CN113031162B - Optical filter - Google Patents
Optical filter Download PDFInfo
- Publication number
- CN113031162B CN113031162B CN202110278228.7A CN202110278228A CN113031162B CN 113031162 B CN113031162 B CN 113031162B CN 202110278228 A CN202110278228 A CN 202110278228A CN 113031162 B CN113031162 B CN 113031162B
- Authority
- CN
- China
- Prior art keywords
- optical
- optical filter
- waveguide
- ring
- micro
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/28—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
- G02B6/293—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
- G02B6/29379—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
- G02B6/29395—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device configurable, e.g. tunable or reconfigurable
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/28—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
- G02B6/293—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
- G02B6/29331—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by evanescent wave coupling
- G02B6/29335—Evanescent coupling to a resonator cavity, i.e. between a waveguide mode and a resonant mode of the cavity
- G02B6/29338—Loop resonators
- G02B6/2934—Fibre ring resonators, e.g. fibre coils
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/28—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
- G02B6/293—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
- G02B6/29331—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by evanescent wave coupling
- G02B6/29335—Evanescent coupling to a resonator cavity, i.e. between a waveguide mode and a resonant mode of the cavity
- G02B6/29338—Loop resonators
- G02B6/29343—Cascade of loop resonators
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
- Optical Integrated Circuits (AREA)
Abstract
本公开提供了一种光学滤波器,包括:N+1级光开关,每一级光开关包括第一输入端、第二输入端、第一输出端和第二输出端;N级二阶微环光滤波器单元,每一级二阶微环光滤波器单元包括两个微环谐振腔,N级二阶微环光滤波器单元的微环谐振腔的半径不同,其中,第k级二阶微环光滤波器单元连接第k级光开关的第一输出端;输入光波导单元,用于将接收的光信号输入第1级光开关中;N级第一波导,其中,第k级第一波导连接第k级二阶微环光滤波器单元的输出端和第k+1级光开关的第一输入端;N级第二波导,其中,第k级第二波导连接第k级光开关的第二输出端和第k+1级光开关的第二输入端;以及输出光波导单元,连接第N+1级光开关,用于输出滤波后的光信号。
The present disclosure provides an optical filter, comprising: N+1 stages of optical switches, each stage of the optical switch includes a first input end, a second input end, a first output end and a second output end; Ring optical filter unit, each second-order micro-ring optical filter unit includes two micro-ring resonant cavities, and the radii of the micro-ring resonating cavities of the N-level second-order micro-ring optical filter units are different, wherein the k-th second-order micro-ring optical filter unit The order micro-ring optical filter unit is connected to the first output end of the k-th level optical switch; the input optical waveguide unit is used to input the received optical signal into the first-level optical switch; the N-level first waveguide, wherein the k-th level The first waveguide is connected to the output end of the k-th second-order micro-ring optical filter unit and the first input end of the k+1-th optical switch; the N-level second waveguide, wherein the k-th second waveguide is connected to the k-th level The second output end of the optical switch and the second input end of the k+1th stage optical switch; and the output optical waveguide unit, connected to the N+1th stage optical switch, for outputting the filtered optical signal.
Description
技术领域technical field
本公开涉及光纤通信技术领域,更具体地,涉及一种光学滤波器。The present disclosure relates to the technical field of optical fiber communication, and more particularly, to an optical filter.
背景技术Background technique
可重构光分插复用器是实现以波分复用网络为代表的灵活光通信网络的重要组成部分,而灵活光通信网络对于可重构光分插复用器的无栅格特性的需要,进而形成了对于高灵活度、可调谐滤波的光学滤波器的需求。The reconfigurable optical add-drop multiplexer is an important part of realizing the flexible optical communication network represented by the wavelength division multiplexing network. The need, in turn, creates a need for highly flexible, tunable filtering optical filters.
现有技术方案集中于对光学滤波器的中心波长和滤波带宽的可调谐特性的研究,常见的研究成果包括采用布拉格光纤光栅、马赫-曾德、微环谐振器等结构制作而成的光学滤波器,但上述光学滤波器忽略了自由光谱区的灵活性对于可重构光分插复用器的影响。The existing technical solutions focus on the research on the tunable characteristics of the center wavelength and filter bandwidth of the optical filter. Common research results include optical filters made of fiber Bragg gratings, Mach-Zehnder, and micro-ring resonators. However, the above-mentioned optical filter ignores the influence of the flexibility of the free spectral region on the reconfigurable optical add-drop multiplexer.
在实现本公开的过程中发现,现有技术方案单独采用时存在自由光谱区不可调谐的问题,无法满足可重构光分插复用器对光学滤波器自由光谱区灵活性的需求。In the process of realizing the present disclosure, it is found that the existing technical solution has the problem that the free spectral region is not tunable when used alone, and cannot meet the requirement of the reconfigurable optical add-drop multiplexer for the flexibility of the free spectral region of the optical filter.
发明内容SUMMARY OF THE INVENTION
有鉴于此,本公开提供了一种光学滤波器,包括N+1级光开关、N级二阶微环光滤波器单元、输入光波导单元、N级第一波导、N级第二波导和输出光波导单元。其中:In view of this, the present disclosure provides an optical filter including an N+1-level optical switch, an N-level second-order micro-ring optical filter unit, an input optical waveguide unit, an N-level first waveguide, an N-level second waveguide, and Output optical waveguide unit. in:
N+1级光开关,每一级上述光开关包括第一输入端、第二输入端、第一输出端和第二输出端,其中,上述N为正整数;N+1 stages of optical switches, each stage of the optical switch includes a first input end, a second input end, a first output end and a second output end, wherein the above N is a positive integer;
N级二阶微环光滤波器单元,每一级上述二阶微环光滤波器单元包括两个微环谐振腔,N级上述二阶微环光滤波器单元的上述微环谐振腔的半径不同,其中,第k级上述二阶微环光滤波器单元连接第k级上述光开关的上述第一输出端,用于对输入的光信号进行滤波处理,其中,上述k为小于或等于上述N的正整数;N-stage second-order micro-ring optical filter units, each of the above-mentioned second-order micro-ring optical filter units includes two micro-ring resonators, and the radius of the above-mentioned micro-ring resonant cavity of the N-stage second-order micro-ring optical filter units different, wherein the second-order micro-ring optical filter unit of the k-th stage is connected to the first output end of the optical switch of the k-th stage, and is used for filtering the input optical signal, wherein the above k is less than or equal to the above positive integer of N;
输入光波导单元,用于将接收的光信号输入第1级上述光开关中;an input optical waveguide unit for inputting the received optical signal into the above-mentioned optical switch of the first stage;
N级第一波导,其中,第k级上述第一波导连接第k级上述二阶微环光滤波器单元的输出端和第k+1级上述光开关的上述第一输入端;N-stage first waveguide, wherein the k-th first waveguide is connected to the output end of the k-th second-order micro-ring optical filter unit and the k+1-th first input end of the optical switch;
N级第二波导,其中,第k级上述第二波导连接第k级上述光开关的上述第二输出端和第k+1级上述光开关的上述第二输入端;以及N-stage second waveguide, wherein the k-th stage of the second waveguide is connected to the k-th stage of the optical switch the second output end and the k+1-th stage of the optical switch The second input end; and
输出光波导单元,连接第N+1级上述光开关,用于输出滤波后的光信号。The output optical waveguide unit is connected to the above-mentioned optical switch of the N+1th stage, and is used for outputting the filtered optical signal.
根据本公开的实施例,上述光开关包括定向耦合型光开关和MZI型光开关。According to an embodiment of the present disclosure, the above-mentioned optical switch includes a directional coupling type optical switch and an MZI type optical switch.
根据本公开的实施例,上述光开关通过热光效应或光电效应实现光信号传输路径的切换。According to the embodiments of the present disclosure, the above-mentioned optical switch realizes the switching of the optical signal transmission path through the thermo-optic effect or the photoelectric effect.
根据本公开的实施例,每一级上述二阶微环光滤波器单元还包括输入波导和输出波导,其中,上述两个微环谐振腔与上述输入波导和上述输出波导的距离相等。According to an embodiment of the present disclosure, each stage of the second-order microring optical filter unit further includes an input waveguide and an output waveguide, wherein the distances between the two microring resonators and the input waveguide and the output waveguide are equal.
根据本公开的实施例,上述二阶微环光滤波器单元的上述两个微环谐振腔的半径相同;N级上述二阶微环光滤波器单元的上述微环谐振腔的波导宽度和波导厚度相同。According to the embodiment of the present disclosure, the radii of the two micro-ring resonators of the second-order micro-ring optical filter unit are the same; the waveguide width and the waveguide width of the micro-ring resonating cavities of the N-level second-order micro-ring optical filter unit Same thickness.
根据本公开的实施例,上述微环谐振腔具有谐振波长,相邻两个上述谐振波长之间形成自由光谱区。According to an embodiment of the present disclosure, the above-mentioned micro-ring resonant cavity has a resonant wavelength, and a free spectral region is formed between two adjacent above-mentioned resonant wavelengths.
根据本公开的实施例,上述谐振波长与上述微环谐振腔的半径的关系如下所示:According to an embodiment of the present disclosure, the relationship between the resonant wavelength and the radius of the microring resonant cavity is as follows:
式中,m表示谐振级数;λ表示当前谐振级数的上述中心波长;nc表示上述微环谐振腔的有效折射率;R表示上述微环谐振腔的半径;In the formula, m represents the resonant series; λ represents the above-mentioned central wavelength of the current resonant series; n c represents the effective refractive index of the above-mentioned micro-ring resonator; R represents the radius of the above-mentioned micro-ring resonator;
每一级上述二阶微环光滤波单元的上述自由光谱区的大小根据下式计算得到:The size of the above-mentioned free spectral region of the above-mentioned second-order micro-ring optical filter unit of each stage is calculated according to the following formula:
式中,FSR表示上述自由光谱区的大小。In the formula, FSR represents the size of the above-mentioned free spectral region.
根据本公开的实施例,上述光学滤波器的自由光谱区的调节通过对上述光开关的切换实现。According to an embodiment of the present disclosure, the adjustment of the free spectral region of the above-mentioned optical filter is realized by switching the above-mentioned optical switch.
根据本公开的实施例,上述第一波导包括:弯曲波导;上述第二波导包括:直波导。According to an embodiment of the present disclosure, the aforementioned first waveguide includes: a curved waveguide; and the aforementioned second waveguide includes: a straight waveguide.
根据本公开的实施例,上述光学滤波器通过半导体工艺在铌酸锂、硅、二氧化硅、磷化铟或砷化镓平台上制作得到。According to an embodiment of the present disclosure, the above-mentioned optical filter is fabricated on a lithium niobate, silicon, silicon dioxide, indium phosphide or gallium arsenide platform through a semiconductor process.
根据本公开的实施例,通过光开关的切换,使得光路中包含不同半径的微环谐振腔,从而改变了光学滤波器的滤波曲线中自由光谱区的大小,所以解决了自由光谱区不可调谐的问题,进而实现了光学滤波器的滤波周期和带宽的可调谐。According to the embodiments of the present disclosure, by switching the optical switch, microring resonators with different radii are included in the optical path, thereby changing the size of the free spectral region in the filtering curve of the optical filter, thus solving the problem that the free spectral region is not tunable. Therefore, the tunability of the filtering period and bandwidth of the optical filter is realized.
附图说明Description of drawings
通过以下参照附图对本公开实施例的描述,本公开的上述以及其他目的、特征和优点将更为清楚,在附图中:The above and other objects, features and advantages of the present disclosure will become more apparent from the following description of embodiments of the present disclosure with reference to the accompanying drawings, in which:
图1示意性示出了根据本公开实施例的光学滤波器的示意图;FIG. 1 schematically shows a schematic diagram of an optical filter according to an embodiment of the present disclosure;
图2a和图2b示出了根据本公开实施例的光学滤波器中光开关110的示意图;2a and 2b show schematic diagrams of an
图3示意性示出了根据本公开实施例的二阶微环光滤波器单元120的示意图。FIG. 3 schematically shows a schematic diagram of the second-order micro-ring
具体实施方式Detailed ways
以下,将参照附图来描述本公开的实施例。但是应该理解,这些描述只是示例性的,而并非要限制本公开的范围。在下面的详细描述中,为便于解释,阐述了许多具体的细节以提供对本公开实施例的全面理解。然而,明显地,一个或多个实施例在没有这些具体细节的情况下也可以被实施。此外,在以下说明中,省略了对公知结构和技术的描述,以避免不必要地混淆本公开的概念。Hereinafter, embodiments of the present disclosure will be described with reference to the accompanying drawings. It should be understood, however, that these descriptions are exemplary only, and are not intended to limit the scope of the present disclosure. In the following detailed description, for convenience of explanation, numerous specific details are set forth in order to provide a thorough understanding of the embodiments of the present disclosure. It will be apparent, however, that one or more embodiments may be practiced without these specific details. Also, in the following description, descriptions of well-known structures and techniques are omitted to avoid unnecessarily obscuring the concepts of the present disclosure.
在此使用的术语仅仅是为了描述具体实施例,而并非意在限制本公开。在此使用的术语“包括”、“包含”等表明了所述特征、步骤、操作和/或部件的存在,但是并不排除存在或添加一个或多个其他特征、步骤、操作或部件。The terminology used herein is for the purpose of describing particular embodiments only and is not intended to limit the present disclosure. The terms "comprising", "comprising" and the like as used herein indicate the presence of stated features, steps, operations and/or components, but do not preclude the presence or addition of one or more other features, steps, operations or components.
在此使用的所有术语(包括技术和科学术语)具有本领域技术人员通常所理解的含义,除非另外定义。应注意,这里使用的术语应解释为具有与本说明书的上下文相一致的含义,而不应以理想化或过于刻板的方式来解释。All terms (including technical and scientific terms) used herein have the meaning as commonly understood by one of ordinary skill in the art, unless otherwise defined. It should be noted that terms used herein should be construed to have meanings consistent with the context of the present specification and should not be construed in an idealized or overly rigid manner.
在使用类似于“A、B和C等中至少一个”这样的表述的情况下,一般来说应该按照本领域技术人员通常理解该表述的含义来予以解释(例如,“具有A、B和C中至少一个的系统”应包括但不限于单独具有A、单独具有B、单独具有C、具有A和B、具有A和C、具有B和C、和/或具有A、B、C的系统等)。在使用类似于“A、B或C等中至少一个”这样的表述的情况下,一般来说应该按照本领域技术人员通常理解该表述的含义来予以解释(例如,“具有A、B或C中至少一个的系统”应包括但不限于单独具有A、单独具有B、单独具有C、具有A和B、具有A和C、具有B和C、和/或具有A、B、C的系统等)。Where expressions like "at least one of A, B, and C, etc.," are used, they should generally be interpreted in accordance with the meaning of the expression as commonly understood by those skilled in the art (eg, "has A, B, and C") At least one of the "systems" shall include, but not be limited to, systems with A alone, B alone, C alone, A and B, A and C, B and C, and/or A, B, C, etc. ). Where expressions like "at least one of A, B, or C, etc." are used, they should generally be interpreted in accordance with the meaning of the expression as commonly understood by those skilled in the art (for example, "has A, B, or C, etc." At least one of the "systems" shall include, but not be limited to, systems with A alone, B alone, C alone, A and B, A and C, B and C, and/or A, B, C, etc. ).
本公开提供了一种光学滤波器,包括:N+1级光开关,每一级光开关包括第一输入端、第二输入端、第一输出端和第二输出端,其中,N为正整数;N级二阶微环光滤波器单元,每一级二阶微环光滤波器单元包括两个微环谐振腔,N级二阶微环光滤波器单元的微环谐振腔的半径不同,其中,第k级二阶微环光滤波器单元连接第k级光开关的第一输出端,用于对输入的光信号进行滤波处理,其中,k为小于或等于N的正整数;输入光波导单元,用于将接收的光信号输入第1级光开关中;N级第一波导,其中,第k级第一波导连接第k级二阶微环光滤波器单元的输出端和第k+1级光开关的第一输入端;N级第二波导,其中,第k级第二波导连接第k级光开关的第二输出端和第k+1级光开关的第二输入端;以及输出光波导单元,连接第N+1级光开关,用于输出滤波后的光信号。The present disclosure provides an optical filter, comprising: N+1 stages of optical switches, each stage of the optical switch includes a first input end, a second input end, a first output end and a second output end, wherein N is positive Integer; N-level second-order micro-ring optical filter unit, each second-order micro-ring optical filter unit includes two micro-ring resonators, and the radii of the micro-ring resonators of the N-level second-order micro-ring optical filter unit are different , wherein, the k-th second-order micro-ring optical filter unit is connected to the first output end of the k-th optical switch, and is used to filter the input optical signal, where k is a positive integer less than or equal to N; input The optical waveguide unit is used for inputting the received optical signal into the first-level optical switch; the N-level first waveguide, wherein the k-th first waveguide is connected to the output end of the k-th second-order micro-ring optical filter unit and the first-level micro-ring optical filter unit. The first input end of the k+1 stage optical switch; the N stage second waveguide, wherein the kth stage second waveguide is connected to the second output end of the kth stage optical switch and the second input end of the k+1 stage optical switch and an output optical waveguide unit, connected to the N+1 th optical switch, for outputting the filtered optical signal.
图1示意性示出了根据本公开实施例的光学滤波器的示意图。FIG. 1 schematically shows a schematic diagram of an optical filter according to an embodiment of the present disclosure.
如图1所示,该光学滤波器包括光开关110、二阶微环光滤波器单元120、输入光波导单元130、第一波导140、第二波导150和输出光波导单元160。其中,光开关110、二阶微环光滤波器单元120、第一波导140和第二波导150组成该光学滤波器的一个滤波结构,该光学滤波器可以由任意个滤波结构通过级联构成,在本实施例中,假定该滤波结构的数目为N个。As shown in FIG. 1 , the optical filter includes an
光开关110至少包括第一输入端111、第二输入端112、第一输出端113和第二输出端114。光信号在光开关110中具有4种传输路径,分别为从第一输入端111或第二输入端112输入光开关110中,并分别从第一输出端113或第二输出端114进行输出。The
二阶微环光滤波器单元120的输入端与同一级光开关110的第一输出端113相连,二阶微环光滤波器单元120的输出端与同一级的第一波导140相连。例如,对于第k级二阶微环光滤波器单元120,其输入端与第k级光开关110的第一输出端113相连,其输出端与第k级第一波导140相连。The input end of the second-order micro-ring
二阶微环光滤波器单元120中包括两个微环谐振腔121,不同二阶微环光滤波器单元120中的微环谐振腔121的半径不同。微环谐振腔121可以用于对输入的光信号进行滤波处理。The second-order micro-ring
输入光波导单元130中包括两个直波导,分别连接第1级光开关110的第一输入端111和第二输入端112,可以用于将接收的光信号输入第1级光开关中。The input
特别的,在本公开其他实施例中,输入光波导单元130可以只包含一个直波导,相应的,第1级光开关可以只包括一个输入端,其输出端的数目保持不变。Particularly, in other embodiments of the present disclosure, the input
第一波导140连接于光开关110和二阶微环光滤波器120,具体地说,第k级第一波导140连接第k级二阶微环光滤波器单元120的输出端和第k+1级光开关110的第一输入端111。基于二阶微环光滤波器单元120和光开关110的大小的差异,为了便于结构设计,第一波导140可以包括弯曲波导。The
第二波导150连接于相邻的两个光开关110,具体地说,第k级第二波导150连接第k级光开关110的第二输出端114和第k+1级光开关的第二输入端112。为了降低长光路带来的光信号损失,优选的,第二波导150可以包括直波导。The
输出光波导单元160中包括两个直波导,分别连接第N+1级光开关110的第一输出端113和第二输出端114,可以用于接收第N+1级光开关110传输的光信号,并将光信号通过两个直波导进行输出。The output
特别的,在本公开其他实施例中,输出光波导单元160可以只包含一个直波导,相应的,第N+1级光开关可以只包括一个输出端,其输入端的数目保持不变。此外,第N+1级光开关也可以使用其他具备合并光路功能的器件进行替换,例如光纤合束器等。Particularly, in other embodiments of the present disclosure, the output
输入光波导单元130、第一波导140、第二波导150和输出光波导单元160中的光波导可以是以平面介质光波导和条形介质光波导为代表的集成光波导,也可以是以光纤为代表的圆柱形光波导,本公开的实施例中不对光波导的类型进行限制。The optical waveguides in the input
根据本公开的实施例,通过光开关的切换,使得光路中包含不同半径的微环谐振腔,从而改变了光学滤波器的滤波曲线中自由光谱区的大小,所以解决了自由光谱区不可调谐的问题,进而实现了光学滤波器的滤波周期和带宽的可调谐。According to the embodiments of the present disclosure, by switching the optical switch, microring resonators with different radii are included in the optical path, thereby changing the size of the free spectral region in the filtering curve of the optical filter, thus solving the problem that the free spectral region is not tunable. Therefore, the tunability of the filtering period and bandwidth of the optical filter is realized.
下面参考图2a、图2b和图3,结合具体实施例对图1所示的光学滤波器作进一步说明。2a, 2b and 3, the optical filter shown in FIG. 1 will be further described with reference to specific embodiments.
图2a和图2b示出了根据本公开实施例的光学滤波器中光开关110的示意图。2a and 2b show schematic diagrams of the
如图2a和图2b所示,光开关110根据可以调制方式进行型号的选择,例如,在通过电光效应对光开关进行调制的情况下,光开关110可选择为定向耦合型光开关、MZI型光开关、Y分支型光开关、SOA光门型光开关等;在通过热光效应对光开关进行调制的情况下,光开关110可选择为MZI型光开关、3dB定向耦合型光开关、热光数字Y分支型光开关等。优选的,在本公开的实施例中,光开关110可以选用定向耦合型光开关或MZI型光开关,光开关110的功能也可以借助热光效应或光电效应实现。As shown in FIG. 2a and FIG. 2b, the model of the
图3示意性示出了根据本公开实施例的二阶微环光滤波器单元120的示意图。FIG. 3 schematically shows a schematic diagram of the second-order micro-ring
如图3所示,二阶微环光滤波器单元120还包括输入波导122和输出波导123。对于每一级二阶微环光滤波器单元120,两个微环谐振腔121构成的整体同输入波导122和输出波导123的距离相等。As shown in FIG. 3 , the second-order micro-ring
微环谐振腔121具有谐振波长,且在谐振波长处具有周期性的下载光谱,相邻谐振波长之间的间隔称为自由光谱区,滤波曲线的带宽表示谐振波长处当滤波曲线的能量为输出的最大强度一半时对应的谱线之间宽度。The
微环谐振腔121的谐振波长与微环谐振腔121的半径相关,具体可以表示为:The resonant wavelength of the
在式(1)中,m表示谐振级数;λ表示当前谐振级数的中心波长;nc表示微环谐振腔的有效折射率;R表示微环谐振腔的半径。In formula (1), m represents the resonant series; λ represents the center wavelength of the current resonant series; n c represents the effective refractive index of the micro-ring resonator; R represents the radius of the micro-ring resonator.
根据式(1)即可计算出微环谐振腔121的自由光谱区的大小,具体可以表示为:The size of the free spectral region of the
在式(2)中,FSR表示自由光谱区的大小,其余参数表示的含义与式(1)相同。In formula (2), FSR represents the size of the free spectral region, and the meanings expressed by other parameters are the same as those of formula (1).
同时,微环谐振腔121的谐振波长的位置还可以通过热光效应或光电效应进行微调。At the same time, the position of the resonant wavelength of the
本公开实施例的光学滤波器中,每一级二阶微环光滤波器单元120包含的两个微环谐振腔121的半径相同,并且具有相同的波导宽度和波导厚度。然而,不同的二阶微环光滤波器单元120之间,微环谐振腔121的半径不同、波导宽度和波导厚度相同,进而导致不同的二阶微环光滤波器单元120具有不同的滤波曲线。In the optical filter of the embodiment of the present disclosure, the two
根据本公开的实施例,基于增强光学滤波器的自由光谱区可控性的考量,可以将各个二阶微环光滤波器单元120依据其微环谐振腔121半径的大小进行连接,例如,第1级二阶微环光滤波器单元120的微环谐振腔121的半径最小,第N级二阶微环光滤波器单元120的微环谐振腔121的半径最大。According to the embodiments of the present disclosure, based on the consideration of enhancing the controllability of the free spectral region of the optical filter, each second-order micro-ring
根据本公开的实施例,光学滤波器的自由光谱区为光路中各个二阶微环光滤波器单元120的自由光谱区的最小公倍数,因此,通过调节开关切换可决定光路所经过的不同二阶微环滤波器之间的组合,可以实现自由光谱区以及带宽的可调谐。According to the embodiment of the present disclosure, the free spectral region of the optical filter is the least common multiple of the free spectral region of each second-order micro-ring
根据本公开的实施例,光学滤波器中的光开关110、二阶微环光滤波器单元120和各个光波导可以在铌酸锂、硅、二氧化硅、磷化铟或砷化镓平台上通过半导体工艺制作实现,进而为该光学滤波器带来了稳定度高、损耗低、体积小等特点。According to embodiments of the present disclosure, the
根据本公开的实施例,基于各级光开关对路径进行切换,通过选择光路经过的不同二阶微环滤波器之间的组合,以及对相应滤波器谐振波长的调节,从而得到新的滤波滤波周期,以及对带宽进行的调节,完成可重构光滤波器的滤波功能。According to the embodiments of the present disclosure, the paths are switched based on the optical switches at all levels, and a new filter filter is obtained by selecting the combination between different second-order micro-ring filters that the optical path passes through, and adjusting the resonance wavelength of the corresponding filters. period, and the adjustment of the bandwidth to complete the filtering function of the reconfigurable optical filter.
以上对本公开的实施例进行了描述。但是,这些实施例仅仅是为了说明的目的,而并非为了限制本公开的范围。尽管在以上分别描述了各实施例,但是这并不意味着各个实施例中的措施不能有利地结合使用。本公开的范围由所附权利要求及其等同物限定。不脱离本公开的范围,本领域技术人员可以做出多种替代和修改,这些替代和修改都应落在本公开的范围之内。Embodiments of the present disclosure have been described above. However, these examples are for illustrative purposes only, and are not intended to limit the scope of the present disclosure. Although the various embodiments are described above separately, this does not mean that the measures in the various embodiments cannot be used in combination to advantage. The scope of the present disclosure is defined by the appended claims and their equivalents. Without departing from the scope of the present disclosure, those skilled in the art can make various substitutions and modifications, and these substitutions and modifications should all fall within the scope of the present disclosure.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110278228.7A CN113031162B (en) | 2021-03-15 | 2021-03-15 | Optical filter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110278228.7A CN113031162B (en) | 2021-03-15 | 2021-03-15 | Optical filter |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113031162A CN113031162A (en) | 2021-06-25 |
CN113031162B true CN113031162B (en) | 2022-08-05 |
Family
ID=76470604
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110278228.7A Active CN113031162B (en) | 2021-03-15 | 2021-03-15 | Optical filter |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113031162B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113466999B (en) * | 2021-07-06 | 2022-10-18 | 中国科学院半导体研究所 | Optical filter and optical communication equipment using the same |
CN113504610B (en) * | 2021-07-06 | 2023-01-03 | 中国科学院半导体研究所 | High roll-off optical filter |
CN113466998B (en) * | 2021-07-06 | 2022-10-28 | 中国科学院半导体研究所 | Tunable optical filter and optical communication device using same |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1158326A2 (en) * | 2000-05-17 | 2001-11-28 | Lucent Technologies Inc. | Tunable all-pass optical filters with large free spectral ranges |
WO2003075060A1 (en) * | 2002-03-07 | 2003-09-12 | Australian National University | Tuneable filter arrangement |
CN1854778A (en) * | 2001-06-20 | 2006-11-01 | 阿尔利克斯公司 | Optical switches and routers and optical filters |
WO2007014218A2 (en) * | 2005-07-25 | 2007-02-01 | Massachusetts Institute Of Technology | Wide free-spectral-range, widely tunable and hitless-switchable optical channel add-drop filters |
CN104614877A (en) * | 2015-02-05 | 2015-05-13 | 中国科学院半导体研究所 | Tunable cascading micro-ring filter |
CN105807449A (en) * | 2014-12-30 | 2016-07-27 | 福州高意通讯有限公司 | Tunable optical filter |
CN107832640A (en) * | 2017-10-25 | 2018-03-23 | 上海交通大学 | Normalization nonnegative real number matrix convolution device and application method based on integrated light WDM technology |
CN108519642A (en) * | 2018-05-24 | 2018-09-11 | 兰州大学 | An integrated optical mode switch compatible with wavelength division multiplexing and mode division multiplexing |
KR20180101929A (en) * | 2017-03-06 | 2018-09-14 | 한국전자통신연구원 | Bi-directional optical element |
EP3387473A1 (en) * | 2015-12-11 | 2018-10-17 | Telefonaktiebolaget LM Ericsson (PUBL) | Tunable microring resonator |
CN111025465A (en) * | 2019-12-25 | 2020-04-17 | 中国科学院半导体研究所 | Tunable Optical Filter in Free Spectral Region |
CN111722451A (en) * | 2020-07-14 | 2020-09-29 | 中国电子科技集团公司第五十四研究所 | Silicon-Based Optical Peres Gate Reversible Logic Device Based on Microring Resonator |
CN112087259A (en) * | 2019-06-12 | 2020-12-15 | 中兴通讯股份有限公司 | Detection method for optical switching network |
CN112180513A (en) * | 2020-09-30 | 2021-01-05 | 华中科技大学 | Reconfigurable optical filter based on micro-ring array |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8655114B2 (en) * | 2007-03-26 | 2014-02-18 | Massachusetts Institute Of Technology | Hitless tuning and switching of optical resonator amplitude and phase responses |
US8340523B2 (en) * | 2008-02-20 | 2012-12-25 | Jds Uniphase Corporation | Tunable optical filter |
US8625936B1 (en) * | 2012-06-29 | 2014-01-07 | Alcatel Lucent | Advanced modulation formats using optical modulators |
US10447409B2 (en) * | 2013-06-21 | 2019-10-15 | Northrop Grumman Systems Corporation | Optical channelizer for W-band detection |
-
2021
- 2021-03-15 CN CN202110278228.7A patent/CN113031162B/en active Active
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1158326A2 (en) * | 2000-05-17 | 2001-11-28 | Lucent Technologies Inc. | Tunable all-pass optical filters with large free spectral ranges |
CN1854778A (en) * | 2001-06-20 | 2006-11-01 | 阿尔利克斯公司 | Optical switches and routers and optical filters |
WO2003075060A1 (en) * | 2002-03-07 | 2003-09-12 | Australian National University | Tuneable filter arrangement |
WO2007014218A2 (en) * | 2005-07-25 | 2007-02-01 | Massachusetts Institute Of Technology | Wide free-spectral-range, widely tunable and hitless-switchable optical channel add-drop filters |
CN105807449A (en) * | 2014-12-30 | 2016-07-27 | 福州高意通讯有限公司 | Tunable optical filter |
CN104614877A (en) * | 2015-02-05 | 2015-05-13 | 中国科学院半导体研究所 | Tunable cascading micro-ring filter |
EP3387473A1 (en) * | 2015-12-11 | 2018-10-17 | Telefonaktiebolaget LM Ericsson (PUBL) | Tunable microring resonator |
KR20180101929A (en) * | 2017-03-06 | 2018-09-14 | 한국전자통신연구원 | Bi-directional optical element |
CN107832640A (en) * | 2017-10-25 | 2018-03-23 | 上海交通大学 | Normalization nonnegative real number matrix convolution device and application method based on integrated light WDM technology |
CN108519642A (en) * | 2018-05-24 | 2018-09-11 | 兰州大学 | An integrated optical mode switch compatible with wavelength division multiplexing and mode division multiplexing |
CN112087259A (en) * | 2019-06-12 | 2020-12-15 | 中兴通讯股份有限公司 | Detection method for optical switching network |
CN111025465A (en) * | 2019-12-25 | 2020-04-17 | 中国科学院半导体研究所 | Tunable Optical Filter in Free Spectral Region |
CN111722451A (en) * | 2020-07-14 | 2020-09-29 | 中国电子科技集团公司第五十四研究所 | Silicon-Based Optical Peres Gate Reversible Logic Device Based on Microring Resonator |
CN112180513A (en) * | 2020-09-30 | 2021-01-05 | 华中科技大学 | Reconfigurable optical filter based on micro-ring array |
Non-Patent Citations (4)
Title |
---|
Cascaded Microresonator-Based Matrix Switch for Silicon On-Chip Optical Interconnection;Andrew W. Poon 等;《Proceedings of the IEEE》;20090612;第97卷(第7期);全文 * |
Cascading Second-Order Microring Resonators for a Box-Like Filter Response;Lei Zhang等;《Journal of lightwave technology》;20171215;第35卷(第24期);全文 * |
可重构自耦合微环辅助的MZI集成光子滤波器;郑鹏飞 等;《光学精密工程》;20200115;第28卷(第1期);全文 * |
自由光谱范围加倍单微环谐振滤波器的理论与仿真研究;李晓云;《中国优秀硕士论文全文库》;20130515;全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN113031162A (en) | 2021-06-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111025465B (en) | Tunable Optical Filter in Free Spectral Region | |
CN113031162B (en) | Optical filter | |
CN113031163B (en) | Optical filter structure and optical filter | |
US6839482B2 (en) | Tunable optical filtering device and method | |
WO2004088373A1 (en) | Integrated optical filters utilizing ring resonators | |
CN104317068A (en) | Integrated optical filter with center wavelength and filter bandwidth both adjustable independently | |
CN106371174A (en) | Optical bandpass filter based on double microring-Mach Zehnder interference structure | |
CN105549157B (en) | A kind of tunable optical notch filter based on micro-ring resonator | |
CN112799174A (en) | Tunable optical filter | |
CN110927885B (en) | Narrowband Optical Filter Based on Microdisk Resonator | |
CN113466998B (en) | Tunable optical filter and optical communication device using same | |
CN110927884B (en) | Integrated high roll-off optical filter | |
CN113031164B (en) | Optical filter structure and optical filter | |
US20050068602A1 (en) | Optical add-filtering switching device | |
CN110596819B (en) | Narrow-band optical filter based on micro-ring resonator | |
Timotijevic et al. | Multi-stage racetrack resonator filters in silicon-on-insulator | |
US12222628B2 (en) | Nonlinear optical device | |
Dingel | Multifunctional optical filter using direct-coupled and cross-coupled all-pass filters | |
Van | Dual-mode microring reflection filters | |
CN115437070B (en) | Micro-ring resonator-based test calibration method for wavelength selective optical switch | |
CN105700082B (en) | Adjustable interleaver based on silicon substrate Michelson GT interferometers | |
Yang et al. | Integrated 4-channel wavelength selective switch based on second-order micro-ring resonators | |
CN113466999B (en) | Optical filter and optical communication equipment using the same | |
CN110824730A (en) | Narrowband Optical Filter | |
CN110850527A (en) | Integrated optical filter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |