FIG. 2d is a schematic diagram of the variation curves of the respective attainable rates R WiFi of WiFi links under different SNRs.
图3a为LiFi-WiFi系统在不同PT下各自可达速率RLiFi-WiFi的变化曲线示意图。Figure 3a is a schematic diagram of the change curve of the respective attainable rate R LiFi-WiFi of the LiFi-WiFi system under different P T.
图3b为LiFi-WiFi系统在不同Pins下各自可达速率RLiFi-WiFi的变化曲线示意图。Figure 3b is a schematic diagram of the variation curve of the respective attainable rate R LiFi-WiFi of the LiFi -WiFi system under different Pins.
图4a为LiFi-WiFi系统在不同PT下各自可达速率下界RL LiFi-WiFi的变化曲线示意图。Figure 4a is a schematic diagram of the variation curve of the lower bound R L LiFi -WiFi of the LiFi-WiFi system under different PTs.
图4b为LiFi-WiFi系统在不同Pins下各自可达速率下界RL LiFi-WiFi的变化曲线示意图。Figure 4b is a schematic diagram of the variation curve of the lower bound R L LiFi-WiFi of the respective achievable rate of the LiFi -WiFi system under different Pins.
图5a为LiFi-WiFi系统在带宽B1下各自可达速率下界RL LiFi-WiFi的变化曲线示意图。Figure 5a is a schematic diagram of the variation curve of the lower bound R L LiFi-WiFi of the respective achievable rates of the LiFi-WiFi system under the bandwidth B 1 .
图5b为LiFi-WiFi系统在带宽B2下各自可达速率下界RL LiFi-WiFi的变化曲线示意图。Figure 5b is a schematic diagram of the variation curve of the lower bound R L LiFi-WiFi of the respective achievable rates of the LiFi-WiFi system under the bandwidth B 2 .
图6a为在问题(7)的最优解下RLiFi-WiFi、RL LiFi-WiFi和RU LiFi-WiFi在不同PT下的变化曲线示意图。Figure 6a is a schematic diagram of the change curves of R LiFi-WiFi , R L LiFi-WiFi and R U LiFi-WiFi under different P T under the optimal solution of problem (7).
图6b为在问题(20)的最优解下RLiFi-WiFi、RL LiFi-WiFi和RU LiFi-WiFi在不同PT下的变化曲线示意图。Figure 6b is a schematic diagram of the change curves of R LiFi-WiFi , R L LiFi-WiFi and R U LiFi-WiFi under different P T under the optimal solution of problem (20).
具体实施方式Detailed ways
在本发明中,从实际的通信角度考虑了一个LiFi-WiFi聚合系统。首先,导出了具有任意离散分布的LiFi-WiFi聚合系统的精确可达速率表达式,鉴于这种速率表达式不是封闭形式的,进一步导出了下界和上界。然后,优化了离散星座输入分配和功率分配,以最大程度地提高导出的可达速率,为了解决这个非凸问题,利用了互信息和最小均方误差(MMSE)之间的关系,通过不精确梯度下降法计算出离散星座的最优概率分布。本发明的结果为LiFi-WiFi聚合系统提供了一个相对实用的设计框架。In the present invention, a LiFi-WiFi aggregation system is considered from the practical communication point of view. First, an accurate achievable rate expression for LiFi-WiFi aggregation systems with arbitrary discrete distributions is derived, and since this rate expression is not closed-form, lower and upper bounds are further derived. Then, the discrete constellation input allocation and power allocation are optimized to maximize the derived achievable rate, and to solve this non-convex problem, the relationship between mutual information and minimum mean square error (MMSE) is exploited by imprecise The gradient descent method computes the optimal probability distribution for discrete constellations. The results of the present invention provide a relatively practical design framework for the LiFi-WiFi aggregation system.
LiFi-WiFi聚合系统的模型:Model of LiFi-WiFi aggregation system:
考虑了一个LiFi-WiFi聚合系统的下行链路传输,其中发射机配备了一个发光二极管(LED)和一个WiFi天线,接收机配备一个单光子探测器(PD)和一个射频天线。发射机同时通过LiFi链路和WiFi链路传输信息,其中LiFi链路和WiFi链路的带宽分别为B1Hz和B2Hz。设表示发送的信号向量,其中x1∈R和x2∈C分别表示LiFi链路和WiFi链路的发送信号,R为实数集合,C为复数集合。The downlink transmission of a LiFi-WiFi aggregation system is considered, where the transmitter is equipped with a light-emitting diode (LED) and a WiFi antenna, and the receiver is equipped with a single-photon detector (PD) and an RF antenna. The transmitter transmits information simultaneously through a LiFi link and a WiFi link, where the bandwidths of the LiFi link and WiFi link are B 1 Hz and B 2 Hz, respectively. Assume represents the transmitted signal vector, where x 1 ∈ R and x 2 ∈ C represent the transmitted signals of the LiFi link and WiFi link, respectively, R is the set of real numbers, and C is the set of complex numbers.
在一个实用的LiFi-WiFi通信系统中,传输的信号分布在离散星座上,设定LiFi链路信号通过M脉冲幅度调制(PAM)发送,WiFi链路信号通过N-正交幅度调制(QAM)发送。更具体地说,信号x1取自具有基数M的非负实离散星座集Ω1,可表示为:In a practical LiFi-WiFi communication system, the transmitted signals are distributed in discrete constellations, and the LiFi link signal is set to be sent by M-pulse amplitude modulation (PAM), and the WiFi link signal is sent by N-quadrature amplitude modulation (QAM) send. More specifically, the signal x 1 is taken from a non-negative real discrete constellation set Ω 1 with base M, which can be expressed as:
WiFi信号x2取自一个具有基数N的复杂离散星座集Ω2,表示为:The WiFi signal x 2 is taken from a complex discrete constellation set Ω 2 with base N, expressed as:
设q1∈R和q2∈C分别表示x1和x2的功率放大因子,q1和q2需满足平均功率约束,即:Let q 1 ∈ R and q 2 ∈ C represent the power amplification factors of x 1 and x 2 , respectively, and q 1 and q 2 need to satisfy the average power constraint, namely:
其中η1和η2分别表示LiFi链路的功率放大器的效率和WiFi链路的功率放大器的效率,PT表示平均电功率门限。where η 1 and η 2 represent the efficiency of the power amplifier of the LiFi link and the efficiency of the power amplifier of the WiFi link, respectively, PT represents the average electrical power threshold.
此外,为了人的眼睛安全考虑,对LiFi信号的功率控制还需要满足平均光功率和峰值光功率要求:和q1A≤Pins,其中,表示求均值,表示x1的均值Po和Pins分别表示平均光功率和瞬时光功率门限。In addition, for the safety of human eyes, the power control of LiFi signals also needs to meet the requirements of average optical power and peak optical power: and q 1 A≤P ins , where, represents the mean value, means the mean of x 1 P o and Pins represent the average optical power and instantaneous optical power thresholds, respectively.
设表示信道向量,其中g1和g2分别是LiFi链路的信道增益和WiFi链路的信道增益;设y1和y2分别表示来自LiFi链路的接收信号和来自WiFi链路的接收信号,它们可以写成矢量形式Assume represents the channel vector, where g 1 and g 2 are the channel gain of the LiFi link and the channel gain of the WiFi link, respectively; let y 1 and y 2 denote the received signal from the LiFi link and the received signal from the WiFi link, respectively, They can be written in vector form
其中是来LiFi链路的实高斯噪声,是来自WiFi链路的复高斯噪声,表示均值为0,方差为的高斯分布,表示均值为0,方差为的复高斯分布。in is the real Gaussian noise from the LiFi link, is the complex Gaussian noise from the WiFi link, means that the mean is 0 and the variance is the Gaussian distribution of , means that the mean is 0 and the variance is complex Gaussian distribution.
A.LiFi-WiFi聚合系统的可达速率A. Achievable rate of LiFi-WiFi aggregation system
对于离散星座点的LiFi-WiFi聚合系统,可达速率仍然是未知的。为了解决这个问题,将可达速率RLiFi-WiFi定义为:For LiFi-WiFi aggregation systems with discrete constellation points, the achievable rate is still unknown. To solve this problem, the achievable rate R LiFi-WiFi is defined as:
其中和分别表示LiFi链路的可达速率和WiFi链路的可达速率,I(x;y)表示信道平均互信息;in and respectively represent the reachable rate of LiFi link and the reachable rate of WiFi link, I(x; y) represents the channel average mutual information;
引理1:基于离散星座点输入的LiFi-WiFi聚合系统,给定LiFi链路和WiFi链路带宽B1和B2,则LiFi-WiFi聚合系统可达速率RLiFi和RWiFi分别为:Lemma 1: LiFi-WiFi aggregation system based on discrete constellation point input, given LiFi link and WiFi link bandwidth B 1 and B 2 , the achievable rates of LiFi-WiFi aggregation system R LiFi and R WiFi are:
其中,求关于z1函数的均值,求关于z2函数的均值,表示信道增益g2的共轭。in, Find the mean with respect to the z 1 function, Find the mean about the z 2 function, represents the conjugate of the channel gain g2 .
Lifi-Wifi聚合系统的最优离散星座输入Optimal Discrete Constellation Input for Lifi-Wifi Aggregation System
基于RLiFi-WiFi的导出表达式,以下问题是优化LiF链路i和WiFi链路的信号分布和功率分配,以获得聚合系统的最大可达速率。数学上,这样的优化问题可以表述为Based on the derived expression of R LiFi-WiFi , the following problem is to optimize the signal distribution and power distribution of LiF link i and WiFi link to obtain the maximum achievable rate of the aggregated system. Mathematically, such an optimization problem can be formulated as
q1≤min(Po/μ,Pins/A), (7c)q 1 ≤min(P o /μ,P ins /A), (7c)
其中,表示LiFi链路星座点的序号,表示WiFi链路星座点的序号;in, Indicates the sequence number of the LiFi link constellation point, Indicates the serial number of the WiFi link constellation point;
对于问题(7),可以用反证据法证明q2的最优相位与g2的最优相位相同。因此,最优q2可以写成:For problem (7), it can be proved by counter-evidence that the optimal phase of q 2 is the same as the optimal phase of g 2 . Therefore, the optimal q can be written as :
其中,表示WiFi链路的发射功率;in, Indicates the transmit power of the WiFi link;
通过将(8)替换到(5),可以将可达速率RLiFi-WiFi可写为:By replacing (8) with (5), the achievable rate R LiFi-WiFi can be written as:
其中,表示LiFi链路的发射功率;in, Indicates the transmit power of the LiFi link;
通过定义约束条件(7e)和(7d)可写为by definition Constraints (7e) and (7d) can be written as
其中,表示LiFi链路的星座点向量,x1,M表示LiFi链路的第M个星座点,Υ1表示关于向量p集合,p1表示LiFi链路的星座点概率向量,p1,M表示x1=x1,M的概率,1TM表示元素全为1的1×M的行向量,p代表向量;in, Represents the constellation point vector of the LiFi link, x 1, M represents the Mth constellation point of the LiFi link, Υ 1 represents the set of vectors p, p 1 represents the constellation point probability vector of the LiFi link, p 1, M represents x 1 = the probability of x 1, M , 1T M represents a 1×M row vector with all 1 elements, and p represents a vector;
定义约束条件(7f)和(7g)可写成definition Constraints (7f) and (7g) can be written as
其中,表示WiFi链路的星座点向量,x2,N表示WiFi链路的第N个星座点,Υ2表示关于向量p集合,p2表示WiFi链路的星座点概率向量,p2,N表示x2=x2,N的概率,表示元素全为1的1×N的行向量;in, Represents the constellation point vector of the WiFi link, x 2,N represents the Nth constellation point of the WiFi link, Υ 2 represents the set about the vector p, p 2 represents the constellation point probability vector of the WiFi link, p 2,N represents x 2 = probability of x 2,N , Represents a 1×N row vector whose elements are all 1s;
接下来,引入辅助变量:Next, introduce auxiliary variables:
则可达速率RLiFi-WiFi重写为:Then the achievable rate R LiFi-WiFi can be rewritten as:
基于上述定义,问题(7)可等效如下Based on the above definition, problem (7) can be equivalently as follows
p1∈Υ1,p2∈Υ2,(14d)p 1 ∈Υ 1 ,p 2 ∈ Υ 2 ,(14d)
其中τ表示Po/μ,Pins/A中的最小值。in τ represents the minimum value in P o /μ, Pins /A.
问题(14)中,和的功率分配变量只包含在约束(14b)和(14c)中,而分布变量p1和p2只包含在约束(14d)中。因此,考虑将优化过程分解为两个子问题。具体来说,问题(14)可以通过迭代求解以下两个子问题来处理,直到总体问题收敛:功率分配子问题1:给定的p1和p2优化和概率分布子问题2:给定的和优化p1和p2。接下来,将给出这两个子问题的解决方案。In question (14), and The power distribution variables of are only included in constraints (14b) and (14c), while the distribution variables p1 and p2 are only included in constraints (14d). Therefore, consider decomposing the optimization process into two subproblems. Specifically, problem (14) can be addressed by iteratively solving the following two sub-problems until the overall problem converges: Power distribution sub-problem 1: optimization given p 1 and p 2 and Probability Distribution Subproblem 2: Given and Optimize p 1 and p 2 . Next, solutions to these two sub-problems will be given.
A.功率分配子问题1:A. Power distribution sub-problem 1:
当给出p1和p2时,问题(14)是一个最优的功率分配问题如下:Problem (14) is an optimal power allocation problem when p 1 and p 2 are given as follows:
其中,h(·)表示关于的函数。in, h( ) means about The function.
问题(15)对和是一个凸问题,采用注水法解决该问题,并得到最优功率分配和 Question (15) to and is a convex problem, and the water injection method is used to solve the problem and obtain the optimal power distribution and
B.概率分布子问题2:B. Probability distribution subproblem 2:
当给出和时,问题(14)表示如下:when given and , problem (14) is expressed as follows:
s.t.p1∈Υ1,(16b)stp 1 ∈ Υ 1 , (16b)
p2∈Υ2,(16c)p 2 ∈Υ 2 , (16c)
这是一个具有两个变量p1和p2的凸优化问题,然而,目标函数没有解析表达式,这阻碍了计算最优概率分布。为了克服这个困难,采用不精确梯度下降法,并得到LiFi和WiFi链路的概率分布p1和p2。This is a convex optimization problem with two variables p1 and p2 , however, there is no analytical expression for the objective function, which prevents computing the optimal probability distribution. To overcome this difficulty, an imprecise gradient descent method is employed, and the probability distributions p 1 and p 2 of LiFi and WiFi links are obtained.
综上所述,求解优化问题(7),可以通过迭代求解功率分配子问题(15)和概率分布子问题(16),可得到最大可达速率RLiFi-WiFi。To sum up, to solve the optimization problem (7), the power distribution sub-problem (15) and the probability distribution sub-problem (16) can be solved iteratively, and the maximum achievable rate R LiFi-WiFi can be obtained.
基于下界和上界的最优离散星座输入分布:Optimal discrete constellation input distribution based on lower and upper bounds:
由于可实现速率(6a)和(6b)都不是封闭表达式,因此(5)的计算效率很低。为了降低计算复杂度,可以使用显式表达式作为目标函数。因此,可使用LiFi链路的可达速率RLiFi的容量约束。Since neither achievable rates (6a) nor (6b) are closed expressions, (5) is computationally inefficient. To reduce computational complexity, an explicit expression can be used as the objective function. Therefore, the LiFi link's achievable rate R LiFi 's capacity constraints can be used.
引理2:在离散星座点输入条件下,LiFi链路传输速率RLiFi的上界和下界的闭式表达式分别为Lemma 2: Under the input condition of discrete constellation points, the closed-form expressions of the upper and lower bounds of the LiFi link transmission rate R LiFi are respectively
此外,还推导了WiFi链路可达速率RWiFi的封闭形式上界和下界。In addition, closed-form upper and lower bounds for the WiFi link reachable rate R WiFi are also derived.
引理3:在离散星座点输入条件下,给出WiFi链路可达速率的上界和下界分别为Lemma 3: Under the input condition of discrete constellation points, the upper and lower bounds of the achievable rate of the WiFi link are given as
然后,让和分别表示RLiFi-WiFi的下界和上界,因此,Then, let and denote the lower and upper bounds of R LiFi-WiFi , respectively, therefore,
基于可达速率的下界,优化LiFi链路和WiFi链路的输入星座点概率分布和功率分配,以获得最大的传输速率下界数学上表示如下:Based on reachable rate The lower bound of , optimizes the input constellation point probability distribution and power allocation of LiFi link and WiFi link to obtain the maximum transmission rate lower bound Mathematically expressed as follows:
此外,通过定义Furthermore, by defining
可将改写如下:can be Rewritten as follows:
则,问题(20)用公式表示如下:Then, problem (20) is formulated as follows:
可以看出目标函数(23)相对于和是凸的。而问题(23)关于p1和p2是非凸的。为了解决问题(23),应用与前文相似的思想,通过迭代求解以下两个子问题,直到整体问题达到收敛为止。It can be seen that the objective function (23) is relative to and is convex. And problem ( 23 ) is nonconvex with respect to p1 and p2 . To solve problem (23), applying similar ideas as before, the following two sub-problems are solved iteratively until the overall problem reaches convergence.
A.功率分配子问题3:A. Power distribution sub-problem 3:
首先,解决了功率分配子问题3:固定的p1和p2,优化LiFi链路和WiFi链路的功率分配和当p1和p2被固定时,问题(23)可以表述如下:First, the power allocation sub-problem 3 is solved: fixed p 1 and p 2 , optimizing power allocation for LiFi links and WiFi links and When p 1 and p 2 are fixed, problem (23) can be formulated as follows:
由于log2 x是一个凹函数,采用近似梯度投影法解决问题(24),并得到LiFi和WiFi链路的最优功率分布和 Since log 2 x is a concave function, the approximate gradient projection method is used to solve problem (24) and obtain the optimal power distribution for LiFi and WiFi links and
B.概率分布子问题4:B. Probability distribution subproblem 4:
接下来,解决概率分布子问题4:用给定的和优化LiFi链接和Wi Fi链接p1和p2的概率分布。当和固定时,LiFi-WiFi聚合系统(24)的最大化问题表示为:Next, solve the probability distribution subproblem 4: with the given and Optimize the probability distribution of LiFi links and Wi Fi links p 1 and p 2 . when and When fixed, the maximization problem of the LiFi-WiFi aggregation system (24) is expressed as:
s.t.p1∈γ1, (25b)stp 1 ∈ γ 1 , (25b)
p2∈γ2, (25c)p 2 ∈ γ 2 , (25c)
其中,in,
然后,问题(25)分为如下两个独立的子问题:Then, problem (25) is divided into two independent subproblems as follows:
s.t.p1∈Υ1,(26b)stp 1 ∈Υ 1 , (26b)
和and
s.t.p2∈Υ2(27b)stp 2 ∈ Υ 2 (27b)
其中,表示关于p1的函数,表示关于p2的函数;in, represents a function with respect to p 1 , represents a function of p 2 ;
应用Frank-Wolfe方法来解决问题(26)和(27),从而得到LiFi链路p1的概率分布和WiFi链路p2的最优概率分布。The Frank-Wolfe method is applied to solve problems (26) and (27), resulting in the probability distribution of LiFi link p 1 and the optimal probability distribution of WiFi link p 2 .
进一步而言,将以上子问题得到的带入公式(22),可得到最大可达速率下界RL LiFi-WiFi。Further, the above sub-problems get Bringing into formula (22), the lower bound R L LiFi-WiFi of the maximum achievable rate can be obtained.
注意,基于可达速率上界也能找到信号幅度和功率分配的最优分布,以最大限度地提高LiFi-WiFi聚合系统的可达速率,这与下界情况相似。Note that based on the upper bound on the achievable rate The optimal distribution of signal amplitude and power allocation can also be found to maximize the achievable rate of the LiFi-WiFi aggregation system, which is similar to the lower bound case.
本发明从以下两个角度研究LiFi-WiFi聚合系统的性能:输入的最优离散星座图和功率分配方案。对于离散星座输入,首先推导出LiFi-WiFi聚合系统的可达速率表达式。然后,研究了星座分布和功率分配的速率最大化问题,通过利用互信息和离散输入的最小均方误差之间的关系,提出了一种非精确梯度下降法来获得最优概率分布。为了在复杂性和性能之间取得平衡,最大限度地提高星座分布和功率优化方面的可达速率,降低了复杂度,其中,最优功率分配可以以封闭的形式得到,星座分布问题可以用Frank-Wolfe方法有效地解决。多个数值结果表明,与最新方案相比,优化的星座分布和功率可显著提高可达速率。The present invention studies the performance of the LiFi-WiFi aggregation system from the following two perspectives: the optimal discrete constellation diagram of the input and the power allocation scheme. For discrete constellation input, the achievable rate expression of the LiFi-WiFi aggregation system is first derived. Then, the rate maximization problem of constellation distribution and power allocation is studied, and an inexact gradient descent method is proposed to obtain the optimal probability distribution by exploiting the relationship between mutual information and the minimum mean square error of discrete inputs. In order to strike a balance between complexity and performance, maximize the achievable rate in terms of constellation distribution and power optimization, and reduce complexity, where the optimal power distribution can be obtained in closed form, the constellation distribution problem can be solved using Frank -Wolfe method solves efficiently. Multiple numerical results show that the optimized constellation distribution and power can significantly increase the achievable rate compared to the state-of-the-art scheme.
图1a和图1b说明了LiFi链路在不同信噪比SNR1下各自的最优概率分布{x1,k,p1,k}和最优输入位置{x1,k},其中莱斯因子K1=8。图中{x1,k}表示最优输入位置,SNR1表示LiFi链路的信噪比,{p1,k}表示概率分布。结果表明,对于低信噪比,最优输入位置包括两个概率相等的离散点;对于高信噪比,最优输入位置超过两个离散点,随着信噪比的增加,最优概率分布更接近等概率分布。Figure 1a and Figure 1b illustrate the respective optimal probability distributions {x 1,k ,p 1,k } and optimal input positions {x 1,k } of LiFi links at different SNR 1 , where Rice Factor K 1 =8. In the figure, {x 1, k } represents the optimal input position, SNR 1 represents the signal-to-noise ratio of the LiFi link, and {p 1, k } represents the probability distribution. The results show that for low SNR, the optimal input position includes two discrete points with equal probability; for high SNR, the optimal input position exceeds two discrete points, and with the increase of SNR, the optimal probability distribution closer to an equal probability distribution.
图1c显示了LiFi链路在不同信噪比SNR1下各自的可达速率RLiFi。图中SNR1表示LiFi链路的信噪比,Achievable rate RLiFi表示可达速率,Equiprobable表示等概分布,Proposed Method表示提出的方案。可以观察到,所提出方案的LiFi链路的可达速率RLiFi高于等概率分布。此外,随着信噪比的增加,所提出的方案与等概率分布之间的差距变小。Figure 1c shows the respective achievable rates R LiFi of LiFi links at different signal-to-noise ratios SNR 1 . In the figure, SNR 1 represents the signal-to-noise ratio of the LiFi link, Achievable rate R LiFi represents the achievable rate, Equiprobable represents the equal probability distribution, and Proposed Method represents the proposed scheme. It can be observed that the achievable rate R LiFi of the LiFi link of the proposed scheme is higher than the equal probability distribution. Furthermore, as the signal-to-noise ratio increases, the gap between the proposed scheme and the equal probability distribution becomes smaller.
图2a、图2b和图2c说明WiFi链路在信噪比SNR2=-6dB,4dB和12dB下的最优概率分布{x2,l,p2,l},其中莱斯因子K2=16。图中{p2,l}表示概率分布,{Im(x2,l)}表示最优输入位置的虚部,{Re(x2,l)}表示最有输入位置的实部。结果表明,对于信噪比SNR2=-6dB,最优输入位置包括四个概率相等的离散点;对于信噪比SNR2=4dB,最优输入位置超过四个离散点,而最优概率分布不是等概率分布;此外,对于信噪比SNR2=12dB,最优输入位置包括16个离散点,且每个输入点概率相等,即为等概率分布。Figures 2a, 2b and 2c illustrate the optimal probability distributions {x 2,l ,p 2,l } for WiFi links at signal-to-noise ratios SNR 2 =-6dB, 4dB and 12dB, where Rice factor K 2 = 16. In the figure, {p 2,l } represents the probability distribution, {Im(x 2,l )} represents the imaginary part of the optimal input position, and {Re(x 2,l )} represents the real part of the most input position. The results show that for SNR 2 =-6dB, the optimal input position includes four discrete points with equal probability; for SNR 2 =4dB, the optimal input position exceeds four discrete points, and the optimal probability distribution It is not an equal probability distribution; in addition, for a signal-to-noise ratio SNR 2 =12dB, the optimal input position includes 16 discrete points, and each input point has an equal probability, that is, an equal probability distribution.
图2d说明WiFi链路在不同信噪比SNR2下各自的可达速率RWiFi。图中SNR2表示WiFi链路的信噪比,Achievable rate RWiFi表示可达速率,Equiprobable表示等概分布,Proposed Method表示提出的方案。可以观察到,采用所提出的方案的WiFi链路的可达速率RWiFi高于等概率分布。此外,随着信噪比的增加,所提出的方案与等概率分布之间的差距变小。Figure 2d illustrates the respective achievable rates RWiFi of WiFi links at different signal-to-noise ratios SNR2 . In the figure, SNR 2 represents the signal-to-noise ratio of the WiFi link, Achievable rate R WiFi represents the achievable rate, Equiprobable represents the equal probability distribution, and Proposed Method represents the proposed scheme. It can be observed that the achievable rate RWiFi of the WiFi link with the proposed scheme is higher than the equal probability distribution. Furthermore, as the signal-to-noise ratio increases, the gap between the proposed scheme and the equal probability distribution becomes smaller.
图3a说明LiFi-WiFi系统在不同平均电功率门限PT下各自的可达速率RLiFi-WiFi。图中Total power PT表示平均电功率门限,Achievable rate RLiFi-WiFi表示可达速率,Proposed Method表示提出的方案,Equiprobable表示等概分布,Power of LiFi Link表示LiFi链路发射功率,Power of WiFi Link表示WiFi链路发射功率,Link transmitpowwer表示链路分配功率。观察到,在所提出的方案和等概率分布的情况下,随着平均电功率门限PT的增加,可达速率RLiFi-WiFi增加。此外,随着平均电功率门限PT的增加,LiFi和WiFi链路的发射功率和增加。Figure 3a illustrates the respective attainable rates R LiFi-WiFi of the LiFi-WiFi system under different average electric power thresholds P T . In the figure, Total power P T represents the average electrical power threshold, Achievable rate R LiFi-WiFi represents the reachable rate, Proposed Method represents the proposed solution, Equiprobable represents the equal probability distribution, and Power of LiFi Link Indicates the transmit power of the LiFi link, Power of WiFi Link Indicates the WiFi link transmit power, and Link transmitpowwer indicates the link distribution power. It is observed that the achievable rate R of LiFi-WiFi increases with the increase of the average electrical power threshold P T under the proposed scheme and the equal probability distribution. Furthermore, as the average electrical power threshold P T increases, the transmit power of LiFi and WiFi links and Increase.
图3b说明LiFi-WiFi系统在不同瞬时光功率门限Pins下各自的可达速率RLiFi-WiFi。图中Instant optical power threshold Pins表示瞬时光功率门限,Achievable rateRLiFi-WiFi表示可达速率,Link transmit powwer表示链路分配功率,Proposed Method表示提出的方案,Power of LiFi Link表示LiFi链路发射功率,Power of WiFi Link表示WiFi链路发射功率。观察到,所提出的方案的可达速率RLiFi-WiFi随着瞬时光功率门限Pins的增加先增加,然后保持不变。此外,随着瞬时光功率门限Pins的增加,LiFi链路的发射功率首先增加,然后保持不变;WiFi链路的发射功率首先减小,然后保持恒定,这是因为假设平均光功率Po=0.8Pins,均值μ为0.5A。对于较低的瞬时光功率门限Pins,发射功率受τ约束,而对于高瞬时光功率门限Pins,发射功率受平均电功率门限PT约束。Figure 3b illustrates the respective attainable rates R LiFi-WiFi of the LiFi -WiFi system under different instantaneous optical power thresholds Pins. In the figure, Instant optical power threshold Pins represents the instantaneous optical power threshold, Achievable rateR LiFi -WiFi represents the achievable rate, Link transmit powwer represents the link distribution power, Proposed Method represents the proposed solution, Power of LiFi Link Indicates the transmit power of the LiFi link, Power of WiFi Link Indicates the transmit power of the WiFi link. It is observed that the achievable rate R of the proposed scheme R LiFi-WiFi first increases with the increase of the instantaneous optical power threshold Pins and then remains constant. In addition, with the increase of the instantaneous optical power threshold Pins, the transmit power of the LiFi link First increase, then stay the same; transmit power of WiFi link It first decreases and then remains constant because Assuming that the average optical power P o =0.8P ins , the average value μ is 0.5A. For lower instantaneous optical power threshold Pins , the transmit power Constrained by τ, while for high instantaneous optical power threshold Pins , the transmit power Constrained by the average electrical power threshold PT .
图4a说明LiFi-WiFi系统在不同平均电功率门限PT下各自的可达速率下界RL LiFi-WiFi。图中Total power PT表示平均电功率门限,Link transmit powwer表示链路分配功率,Proposed Method表示提出的方案,Equiprobable表示等概分布,Power of LiFiLink表示LiFi链路发射功率,Power of WiFi Link表示WiFi链路发射功率,Lowerbound RL LiFi-WiFi表示可达速率下界。观察到,当平均电功率门限PT增加时,所提出的方法和等概率分布的可达速率下界RL LiFi-WiFi都会增加。此外,随着平均电功率门限PT的增加,WiFi链路的发射功率首先增加,并保持不变,发射功率的传输功率一直增加。原因是发射功率还受到光学功率约束的限制。Figure 4a illustrates the respective lower bounds R L LiFi-WiFi of the achievable rate of the LiFi-WiFi system under different average electric power thresholds P T . In the figure, Total power P T represents the average electrical power threshold, Link transmit powwer represents the link distribution power, Proposed Method represents the proposed solution, Equiprobable represents the equal probability distribution, Power of LiFiLink Indicates the transmit power of the LiFi link, Power of WiFi Link Indicates the transmit power of the WiFi link, and Lowerbound R L LiFi-WiFi indicates the lower bound of the achievable rate. It is observed that both the proposed method and the lower bound on the achievable rate of the equal probability distribution, R L LiFi-WiFi , increase when the average electric power threshold P T increases. In addition, as the average electrical power threshold P T increases, the transmit power of the WiFi link First increase, and keep constant, the transmit power The transmission power has been increasing. The reason is the transmit power Also limited by optical power constraints.
图4b说明LiFi-WiFi系统在不同瞬时光功率门限Pins下各自的可达速率下界RL LiFi-WiFi。图中Instant optical power threshold Pins表示瞬时光功率门限,Lowerbound RL LiFi-WiFi表示可达速率下界,Link transmit powwer表示链路分配功率,ProposedMethod表示提出的方案,Power of LiFi Link表示LiFi链路发射功率,Power of WiFiLink表示WiFi链路发射功率。假设平均光功率Po=0.8Pins,均值μ≤0.5A。观察到,随着瞬时光功率门限Pins的增加可达速率下界RL LiFi-WiFi先增加,然后保持不变。此外,随着瞬时光功率门限Pins的增加,LiFi链路的发射功率先增大,然后保持不变;WiFi链路的发射功率首先减小,然后保持恒定,这是因为对于较低的瞬时光功率门限Pins,发射功率受τ约束,而对于高瞬时光功率门限Pins,发射功率受平均电功率门限PT约束。Figure 4b illustrates the lower bound R L LiFi -WiFi of the respective achievable rates of the LiFi-WiFi system under different instantaneous optical power thresholds Pins. In the figure, Instant optical power threshold Pins represents the instantaneous optical power threshold, Lowerbound R L LiFi -WiFi represents the lower bound of the achievable rate, Link transmit powwer represents the link allocation power, ProposedMethod represents the proposed solution, Power of LiFi Link Indicates the transmit power of the LiFi link, Power of WiFiLink Indicates the transmit power of the WiFi link. It is assumed that the average optical power P o =0.8P ins , and the average value μ≤0.5A. It is observed that with the increase of the instantaneous optical power threshold Pins, the achievable rate lower bound R L LiFi -WiFi first increases and then remains unchanged. In addition, with the increase of the instantaneous optical power threshold Pins, the transmit power of the LiFi link Increase first, then stay the same; transmit power of WiFi link It first decreases and then remains constant because For lower instantaneous optical power threshold Pins , the transmit power Constrained by τ, while for high instantaneous optical power threshold Pins , the transmit power Constrained by the average electrical power threshold PT .
图5a说明LiFi-WiFi系统在不同带宽B1下各自的可达速率下界RL LiFi-WiFi。图中Lower bound RL LiFi-WiFi表示可达速率下界,Link transmit powwer表示链路分配功率,Proposed Method表示提出的方案,Power of LiFi Link表示LiFi链路发射功率,Powerof WiFi Link表示WiFi链路发射功率,Bandwidth of LiFi link B1表示LiFi链路带宽。观察到,随着带宽B1的增加,所提出的方法的可达速率下界RL LiFi-WiFi增加。此外,随着带宽B1的增加,LiFi链路的发射功率增大,WiFi链路的发射功率减小。Figure 5a illustrates the lower bounds R L LiFi-WiFi of the respective achievable rates of the LiFi-WiFi system under different bandwidths B 1 . In the figure, Lower bound R L LiFi-WiFi represents the lower bound of the achievable rate, Link transmit powwer represents the link distribution power, Proposed Method represents the proposed solution, Power of LiFi Link Indicates the transmit power of the LiFi link, Powerof WiFi Link Indicates the transmit power of the WiFi link, and Bandwidth of LiFi link B 1 indicates the bandwidth of the LiFi link. It is observed that as the bandwidth B1 increases, the achievable rate lower bound R L LiFi -WiFi of the proposed method increases. Furthermore, as the bandwidth B1 increases, the transmit power of the LiFi link increase, the transmit power of the WiFi link decrease.
图5b说明LiFi-WiFi系统在不同带宽B2下各自的可实现速率下界RL LiFi-WiFi。图中Lower bound RL LiFi-WiFi表示可达速率下界,Link transmit powwer表示链路分配功率,Proposed Method表示提出的方案,Power of LiFi Link表示LiFi链路发射功率,Powerof WiFi Link表示WiFi链路发射功率,Bandwidth of WiFi link B2表示WiFi链路带宽。观察到,随着带宽B2的增加,所提出的方法的可达速率下界RL LiFi-WiFi增加。此外,随着带宽B2的增加,LiFi链路的发射功率减小,WiFi链路的发射功率增大。Figure 5b illustrates the respective lower bounds R L LiFi-WiFi of the achievable rate of the LiFi-WiFi system under different bandwidths B 2 . In the figure, Lower bound R L LiFi-WiFi represents the lower bound of the achievable rate, Link transmit powwer represents the link distribution power, Proposed Method represents the proposed solution, Power of LiFi Link Indicates the transmit power of the LiFi link, Powerof WiFi Link Indicates the WiFi link transmit power, Bandwidth of WiFi link B 2 represents the WiFi link bandwidth. It is observed that as the bandwidth B2 increases, the achievable rate lower bound R L LiFi -WiFi of the proposed method increases. Furthermore, as the bandwidth B2 increases, the transmit power of the LiFi link reduce, the transmit power of the WiFi link increase.
图6a说明在问题(7)的最优解下,可达速率RLiFi-WiFi、可达速率下界RL LiFi-WiFi和可达速率上界RU LiFi-WiFi在不同平均电功率门限PT下的变化曲线;图6b说明在问题(20)的最优解下,可达速率RLiFi-WiFi、可达速率下界RL LiFi-WiFi和可达速率上界RU LiFi-WiFi在不同平均电功率门限PT下的变化曲线。图中Achievable rate表示可达速率,RLiFi-WiFi为可达速率,RL LiFi-WiFi为可达速率下界,RU LiFi-WiFi为咔哒速率上界,Total power PT表示平均电功率门限。图6a和图6b显示,对于平均电功率门限PT,可达速率RLiFi-WiFi和可达速率下界RL LiFi-WiFi的差距大于可达速率RLiFi-WiFi和可达速率上界RU LiFi-WiFi的差距;对于高平均电功率门限PT,可达速率下界RL LiFi-WiFi和可达速率RLiFi-WiFi的差距低于可达速率RLiFi-WiFi和可达速率上界RU LiFi-WiFi的差距。Figure 6a illustrates the achievable rate R LiFi-WiFi , the lower achievable rate R L LiFi-WiFi and the upper achievable rate R U LiFi-WiFi under different average electric power thresholds P T under the optimal solution of problem (7). Figure 6b shows that under the optimal solution of problem (20), the achievable rate R LiFi-WiFi , the lower bound of the achievable rate R L LiFi-WiFi and the upper bound of the achievable rate R U LiFi-WiFi at different average electrical power Variation curve under threshold P T. In the figure, Achievable rate represents the achievable rate, R LiFi-WiFi represents the achievable rate, R L LiFi-WiFi represents the lower bound of the achievable rate, R U LiFi-WiFi represents the upper bound of the click rate, and Total power P T represents the average electric power threshold. Figures 6a and 6b show that for the average electrical power threshold P T , the difference between the achievable rate R LiFi-WiFi and the lower bound RL LiFi-WiFi is greater than the achievable rate R LiFi-WiFi and the upper bound R U LiFi - the gap of WiFi ; for high average electrical power threshold P T , the gap between the lower achievable rate RL LiFi- WiFi and the achievable rate R LiFi-WiFi is lower than the achievable rate R LiFi-WiFi and the upper achievable rate R U LiFi - WiFi gap.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110325208.0A CN113078948B (en) | 2021-03-26 | 2021-03-26 | Downlink transmission optimization method of LiFi-WiFi polymerization system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110325208.0A CN113078948B (en) | 2021-03-26 | 2021-03-26 | Downlink transmission optimization method of LiFi-WiFi polymerization system |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113078948A CN113078948A (en) | 2021-07-06 |
CN113078948B true CN113078948B (en) | 2022-02-01 |
Family
ID=76610644
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110325208.0A Active CN113078948B (en) | 2021-03-26 | 2021-03-26 | Downlink transmission optimization method of LiFi-WiFi polymerization system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113078948B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113766522B (en) * | 2021-09-30 | 2022-08-02 | 中国电信股份有限公司 | VLC-RF heterogeneous network deployment method, device, equipment and medium based on room division system |
CN115021825B (en) * | 2022-05-16 | 2024-08-09 | 中国矿业大学 | CSK constellation implementation method based on white light constraint |
CN115225205A (en) * | 2022-07-07 | 2022-10-21 | 中国科学院空间应用工程与技术中心 | A VLC-RF hybrid communication method, system, medium and device |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014085124A1 (en) * | 2012-11-27 | 2014-06-05 | Motorola Solutions, Inc. | Systems and methods for visible light communications personal area network and wireless local area network interworking |
WO2014085128A1 (en) * | 2012-11-27 | 2014-06-05 | Motorola Solutions, Inc. | Visible light communications personal area network controller and access point systems and methods |
CN107994946A (en) * | 2017-12-11 | 2018-05-04 | 欧普照明股份有限公司 | A kind of dual-mode communication system, method and lighting apparatus |
CN109660888A (en) * | 2019-02-28 | 2019-04-19 | 中国矿业大学 | A kind of optimization method of visible light communication network |
CN110620755A (en) * | 2018-06-18 | 2019-12-27 | 苹果公司 | Multi-channel video and audio conference with multiple communication channels per device |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106817163A (en) * | 2017-04-13 | 2017-06-09 | 济南浪潮高新科技投资发展有限公司 | A kind of data transmission device and method based on Lifi |
US10531047B2 (en) * | 2017-09-29 | 2020-01-07 | Apple Inc. | Multiway audio-video conferencing with multiple communication channels per device |
CN207753719U (en) * | 2017-11-22 | 2018-08-21 | 广州市浩洋电子股份有限公司 | A kind of communication system based on WiFi Yu LiFi mixed types |
CN208820548U (en) * | 2018-09-14 | 2019-05-03 | 广东轻工职业技术学院 | A device for charging with LIFI control |
-
2021
- 2021-03-26 CN CN202110325208.0A patent/CN113078948B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014085124A1 (en) * | 2012-11-27 | 2014-06-05 | Motorola Solutions, Inc. | Systems and methods for visible light communications personal area network and wireless local area network interworking |
WO2014085128A1 (en) * | 2012-11-27 | 2014-06-05 | Motorola Solutions, Inc. | Visible light communications personal area network controller and access point systems and methods |
CN107994946A (en) * | 2017-12-11 | 2018-05-04 | 欧普照明股份有限公司 | A kind of dual-mode communication system, method and lighting apparatus |
CN110620755A (en) * | 2018-06-18 | 2019-12-27 | 苹果公司 | Multi-channel video and audio conference with multiple communication channels per device |
CN109660888A (en) * | 2019-02-28 | 2019-04-19 | 中国矿业大学 | A kind of optimization method of visible light communication network |
Also Published As
Publication number | Publication date |
---|---|
CN113078948A (en) | 2021-07-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113078948B (en) | Downlink transmission optimization method of LiFi-WiFi polymerization system | |
US20240211770A1 (en) | Communication method and apparatus | |
Cao et al. | Reflecting the light: Energy efficient visible light communication with reconfigurable intelligent surface | |
CN111277311B (en) | Active and passive combined beam forming design method for millimeter wave symbiotic communication system | |
CN108235419B (en) | Power control method based on SWIPT in heterogeneous cellular network | |
CN112272051A (en) | Large-scale MIMO (multiple input multiple output) oriented symbol level hybrid precoding method with controllable error rate | |
CN110233653A (en) | Blind multipath recognition methods and system based on the mimo system for weighting integrated clustering algorithm | |
CN110166088A (en) | The power control algorithm without cell mimo system of customer-centric | |
CN111901812A (en) | Full-duplex cellular communication network base station and intelligent reflecting surface combined control method | |
WO2021203487A1 (en) | Fiber enabled optical wireless communication system and method | |
CN110418297B (en) | Power domain NOMA cooperative transmission method and device based on bit error rate fairness | |
CN103905106B (en) | A kind of multiple antennas multicast wave beam forming vector calculation | |
CN110365414B (en) | Enhanced optical space modulation method suitable for lognormal turbulence channel | |
CN115442816B (en) | Intelligent reflecting surface-assisted non-orthogonal multiple access short packet communication implementation method | |
CN113489536B (en) | Method for reaching channel capacity of visible light communication multi-input multi-output system | |
CN111970718B (en) | Deep learning-based power distribution method in energy collection untrusted relay network | |
CN114301525A (en) | A kind of SIC precoding method for MIMO VLC system with sub-connection structure | |
CN112188605B (en) | Transceiver design method for network-assisted full-duplex system in wireless energy-carrying communication scenarios | |
US11489560B2 (en) | Method of parameter estimation for a multi-input multi-output system | |
CN108234090B (en) | A cross-layer optimization design method in massive MIMO system | |
CN114531185B (en) | Transceiver joint design method based on symbol-level information | |
CN114665928B (en) | An Electric Power Allocation and QR-OSIC Precoding Method Based on MIMO-VLC System | |
CN116321236A (en) | RIS-assisted energy efficiency optimization method for secure cellular-free massive MIMO system | |
CN106301501B (en) | An optimization method for real-time data transmission based on joint coding and modulation | |
CN111447628B (en) | A method for user association of millimeter-wave heterogeneous networks |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |