CN113035991A - 一种低温制备CsPbI3柔性钙钛矿太阳能电池的方法 - Google Patents
一种低温制备CsPbI3柔性钙钛矿太阳能电池的方法 Download PDFInfo
- Publication number
- CN113035991A CN113035991A CN202110232411.3A CN202110232411A CN113035991A CN 113035991 A CN113035991 A CN 113035991A CN 202110232411 A CN202110232411 A CN 202110232411A CN 113035991 A CN113035991 A CN 113035991A
- Authority
- CN
- China
- Prior art keywords
- cspbi
- solar cell
- zno
- perovskite solar
- solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F10/00—Individual photovoltaic cells, e.g. solar cells
- H10F10/10—Individual photovoltaic cells, e.g. solar cells having potential barriers
- H10F10/16—Photovoltaic cells having only PN heterojunction potential barriers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F71/00—Manufacture or treatment of devices covered by this subclass
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/10—Semiconductor bodies
- H10F77/16—Material structures, e.g. crystalline structures, film structures or crystal plane orientations
- H10F77/169—Thin semiconductor films on metallic or insulating substrates
- H10F77/1698—Thin semiconductor films on metallic or insulating substrates the metallic or insulating substrates being flexible
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/20—Electrodes
- H10F77/206—Electrodes for devices having potential barriers
- H10F77/211—Electrodes for devices having potential barriers for photovoltaic cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Photovoltaic Devices (AREA)
Abstract
本发明属于钙钛矿太阳能电池技术领域,本发明公开了一种低温制备CsPbI3柔性钙钛矿太阳能电池的方法。包括以下步骤:在聚合物/透明导电氧化物(polymer/TCO)基底上依次制备ZnO电子传输层、CsPbI3钙钛矿光吸收层和C电极。本发明采用的柔性基底使得太阳能电池器件轻薄、可弯曲,可被应用在各种可穿戴式和可折叠式的电子产品中,利用刮刀涂布法制备的C电极代替了空穴传输层和金属电极,简化了制备工艺,而且极大地节约成本。本发明制备的碳基全无机CsPbI3柔性钙钛矿太阳能电池,最高光电转换效率为10.99%,其稳定性较好,具有良好的应用前景。
Description
技术领域
本发明涉及钙钛矿太阳能电池技术领域,尤其涉及一种低温制备碳基全无机CsPbI3柔性钙钛矿太阳能电池的方法。
背景技术
目前,有机-无机杂化钙钛矿太阳能电池效率由原来的3.8%增加到了 25.2%,从而该太阳能电池成为目前最具有发展前途的太阳能电池之一。但是,有机-无机杂化钙钛矿材料中含有具有挥发性和吸湿性的有机阳离子,导致杂化钙钛矿材料在光、热以及水汽条件下的不稳定。同时,常用的有机空穴传输材料Spiro-OMeTAD不仅合成复杂,价格昂贵,容易分解,加速钙钛矿太阳能电池性能的退化。相比较,碳基全无机钙钛矿太阳能电池以其简易的器件结构(电子传输层/无机钙钛矿/C电极)引起了广泛的研究。目前其效率虽比不上前者,但其热稳定性良好,组分在空气中一般不挥发,同时,碳电极代替了空穴传输层和昂贵的金属电极,操作简单,节约成本,发展前景广阔。
与传统的太阳能电池相比,柔性太阳能电池因其轻薄、透光性和可弯曲等优点,已被广泛应用在各种可穿戴式、可折叠式的电子产品中。然而,大多数的聚合物基底不能耐高温,当温度超过150℃时,聚合物基底的性能将会被破坏。因此,关于柔性太阳能电池的整个制作过程必须要在低于150℃下进行。
在电子传输层方面,目前使用最多的电子传输层是TiO2体系,效率最高的也是在TiO2体系。但是TiO2需要进行500℃的高温退火,这就影响了其在柔性器件上的应用。为了满足柔性器件的制作要求,必须在低温下制备电子传输层。所以,研究低温下就可以制备电子传输层的原料是制备高效率柔性钙钛矿太阳电池的必要因素。本发明采用的ZnO具有TiO2相似的光透过率,但是电子迁移率更高,同时能在低于150℃下制备,是作为柔性钙钛矿太阳能电池中最佳的电子传输层材料之一。
在无机钙钛矿材料中,CsPbI3具有最为理想的禁带宽度(1.73eV),是最适合做全无机钙钛矿太阳能电池的光吸收层材料之一。但由于Cs+太小,不足以支撑立方钙钛矿结构中的PbI6八面体框架,α-CsPbI3钙钛矿只能在 300℃以上的高温下形成。而且CsPbI3在水分作用下表现出相不稳定性,容易从α相转变为δ相(非钙钛矿相),室温下的禁带宽度为2.8eV,对光的利用率不高,阻碍了CsPbI3太阳能电池的应用。所以在低温下制备α-CsPbI3钙钛矿是制备高效率柔性钙钛矿太阳电池的关键因素。
发明内容
有鉴于此,本发明提供了一种低温制备碳基全无机CsPbI3柔性钙钛矿太阳能电池的方法,本发明采用在聚合物/透明导电氧化物(polymer/TCO)基底上依次制备ZnO电子传输层、CsPbI3钙钛矿光吸收层和C电极。该钙钛矿太阳能电池具有光电转换效率高、稳定性较好等优点,且该制备工艺简单,极大地节约了成本,具有良好的应用前景。
为了达到上述目的,本发明采用如下技术方案:
步骤1.聚合物/透明导电氧化物(Polymer/TCO)基底的预处理:先依次用乙醇、去离子水清洗聚合物/透明导电氧化物(Polymer/TCO)基底,再利用N2吹干后,用UV/O3处理15-30min。
步骤2.在聚合物/透明导电氧化物(polymer/TCO)基底上制备ZnO电子传输层,具体步骤如下:
步骤2.1.ZnO纳米颗粒胶体的制备:采用溶胶-凝胶法制备浓度为10-30 mg/ml的ZnO纳米颗粒胶体,步骤如下:
S1:在三颈烧瓶中,将二水醋酸锌加入甲醇溶液中,记做溶液①;在烧杯中,将氢氧化钾加入甲醇溶液中,记做溶液②;
S2:对溶液①进行加热,当温度达到60℃时,在10-15min内,将溶液②逐滴加入溶液①中;滴定完成后,继续在60-65℃继续下加热搅拌2-2.5h 后,静置8h;
S3:静置后,将上层澄清液倒掉,将沉淀转移到离心管中,用甲醇重复离心3次后,加入体积比为14∶1正丁醇和氯仿,超声10-15min,得到ZnO 纳米颗粒胶体;
步骤2.2.ZnO电子传输层的制备:将步骤2.1所制备ZnO纳米颗粒胶体过滤后,利用匀胶机,以2000-5000rpm的旋涂速度,20-50s的旋涂时间旋涂在聚合物/透明导电氧化物(polymer/TCO)基底上成膜,然后置于 100-120℃的温度下退火5-20min,得到ZnO电子传输层。
步骤3.在步骤2的基础上制备CsPbI3钙钛矿光吸收层,具体步骤如下:
步骤3.1.CsPbI3钙钛矿前驱体溶液的制备:将摩尔比为0.8-1.2∶1的CsI 和PbI2溶解在DMSO中,再加入0.1-1.0M的CsBr,在57-62℃下搅拌24h,经过过滤后得到CsPbI3钙钛矿前驱体溶液;
步骤3.2.CsPbI3钙钛矿光吸收层的制备:将步骤3.1所得到的CsPbI3钙钛矿前驱体溶液过滤后,利用匀胶机,以2000-5000rpm的旋涂速度,20-50s 的旋涂时间旋涂在ZnO电子传输层上,再置于100-120℃的温度下退火5-10 min,得到CsPbI3钙钛矿光吸收层。
步骤4.C电极的制备:在步骤3的基础上采用刮刀涂布法将导电碳浆填料刮涂到CsPbI3钙钛矿光吸收层上,然后在100-120℃下退火10-30min,即可得到碳基全无机CsPbI3柔性钙钛矿太阳能电池。
优选地,所述聚合物/透明导电氧化物(polymer/TCO)基底为PET/ITO 或PEN/ITO,其方块电阻为15-35Ω,厚度125-188μm,透光率>80%。
优选地,所述步骤2.1的S1中溶液①的二水醋酸锌浓度为23-24g/L,溶液②的氢氧化钾浓度为22-23g/L;所述步骤2.1的S2中采用医疗注射器代替恒压漏斗,逐滴滴加氢氧化钾的甲醇溶液,可以精准控制滴加速度和时间;所述步骤2.1的S3中每次离心后去掉上清液,加入甲醇用玻璃棒搅拌 10min。
优选地,所述步骤2中ZnO电子传输层的ZnO薄膜为1-5层。
优选地,所述步骤3中CsPbI3钙钛矿光吸收层的CsPbI3薄膜为1-5层。
优选地,所述步骤4中的导电碳浆填料为炭黑,固体含量WT%为 70-72%,电阻为10Ω/cm2。
优选地,所述步骤4中刮涂的导电碳浆填料厚度为20-60μm。
经由上述的技术方案可知,与现有技术相比,本发明的有益效果如下:
1、本发明提出一种低温制备碳基全无机CsPbI3柔性钙钛矿太阳能电池的方法,在柔性基底上制作太阳能电池,其结构为 polymer/TCO/ZnO/CsPbI3/C,简化了制备工艺过程;用C电极代替了有机空穴传输层及贵金属电极,极大地提高了电池的稳定性,节约了成本;以ZnO 为电子传输层,无机钙钛矿CsPbI3材料为光吸收层,在57-62℃的低温下合成无机钙钛矿CsPbI3材料,不仅减少了能耗,而且该温度与柔性基底可以很好适配,得到了光电转换效率较高的碳基全无机柔性钙钛矿太阳能电池。
2、本发明采用的柔性基底使得太阳能电池器件轻薄、可弯曲,可被应用在各种可穿戴式、可折叠式的电子产品中。本发明提供的碳基全无机 CsPbI3柔性钙钛矿太阳能电池的最高效率为10.99%,短路电流密度为17.01 mA/cm2,开路电压为0.97V,填充因子为0.68。具有光电转换效率高、稳定性较好的优点。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1附图为本发明所述低温制备的碳基全无机CsPbI3柔性钙钛矿太阳能电池结构示意图。
图2附图为实施例1中制备得到的CsPbI3钙钛矿薄膜的XRD图。
图3附图为实施例1中的碳基全无机CsPbI3柔性钙钛矿太阳能电池伏安特性曲线图。
图4附图为实施例2中的碳基全无机CsPbI3柔性钙钛矿太阳能电池伏安特性曲线图。
图5附图为实施例3中的碳基全无机CsPbI3柔性钙钛矿太阳能电池伏安特性曲线图。
图6附图为实施例4中的碳基全无机CsPbI3柔性钙钛矿太阳能电池伏安特性曲线图。
图7附图为实施例5中的碳基全无机CsPbI3柔性钙钛矿太阳能电池伏安特性曲线图。
图8附图为实施例6中的碳基全无机CsPbI3柔性钙钛矿太阳能电池伏安特性曲线图。
具体实施方式
下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
本实施例提供一种低温制备碳基全无机CsPbI3柔性钙钛矿太阳能电池的方法,具体制备步骤如下:
步骤1.PET/ITO基底的预处理:先依次用乙醇、去离子水清洗PET/ITO 基底(其方块电阻为35Ω,厚度为188μm,透光率>80%),再利用N2吹干后,用UV/O3处理25min。
步骤2.在PET/ITO基底上制备ZnO电子传输层,具体步骤如下:
步骤2.1.ZnO纳米颗粒胶体的制备:采用溶胶-凝胶法制备浓度为15 mg/ml的ZnO纳米颗粒胶体,步骤如下:
S1:在三颈烧瓶中,将1.4750g二水醋酸锌加入62.5ml甲醇溶液中,记做溶液①;在烧杯中,将0.7400g氢氧化钾加入32.5ml甲醇中,记做溶液②;
S2:当溶液①的温度达到60℃时,用医疗注射器将溶液②逐滴加入溶液①中,在15min时滴加完毕。滴加完成后,继续在60℃下加热搅拌2.5h,然后静置8h;
S3:静置后,将上层澄清液倒掉,加入甲醇分散沉淀物,然后转移到离心管中,以3000rpm的离心转速离心3min,该过程重复3次。最后往沉淀物中加入体积比为14:1的正丁醇和氯仿的混合溶剂,超声15min,得到浓度为15mg/ml的ZnO纳米颗粒胶体;
步骤2.2.ZnO电子传输层的制备:将ZnO纳米颗粒胶体用0.45μm PVDF 滤头过滤,再用移液枪取40μl滴在PET/ITO基底上,利用匀胶机,以3000rpm 的旋涂速度旋涂30s,然后在120℃下退火,该过程重复3次,即可得到3 层ZnO薄膜。除最后一层ZnO薄膜退火时间为10min外,其余层ZnO薄膜退火时间为5min。
步骤3.在步骤2基础上制备CsPbI3钙钛矿光吸收层,具体步骤如下:
步骤3.1.CsPbI3钙钛矿前驱体溶液的制备:将0.4610g PbI2、0.2598g CsI 和0.1064g CsBr溶解在1ml DMSO溶剂中,在60℃下搅拌24h,得到CsPbI3钙钛矿前驱体溶液;
步骤3.2.CsPbI3钙钛矿光吸收层的制备:将步骤3.1所得到的CsPbI3钙钛矿前驱体溶液用0.45μm PVDF滤头过滤,取20μl滴在ZnO电子传输层上,利用匀胶机,以4000rpm的旋涂速度旋涂40s,然后在120℃下退火,该过程重复4次,即可得到4层CsPbI3薄膜。其中,除最后一层CsPbI3薄膜在 120℃下退火10min外,其余层CsPbI3薄膜退火时间为5min。
步骤4.C电极的制备:在步骤3的基础上采用刮刀涂布法将导电碳浆填料刮涂到CsPbI3钙钛矿光吸收层上,然后在120℃下退火10min,得到 PET/ITO/ZnO/CsPbI3/C太阳能电池。
进一步地,对所得到的CsPbI3薄膜进行XRD测试,结果如图2所示。从图2可知,14.54°、20.61°和29.23°分别对应CsPbI3的(100)、(110)和 (200)晶面,说明所制得的CsPbI3薄膜为钙钛矿相。
进一步地,将实施例1制备的PET/ITO/ZnO/CsPbI3/C太阳能电池进行 J-V测试,结果如图3所示。由图3可知,太阳能电池的短路电流密度Jsc为17.01mA/cm2,开路电压Voc为0.97V,填充因子FF为0.68,光电转换效率PCE为10.99%。
实施例2
本实施例提供一种低温制备碳基全无机CsPbI3柔性钙钛矿太阳能电池的方法,与实施例1的区别在于,聚合物/透明导电氧化物(Polymer/TCO) 基底为PEN/ITO,其方块电阻为15Ω,厚度为125μm,透光率>80%。其它与实施例1相同。
进一步地,对实施例2制备的PEN/ITO/ZnO/CsPbI3/C太阳能电池进行 J-V测试,结果如图4所示。由图4可知,实施例2中太阳能电池的短路电流密度Jsc为16.91mA/cm2,开路电压Voc为0.97V,填充因子FF为0.66,光电转换效率PCE为10.90%。
实施例3
本实施例提供一种低温制备碳基全无机CsPbI3柔性钙钛矿太阳能电池的方法,与实施例1的区别在于,ZnO纳米颗粒胶体的旋涂工艺为以2000rpm 的旋涂速度旋涂30s,制备的ZnO电子传输层的ZnO薄膜为2层。其它与实施例1相同。
进一步地,对实施例3制备的PET/ITO/ZnO/CsPbI3/C太阳能电池进行 J-V测试,测试结果如图5所示。由图5可知,实施例3中太阳能电池的短路电流密度Jsc为16.62mA/cm2,开路电压Voc为0.95V,填充因子FF为0.67,光电转换效率为PCE为10.67%。
实施例4
本实施例提供一种低温制备碳基全无机CsPbI3柔性钙钛矿太阳能电池的方法,与实施例1的区别在于,ZnO纳米颗粒胶体的旋涂工艺为以5000rpm 的旋涂速度旋涂30s,制备的ZnO电子传输层的ZnO薄膜为4层。
进一步地,对实施例4制备的PET/ITO/ZnO/CsPbI3/C太阳能电池进行 J-V测试,测试结果如图6所示。由图6可知,实施例4中太阳能电池的短路电流密度Jsc为16.61mA/cm2,开路电压Voc为0.96V,填充因子FF为0.67,光电转换效率为PCE为10.74%。
实施例5
本实施例提供一种低温制备碳基全无机CsPbI3柔性钙钛矿太阳能电池的方法,与实施例1的区别在于,CsPbI3钙钛矿前驱体溶液的旋涂工艺为以3000rpm的旋涂速度旋涂40s,制备的CsPbI3钙钛矿光吸收层的CsPbI3薄膜为3层。
进一步地,对实施例5制备的PET/ITO/ZnO/CsPbI3/C太阳能电池进行 J-V测试,测试结果如图7所示。由图7可知,实施例5中太阳能电池的短路电流密度Jsc为17.76mA/cm2,开路电压Voc为0.91V,填充因子FF为0.65,光电转换效率PCE为10.66%。
实施例6
本实施例提供一种低温制备碳基全无机CsPbI3柔性钙钛矿太阳能电池的方法,与实施例1的区别在于,CsPbI3钙钛矿前驱体溶液的旋涂工艺为以 5000rpm的旋涂速度旋涂40s,制备的CsPbI3钙钛矿光吸收层的CsPbI3薄膜为5层。
进一步地,对实施例6制备的PET/ITO/ZnO/CsPbI3/C太阳能电池进行 J-V测试,测试结果如图8所示。由图8可知,实施例6中太阳能电池的短路电流密度Jsc为17.72mA/cm2,开路电压Voc为0.91V,填充因子FF为0.65,光电转换效率PCE为10.62%。
进一步地,由本发明各实施例及其测试数据可知,本发明提供的一种低温制备碳基全无机CsPbI3柔性钙钛矿太阳能电池的方法,制备工艺简单,极大地节约成本。本发明提供的碳基全无机CsPbI3柔性钙钛矿太阳能电池光电转换效率高,稳定性好,具有良好的应用前景。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。
Claims (10)
1.一种低温制备CsPbI3柔性钙钛矿太阳能电池的方法,其特征在于,制备步骤如下:
步骤1.聚合物/透明导电氧化物基底的预处理:先依次用乙醇、去离子水清洗聚合物/透明导电氧化物基底,再利用N2吹干后,用UV/O3进行处理;
步骤2.在聚合物/透明导电氧化物基底上制备ZnO电子传输层,具体步骤如下:
步骤2.1.ZnO纳米颗粒胶体的制备:采用溶胶-凝胶法制备浓度为10-30mg/ml的ZnO纳米颗粒胶体;
步骤2.2.ZnO电子传输层的制备:将步骤2.1所制备ZnO纳米颗粒胶体过滤后,利用匀胶机旋涂在聚合物/透明导电氧化物基底上,再置于100-120℃的温度下退火5-20min,得到ZnO电子传输层;
步骤3.在步骤2的基础上制备CsPbI3钙钛矿光吸收层,具体步骤如下:
步骤3.1.CsPbI3钙钛矿前驱体溶液的制备:将摩尔比为0.8-1.2:1的CsI和PbI2溶解在DMSO中,再加入0.1-1.0M的CsBr,在57-62℃下搅拌24h,经过过滤后得到CsPbI3钙钛矿前驱体溶液;
步骤3.2.CsPbI3钙钛矿光吸收层的制备:将步骤3.1所得到的CsPbI3钙钛矿前驱体溶液过滤后,利用匀胶机旋涂在ZnO电子传输层上,再置于100-120℃的温度下退火5-10min,得到CsPbI3钙钛矿光吸收层;
步骤4.C电极的制备:在步骤3的基础上采用刮刀涂布法将导电碳浆填料刮涂到CsPbI3钙钛矿光吸收层上,然后在100-120℃下退火10-30min,即可得到碳基全无机CsPbI3柔性钙钛矿太阳能电池。
2.根据权利要求1所述的一种低温制备CsPbI3柔性钙钛矿太阳能电池的方法,其特征在于,所述聚合物/透明导电氧化物基底为PET/ITO或PEN/ITO;所述聚合物/透明导电氧化物基底的方块电阻为15-35Ω,厚度为125-188μm,透光率>80%。
3.根据权利要求1所述的一种低温制备CsPbI3柔性钙钛矿太阳能电池的方法,其特征在于,所述步骤1中UV/O3处理的时间为15-30min。
4.根据权利要求1所述的一种低温制备CsPbI3柔性钙钛矿太阳能电池的方法,其特征在于,所述步骤2.1中ZnO纳米颗粒胶体的制备步骤为:
S1:在三颈烧瓶中,将二水醋酸锌加入甲醇溶液中,记做溶液①;在烧杯中,将氢氧化钾加入甲醇溶液中,记做溶液②;
S2:对溶液①进行加热,当温度达到60℃时,在10-15min内,将溶液②逐滴加入溶液①中;滴定完成后,继续在60-65℃继续下加热搅拌2-2.5h后,静置8h;
S3:静置后,将上层澄清液倒掉,再将沉淀转移到离心管中,用甲醇重复离心3次后,加入体积比为14:1正丁醇和氯仿,超声10-15min,得到ZnO纳米颗粒胶体。
5.根据权利要求4所述的一种低温制备CsPbI3柔性钙钛矿太阳能电池的方法,其特征在于,所述步骤S1的溶液①中二水醋酸锌浓度为23-24g/L,溶液②中氢氧化钾浓度为22-23g/L;所述步骤S2中采用医疗注射器代替恒压漏斗,逐滴滴加溶液②;所述步骤S3中离心转速为2000-8000rpm,离心时间为3-10min,每次离心后去掉上清液,加入甲醇用玻璃棒搅拌10min。
6.根据权利要求1所述的一种低温制备CsPbI3柔性钙钛矿太阳能电池的方法,其特征在于,所述步骤2.2中ZnO纳米颗粒胶体旋涂速度为2000-5000rpm,旋涂时间为20-50s。
7.根据权利要求1所述的一种低温制备CsPbI3柔性钙钛矿太阳能电池的方法,其特征在于,所述步骤2中ZnO电子传输层的ZnO薄膜为1-5层。
8.根据权利要求1所述的一种低温制备CsPbI3柔性钙钛矿太阳能电池的方法,其特征在于,所述步骤3.2中CsPbI3钙钛矿前驱体溶液旋涂速度为2000-5000rpm,旋涂时间为20-50s。
9.根据权利要求1所述的一种低温制备CsPbI3柔性钙钛矿太阳能电池的方法,其特征在于,所述步骤3中CsPbI3钙钛矿光吸收层的CsPbI3薄膜为1-5层。
10.根据权利要求1所述的一种低温制备CsPbI3柔性钙钛矿太阳能电池的方法,其特征在于,所述导电碳浆填料为炭黑,固体含量WT%为70-72%,电阻为10Ω/cm2;所述刮涂的导电碳浆填料厚度为20-60μm。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110232411.3A CN113035991A (zh) | 2021-03-01 | 2021-03-01 | 一种低温制备CsPbI3柔性钙钛矿太阳能电池的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110232411.3A CN113035991A (zh) | 2021-03-01 | 2021-03-01 | 一种低温制备CsPbI3柔性钙钛矿太阳能电池的方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN113035991A true CN113035991A (zh) | 2021-06-25 |
Family
ID=76465496
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110232411.3A Pending CN113035991A (zh) | 2021-03-01 | 2021-03-01 | 一种低温制备CsPbI3柔性钙钛矿太阳能电池的方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113035991A (zh) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113675342A (zh) * | 2021-08-02 | 2021-11-19 | 云南农业大学 | 一种高性能p-i-n型碳基钙钛矿太阳能电池 |
CN114551637A (zh) * | 2022-01-20 | 2022-05-27 | 华南理工大学 | 钙钛矿光吸收层及其制备方法、太阳能电池及其制备方法 |
CN115000190A (zh) * | 2022-06-01 | 2022-09-02 | 湖北文理学院 | 一种全无机CsPbI3钙钛矿电池及其制备方法 |
EP4270512A1 (en) | 2022-04-25 | 2023-11-01 | Fundacja Saule Research Institute | A perovskite structure, a photovoltaic cell, and a method for preparation thereof |
CN117711950A (zh) * | 2024-02-05 | 2024-03-15 | 季华实验室 | 一种α相CsPbI3薄膜及其制备方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018095635A (ja) * | 2016-08-16 | 2018-06-21 | 旭化成株式会社 | 組成物 |
US20180240606A1 (en) * | 2015-08-14 | 2018-08-23 | Massachusetts Institute Of Technology | Perovskite solar cells including semiconductor nanomaterials |
CN108539024A (zh) * | 2018-04-16 | 2018-09-14 | 湖北大学 | 一种碳基钙钛矿太阳能电池及其制备方法 |
CN109065733A (zh) * | 2018-08-08 | 2018-12-21 | 华南协同创新研究院 | 一种全无机钙钛矿太阳能电池及其制备方法 |
CN111326603A (zh) * | 2018-12-17 | 2020-06-23 | 湖北大学 | 一种以氧化锌做电子传输层的无机钙钛矿电池制备方法 |
CN111864071A (zh) * | 2019-04-25 | 2020-10-30 | 湖北大学 | 一种柔性碳基钙钛矿太阳能电池及其制备方法 |
-
2021
- 2021-03-01 CN CN202110232411.3A patent/CN113035991A/zh active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180240606A1 (en) * | 2015-08-14 | 2018-08-23 | Massachusetts Institute Of Technology | Perovskite solar cells including semiconductor nanomaterials |
JP2018095635A (ja) * | 2016-08-16 | 2018-06-21 | 旭化成株式会社 | 組成物 |
CN108539024A (zh) * | 2018-04-16 | 2018-09-14 | 湖北大学 | 一种碳基钙钛矿太阳能电池及其制备方法 |
CN109065733A (zh) * | 2018-08-08 | 2018-12-21 | 华南协同创新研究院 | 一种全无机钙钛矿太阳能电池及其制备方法 |
CN111326603A (zh) * | 2018-12-17 | 2020-06-23 | 湖北大学 | 一种以氧化锌做电子传输层的无机钙钛矿电池制备方法 |
CN111864071A (zh) * | 2019-04-25 | 2020-10-30 | 湖北大学 | 一种柔性碳基钙钛矿太阳能电池及其制备方法 |
Non-Patent Citations (1)
Title |
---|
JUNSEN ZHANG,CHENG WANG,HAO FU,LI GONG ET AL: "Low-temperature preparation achieving 10.95%-efficiency of hole-free and carbon-based all-inorganic CsPbI3 perovskite solar cells", 《JOURNAL OF ALLOYS AND COMPOUNDS》 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113675342A (zh) * | 2021-08-02 | 2021-11-19 | 云南农业大学 | 一种高性能p-i-n型碳基钙钛矿太阳能电池 |
CN114551637A (zh) * | 2022-01-20 | 2022-05-27 | 华南理工大学 | 钙钛矿光吸收层及其制备方法、太阳能电池及其制备方法 |
EP4270512A1 (en) | 2022-04-25 | 2023-11-01 | Fundacja Saule Research Institute | A perovskite structure, a photovoltaic cell, and a method for preparation thereof |
WO2023208972A1 (en) | 2022-04-25 | 2023-11-02 | Fundacja Saule Research Institute | A perovskite structure, a photovoltaic cell, and a method for preparation thereof |
CN115000190A (zh) * | 2022-06-01 | 2022-09-02 | 湖北文理学院 | 一种全无机CsPbI3钙钛矿电池及其制备方法 |
CN117711950A (zh) * | 2024-02-05 | 2024-03-15 | 季华实验室 | 一种α相CsPbI3薄膜及其制备方法 |
CN117711950B (zh) * | 2024-02-05 | 2024-05-07 | 季华实验室 | 一种α相CsPbI3薄膜及其制备方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113035991A (zh) | 一种低温制备CsPbI3柔性钙钛矿太阳能电池的方法 | |
JP5389372B2 (ja) | 中空球状の金属酸化物ナノ粒子を含む色素増感太陽電池用の光電極及びその製造方法 | |
Chu et al. | Boosting efficiency of hole conductor-free perovskite solar cells by incorporating p-type NiO nanoparticles into carbon electrodes | |
CN104737320B (zh) | 有机金属卤化物钙钛矿异质结太阳能电池及其制造 | |
CN108269918B (zh) | 多孔钙钛矿薄膜、碳浆料与基于碳电极的太阳能电池 | |
CN103035410B (zh) | 染料敏化光电转换器件及其制造方法,以及金属氧化物浆料 | |
CN109216557B (zh) | 一种基于柠檬酸/SnO2电子传输层的钙钛矿太阳能电池及其制备方法 | |
Liu et al. | Investigation of low temperature processed titanium dioxide (TiO2) films for printed dye sensitized solar cells (DSSCs) for large area flexible applications | |
KR20080006735A (ko) | 촉매 담지 탄소나노튜브를 이용한 태양전지 및 그 제조방법 | |
CN105702864A (zh) | 一种高质量钙钛矿薄膜、太阳能电池及其制备方法 | |
CN108922970B (zh) | 一种介孔型钙钛矿太阳能电池及其制备方法 | |
Dileep et al. | Room-temperature curable carbon cathode for hole-conductor free perovskite solar cells | |
Zhang et al. | Enhanced performance of ZnO based perovskite solar cells by Nb2O5 surface passivation | |
Nien et al. | Investigation of Dye-Sensitized Solar Cell With Photoanode Modified by TiO₂-ZnO Nanofibers | |
JP2011236104A (ja) | 酸化チタン構造体及びその製造方法、並びに酸化チタン構造体を用いた光電変換装置 | |
KR20090080205A (ko) | 숙성 및 해교를 통한 티타니아의 제조방법, 및 이를 이용한염료감응형 태양전지용 광전극 | |
TWI640476B (zh) | Viscous dispersion and its manufacturing method, and porous semiconductor electrode substrate and dye-sensitized solar cell | |
Xu et al. | High-efficient hole-transport-material-free carbon-based all-inorganic perovskite solar cells using Cs-doped TiO2 nanorods array as the electron transport layer | |
KR101179047B1 (ko) | 플라즈몬 염료감응 태양전지용 광전극 및 이의 제조 방법 | |
CN108878657B (zh) | 一种高效率碳基钙钛矿太阳能电池的制备方法 | |
CN114883496A (zh) | 一种双界面处理的高效钙钛矿太阳电池结构及其制备方法 | |
Kiran et al. | Preparation and thickness optimization of TiO2/Nb2O5 photoanode for dye sensitized solar cells | |
KR101406427B1 (ko) | 우수한 촉매활성도와 전기전도도를 갖는 염료 감응형 태양전지용 전도성 고분자-탄소 복합체 전극과 이를 이용한 염료 감응형 태양전지 및 이들의 제조방법 | |
CN113394343A (zh) | 一种背入射p-i-n结构钙钛矿太阳电池及其制备方法 | |
KR101153994B1 (ko) | 탄소나노튜브 전극의 제조방법, 그 방법에 의하여 제조된 탄소나노튜브 전극 및 그 전극을 포함하는 염료감응태양전지 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |