CN113057850B - Recovery robot control method based on probability motion primitive and hidden semi-Markov - Google Patents
Recovery robot control method based on probability motion primitive and hidden semi-Markov Download PDFInfo
- Publication number
- CN113057850B CN113057850B CN202110264726.6A CN202110264726A CN113057850B CN 113057850 B CN113057850 B CN 113057850B CN 202110264726 A CN202110264726 A CN 202110264726A CN 113057850 B CN113057850 B CN 113057850B
- Authority
- CN
- China
- Prior art keywords
- probability
- markov
- parameters
- hidden semi
- motion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 25
- 238000011084 recovery Methods 0.000 title 1
- 210000001364 upper extremity Anatomy 0.000 claims abstract description 6
- 206010052904 Musculoskeletal stiffness Diseases 0.000 claims description 25
- 230000006870 function Effects 0.000 claims description 21
- 238000007476 Maximum Likelihood Methods 0.000 claims description 11
- 239000011159 matrix material Substances 0.000 claims description 8
- 238000013016 damping Methods 0.000 claims description 3
- 230000003252 repetitive effect Effects 0.000 claims description 3
- 230000036962 time dependent Effects 0.000 claims description 3
- 210000003414 extremity Anatomy 0.000 abstract description 7
- 230000000694 effects Effects 0.000 abstract description 3
- 208000027418 Wounds and injury Diseases 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 208000014674 injury Diseases 0.000 description 2
- 238000010801 machine learning Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000013075 data extraction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000012417 linear regression Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H1/00—Apparatus for passive exercising; Vibrating apparatus; Chiropractic devices, e.g. body impacting devices, external devices for briefly extending or aligning unbroken bones
- A61H1/02—Stretching or bending or torsioning apparatus for exercising
- A61H1/0274—Stretching or bending or torsioning apparatus for exercising for the upper limbs
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H2201/00—Characteristics of apparatus not provided for in the preceding codes
- A61H2201/16—Physical interface with patient
- A61H2201/1602—Physical interface with patient kind of interface, e.g. head rest, knee support or lumbar support
- A61H2201/1635—Hand or arm, e.g. handle
- A61H2201/1638—Holding means therefor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H2201/00—Characteristics of apparatus not provided for in the preceding codes
- A61H2201/50—Control means thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H2201/00—Characteristics of apparatus not provided for in the preceding codes
- A61H2201/50—Control means thereof
- A61H2201/5007—Control means thereof computer controlled
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H2201/00—Characteristics of apparatus not provided for in the preceding codes
- A61H2201/50—Control means thereof
- A61H2201/5058—Sensors or detectors
- A61H2201/5061—Force sensors
Landscapes
- Health & Medical Sciences (AREA)
- Epidemiology (AREA)
- Pain & Pain Management (AREA)
- Physical Education & Sports Medicine (AREA)
- Rehabilitation Therapy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Manipulator (AREA)
Abstract
本发明设计一种基于概率运动原语和隐半马尔可夫的康复机器人控制方法,包括以下步骤:(1)记录多次健侧上肢的运动信息,包括手臂末端刚度、轨迹等信息。(2)通过概率运动原语对(1)记录的刚度进行泛化。(3)运用隐半马尔可夫模型对(1)中记录的数据进行泛化,生成轨迹。(4)将泛化的轨迹进行镜像。(5)通过镜像后的信息对康复机器人的末端进行变阻抗控制。本发明首次将概率运动原语和隐半马尔可夫用于生成康复机器人的控制参数,可以有效利用患者健侧肢体辅助康复训练,通过模仿健侧肢体的运动控制康复机器人,可以达到更好的康复训练效果,同时提高康复效率,大大减少了康复医生的工作负担。
The present invention designs a rehabilitation robot control method based on probabilistic motion primitives and hidden semi-Markov, comprising the following steps: (1) Recording the motion information of the unaffected upper limbs for multiple times, including information such as arm end stiffness and trajectory. (2) Generalize the stiffness recorded in (1) by probabilistic motion primitives. (3) Use the hidden semi-Markov model to generalize the data recorded in (1) to generate trajectories. (4) Mirror the generalized trajectory. (5) Perform variable impedance control on the end of the rehabilitation robot through the mirrored information. The present invention uses probabilistic motion primitives and hidden semi-Markov for the first time to generate the control parameters of the rehabilitation robot, which can effectively use the patient's unaffected limb to assist the rehabilitation training. By imitating the motion of the unaffected limb to control the rehabilitation robot, a better Rehabilitation training effect, while improving rehabilitation efficiency, greatly reducing the workload of rehabilitation doctors.
Description
技术领域technical field
本发明属于机器模仿学习领域,涉及一种康复机器人控制方法,尤其涉及一种基于概率运动原语(ProMP)和隐半马尔可夫(HSMM)的康复机器人变阻抗控制方法,优化了康复机器人的在镜像控制下的轨迹产生。The invention belongs to the field of machine imitation learning, and relates to a control method for a rehabilitation robot, in particular to a variable impedance control method for a rehabilitation robot based on Probabilistic Motion Primitives (ProMP) and Hidden Semi-Markov (HSMM), which optimizes the control method of the rehabilitation robot. Trajectory generation under mirror control.
背景技术Background technique
康复机器人是工业机器人和医用机器人的结合,主要是为了迎合医疗护理人员与康复需求,辅助患者运动有障碍的患肢或者关节,以达到帮助患者康复的目的。目前主要分为可穿戴型(外骨骼型)与独立型两种。Rehabilitation robots are a combination of industrial robots and medical robots, mainly to meet the needs of medical nurses and rehabilitation, assist patients with limbs or joints with disabilities, so as to help patients recover. At present, it is mainly divided into two types: wearable type (exoskeleton type) and independent type.
本发明为一种独立型康复机器人的控制方法,通过多次健侧上肢的运动数据示教,利用机器模仿学习的方法,计算控制参数,控制康复机器人的运动。The invention relates to a control method of an independent rehabilitation robot, which uses the motion data of the unaffected upper limb to teach for many times, and uses the method of machine imitation learning to calculate control parameters and control the movement of the rehabilitation robot.
在机器学习中,如何让机器泛化示教的运动数据来生成所需的控制参数是一大问题,常用方法可以利用概率运动原语来解决。概率运动原语在运动原语的基础上做了改进,通过概率论的运算,把参数向量用概率分布的形式表示;具有对适应新目标,易于调节控制参数的优点等。本发明利用概率运动原语来泛化肌刚度数据In machine learning, how to make the machine generalize the taught motion data to generate the required control parameters is a big problem, and common methods can be solved by using probabilistic motion primitives. The probabilistic motion primitive is improved on the basis of the motion primitive. Through the operation of probability theory, the parameter vector is expressed in the form of probability distribution; it has the advantages of adapting to new targets and easy to adjust control parameters. The present invention utilizes probabilistic motion primitives to generalize muscle stiffness data
在人机示教中,隐马尔可夫模型常用于分析状态序列,该模型假设下一状态仅与当前状态有关。而隐半马尔可夫模型将某状态驻留的概率用时间概率函数表示,可以更好地表述时间信息。利用高斯线性回归的公式,可以实现对示教的运动数据的泛化。本发明利用隐半马尔可夫的方法,对示教的位置,速度等数据进行泛化。In human-machine teaching, Hidden Markov Models are often used to analyze state sequences, which assume that the next state is only related to the current state. The hidden semi-Markov model expresses the probability of a certain state by a time probability function, which can better express the time information. Using the formula of Gaussian linear regression, generalization to the taught motion data can be achieved. The invention uses the hidden semi-Markov method to generalize the taught position, speed and other data.
对于独立型上肢康复机器人,阻抗控制为其常用的控制方式之一,其主要优点为柔顺性高、对扰动和不确定性具有很好的鲁棒性,是实现力控的常用方式,因此非常适合应用在康复场景中,以避免对患者肢体的二次伤害。而变阻抗控制的意义在于能够适时地调整刚度值。For independent upper limb rehabilitation robots, impedance control is one of the commonly used control methods. Its main advantages are high flexibility, good robustness to disturbances and uncertainties, and it is a common method to achieve force control. Therefore, it is very It is suitable for use in rehabilitation scenarios to avoid secondary injury to the patient's limbs. The significance of variable impedance control is that the stiffness value can be adjusted in a timely manner.
本发明设计一种基于概率运动原语和隐半马尔可夫的康复机器人变阻抗控制方法,首次将概率运动原语和隐半马尔可夫用于生成康复机器人的控制参数,可以有效利用患者健侧肢体辅助康复训练,通过模仿健侧肢体的运动控制康复机器人,可以达到更好的康复训练效果,同时提高康复效率,大大减少了康复医生的工作负担。The present invention designs a variable impedance control method for a rehabilitation robot based on probability motion primitives and hidden semi-Markov, and uses probability motion primitives and hidden semi-Markovs for the first time to generate control parameters of the rehabilitation robot, which can effectively utilize the patient's health Side limb assisted rehabilitation training, by imitating the motion of the unaffected limb to control the rehabilitation robot, can achieve better rehabilitation training effect, improve rehabilitation efficiency, and greatly reduce the workload of rehabilitation doctors.
发明内容SUMMARY OF THE INVENTION
针对上述背景,本发明提出一种基于概率运动原语和隐半马尔可夫的康复机器人变阻抗控制方法,该方法可以通过机器学习,模仿健侧上肢运动生成患肢康复运动轨迹。In view of the above background, the present invention proposes a variable impedance control method for a rehabilitation robot based on probabilistic motion primitives and hidden semi-Markov.
为实现上述目标,本发明采用如下的技术方案:一种基于概率运动原语和隐半马尔可夫的康复机器人变阻抗控制方法,具体包括以下步骤:In order to achieve the above goals, the present invention adopts the following technical scheme: a variable impedance control method for a rehabilitation robot based on probabilistic motion primitives and hidden semi-Markov, which specifically includes the following steps:
(1)记录多次健侧上肢的运动信息,包括手臂末端刚度、轨迹等信息。(1) Record the motion information of the unaffected upper limb for multiple times, including the stiffness and trajectory of the arm end.
(2)通过概率运动原语对(1)记录的刚度进行泛化。(2) Generalize the stiffness recorded in (1) by probabilistic motion primitives.
(3)运用隐半马尔可夫模型对(1)中记录的数据进行泛化,生成轨迹。其中隐半马尔可夫模型的参数由极大似然估计算法(Expectation-Maximization)估计得到,而后控制参数由高斯回归算法计算。(3) Use the hidden semi-Markov model to generalize the data recorded in (1) to generate trajectories. The parameters of the hidden semi-Markov model are estimated by the maximum likelihood estimation algorithm (Expectation-Maximization), and then the control parameters are calculated by the Gaussian regression algorithm.
(4)将泛化的轨迹进行镜像。(4) Mirror the generalized trajectory.
(5)通过镜像后的轨迹、变化的刚度信息和安装在机械臂上的多维力传感器对康复机器人的末端进行变阻抗控制。(5) The end of the rehabilitation robot is controlled by variable impedance through the mirrored trajectory, the changing stiffness information and the multi-dimensional force sensor installed on the robotic arm.
对所述步骤(1),将示教时记录下的刚度,位置和速度信息写成向量形式,有:For the step (1), the stiffness, position and velocity information recorded during teaching are written in vector form, as follows:
xD,t=(x1,t,...,xd,t)T x D, t = (x 1, t , . . . , x d, t ) T
kD,t=(k1,t,...,,kd,t)T k D,t =(k 1,t ,...,,k d,t ) T
其中,D代表自由度,t代表时间,xD,t为轨迹的位置,为轨迹的速度,kD,t为刚度信息。Among them, D represents degrees of freedom, t represents time, x D, t is the position of the trajectory, is the velocity of the trajectory, k D, t is the stiffness information.
对所述步骤(2),包括下列分步骤:To the described step (2), the following steps are included:
(a1)通过(1)中提取的运动信息,确定向量(a1) Determine the vector by the motion information extracted in (1)
yt=(k1,t,k2,t,...,kd,t)T=Ψtω+∈y y t = (k 1, t , k 2, t , ..., k d, t ) T = Ψ t ω+∈ y
其中,kd,t为d个自由度的肌刚度数据,t=0,1,...,N为时间,yt指代(1)中的肌刚度数据,ω为权向量,∈y为期望为0的高斯分布噪声,其方差为∑y,φi,t为时间相关的基函数,对重复规律型运动,可令基函数为:Among them, k d, t is the muscle stiffness data of d degrees of freedom, t=0, 1, ..., N is the time, y t refers to the muscle stiffness data in (1), ω is the weight vector, ∈ y is the Gaussian distribution noise with the expectation of 0, its variance is ∑ y , φ i, t is the time-dependent basis function, for repetitive regular motion, the basis function can be made as:
φi,t=bi(z)/∑jbj(z)φ i, t = b i (z)/∑ j b j (z)
其中,in,
其中z(t)为任意的时间单调增函数,h为带宽,ci为第i个基函数的中心where z(t) is an arbitrary time monotonically increasing function, h is the bandwidth, and c i is the center of the ith basis function
(a2)根据概率运动原语公式,有:(a2) According to the probabilistic motion primitive formula, there are:
其中代表高斯分布,θ=(μω,∑ω)为该概率密度函数的参数;Ψt Tμω和Ψt T∑ωΨt+∑y分别代表该高斯分布p(yt;θ)的期望与方差。in represents the Gaussian distribution, θ=(μ ω , ∑ ω ) is the parameter of the probability density function; Ψ t T μ ω and Ψ t T ∑ ω Ψ t +∑ y represent the Gaussian distribution p(y t ; θ), respectively Expectation and variance.
(a3)对示教提取的刚度数据,运用极大似然估计算法提取(a2)中模型的参数,得出μω *,∑ω *;并令控制参数其中μω *,∑ω *为极大似然估计得出的数值,即为(a2)中模型的参数0;即为运用概率运动原语得出的肌刚度,用以对机械臂进行控制。(a3) For the stiffness data extracted by teaching, use the maximum likelihood estimation algorithm to extract the parameters of the model in (a2) to obtain μ ω * , ∑ ω * ; and let the control parameters Among them μ ω * , ∑ ω * is the value obtained by the maximum likelihood estimation, that is, the parameter 0 of the model in (a2); It is the muscle stiffness obtained by using the probabilistic motion primitive to control the robotic arm.
对于所述步骤(3),包括下列分步骤:For the step (3), the following sub-steps are included:
(b1)对关节的每个自由度分别建立隐半马尔可夫模型,其中隐半马尔可夫模型Θ可通过下列参数,表示为:(b1) Establish a hidden semi-Markov model for each degree of freedom of the joint, where the hidden semi-Markov model Θ can be expressed as:
其中,πi为第i个状态为初始状态的概率,ai,j为从状态j转移到下一状态i的概率,K为状态总数;为第i个状态持续时间的概率密度函数的参数,服从高斯分布,μi,∑i为第i个状态能够被成功观测到的概率密度函数的参数,对此,有:Among them, π i is the probability that the ith state is the initial state, a i, j is the probability of transitioning from state j to the next state i, and K is the total number of states; is the parameter of the probability density function of the i-th state duration, obeying the Gaussian distribution, μ i , ∑ i is the parameter of the probability density function that the i-th state can be successfully observed, for this, there are:
其中t=1,2,...,tmax,η为设置在2-3之间的常数,Tmax为示教数据向量的总采样数,where t=1, 2, ..., t max , η is a constant set between 2-3, T max is the total number of samples of the taught data vector,
在第i状态的每一个时间t中,观测到的数据服从高斯分布,μi,∑i分别为分布的期望与方差,对此,有:In each time t of the i-th state, the observed data obeys a Gaussian distribution, and μ i and ∑ i are the expectation and variance of the distribution, respectively. For this, there are:
其中,为t时刻观测到的位置与速度值, in, are the position and velocity values observed at time t,
μi为联合高斯分布的期望,其中为位置的期望,为速度的期望;∑i为协方差矩阵,其中分别为对应的协方差;μ i is the expectation of the joint Gaussian distribution, where expectations for the location, is the expectation of speed; ∑ i is the covariance matrix, where are the corresponding covariances, respectively;
(b2)使用极大似然估计算法,对每个自由度的和分布中的参数进行计算,得出参数值和μi,∑i (b2) Using the maximum likelihood estimation algorithm, for each degree of freedom and The parameters in the distribution are calculated to obtain the parameter values and μ i , ∑ i
(b3)对在t时刻时在第i个状态的概率,有公式:(b3) For the probability of being in the i-th state at time t, there is a formula:
其中x1为初始位置,πi为第i个状态为初始状态的概率,ai,t为在t时刻时在第i个状态的概率where x 1 is the initial position, π i is the probability that the i-th state is the initial state, a i, t is the probability that the i-th state is at time t
(b4)利用高斯回归公式,计算控制参数和有:(b4) Using the Gauss regression formula, calculate the control parameters and Have:
其中,为机械臂的轨迹在t时刻的速度,并通过初始位置积分,即可得到在t时刻的轨迹 in, is the velocity of the trajectory of the robotic arm at time t, and by integrating the initial position, the trajectory at time t can be obtained
对所述步骤(5),利用(2)中和(3)中计算出的控制参数,有:To described step (5), utilize the control parameters calculated in (2) and (3), there are:
其中Kj为主对角线是(k1,t *,k2,t *,...,kd,t *)元素的对角阵,Dj为相应的阻尼矩阵,τcmd为机械臂的力信息;为期望的位置与速度向量,可由(3)导出;xmsr,为当前的位置与速度向量,τdyn用于补偿系统的动态力,如重力和科里奥利力等。通过检测使用者手臂的力信号,根据阻抗控制的公式,输出相应的力矩。where Kj is a diagonal matrix of (k1 ,t * ,k2 ,t * ,...,kd ,t * ) elements where Kj is the main diagonal, Dj is the corresponding damping matrix, and τcmd is the mechanical arm force information; is the desired position and velocity vector, which can be derived from (3); x msr , is the current position and velocity vector, τ dyn is used to compensate the dynamic forces of the system, such as gravity and Coriolis force. By detecting the force signal of the user's arm, the corresponding torque is output according to the formula of impedance control.
本发明的有益效果:Beneficial effects of the present invention:
本发明使用机器学习中的概率运动原语和隐半马尔可夫用于生成康复机器人的控制参数,并用变阻抗的方法控制,比传统的直接提取数据控制的方法,柔顺性高,更加能够保护患者肢体免受二次伤害,可以达到更好的康复训练效果。The present invention uses probability motion primitives in machine learning and hidden semi-Markov to generate the control parameters of the rehabilitation robot, and uses the method of variable impedance control. Compared with the traditional method of direct data extraction and control, the present invention has higher flexibility and better protection. The patient's limbs are protected from secondary injuries, and a better rehabilitation training effect can be achieved.
附图说明Description of drawings
图1为本发明基于概率运动原语和隐半马尔可夫的康复机器人控制方法的流程图。FIG. 1 is a flow chart of the control method of a rehabilitation robot based on probabilistic motion primitives and hidden semi-Markov in the present invention.
图2为本发明基于概率运动原语和隐半马尔可夫的康复机器人控制方法中阻抗控制的示意图。FIG. 2 is a schematic diagram of impedance control in the rehabilitation robot control method based on probabilistic motion primitives and hidden semi-Markov of the present invention.
具体实施方式Detailed ways
下面结合附图和具体实施方式,进一步阐明本发明,应理解下述具体实施方式仅用于说明本发明而不用于限制本发明的范围。The present invention will be further clarified below with reference to the accompanying drawings and specific embodiments, and it should be understood that the following specific embodiments are only used to illustrate the present invention and not to limit the scope of the present invention.
如图所示,一种基于概率运动原语和隐半马尔可夫的康复机器人控制方法,具体包括以下步骤:As shown in the figure, a rehabilitation robot control method based on probabilistic motion primitives and hidden semi-Markov, specifically includes the following steps:
(1)记录多次健侧上肢的运动信息,包括手臂末端刚度、轨迹等信息。(1) Record the motion information of the unaffected upper limb for multiple times, including the stiffness and trajectory of the arm end.
(2)通过概率运动原语对(1)记录的刚度进行泛化。(2) Generalize the stiffness recorded in (1) by probabilistic motion primitives.
(3)运用隐半马尔可夫模型对(1)中记录的数据进行泛化,生成轨迹。其中隐半马尔可夫模型的参数由极大似然估计算法(Expectation-Maximization)估计得到,而后控制参数由高斯回归算法计算。(3) Use the hidden semi-Markov model to generalize the data recorded in (1) to generate trajectories. The parameters of the hidden semi-Markov model are estimated by the maximum likelihood estimation algorithm (Expectation-Maximization), and then the control parameters are calculated by the Gaussian regression algorithm.
(4)将泛化的轨迹进行镜像。(4) Mirror the generalized trajectory.
(5)通过镜像后的轨迹、变化的刚度信息和安装在机械臂上的多维力传感器对康复机器人的末端进行变阻抗控制。(5) The end of the rehabilitation robot is controlled by variable impedance through the mirrored trajectory, the changing stiffness information and the multi-dimensional force sensor installed on the robotic arm.
对所述步骤(1),将示教时记录下的刚度,位置和速度信息写成向量形式,有:For the step (1), the stiffness, position and velocity information recorded during teaching are written in vector form, as follows:
xD,t=(x1,t,...,xd,t)T x D, t = (x 1 , t, . . . , x d, t ) T
kD,t=(k1,t,...,kd,t)T k D,t =(k 1,t ,...,k d,t ) T
其中,D代表自由度,t代表时间,xD,t为轨迹的位置,为轨迹的速度,kD,t为刚度信息。Among them, D represents degrees of freedom, t represents time, x D, t is the position of the trajectory, is the velocity of the trajectory, k D, t is the stiffness information.
对所述步骤(2),包括下列分步骤:To the described step (2), the following steps are included:
(a1)通过(1)中提取的运动信息,确定向量(a1) Through the motion information extracted in (1), determine the vector
yt=(k1,t,k2,t,...,kd,t)T=Ψtω+∈y y t = (k 1, t , k 2, t, ..., k d, t ) T = Ψ t ω+∈ y
其中,kd,t为d个自由度的肌刚度数据,t=0,1,...,N为时间,yt指代(1)中的肌刚度数据,ω为权向量,∈y为期望为0的高斯分布噪声,其方差为∑y,φi,t为时间相关的基函数,对重复规律型运动,可令基函数为:Among them, k d, t is the muscle stiffness data of d degrees of freedom, t=0, 1, ..., N is the time, y t refers to the muscle stiffness data in (1), ω is the weight vector, ∈ y is the Gaussian distribution noise with the expectation of 0, and its variance is ∑y, φ i, and t is the time-dependent basis function. For repetitive regular motion, the basis function can be made as:
φi,t=bi(z)/∑jbj(z)φ i, t = b i (z)/∑ j b j (z)
其中,in,
其中z(t)为任意的时间单调增函数,h为带宽,ci为第i个基函数的中心where z(t) is an arbitrary time monotonically increasing function, h is the bandwidth, and c i is the center of the ith basis function
(a2)根据概率运动原语公式,有:(a2) According to the probabilistic motion primitive formula, there are:
其中代表高斯分布,θ=(μω,∑ω)为该概率密度函数的参数;Ψt Tμω和Ψt T∑ωΨt+∑y分别代表该高斯分布p(yt;θ)的期望与方差。in represents the Gaussian distribution, θ=(μ ω , ∑ ω ) is the parameter of the probability density function; Ψ t T μ ω and Ψ t T ∑ ω Ψ t +∑ y represent the Gaussian distribution p(y t ; θ), respectively Expectation and variance.
(a3)对示教提取的刚度数据,运用极大似然估计算法提取(a2)中模型的参数,得出μω *,∑ω *;并令控制参数其中μω *,∑ω *为极大似然估计得出的数值,即为(a2)中模型的参数θ;即为运用概率运动原语得出的肌刚度,用以对机械臂进行控制。(a3) For the stiffness data extracted by teaching, use the maximum likelihood estimation algorithm to extract the parameters of the model in (a2) to obtain μ ω * , ∑ ω * ; and let the control parameters Among them μ ω * , ∑ ω * is the value obtained by the maximum likelihood estimation, that is, the parameter θ of the model in (a2); It is the muscle stiffness obtained by using the probabilistic motion primitive to control the robotic arm.
对于所述步骤(3),包括下列分步骤:For the step (3), the following sub-steps are included:
(b1)对关节的每个自由度分别建立隐半马尔可夫模型,其中隐半马尔可夫模型Θ可通过下列参数,表示为:(b1) Establish a hidden semi-Markov model for each degree of freedom of the joint, where the hidden semi-Markov model Θ can be expressed as:
其中,πi为第i个状态为初始状态的概率,ai,j为从状态j转移到下一状态i的概率,K为状态总数;为第i个状态持续时间的概率密度函数的参数,服从高斯分布,μi,∑i为第i个状态能够被成功观测到的概率密度函数的参数,对此,有:Among them, π i is the probability that the ith state is the initial state, a i, j is the probability of transitioning from state j to the next state i, and K is the total number of states; is the parameter of the probability density function of the i-th state duration, obeying the Gaussian distribution, μ i , ∑ i is the parameter of the probability density function that the i-th state can be successfully observed, for this, there are:
其中t=1,2,...,tmax,η为设置在2-3之间的常数,Tmax为示教数据向量的总采样数,where t=1, 2, ..., t max , η is a constant set between 2-3, T max is the total number of samples of the taught data vector,
在第i状态的每一个时间t中,观测到的数据服从高斯分布,μi,∑i分别为分布的期望与方差,对此,有:In each time t of the i-th state, the observed data obeys a Gaussian distribution, and μ i and ∑ i are the expectation and variance of the distribution, respectively. For this, there are:
其中,为t时刻观测到的位置与速度值, in, are the position and velocity values observed at time t,
μi为联合高斯分布的期望,其中为位置的期望,为速度的期望;∑i为协方差矩阵,其中分别为对应的协方差;μ i is the expectation of the joint Gaussian distribution, where expectations for the location, is the expectation of speed; ∑ i is the covariance matrix, where are the corresponding covariances, respectively;
(b2)使用极大似然估计算法,对每个自由度的和分布中的参数进行计算,得出参数值和μi,∑i (b2) Using the maximum likelihood estimation algorithm, for each degree of freedom and The parameters in the distribution are calculated to obtain the parameter values and μ i , ∑ i
(b3)对在t时刻时在第i个状态的概率,有公式:(b3) For the probability of being in the i-th state at time t, there is a formula:
其中x1为初始位置,πi为第i个状态为初始状态的概率,ai,t为在t时刻时在第i个状态的概率where x 1 is the initial position, π i is the probability that the i-th state is the initial state, a i, t is the probability that the i-th state is at time t
(b4)利用高斯回归公式,计算控制参数和有:(b4) Using the Gauss regression formula, calculate the control parameters and Have:
其中,为机械臂的轨迹在t时刻的速度,并通过初始位置积分,即可得到在t时刻的轨迹 in, is the velocity of the trajectory of the robotic arm at time t, and by integrating the initial position, the trajectory at time t can be obtained
对所述步骤(5),利用(2)中和(3)中计算出的控制参数,有:To described step (5), utilize the control parameters calculated in (2) and (3), there are:
其中Kj为主对角线是元素的对角阵,Dj为相应的阻尼矩阵,τcmd为机械臂的力信息;为期望的位置与速度向量,可由(3)导出;xmsr,为当前的位置与速度向量,τdyn用于补偿系统的动态力,如重力和科里奥利力等。通过检测使用者手臂的力信号,根据阻抗控制的公式,输出相应的力矩。where K j is the dominant diagonal The diagonal matrix of elements, D j is the corresponding damping matrix, τ cmd is the force information of the manipulator; is the desired position and velocity vector, which can be derived from (3); x msr , is the current position and velocity vector, τ dyn is used to compensate the dynamic forces of the system, such as gravity and Coriolis force. By detecting the force signal of the user's arm, the corresponding torque is output according to the formula of impedance control.
Claims (4)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110264726.6A CN113057850B (en) | 2021-03-11 | 2021-03-11 | Recovery robot control method based on probability motion primitive and hidden semi-Markov |
PCT/CN2021/087801 WO2022188238A1 (en) | 2021-03-11 | 2021-04-16 | Rehabilitation robot control method based on probabilistic movement primitives and hidden semi-markov |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110264726.6A CN113057850B (en) | 2021-03-11 | 2021-03-11 | Recovery robot control method based on probability motion primitive and hidden semi-Markov |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113057850A CN113057850A (en) | 2021-07-02 |
CN113057850B true CN113057850B (en) | 2022-06-10 |
Family
ID=76560004
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110264726.6A Active CN113057850B (en) | 2021-03-11 | 2021-03-11 | Recovery robot control method based on probability motion primitive and hidden semi-Markov |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN113057850B (en) |
WO (1) | WO2022188238A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114690635B (en) * | 2022-03-22 | 2022-10-18 | 苏州大学 | State estimation and control method and system of mass spring damping system |
CN119369424B (en) * | 2024-12-31 | 2025-04-29 | 浙江工业大学 | Parameter self-learning robot compliance control method, system and device |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003001507A1 (en) * | 2001-06-22 | 2003-01-03 | Intel Corporation | Hidden markov model with frame correlation |
TWI549666B (en) * | 2015-01-05 | 2016-09-21 | 國立清華大學 | Rehabilitation system with stiffness measurement |
CN108537268B (en) * | 2018-03-30 | 2021-10-15 | 烟台维度机器人有限公司 | Robot quasi-periodic motion demonstration learning method |
CN109394476B (en) * | 2018-12-06 | 2021-01-19 | 上海神添实业有限公司 | Method and system for automatic intention recognition of brain muscle information and intelligent control of upper limbs |
EP3747604B1 (en) * | 2019-06-07 | 2022-01-26 | Robert Bosch GmbH | Robot device controller, robot device arrangement and method for controlling a robot device |
CN110464349A (en) * | 2019-08-30 | 2019-11-19 | 南京邮电大学 | A kind of upper extremity exercise function score method based on hidden Semi-Markov Process |
CN111243706B (en) * | 2020-01-19 | 2022-11-18 | 东南大学 | Training task generation method for upper limb rehabilitation robot based on variable impedance demonstration learning |
CN111588597A (en) * | 2020-04-22 | 2020-08-28 | 百年旭康医疗器械有限公司 | Intelligent interactive walking training system and implementation method thereof |
CN111759672A (en) * | 2020-07-30 | 2020-10-13 | 中国科学院合肥物质科学研究院 | A lower limb rehabilitation mirror training method based on a lower limb rehabilitation robot |
CN111904795B (en) * | 2020-08-28 | 2022-08-26 | 中山大学 | Variable impedance control method for rehabilitation robot combined with trajectory planning |
-
2021
- 2021-03-11 CN CN202110264726.6A patent/CN113057850B/en active Active
- 2021-04-16 WO PCT/CN2021/087801 patent/WO2022188238A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
WO2022188238A1 (en) | 2022-09-15 |
CN113057850A (en) | 2021-07-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111546315B (en) | Robot flexible teaching and reproducing method based on human-computer cooperation | |
Calinon et al. | Learning and reproduction of gestures by imitation | |
CN113057850B (en) | Recovery robot control method based on probability motion primitive and hidden semi-Markov | |
Billard et al. | Discovering optimal imitation strategies | |
Billard et al. | Discriminative and adaptive imitation in uni-manual and bi-manual tasks | |
CN111281743A (en) | An adaptive compliance control method for an upper limb rehabilitation exoskeleton robot | |
CN111618862B (en) | Robot operation skill learning system and method under guidance of priori knowledge | |
CN112959330B (en) | Man-machine correspondence device and method for robot arm movement based on master-slave dynamic motion primitives | |
CN110412866B (en) | Exoskeleton single-leg cooperative control method based on adaptive iterative learning | |
CN111872934A (en) | Mechanical arm control method and system based on hidden semi-Markov model | |
CN112454359B (en) | Robot joint tracking control method based on neural network adaptation | |
Zeng et al. | Encoding multiple sensor data for robotic learning skills from multimodal demonstration | |
CN111243706B (en) | Training task generation method for upper limb rehabilitation robot based on variable impedance demonstration learning | |
CN100437643C (en) | Method for correcting noises and errors in human sports trapped data | |
Dong et al. | Passive bimanual skills learning from demonstration with motion graph attention networks | |
CN111310641A (en) | Motion synthesis method based on spherical nonlinear interpolation | |
CN114179089B (en) | Robust region tracking control method for mechanical arm | |
CN1916969A (en) | Method for generating reaction accompany movement based on hybrid control | |
WO2023082404A1 (en) | Control method for robot, and robot, storage medium, and grabbing system | |
CN111325287A (en) | Foot touchdown detection method of humanoid robot | |
Hu et al. | Learn to grasp objects with dexterous robot manipulator from human demonstration | |
CN114366552B (en) | Exoskeleton control method and system for upper limb rehabilitation training | |
CN110815218B (en) | An anthropomorphic trajectory planning method for robotic arms based on motion capture system | |
CN115070749B (en) | Method, device, equipment, system and readable storage medium for controlling a robot | |
CN116690564A (en) | Control method and system of massage robot |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |