CN113028454B - High-frequency detonation combustion scheme based on regenerative cooling - Google Patents
High-frequency detonation combustion scheme based on regenerative cooling Download PDFInfo
- Publication number
- CN113028454B CN113028454B CN202110381966.4A CN202110381966A CN113028454B CN 113028454 B CN113028454 B CN 113028454B CN 202110381966 A CN202110381966 A CN 202110381966A CN 113028454 B CN113028454 B CN 113028454B
- Authority
- CN
- China
- Prior art keywords
- cooling
- detonation
- liquid water
- fuel
- medium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000005474 detonation Methods 0.000 title claims abstract description 146
- 238000001816 cooling Methods 0.000 title claims abstract description 133
- 238000002485 combustion reaction Methods 0.000 title claims abstract description 49
- 230000001172 regenerating effect Effects 0.000 title claims abstract description 11
- 239000007788 liquid Substances 0.000 claims abstract description 119
- 239000000446 fuel Substances 0.000 claims abstract description 100
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 99
- 239000002826 coolant Substances 0.000 claims abstract description 31
- 238000000034 method Methods 0.000 claims abstract description 18
- 239000010410 layer Substances 0.000 claims abstract description 15
- 239000000376 reactant Substances 0.000 claims abstract description 9
- 239000002356 single layer Substances 0.000 claims abstract description 6
- 238000000889 atomisation Methods 0.000 claims abstract description 4
- 238000001704 evaporation Methods 0.000 claims abstract description 4
- 230000008020 evaporation Effects 0.000 claims abstract description 4
- 238000002955 isolation Methods 0.000 claims description 51
- 239000007800 oxidant agent Substances 0.000 claims description 38
- 230000001590 oxidative effect Effects 0.000 claims description 35
- 238000011049 filling Methods 0.000 claims description 24
- 230000001105 regulatory effect Effects 0.000 claims description 11
- 238000000926 separation method Methods 0.000 claims description 10
- 238000005429 filling process Methods 0.000 claims description 9
- 239000000498 cooling water Substances 0.000 claims description 8
- 238000009834 vaporization Methods 0.000 claims description 8
- 230000008016 vaporization Effects 0.000 claims description 8
- 238000002347 injection Methods 0.000 claims description 6
- 239000007924 injection Substances 0.000 claims description 6
- 230000000694 effects Effects 0.000 claims description 5
- 238000011144 upstream manufacturing Methods 0.000 claims description 5
- 230000004323 axial length Effects 0.000 claims description 3
- 238000010438 heat treatment Methods 0.000 claims description 2
- 238000011084 recovery Methods 0.000 claims description 2
- 230000035939 shock Effects 0.000 claims description 2
- 230000007704 transition Effects 0.000 claims description 2
- 239000002918 waste heat Substances 0.000 claims description 2
- 108091006146 Channels Proteins 0.000 claims 17
- 102000010637 Aquaporins Human genes 0.000 claims 1
- 108010063290 Aquaporins Proteins 0.000 claims 1
- 238000005219 brazing Methods 0.000 claims 1
- 238000010248 power generation Methods 0.000 abstract description 4
- 238000007751 thermal spraying Methods 0.000 abstract description 4
- 239000000110 cooling liquid Substances 0.000 abstract description 2
- 230000000977 initiatory effect Effects 0.000 abstract 1
- 238000005507 spraying Methods 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 4
- 238000010926 purge Methods 0.000 description 4
- 238000002156 mixing Methods 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R7/00—Intermittent or explosive combustion chambers
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/12—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
- C23C4/126—Detonation spraying
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02K—JET-PROPULSION PLANTS
- F02K7/00—Plants in which the working fluid is used in a jet only, i.e. the plants not having a turbine or other engine driving a compressor or a ducted fan; Control thereof
- F02K7/02—Plants in which the working fluid is used in a jet only, i.e. the plants not having a turbine or other engine driving a compressor or a ducted fan; Control thereof the jet being intermittent, i.e. pulse-jet
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Combustion & Propulsion (AREA)
- General Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Nozzles (AREA)
- Fluidized-Bed Combustion And Resonant Combustion (AREA)
Abstract
Description
技术领域technical field
本发明涉及爆震燃烧技术领域,具体为一种基于再生冷却的高频爆震燃烧方案。The invention relates to the technical field of detonation combustion, in particular to a high-frequency detonation combustion scheme based on regenerative cooling.
背景技术Background technique
爆震燃烧接近等容燃烧、释热速率快且可实现自增压,在喷气推进领域具有潜在的重要应用前景。脉冲爆震燃烧室(Pulse Detonation Combustor,简称PDC)长时间运行时,爆震燃烧释放的大量热量使得爆震管壁面温度急剧升高,一方面会超过材料的耐热极限导致结构破坏,另一方面这部分热量将造成较大的性能损失,从而降低热效率;此外,炽热的管壁会造成反应物提前着火,使得爆震燃烧失效。因此,寻找有效的冷却措施保证PDC的稳定工作非常必要。无阀有隔离供给方式既能摆脱机械阀门对PDC工作频率的限制,又能避免连续燃烧的发生,是一种可行的PDC高频工作方式。传统的无阀有隔离工作方式需独立的隔离介质供给系统,一定程度上增加了整体系统重量和复杂性。The detonation combustion is close to the constant volume combustion, the heat release rate is fast and the self-pressurization can be realized, which has a potential important application prospect in the field of jet propulsion. When the Pulse Detonation Combustor (PDC) runs for a long time, the large amount of heat released by the detonation combustion causes the wall temperature of the detonation tube to rise sharply. On the one hand, it will exceed the heat resistance limit of the material and cause structural damage. On the one hand, this part of the heat will cause a large performance loss, thereby reducing the thermal efficiency; in addition, the hot tube wall will cause the reactants to ignite prematurely, making the detonation combustion ineffective. Therefore, it is very necessary to find effective cooling measures to ensure the stable operation of PDC. The valveless and isolated supply method can not only get rid of the limitation of the mechanical valve on the working frequency of PDC, but also avoid the occurrence of continuous combustion. It is a feasible high-frequency working method of PDC. The traditional valveless and isolated working method requires an independent isolation medium supply system, which increases the overall system weight and complexity to a certain extent.
针对上述问题,设计一种既能对爆震管有效冷却,又能确保高频稳定工作的脉冲爆震燃烧室,显得尤为重要。本发明提出了一种基于再生冷却的高频爆震燃烧方案,可满足以上要求,在舰船脉冲爆震发动机、热喷涂和发电等领域具有实用价值。In view of the above problems, it is particularly important to design a pulse detonation combustion chamber that can not only effectively cool the detonation tube, but also ensure high-frequency stable operation. The present invention proposes a high-frequency detonation combustion scheme based on regenerative cooling, which can meet the above requirements and has practical value in the fields of ship pulse detonation engines, thermal spraying and power generation.
发明内容SUMMARY OF THE INVENTION
要解决的技术问题technical problem to be solved
针对当前PDC无阀填充方式和壁面热管理中的问题,本发明提出了一种基于再生冷却的高频爆震燃烧方案。在爆震管外采用单层冷却布局或双层冷却布局的冷却套结构,以液态水作为冷却介质或以液态水液态燃料两种作为冷却介质。以液态水作为冷却介质时,液态水首先流经冷却套,利用液态水体积小、比热容大、方便易得的特点对爆震管从外侧进行强迫对流冷却;吸热后的冷却介质通过供给管路输送至爆震管头部,经由安装在头部的喷注系统喷入爆震管内充当隔离介质,达到隔离上一循环燃烧产物与下一循环新鲜反应物的目的,防止新鲜反应物提前着火导致爆震燃烧失效。以液态水液态燃料两种作为冷却介质时,除上述优势之外,还可以对液态燃料进行预热处理,促进雾化蒸发,提高起爆性能。既能实现爆震管的有效冷却,又能确保脉冲爆震燃烧室的高频稳定工作。本发明可用于舰船脉冲爆震发动机、热喷涂和发电等领域。Aiming at the problems in the current PDC valveless filling method and wall thermal management, the present invention proposes a high-frequency detonation combustion scheme based on regenerative cooling. A cooling jacket structure with a single-layer cooling layout or a double-layer cooling layout is adopted outside the detonation tube, and liquid water is used as the cooling medium or two kinds of liquid water and liquid fuel are used as the cooling medium. When liquid water is used as the cooling medium, the liquid water first flows through the cooling jacket, and the detonation tube is cooled by forced convection from the outside using the characteristics of small volume, large specific heat capacity, and convenience and availability of liquid water; the cooling medium after heat absorption passes through the supply tube. It is transported to the head of the detonation tube, and injected into the detonation tube through the injection system installed on the head to act as an isolation medium, so as to achieve the purpose of isolating the combustion products of the previous cycle and the fresh reactants of the next cycle, and prevent the fresh reactants from igniting in advance. lead to the failure of knock combustion. When two kinds of liquid water and liquid fuel are used as the cooling medium, in addition to the above advantages, the liquid fuel can also be preheated to promote atomization and evaporation, and improve the detonation performance. It can not only realize the effective cooling of the detonation tube, but also ensure the high-frequency stable operation of the pulse detonation combustion chamber. The invention can be used in the fields of ship pulse detonation engine, thermal spraying and power generation.
为了达到上述目的,本发明采用的技术方案为:In order to achieve the above object, the technical scheme adopted in the present invention is:
一种基于再生冷却的高频爆震燃烧方案,包括脉冲爆震燃烧室及高频爆震燃烧控制方法。A high frequency detonation combustion scheme based on regenerative cooling includes a pulse detonation combustion chamber and a high frequency detonation combustion control method.
所述脉冲爆震燃烧室由爆震管、冷却系统、供给及掺混系统和点火系统组成。The pulse detonation combustion chamber is composed of a detonation tube, a cooling system, a supply and mixing system and an ignition system.
所述爆震管为:一端封闭、一端开放的圆管形结构,规定封闭端方向为上游,开放端方向为下游。The detonation tube is a cylindrical structure with one end closed and one end open, and the direction of the closed end is defined as upstream, and the direction of the open end is downstream.
所述冷却系统由液态水供给通道、液态燃料供给通道、液态水冷却套、液态燃料冷却套、冷却介质-水供给通道、冷却介质-燃料供给通道、水蒸气分离装置、调压装置、流量调节器和冷却介质排出通道组成。液态水冷却套为爆震管与冷却水热量交换的主要装置,液态燃料冷却套为爆震管与液态燃料热量交换的主要装置,内部可采用环形、径向带肋、管束形或钎焊式冷却通道;冷却套至少覆盖点火装置下游至爆震管末端,出入口可根据实际情况具体设计;液态水冷却套和液态燃料冷却套轴向长度可根据实际情况具体设计;当燃烧室尾部安装有尾喷管时,可视具体情况将冷却套延长至尾喷管处。液态水经由液态水供给通道进入液态水冷却套内,液态燃料经由液态燃料供给通道进入液态燃料冷却套内,分别对爆震管外壁进行强迫对流冷却,而后流至冷却套出口;水蒸气进入冷却介质-水供给通道送往爆震管头部,通道出口装有水蒸气分离装置、调压装置和流量调节器,一定压力和流量的水蒸气经由头部隔离介质喷注器喷入管内充当隔离介质,剩余的冷却水经由冷却介质排出通道排出,这部分冷却水可进行余热回收用于供暖或其他用途。The cooling system consists of a liquid water supply channel, a liquid fuel supply channel, a liquid water cooling jacket, a liquid fuel cooling jacket, a cooling medium-water supply channel, a cooling medium-fuel supply channel, a water vapor separation device, a pressure regulating device, and a flow regulating device. It consists of a cooler and a cooling medium discharge channel. The liquid water cooling jacket is the main device for the heat exchange between the detonation tube and the cooling water, and the liquid fuel cooling jacket is the main device for the heat exchange between the detonation tube and the liquid fuel. Cooling passage; the cooling jacket covers at least the downstream of the ignition device to the end of the detonation tube, and the inlet and outlet can be designed according to the actual situation; the axial length of the liquid water cooling jacket and the liquid fuel cooling jacket can be designed according to the actual situation; When the nozzle is used, the cooling jacket can be extended to the tail nozzle according to the specific situation. The liquid water enters the liquid water cooling jacket through the liquid water supply channel, and the liquid fuel enters the liquid fuel cooling jacket through the liquid fuel supply channel, respectively for forced convection cooling on the outer wall of the detonation tube, and then flows to the outlet of the cooling jacket; the water vapor enters the cooling jacket The medium-water supply channel is sent to the head of the detonation tube, and the outlet of the channel is equipped with a water vapor separation device, a pressure regulating device and a flow regulator. The remaining cooling water is discharged through the cooling medium discharge channel, and this part of the cooling water can be used for heating or other purposes for waste heat recovery.
所述供给及掺混系统由燃料供给通道、燃料喷注器、氧化剂供给通道、隔离介质喷注器组成。隔离介质喷注器位于爆震管封闭段的几何中心;燃料、氧化剂经独立通道分别进入爆震管前端,两者沿爆震管的中轴线对称分布,与轴线下游方向的夹角为30~90°,具体角度应小于等于隔离介质喷注器的喷注半锥角;将燃料、氧化剂供给通道靠近爆震管头部侧壁面虚线延长至交汇处,该交汇处应与隔离介质喷口位置重合;燃料、氧化剂供给通道内径应由实际情况具体设计。The supply and blending system consists of a fuel supply channel, a fuel injector, an oxidant supply channel, and an isolation medium injector. The isolating medium injector is located at the geometric center of the closed section of the detonation tube; the fuel and oxidant enter the front end of the detonation tube respectively through independent channels, and the two are symmetrically distributed along the central axis of the detonation tube, and the included angle with the downstream direction of the axis is 30~ 90°, the specific angle should be less than or equal to the injection half cone angle of the isolation medium injector; extend the dotted line of the side wall surface of the fuel and oxidant supply channels near the head of the detonation tube to the intersection, which should coincide with the position of the isolation medium nozzle ; The inner diameter of the fuel and oxidant supply channels should be specifically designed according to the actual situation.
所述点火系统为:采用点火装置点火经缓燃向爆震转变的起爆方式;点火装置可采用火花塞;可采用固体障碍物或流体障碍物作为起爆增强装置。The ignition system is as follows: an ignition device is used to ignite and detonate to detonate; a spark plug can be used as the ignition device; and a solid obstacle or a fluid obstacle can be used as the detonation enhancement device.
所述高频爆震燃烧控制方法为:燃料、氧化剂和隔离介质均采用无阀填充方式,即在脉冲爆震循环工作过程中,阀门处于常开状态;隔离介质的填充压力控制在爆震管头部峰值压力和平台区压力之间,燃料和氧化剂填充压力控制在平台区压力附近,低于隔离介质的填充压力;爆震循环开始时,燃料和氧化剂分别经由燃料供给通道、燃料喷注器、氧化剂供给通道向爆震管内填充;填充过程结束后,点火装置开始点火,形成爆震波;隔离介质经由头部隔离介质喷注器进入爆震管内,开始填充时间应迟于燃料、氧化剂开始填充时间0~1ms,具体填充延迟时间应由隔离介质的汽化效果决定,当汽化效果较差时,可适当缩短延迟时间使其尽快进入爆震管内汽化形成隔离区;爆震波向爆震管开口端传播,同时,回爆波在爆震管头部形成一段高压区,该区压力高于燃料、氧化剂和隔离介质填充压力,会在爆震管头部形成气动阀,使得燃料、氧化剂和隔离介质无法进入爆震管内,填充过程暂停;燃烧产物持续的排气过程使得爆震管头部压力下降,当下降至隔离介质填充压力之下时,隔离介质填充过程恢复,并率先进入爆震管内形成一段隔离区,将燃烧产物隔离开;爆震管头部压力继续下降,直至压力下降至燃料、氧化剂填充压力之下,此时燃料、氧化剂填充过程恢复,开始下一循环。The high-frequency detonation combustion control method is as follows: the fuel, the oxidant and the isolation medium all adopt a valveless filling method, that is, during the working process of the pulse detonation cycle, the valve is in a normally open state; the filling pressure of the isolation medium is controlled in the detonation tube. Between the head peak pressure and the platform pressure, the fuel and oxidant filling pressures are controlled near the platform pressure, which is lower than the filling pressure of the isolation medium; at the beginning of the detonation cycle, the fuel and oxidant pass through the fuel supply channel, the fuel injector, respectively. , The oxidant supply channel is filled into the detonation tube; after the filling process, the ignition device starts to ignite to form a detonation wave; the isolation medium enters the detonation tube through the head isolation medium injector, and the filling time should be later than the fuel and oxidant start to fill
有益效果:Beneficial effects:
采用本发明提供一种基于再生冷却的高频爆震燃烧方案,在爆震管外采用单层冷却布局或双层冷却布局的冷却套结构,以液态水作为冷却介质或以液态水液态燃料两种作为冷却介质。以液态水作为冷却介质时,液态水首先流经冷却套,利用液态水体积小、比热容大、方便易得的特点对爆震管从外侧进行强迫对流冷却;吸热后的冷却介质通过供给管路输送至爆震管头部,经由安装在头部的喷注系统喷入爆震管内充当隔离介质,达到隔离上一循环燃烧产物与下一循环新鲜反应物的目的,防止新鲜反应物提前着火导致爆震燃烧失效。以液态水液态燃料两种作为冷却介质时,除上述优势之外,还可以对液态燃料进行预热处理,促进雾化蒸发,提高起爆性能。既能实现爆震管的有效冷却,又能确保脉冲爆震燃烧室的高频稳定工作。本发明可用于舰船脉冲爆震发动机、热喷涂和发电等领域。The invention provides a high-frequency detonation combustion scheme based on regenerative cooling. A cooling jacket structure with a single-layer cooling layout or a double-layer cooling layout is adopted outside the detonation tube, and liquid water is used as the cooling medium or liquid water and liquid fuel are used as two as a cooling medium. When liquid water is used as the cooling medium, the liquid water first flows through the cooling jacket, and the detonation tube is cooled by forced convection from the outside using the characteristics of small volume, large specific heat capacity, and convenience and availability of liquid water; the cooling medium after heat absorption passes through the supply tube. It is transported to the head of the detonation tube, and injected into the detonation tube through the injection system installed on the head to act as an isolation medium, so as to achieve the purpose of isolating the combustion products of the previous cycle and the fresh reactants of the next cycle, and prevent the fresh reactants from igniting in advance. lead to the failure of knock combustion. When two kinds of liquid water and liquid fuel are used as the cooling medium, in addition to the above advantages, the liquid fuel can also be preheated to promote atomization and evaporation, and improve the detonation performance. It can not only realize the effective cooling of the detonation tube, but also ensure the high-frequency stable operation of the pulse detonation combustion chamber. The invention can be used in the fields of ship pulse detonation engine, thermal spraying and power generation.
附图说明Description of drawings
图1为本发明脉冲爆震燃烧室结构简图(实施例1,气态燃料);Fig. 1 is a schematic diagram of the structure of the pulse detonation combustion chamber of the present invention (Example 1, gaseous fuel);
图2为本发明脉冲爆震燃烧室结构简图(实施例2,液态燃料,单层冷却布局);Figure 2 is a schematic structural diagram of the pulse detonation combustion chamber of the present invention (Example 2, liquid fuel, single-layer cooling layout);
图3为本发明脉冲爆震燃烧室结构简图(实施例3,液态燃料,内外双层冷却布局);3 is a schematic structural diagram of the pulse detonation combustion chamber of the present invention (
图4为本发明脉冲爆震燃烧室的控制时序示意图;Fig. 4 is the control sequence diagram of the pulse detonation combustion chamber of the present invention;
图5为本发明爆震管头部压力随时间变化曲线;Fig. 5 is the change curve of the head pressure of the detonation tube of the present invention with time;
以上图中,1为爆震管,2为液态水冷却套,3为点火装置,4为氧化剂供给通道,5为燃料供给通道,6为隔离介质喷注器,7为液态水供给通道,8为冷却介质-水供给通道,9为水蒸气分离装置,10为调压装置,11为流量调节器,12为冷却介质排出通道,13为控制系统,14为液态燃料冷却套,15为液态燃料供给通道,16为冷却介质-燃料供给通道,17为燃料喷注器。In the above figure, 1 is the detonation tube, 2 is the liquid water cooling jacket, 3 is the ignition device, 4 is the oxidant supply channel, 5 is the fuel supply channel, 6 is the isolation medium injector, 7 is the liquid water supply channel, 8 9 is the cooling medium-water supply channel, 9 is the water vapor separation device, 10 is the pressure regulating device, 11 is the flow regulator, 12 is the cooling medium discharge channel, 13 is the control system, 14 is the liquid fuel cooling jacket, 15 is the liquid fuel Supply channels, 16 are cooling medium-fuel supply channels, and 17 are fuel injectors.
具体实施方式Detailed ways
下面结合附图以及具体实施过程对本发明作进一步说明。The present invention will be further described below with reference to the accompanying drawings and specific implementation processes.
参见图1、图2和图3,所述脉冲爆震燃烧室由爆震管1、冷却系统(如液态水供给通道7、液态燃料供给通道15、液态水冷却套2、液态燃料冷却套14、冷却介质-水供给通道8、冷却介质-燃料供给通道16、水蒸气分离装置9、调压装置10、流量调节器11和冷却介质排出通道12)、供给及掺混系统(如燃料供给通道5、燃料喷注器17、氧化剂供给通道4、隔离介质喷注器6)、点火系统(如点火装置3)及控制系统13组成。所述爆震管1为一端封闭、一端开放的圆管形结构,规定封闭端方向为上游,开放端方向为下游。液态水经由液态水供给通道7进入液态水冷却套2内,吸热汽化后的水蒸气进入冷却介质-水供给通道8送往爆震管头部,通道8出口装有水蒸气分离装置9、调压装置10和流量调节器11,一定压力和流量的水蒸气经由头部隔离介质喷注器喷入管内充当隔离介质,剩余的冷却水经由冷却介质排出通道12排出。所述隔离介质喷注器6位于爆震管1封闭端的几何中心,隔离介质通过冷却系统进入爆震管1内;燃料、氧化剂分别经燃料供给通道5、氧化剂供给通道4进入爆震管1前端,两者关于爆震管1的中轴线对称分布,与轴线下游方向的夹角为30~90°,具体角度应小于等于隔离介质喷注器6的喷注半锥角;将燃料供给通道5和氧化剂供给通道4靠近爆震管头部侧壁面虚线延长至交汇处,该处应与隔离介质喷口位置重合;燃料供给通道5和氧化剂供给通道4内径应由实际情况具体设计。所述点火系统采用点火装置3点火经缓燃向爆震转变的起爆方式,点火装置可采用火花塞,可采用固体障碍物或流体障碍物作为起爆增强装置。1, 2 and 3, the pulse detonation combustion chamber consists of a
参见图4和图5,工作时,燃料、氧化剂和隔离介质均采用无阀填充方式,即在脉冲爆震循环工作过程中,阀门处于常开状态;隔离介质的填充压力ppurge控制在爆震管头部峰值压力和平台区压力pplateau之间,燃料pfuel和氧化剂填充压力poxidizer控制在平台区压力pplateau附近,低于隔离介质的填充压力ppurge;爆震循环开始时,燃料和氧化剂分别经由燃料供给通道5、氧化剂供给通道4向爆震管1内无阀式填充;填充过程结束后,点火装置3开始点火,形成爆震波;隔离介质经由头部隔离介质喷注器进入爆震管内,开始填充时间应迟于燃料、氧化剂开始填充时间0~1ms,具体填充延迟时间应由隔离介质的汽化效果决定,当汽化效果较差时,可适当缩短延迟时间使其尽快进入爆震管内汽化形成隔离区;爆震波向爆震管开口端传播,同时,回爆波在爆震管头部形成一段高压区,该区压力高于燃料pfuel、氧化剂poxidizer和隔离介质填充压力ppurge,会在爆震管头部形成气动阀,使得燃料、氧化剂和隔离介质无法进入爆震管内,填充过程暂停;燃烧产物持续的排气过程使得爆震管头部压力下降,当下降至隔离介质填充压力ppurge之下时,隔离介质填充过程恢复,并率先进入爆震管内形成一段隔离区,将燃烧产物隔离开;爆震管头部压力继续下降,直至压力下降至燃料pfuel、氧化剂填充压力poxidizer之下,此时燃料、氧化剂填充过程恢复,开始下一循环。Referring to Figure 4 and Figure 5, during operation, the fuel, oxidant and isolation medium are all filled with valveless, that is, during the working process of the pulse detonation cycle, the valve is in a normally open state; the filling pressure p purge of the isolation medium is controlled at the detonation level. Between the peak pressure of the tube head and the plateau pressure p plateau , the fuel p fuel and the oxidant filling pressure p oxidizer are controlled around the plateau pressure p plateau , which is lower than the filling pressure p purge of the isolation medium; at the beginning of the detonation cycle, the fuel and The oxidant is filled into the
实施例1:Example 1:
参见图1,在本实例中,冷却系统由液态水供给通道7、液态水冷却套2、冷却介质-水供给通道8、水蒸气分离装置9、调压装置10、流量调节器11和冷却介质排出通道12组成。液态水冷却套2为爆震管1与冷却水热量交换的主要装置,内部可采用环形、径向带肋、管束形或钎焊式冷却通道。液态水冷却套2至少覆盖点火装置3下游至爆震管末端,入口位于爆震管末端,出口位于点火装置下游位置;当燃烧室尾部安装有尾喷管时,可视具体情况将液态水冷却套2延长至尾喷管处;长时间工作时,可视具体情况将液态水冷却套2覆盖整个爆震管1。1, in this example, the cooling system consists of a liquid
实施例2:Example 2:
参见图2,在本实例中,冷却系统由液态水供给通道7、液态燃料供给通道15、液态水冷却套2、液态燃料冷却套14、冷却介质-水供给通道8、冷却介质-燃料供给通道16、水蒸气分离装置9、调压装置10、流量调节器11和冷却介质排出通道12。液态水冷却套2安装位置应在液态燃料冷却套14安装位置上游,且至少覆盖缓燃向爆震转变段;液态水冷却套2和液态燃料冷却套14轴向长度可根据实际情况具体设计,长时间工作时,可视具体情况将液态水冷却套2和液态燃料冷却套14覆盖整个爆震管1。液态水冷却套2为爆震管1与冷却水热量交换的主要装置,液态燃料冷却套14为爆震管1与液态燃料热量交换的主要装置,内部可采用环形、径向带肋、管束形或钎焊式冷却通道;当燃烧室尾部安装有尾喷管时,可视具体情况将冷却套14延长至尾喷管处。液态水经由液态水供给通道7进入液态水冷却套2内,液态燃料经由液态燃料供给通道15进入液态燃料冷却套14内,分别对爆震管外壁进行强迫对流冷却,而后流至冷却套出口;水蒸气作为隔离介质进入隔离介质喷注器6,换热后的燃料经由冷却介质-燃料供给通道16、燃料供给通道5和燃料喷注器17进入爆震管1内。2, in this example, the cooling system consists of a liquid
实施例3:Example 3:
参见图3,在本实例中,冷却系统各部分装置与实例2相同,但冷却套为内外双层冷却布局,具体为内层安装液态水冷却套2,外层安装液态燃料冷却套14,也可根据实际情况内层安装液态燃料冷却套14,外层安装液态水冷却套2;长时间工作时,可视具体情况将液态水冷却套2和液态燃料冷却套14覆盖整个爆震管1。Referring to Fig. 3, in this example, each part of the cooling system is the same as Example 2, but the cooling jacket is a double-layer cooling layout, specifically, the liquid
以上结合附图和具体实施过程对本发明的具体实施方式作了详细描述,但是本发明并不限于上述实施方式,在本领域的技术人员不脱离本发明原理的前提下,可以对上述方法做出各种改变与优化。The specific embodiments of the present invention have been described in detail above in conjunction with the accompanying drawings and the specific implementation process, but the present invention is not limited to the above-mentioned embodiments. Those skilled in the art can make the above-mentioned methods without departing from the principles of the present invention. Various changes and optimizations.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110381966.4A CN113028454B (en) | 2021-04-09 | 2021-04-09 | High-frequency detonation combustion scheme based on regenerative cooling |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110381966.4A CN113028454B (en) | 2021-04-09 | 2021-04-09 | High-frequency detonation combustion scheme based on regenerative cooling |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113028454A CN113028454A (en) | 2021-06-25 |
CN113028454B true CN113028454B (en) | 2022-08-19 |
Family
ID=76456313
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110381966.4A Active CN113028454B (en) | 2021-04-09 | 2021-04-09 | High-frequency detonation combustion scheme based on regenerative cooling |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113028454B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115164235B (en) * | 2022-07-25 | 2023-08-25 | 西北工业大学 | Rotary detonation combustion chamber utilizing detonation wave radial expansion |
CN115218224B (en) * | 2022-07-29 | 2023-06-20 | 西安热工研究院有限公司 | Cooling structure suitable for pulse detonation combustor |
CN115822810B (en) * | 2022-11-23 | 2024-11-26 | 南京航空航天大学 | A double-layer spiral cooling channel structure for the high-temperature wall of an exhaust nozzle |
CN116658939B (en) * | 2023-06-20 | 2025-02-14 | 南京航空航天大学 | A combined pulse detonation engine ceramic matrix composite combustion chamber |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1421049A (en) * | 1973-10-16 | 1976-01-14 | G N I Energet I Im | Method of intermittent detonation combustion of fuel and oxidiser mixture and detonation combustion chamber |
CN101984239A (en) * | 2010-11-11 | 2011-03-09 | 西北工业大学 | Method and device for improving working frequency of pulse detonation engine |
US9909533B2 (en) * | 2011-07-29 | 2018-03-06 | Board Of Regents, The University Of Texas System | Pulsed detonation engine |
CN109209678B (en) * | 2018-09-18 | 2020-12-08 | 西北工业大学 | A pulse detonation propulsion device based on regenerative cooling structure |
CN109915281B (en) * | 2019-03-06 | 2021-03-19 | 西北工业大学 | Pulse detonation rocket engine oil supply scheme beneficial to wall cooling and detonation |
CN112483258B (en) * | 2019-09-11 | 2022-03-18 | 南京理工大学 | Water and gas cooling self-circulation rotation detonation turbine driving device |
CN110905688B (en) * | 2019-10-16 | 2021-06-11 | 西北工业大学 | Device for improving working frequency of pulse detonation engine by using non-combustible liquid |
CN111102025B (en) * | 2019-12-11 | 2022-04-22 | 西北工业大学 | Supercritical carbon dioxide circulating power generation system suitable for regenerative cooling detonation combustion chamber |
CN111535939B (en) * | 2019-12-12 | 2022-05-27 | 西北工业大学 | A fuel injection system suitable for regenerative cooling detonation combustion chamber |
-
2021
- 2021-04-09 CN CN202110381966.4A patent/CN113028454B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN113028454A (en) | 2021-06-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113028454B (en) | High-frequency detonation combustion scheme based on regenerative cooling | |
CN101881238B (en) | Air-breathing pulse detonation engine and detonation method thereof | |
CN109915281B (en) | Pulse detonation rocket engine oil supply scheme beneficial to wall cooling and detonation | |
CN103899435B (en) | A kind of combined type pulse detonation engine detonation chamber | |
CN204042975U (en) | A kind of rotation detonation combustor | |
CN103670797A (en) | Solid-liquid scramjet engine | |
CN110469871B (en) | A compound cooling rotary detonation combustor based on Stirling cycle | |
CN111828175B (en) | Pre-combustion heating device and rotary detonation engine using same | |
CN201696166U (en) | An air-breathing pulse detonation engine | |
CN114607526B (en) | Impact model engine for researching tangential unstable combustion of double-liquid-phase propellant | |
CN106837608A (en) | Fire change propulsive solid-liquid rocket structure in a kind of decking end | |
CN109209678A (en) | A kind of pulse-knocking propulsion device based on re-generatively cooled structure | |
CN114592989B (en) | Liquid oxygen kerosene pintle injector thrust chamber and starting method thereof | |
CN106640420B (en) | A kind of pulse-knocking engine of side air inlet | |
CN114183773A (en) | A combustion chamber capable of generating multiple rotating detonation waves | |
CN107044361A (en) | A kind of pulse detonation rocket engines and control method with combustion-compensating device | |
CN111664026A (en) | Disc-shaped annular cavity type high-energy detonator of rotary detonation engine | |
CN111535939B (en) | A fuel injection system suitable for regenerative cooling detonation combustion chamber | |
CN108915893B (en) | A multi-tube helical pulse detonation engine | |
RU2316648C1 (en) | Downhole steam-gas generator | |
CN118934343A (en) | A thermoelectric hybrid rocket engine | |
CN201013341Y (en) | High-pressure gaseous mixture generating device with water spray thermo-regulator | |
CN114001375B (en) | A rotary detonation combustion chamber with a pre-combustion chamber | |
US20220252004A1 (en) | Radial pre-detonator | |
CN106640421A (en) | Side-exhausting pulse detonation engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |