CN113027678B - Wind driven generator group data acquisition system, method and device - Google Patents
Wind driven generator group data acquisition system, method and device Download PDFInfo
- Publication number
- CN113027678B CN113027678B CN201911352644.6A CN201911352644A CN113027678B CN 113027678 B CN113027678 B CN 113027678B CN 201911352644 A CN201911352644 A CN 201911352644A CN 113027678 B CN113027678 B CN 113027678B
- Authority
- CN
- China
- Prior art keywords
- sampling interval
- time
- collection
- data
- data collection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 25
- 238000005070 sampling Methods 0.000 claims abstract description 251
- 238000013480 data collection Methods 0.000 claims description 158
- 238000012937 correction Methods 0.000 claims description 29
- 238000004590 computer program Methods 0.000 claims description 8
- 230000000875 corresponding effect Effects 0.000 description 15
- 238000010586 diagram Methods 0.000 description 10
- 238000012544 monitoring process Methods 0.000 description 8
- 238000004458 analytical method Methods 0.000 description 6
- 238000004891 communication Methods 0.000 description 6
- 238000007726 management method Methods 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 238000007405 data analysis Methods 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 238000010248 power generation Methods 0.000 description 3
- 238000003745 diagnosis Methods 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000008447 perception Effects 0.000 description 2
- 230000003044 adaptive effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D7/00—Controlling wind motors
- F03D7/02—Controlling wind motors the wind motors having rotation axis substantially parallel to the air flow entering the rotor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D17/00—Monitoring or testing of wind motors, e.g. diagnostics
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/72—Wind turbines with rotation axis in wind direction
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Arrangements For Transmission Of Measured Signals (AREA)
Abstract
Description
技术领域technical field
本申请总体涉及风电场通信技术领域,更具体地讲,涉及一种风力发电机组数据采集系统、方法和装置。The present application generally relates to the technical field of wind farm communication, and more particularly, to a data acquisition system, method and device for a wind turbine.
背景技术Background technique
在现有技术中,通常采用监控与数据采集(SCADA,Supervisory ControlAnd DataAcquisition)系统来监测风电场中各台风力发电机组的工作状态。图1示出常见风力发电机组的结构示意图。如图1所示,风力发电机组100可包括塔架2、安装在塔架2上的机舱6、由可旋转地安装至机舱6的三只叶片8组成的叶轮以及转子4。叶轮可从风中获取动能从而推动叶轮转动。叶轮经主轴耦合至发电机(未示出)的转子4,驱动转子4转动使得发电机产生电力。风力发电机组100通常包括主控制器10,所述主控制器10可实现针对风力发电机组100的自动启动、自动调向、自动调速、自动并网、自动解列、故障自动停机、自动电缆解绕及自动记录与监控等重要控制、保护功能,并能够提供风力发电机组的各种实时控制数据以及状态数据。In the prior art, a Supervisory Control And Data Acquisition (SCADA, Supervisory Control And Data Acquisition) system is usually used to monitor the working status of each wind turbine in a wind farm. Figure 1 shows a schematic structural diagram of a common wind turbine. As shown in FIG. 1 , a
在风电场中各机组位置分散,为了合理利用风资源,各台风力发电机组之间必须保持一定距离,以减少相互影响和干扰。现有的风电SCADA系统主要由以下两部分组成:In a wind farm, the locations of the units are scattered. In order to utilize the wind resources reasonably, a certain distance must be maintained between the wind turbines to reduce mutual influence and interference. The existing wind power SCADA system mainly consists of the following two parts:
1)就地监控部分:布置在每台风力发电机塔架的控制柜内。每台风力发电机的就地控制能够对该台风力发电机的运行状态进行监控,并对其产生的数据进行采集。1) Local monitoring part: arranged in the control cabinet of each wind turbine tower. The local control of each wind turbine can monitor the running state of the wind turbine and collect the data generated by the wind turbine.
2)中央监控部分:一般布置在风电场控制室内。工作人员能够根据画面的切换随时控制和了解风电场某一型号的风力发电机组的运行和操作状况。2) Central monitoring part: generally arranged in the wind farm control room. The staff can control and understand the operation and operation status of a certain type of wind turbine in the wind farm at any time according to the switching of the screen.
就地监控部分与中央监控部分之间的数据传输主要是指下位机控制系统能将下位机的数据、状态和故障情况通过专用的数据传输装置和接口电路与中央监控室的上位计算机进行通信,同时上位机能传达对下位机的控制指令,由下位机的控制系统基于该控制指令执行相应动作,从而实现远程监控功能。The data transmission between the local monitoring part and the central monitoring part mainly means that the lower computer control system can communicate the data, status and fault conditions of the lower computer with the upper computer in the central monitoring room through a dedicated data transmission device and interface circuit. At the same time, the upper computer can convey the control instructions to the lower computer, and the control system of the lower computer performs corresponding actions based on the control instructions, so as to realize the remote monitoring function.
通常来说,由于大型风电场中分布的风力发电机的数目多,数据信息流大,远距离数据传输的时间延时高达7秒。这对于风机的实时控制而言是难以接受的。Generally speaking, due to the large number of wind turbines distributed in large wind farms and the large flow of data information, the time delay of long-distance data transmission is as high as 7 seconds. This is unacceptable for real-time control of fans.
因此,需要一种能够对风力发电机组的各种实时控制数据和状态数据等(诸如,实时的风速、风向、桨距角、方位角、发电量、风机转速、风机功率等信息)进行快速采集和存储,同时还能够保证所采集的数据的采样正确性和时间确定性的数据采集方案。Therefore, it is necessary to quickly collect various real-time control data and status data of wind turbines (such as real-time wind speed, wind direction, pitch angle, azimuth angle, power generation, fan speed, fan power, etc.) A data acquisition scheme that can ensure the sampling correctness and time determinism of the collected data at the same time.
另一方面,目前的风力发电机组的通信基本框架主要分为四层,如图2所示,从最低层到最高层分别为:逻辑终端(图2的210指示)、感知及边缘运算(图2的220指示)、场级数据综合管理(图2的230指示)、以及场群级海量数据诊断运维(图2的240指示)。逻辑终端层是以可编程逻辑控制器(PLC)为核心的主控系统,场级数据综合管理层包括主控中心的各种监控和管理系统,而场群级海量数据诊断运维层主要在各个地区相应的建立统一控制中心。On the other hand, the basic communication framework of the current wind turbine is mainly divided into four layers, as shown in Figure 2, from the lowest layer to the highest layer are: logical terminal (indicated by 210 in Figure 2), perception and edge operations (Figure 2). 2), integrated management of field-level data (indicated by 230 in FIG. 2), and diagnostic operation and maintenance of field group-level massive data (indicated by 240 in FIG. 2). The logic terminal layer is the main control system with programmable logic controller (PLC) as the core, the field-level data comprehensive management layer includes various monitoring and management systems of the main control center, and the field-group-level massive data diagnosis and operation and maintenance layer is mainly in the A unified control center shall be established correspondingly in each region.
然而,目前对感知及边缘运算层的研究工作还明显不足,需要一种综合的边缘计算产品来弥补逻辑控制终端运算能力不足以及场级数据采集粒度不够、控制管理过粗等问题。However, the current research work on the perception and edge computing layer is obviously insufficient, and a comprehensive edge computing product is needed to make up for the insufficient computing power of the logic control terminal, the insufficient granularity of field-level data collection, and the coarse control and management.
发明内容SUMMARY OF THE INVENTION
为了至少解决现有技术中的上述问题,本申请提供了一种风力发电机组数据采集系统、方法和装置。In order to at least solve the above problems in the prior art, the present application provides a data acquisition system, method and device for a wind turbine.
根据本发明的一方面,提供了一种风力发电机组数据采集系统,其特征在于,包括数据接口和处理器,其中,所述数据接口与风力发电机组主控制器通讯连接;所述处理器用于在每个采样间隔期间对多个采集线程中的每个采集线程分配从风力发电机组获取的机组变量,基于采样间隔来对每个采集线程上分配的机组变量进行数据采集,基于在每个采样间隔的期望结束时间在所述多个采集线程上的采集状态,调整每个采样间隔的结束时间,并将该时间确定为下一采样间隔的起始时间,在每个采样间隔结束时,存储该采样间隔期间在每个采集线程上所采集的机组变量的数据。According to an aspect of the present invention, a wind turbine data acquisition system is provided, which is characterized by comprising a data interface and a processor, wherein the data interface is communicatively connected to the main controller of the wind turbine; the processor is used for The unit variables obtained from the wind turbines are assigned to each of the plurality of acquisition threads during each sampling interval, and data collection is performed on the unit variables assigned on each acquisition thread based on the The collection status of the expected end time of the interval on the multiple collection threads, adjust the end time of each sampling interval, and determine the time as the start time of the next sampling interval, and at the end of each sampling interval, store The data for the fleet variables collected on each collection thread during the sampling interval.
所述处理器还可用于:在每个采样间隔的起始时间,对每个采集线程分别分配一组机组变量进行数据采集,并且针对每个采集线程,如果完成了对当前分配的机组变量的数据采集并且距当前采样间隔的期望结束时间的时间间隔大于预设阈值,则对该采集线程分配下一组机组变量以进行数据采集。The processor can also be used for: at the start time of each sampling interval, each acquisition thread is allocated a group of unit variables for data collection, and for each acquisition thread, if the currently assigned unit variables are When data is collected and the time interval from the expected end time of the current sampling interval is greater than the preset threshold, the collection thread is allocated the next set of unit variables for data collection.
所述处理器还可用于:如果在当前采样间隔的期望结束时间所述多个线程中还存在未完成机组变量的数据采集的超时采集线程,则将当前采样间隔的结束时间推迟为所述超时采集线程上的机组变量的数据采集结束的时间,并将该时间确定为下一采样间隔的起始时间,如果在当前采样间隔的期望结束时间之前在所述多个采集线程上已完成对所有机组变量的数据采集,则将当前采样间隔的结束时间提前为完成最后一个机组变量的数据采集的时间,并将该时间确定为下一采样间隔的起始时间。The processor can also be used for: if there is an overtime collection thread that has not completed the data collection of the unit variable in the multiple threads at the expected end time of the current sampling interval, then the end time of the current sampling interval is postponed to the overtime The time at which the data collection of the unit variables on the collection thread ends, and this time is determined as the start time of the next sampling interval, if all the For data collection of unit variables, the end time of the current sampling interval is advanced to the time when the data collection of the last unit variable is completed, and this time is determined as the start time of the next sampling interval.
所述处理器还可用于:对执行数据采集的采样间隔的数量进行计数,并在计数值等于或大于预设值时执行第一校正操作,其中,第一校正操作可包括:如果在当前采样间隔的期望结束时间之前在所述多个采集线程上已完成对所有机组变量的数据采集,则将当前采样间隔的结束时间校正为当前采样间隔的期望结束时间,并将该时间确定为下一采样间隔的起始时间并且重新开始计数,如果在当前采样间隔的期望结束时间之前在所述多个采集线程上未完成对所有机组变量的数据采集,则继续当前计数。The processor may also be configured to: count the number of sampling intervals in which data collection is performed, and perform a first correction operation when the count value is equal to or greater than a preset value, wherein the first correction operation may include: if the current sampling The data collection of all unit variables has been completed on the multiple collection threads before the expected end time of the interval, then the end time of the current sampling interval is corrected to the expected end time of the current sampling interval, and this time is determined as the next Start time of the sampling interval and restart counting, if data collection for all unit variables is not completed on the plurality of collection threads before the expected end time of the current sampling interval, continue the current counting.
所述处理器还可用于:在执行了预定时间的数据采集之后,执行第二校正操作,其中,第二校正操作可包括:对下一采样间隔的起始时间进行重设。The processor may also be configured to perform a second correction operation after performing the data collection for a predetermined time, wherein the second correction operation may include resetting the start time of the next sampling interval.
所述处理器还可用于:对从风力发电机组获取的机组变量的数据进行解析,并按照所分配的采集线程提供经过解析的机组变量的数据以进行数据采集。The processor can also be used to parse the data of the generator set variables obtained from the wind power generator set, and provide the parsed data of the generator set variables according to the allocated acquisition thread for data acquisition.
根据本发明的另一方面,提供了一种风力发电机组数据采集方法,包括:在当前采样间隔期间对多个采集线程中的每个采集线程分配从风力发电机组获取的机组变量;在当前采样间隔期间对每个采集线程上分配的机组变量进行数据采集;基于在当前采样间隔的期望结束时间在所述多个采集线程上的采集状态,调整当前采样间隔的结束时间,并将该时间确定为下一采样间隔的起始时间;以及在当前采样间隔结束时,存储当前采样间隔期间在每个采集线程上所采集的机组变量的数据。According to another aspect of the present invention, there is provided a wind turbine data collection method, comprising: assigning a unit variable acquired from a wind turbine to each of a plurality of collection threads during a current sampling interval; Data collection is performed on the unit variables allocated on each collection thread during the interval; based on the collection status on the multiple collection threads at the expected end time of the current sampling interval, the end time of the current sampling interval is adjusted, and the time is determined is the start time of the next sampling interval; and when the current sampling interval ends, the data of the unit variables collected on each collection thread during the current sampling interval are stored.
分配机组变量的步骤可包括:在当前采样间隔的起始时间,对每个采集线程分别分配一组机组变量进行数据采集,并且针对每个采集线程,如果完成了对当前分配的机组变量的数据采集并且距当前采样间隔的期望结束时间的时间间隔大于预设阈值,则对该采集线程分配下一组机组变量以进行数据采集。The step of allocating unit variables may include: at the start time of the current sampling interval, assigning a group of unit variables to each acquisition thread for data collection, and for each acquisition thread, if the data for the currently allocated unit variables is completed. Collection and the time interval from the expected end time of the current sampling interval is greater than the preset threshold, then the collection thread is allocated the next set of unit variables for data collection.
确定下一采样间隔的起始时间的步骤可包括:如果在当前采样间隔的期望结束时间所述多个线程中还存在未完成机组变量的数据采集的超时采集线程,则将当前采样间隔的结束时间推迟为所述超时采集线程上的机组变量的数据采集结束的时间,并将该时间确定为下一采样间隔的起始时间,如果在当前采样间隔的期望结束时间之前在所述多个采集线程上已完成对所有机组变量的数据采集,则将当前采样间隔的结束时间提前为完成最后一个机组变量的数据采集的时间,并将该时间确定为下一采样间隔的起始时间。The step of determining the start time of the next sampling interval may include: if there is a timeout acquisition thread that has not completed the data acquisition of the unit variable in the multiple threads at the desired end time of the current sampling interval, then the end of the current sampling interval The time delay is the time when the data collection of the unit variable on the time-out collection thread ends, and this time is determined as the start time of the next sampling interval, if the multiple collections are performed before the expected end time of the current sampling interval If the data collection of all unit variables has been completed on the thread, the end time of the current sampling interval is advanced to the time when the data collection of the last unit variable is completed, and this time is determined as the start time of the next sampling interval.
确定下一采样间隔的起始时间的步骤还可包括:对执行数据采集的采样间隔的数量进行计数;在计数值等于或大于预设值时,执行第一校正操作,其中,第一校正操作可包括:如果在当前采样间隔的期望结束时间之前在所述多个采集线程上已完成对所有机组变量的数据采集,则将当前采样间隔的结束时间校正为当前采样间隔的期望结束时间,并将该时间确定为下一采样间隔的起始时间并且重新开始计数,如果在当前采样间隔的期望结束时间之前在所述多个采集线程上未完成对所有机组变量的数据采集,则继续计数。The step of determining the start time of the next sampling interval may further include: counting the number of sampling intervals in which data collection is performed; when the count value is equal to or greater than a preset value, performing a first correction operation, wherein the first correction operation Can include: if the data collection of all unit variables has been completed on the plurality of acquisition threads before the expected end time of the current sampling interval, then the end time of the current sampling interval is corrected to the expected end time of the current sampling interval, and This time is determined as the start time of the next sampling interval and the counting is restarted, and if the data collection of all the unit variables is not completed on the plurality of collection threads before the expected end time of the current sampling interval, the counting is continued.
确定下一采样间隔的起始时间的步骤还可包括:在执行了预定时间的数据采集之后,执行第二校正操作,其中,第二校正操作可包括:对下一采样间隔的起始时间进行重设。The step of determining the start time of the next sampling interval may further include: after performing the data collection for the predetermined time, performing a second correction operation, wherein the second correction operation may include: performing a second correction operation on the start time of the next sampling interval reset.
根据本发明的另一方面,提供了一种风力发电机组数据采集装置,其特征在于,所述装置包括:变量分配模块,被配置为在每个采样间隔期间对多个采集线程中的每个采集线程分配从风力发电机组获取的机组变量;数据采集模块,被配置为基于采样间隔来对每个采集线程上分配的机组变量进行数据采集;采样间隔调整模块,被配置为基于数据采集模块在每个采样间隔的期望结束时间在所述多个采集线程上的采集状态,调整每个采样间隔的结束时间,并将该时间确定为下一采样间隔的起始时间;存储模块,被配置为在每个采样间隔结束时,存储该采样间隔期间在每个采集线程上所采集的机组变量的数据。According to another aspect of the present invention, there is provided a wind turbine data acquisition device, characterized in that the device comprises: a variable allocation module configured to perform a data acquisition on each of a plurality of acquisition threads during each sampling interval The acquisition thread assigns the unit variables obtained from the wind turbine; the data acquisition module is configured to perform data acquisition on the unit variables assigned on each acquisition thread based on the sampling interval; the sampling interval adjustment module is configured to perform data acquisition based on the data acquisition module in the The collection status of the expected end time of each sampling interval on the multiple collection threads, the end time of each sampling interval is adjusted, and the time is determined as the start time of the next sampling interval; the storage module is configured as At the end of each sampling interval, the data for the fleet variables collected on each acquisition thread during that sampling interval is stored.
根据本发明的另一方面,提供了一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有计算机程序指令,所述计算机程序指令被处理器执行时实现前述数据采集方法。According to another aspect of the present invention, a computer-readable storage medium is provided, wherein computer program instructions are stored on the computer-readable storage medium, and when the computer program instructions are executed by a processor, the aforementioned data collection is realized method.
根据本发明的另一方面,提供了一种计算机设备,包括存储有计算机程序指令的可读介质,其特征在于,所述计算机程序指令包括用于执行如前所述的数据采集方法的指令。According to another aspect of the present invention, a computer device is provided, comprising a readable medium storing computer program instructions, wherein the computer program instructions include instructions for executing the aforementioned data collection method.
有益效果beneficial effect
通过应用根据本发明的示例性实施例的风力发电机组数据采集系统、方法和装置,通过从风机主控制器直接采集数据,能够快速、准确、实时地获得风机的各种实时控制和状态数据,由此能够综合实时的风速、风向、桨距角、方位角、发电量、风机转速、风机功率等信息对风机的总体运行状况进行评估,并且还能够同时根据这些数据和信息为将来的风机运行状况进行预测,使得风机的运行、控制、规划更合理。By applying the wind turbine data acquisition system, method and device according to the exemplary embodiment of the present invention, by directly collecting data from the main controller of the wind turbine, various real-time control and status data of the wind turbine can be obtained quickly, accurately and in real time, In this way, it is possible to synthesize real-time wind speed, wind direction, pitch angle, azimuth angle, power generation, wind turbine speed, wind turbine power and other information to evaluate the overall operating status of the wind turbine. Predicting the situation makes the operation, control and planning of the fan more reasonable.
此外,通过应用根据本发明的示例性实施例的风力发电机组数据采集系统、方法和装置,还有效弥补了逻辑控制终端运算能力不足以及场级数据采集粒度不够控制管理过粗等问题。In addition, by applying the wind turbine data acquisition system, method and device according to the exemplary embodiments of the present invention, the problems of insufficient computing power of the logic control terminal and insufficient granularity of field-level data acquisition are also effectively overcome.
附图说明Description of drawings
下面将参照附图描述示例性实施例的以上和/或其它方面,其中:The above and/or other aspects of the exemplary embodiments will be described below with reference to the accompanying drawings, in which:
图1示出风力发电机组的结构示意图;Figure 1 shows a schematic structural diagram of a wind turbine;
图2示出现有技术的风力发电机组的基本通信框架;Figure 2 shows the basic communication framework of a wind turbine of the prior art;
图3示出根据本发明的示例性实施例的数据采集系统的框图;3 shows a block diagram of a data acquisition system according to an exemplary embodiment of the present invention;
图4示出根据本发明的示例性实施例的数据采集装置的框图;4 shows a block diagram of a data acquisition apparatus according to an exemplary embodiment of the present invention;
图5示出根据本发明的示例性实施例的多线程并行实时采集的示意图;5 shows a schematic diagram of multi-threaded parallel real-time acquisition according to an exemplary embodiment of the present invention;
图6示出根据本发明的示例性实施例的数据采集时序图;FIG. 6 shows a data acquisition timing diagram according to an exemplary embodiment of the present invention;
图7示出根据本发明的示例性实施例的数据采集方法的流程图。FIG. 7 shows a flowchart of a data acquisition method according to an exemplary embodiment of the present invention.
在下文中,将结合附图详细描述本发明,贯穿附图,相同或相似的元件将用相同或相似的标号来指示。Hereinafter, the present invention will be described in detail with reference to the accompanying drawings, throughout which the same or similar elements will be designated by the same or similar reference numerals.
具体实施方式Detailed ways
提供以下参照附图进行的描述,以帮助全面理解由权利要求及其等同物限定的本发明的示例性实施例。所述描述包括各种特定细节以帮助理解,但这些细节被认为仅是示例性的。因此,本领域的普通技术人员将认识到:在不脱离本发明的范围和精神的情况下,可对这里描述的实施例进行各种改变和修改。此外,为了清楚和简明,可省略已知功能和构造的描述。The following description with reference to the accompanying drawings is provided to assist in a comprehensive understanding of exemplary embodiments of the present invention as defined by the claims and their equivalents. The description includes various specific details to assist in that understanding, but these details are considered to be exemplary only. Accordingly, those of ordinary skill in the art will recognize that various changes and modifications of the embodiments described herein can be made without departing from the scope and spirit of the invention. Also, descriptions of well-known functions and constructions may be omitted for clarity and conciseness.
图3示出根据本发明的示例性实施例的数据采集系统300的框图。仅作为示例,所述数据采集系统300在硬件结构上可以是便携式箱体,并能够由操作人员携带至风力发电机组100的塔架中。数据采集系统300包括数据接口301和处理器302,数据接口301通过交换机与主控制器10(例如,PLC)直接连接以获取风力发电机组100的各种机组变量的数据。然而,应该理解,数据采集系统300还可以是任何其它形式。处理器302可用于执行稍后在下面参照图7所描述的数据采集方法。FIG. 3 shows a block diagram of a
图4示出根据本发明的示例性实施例的数据采集装置400的框图。参照图4,所述数据采集装置400可包括:变量分配模块410、数据采集模块420、采样间隔调整模块430以及存储模块440。FIG. 4 shows a block diagram of a
根据本发明的示例性实施例的变量分配模块410可在每个采样间隔期间对多个采集线程中的每个采集线程分配从风力发电机组获取的机组变量,由此实现机组变量数据的多线程并行实时采集。在下文中将结合图5对此进行详细描述。The
图5示出根据本发明的示例性实施例的多线程并行实时采集的示意图。FIG. 5 shows a schematic diagram of multi-threaded parallel real-time acquisition according to an exemplary embodiment of the present invention.
参照图5,在本发明的实施例中,当进行数据采集时,可为从风力发电机组的主控制器(例如,倍福PLC)获取的每个机组变量建立一个单独的连接通道(图5中所示的连接通道1、连接通道2、连接通道3、连接通道4、……)来将该机组变量的数据传输至变量分配模块410所分配的采集线程,由此实现机组变量数据的并行独立采集。所采集的数据可被发送到数据存储和分析装置中,以供该装置对风力发电机组整体情况进行评估从而获得风力发电机组当时的运行状况,同时能够根据这些数据资料为将来的风机运行状况进行预测。Referring to FIG. 5, in an embodiment of the present invention, when data collection is performed, a separate connection channel can be established for each unit variable obtained from the main controller of the wind turbine (eg, Beckhoff PLC) (FIG. 5
当采集线程的数量与机组变量的数量相等甚至更多时,变量分配模块410可为每个机组变量分配一个单独的采集线程进行数据采集。When the number of collection threads is equal to or more than the number of unit variables, the
然而,当采集线程的数量少于机组变量的数量时,变量分配模块410可依次对每个线程分配机组变量。具体来说,在每个采样间隔的起始时间,变量分配模块410可首先对每个采集线程分别分配一组机组变量进行数据采集,所述一组机组变量可包括一个机组变量,或者可包括预设的多个机组变量。然后,针对每个采集线程,如果该采集线程完成了对当前分配的机组变量的数据采集并且距当前采样间隔的期望结束时间的时间间隔大于预设时间阈值,则变量分配模块410可对该采集线程分配下一组机组变量以进行数据采集。举例来说,假设存在5个采集线程,线程1、线程2、线程3、线程4和线程5。当当前采样间隔开始时,变量分配模块410可将机组变量1、机组变量2、机组变量3、机组变量4和机组变量5分别分配给线程1、线程2、线程3、线程4和线程5进行数据采集,如果在线程3上首先完成了对机组变量3的数据采集,并且此时距当前采样间隔的结束时间还较长(例如,大于预设时间阈值),则变量分配模块410可将下一个机组变量6分配给线程3进行数据采集,以此类推。以这样的方式,使得每个采集线程都能够被有效利用,减少某个线程过于空闲或过于繁忙的可能性,由此保证系统资源得到充分利用。However, when the number of acquisition threads is less than the number of group variables, the
返回参照图4,根据本发明的示例性实施例中的数据采集模块420可基于采样间隔来对每个采集线程上分配的机组变量进行数据采集。Referring back to FIG. 4 , the
这里,采样间隔是指预设的用于对待采集的所有机组变量的数据进行采集的时间段。数据采集模块420可在一个采样间隔期间完成对所有机组变量的一次数据采集。Here, the sampling interval refers to a preset time period for collecting the data of all the unit variables to be collected. The
数据采集模块420通常以固定的采样时间间隔来执行对机组变量的多次数据采集。然而,由于各种因素的影响(例如,某个机组变量的数据量较大、干扰因素、机器故障因素等导致对某个或某些机组变量的数据采集时间变长等),使用固定采样间隔使得可能在一个或一些线程上出现在当前采样间隔结束且下一采样间隔开始时还不能完成本次对机组变量的数据采集的情况,这会导致采样数据不正确,并且还会影响采样的时间确定性。The
对此,在本发明的实施例中,可基于数据采集模块420在每个采样间隔的期望结束时间在所述多个采集线程上的采集状态,通过采样间隔调整模块430调整每个采样间隔的结束时间,并将该时间确定为下一采样间隔的起始时间,尽量保证在当前采样间隔结束之前或结束时完成本次对所有机组变量的数据采集。这里,当前采样间隔的期望结束时间是指与当前次数据采集对应的固定采样间隔的结束时间,也即,在数据采集模块420按照固定采样间隔进行数据采集的情况下,与当前次数据采集对应的采样间隔的结束时间。仅作为示例,假设当前次数据采集是第N次数据采集,并且固定采样间隔的时间长度为span,数据采集起始时间为0,则与当前次数据采集对应的当前采样间隔的期望结束时间为N×span。In this regard, in this embodiment of the present invention, the sampling
在本发明的示例性实施例中,如果在当前采样间隔的期望结束时间所述多个线程中还存在未完成机组变量的数据采集的超时采集线程,则采样间隔调整模块430可将当前采样间隔的结束时间推迟为所述超时采集线程上的机组变量的数据采集结束的时间,并将该时间确定为下一采样间隔的起始时间。如果在当前采样间隔的期望结束时间之前在所述多个采集线程上已完成对所有机组变量的数据采集,则采样间隔调整模块430可将当前采样间隔的结束时间提前为完成最后一个机组变量的数据采集的时间,并将该时间确定为下一采样间隔的起始时间。以下将结合图6更详细地描述采样间隔调整模块430的调整操作。In an exemplary embodiment of the present invention, if there is a timeout collection thread that has not completed the data collection of the unit variable among the multiple threads at the expected end time of the current sampling interval, the sampling
图6示出根据本发明的示例性实施例的数据采集时序图的示例。FIG. 6 shows an example of a data acquisition timing diagram according to an exemplary embodiment of the present invention.
参照图5,假设数据采集装置400使用5个采集线程(即,图6中示出的线程1、线程2、线程3、线程4和线程5),时间T0为数据采集的起始时间,虚线所示的采样间隔(图5中T3处实线与虚线重叠)为固定采样间隔(例如,20ms),时间T0至时间T1为与第1次数据采集对应的固定采样间隔且时间T1为第1次数据采集的期望结束时间、时间T1至时间T2为与第2次数据采集对应的固定采样间隔且时间T2为第2次数据采集的期望结束时间,并且时间T2至时间T3为与第3次数据采集对应的固定采样间隔且时间T3为第3次数据采集的期望结束时间。Referring to FIG. 5 , it is assumed that the
如图6所示,每个线程上的数字表示变量分配模块410在对应采样间隔期间为该线程分配的机组变量,例如,线程1中的T0与T1之间的数字1-6分别表示变量分配模块410在第1个采样间隔期间对线程1分配的6个变量,线程2中的T0与T1之间的数字1-6分别表示变量分配模块410在第1个采样间隔期间对线程2分配的6个变量,等等。应该理解,每个线程上指示机组变量的数字仅指示分配给该线程的机组变量的序号,同一采样间隔期间每个线程上所分配的机组变量彼此不同。As shown in FIG. 6 , the numbers on each thread represent the group variables allocated by the
从图6可看出,当从时间T0开始进行第1次数据采集时,在时间T0至时间T1的固定采样间隔期间,可完成线程1、线程2、线程4和线程5上所分配的机组变量的数据采集,而在该固定采样间隔的结束时间T1(即,与第1次数据采集对应的第1采样间隔的期望结束时间),线程3上分配的第6个机组变量的数据采集尚未完成。此时,根据本发明的示例性实施例的采样间隔调整模块430可将第1采样间隔的实际结束时间推迟为超时的线程3上的第6个机组变量的数据采集结束时间T1’,并将该时间T1’确定为与第2次数据采集对应的第2采样间隔的起始时间。As can be seen from Figure 6, when the first data collection starts from time T0, during the fixed sampling interval from time T0 to time T1, the units assigned to
类似地,当从时间T1’开始进行第2次数据采集时,在与第2次数据采集对应的固定采样间隔的结束时间T2(即,第2采样间隔的期望结束时间),可完成线程1、线程3、线程4和线程5上所分配的机组变量的数据采集,而在该固定采样间隔的结束时间T2,线程2上分配的第6个机组变量的数据采集尚未完成。此时,根据本发明的示例性实施例的采样间隔调整模块430可将第2采样间隔的实际结束时间推迟为超时的线程2上的第6个机组变量的数据采集结束时间T2’,并将该时间T2’确定为与第3次数据采集对应的第3采样间隔的起始时间。Similarly, when the 2nd data collection starts from time T1', at the end time T2 of the fixed sampling interval corresponding to the 2nd data collection (ie, the expected end time of the 2nd sampling interval),
尽管图6仅示出采样间隔调整模块430推迟采样间隔的结束时间的操作,但应该理解,本申请不限于此。采样间隔调整模块430还可将采样间隔的结束时间提前。例如,结合图6的情况举例,假如在与第2次数据采集对应的固定采样间隔的结束时间T2之前已完成线程1、线程2、线程3、线程4和线程5上所分配的所有机组变量的数据采集,则采样间隔调整模块430可将第2采样间隔的结束时间提前为完成最后一个机组变量的数据采集的时间,并将该时间确定为下一采样间隔的起始时间,此时,与图6示出的情况不同的是,T2’会在T2之前。Although FIG. 6 only illustrates the operation of the sampling
通过采样间隔调整模块430的上述调整操作,由于每次数据采集的采样间隔结束时间有时提前有时推迟,能够大致保证在一段相同时间长度内的数据采集次数以及数据集采集量相同,既保证了采样的时间确定性,也能够保证采样的正确性。Through the above adjustment operation of the sampling
然而,应该理解,在进行采样间隔调整时,采样间隔调整模块430可仅在对所有机组变量进行一次数据采集实际消耗的时间接近固定采样间隔时执行上述调整,而当对所有机组变量进行一次数据采集实际消耗的时间远大于固定采样间隔时(例如,实际消耗时间超过固定采样间隔达预定时间长度以上时),为了保证采样的正确性,可放弃采样的时间确定性而不进行采样间隔调整。It should be understood, however, that when performing sampling interval adjustments, the sampling
可选择地,除了上述采样间隔调整操作以外,根据本发明的示例性实施例的采样间隔调整模块430还可在执行了一段时间的采样间隔调整之后,执行校正操作。Optionally, in addition to the above sampling interval adjustment operation, the sampling
具体地讲,采样间隔调整模块430可包括计数模块(未示出)。计数模块(未示出)可对数据采集模块420执行数据采集的采样间隔的数量进行计数。采样间隔调整模块430可在计数模块(未示出)的计数值等于或大于预设值时,执行第一校正操作。这里,第一校正操作可包括:如果在当前采样间隔的期望结束时间之前在多个采集线程上已完成对所有机组变量的数据采集,则采样间隔调整模块430可将当前采样间隔的结束时间校正为当前采样间隔的期望结束时间(而不是完成最后一个机组变量的数据采集的时间),并将该时间确定为下一采样间隔的起始时间并且使计数模块(未示出)重新开始计数;而如果在当前采样间隔的期望结束时间之前在所述多个采集线程上未完成对所有机组变量的数据采集,则采样间隔调整模块430可使计数模块(未示出)继续当前计数。Specifically, the sampling
结合图6,假设所述预设值为3,则当数据采集模块420进行到第3次数据采集时,计数模块(未示出)的计数值为3,并且采样间隔调整模块430可首先确定在第3采样间隔的期望结束时间T3之前在多个采集线程(即,线程1至线程5)上是否已完成对所有机组变量的数据采集,如果已完成,则采样间隔调整模块430可将第3采样间隔的结束时间校正为期望结束时间T3而不是最后一个机组变量的数据采集的完成时间,如图6所示。此时,采样间隔调整模块430可在完成该校正之后使计数模块(未示出)的计数值归零并重新开始计数,等待下一次校正时机的到来。6 , assuming that the preset value is 3, when the
然而,如果在第3采样间隔的期望结束时间T3还没有完成对所有机组变量的数据采集,则采样间隔调整模块430可依旧将当前采样间隔的结束时间推迟为最后一个机组变量的数据采集结束的时间,并将该时间确定为下一采样间隔的起始时间。此时,计数模块(未示出)可对数据采集模块420执行数据采集的采样间隔的数量继续进行计数(即,计数值变为4),采样间隔调整模块430可确定之后的第4采样间隔是否可执行上述校正,如果不可,则继续对后续采样间隔进行类似判断并且计数模块(未示出)继续当前计数,直到执行一次校正为止。However, if the data collection for all unit variables has not been completed at the expected end time T3 of the third sampling interval, the sampling
这样,使得在经过一段时间的采样间隔调整之后,采样间隔的实际结束时间可与期望结束时间能够再次一致,因此即使是对一些采样间隔的起始时间进行了调整,也能够保证在一段相同时间长度(例如,T0至T3这段时间)内的数据采集次数相同且数据采集量也相同,进一步保证了采样的时间确定性和采样的正确性。In this way, after a period of sampling interval adjustment, the actual end time of the sampling interval can be consistent with the expected end time again, so even if the start time of some sampling intervals is adjusted, it can be guaranteed that the same period of time The number of times of data collection and the same amount of data collection within the length (for example, the period from T0 to T3) are the same, which further ensures the time determinism of sampling and the correctness of sampling.
此外,采样间隔调整模块430还可在执行了一段时间的数据采集之后进行一次综合校正。具体地讲,在由数据采集模块420执行了预定时间的数据采集之后,采样间隔调整模块430可执行第二校正操作。这里,第二校正操作可包括:对下一采样间隔的起始时间进行重设,而不管数据采集模块420在当前采样间隔期间的采集状态如何。也就是说,在本发明的示例性实施例中,每隔预定时间,数据采集模块420都会直接终止当前的数据采集流程而不管此时机组变量的数据采集是否已完成,并重新开始新一轮的数据采集操作。此外,在本发明的示例性实施例中,执行第二校正操作的时间间隔远大于执行第一校正操作的时间间隔。In addition, the sampling
在每个采样间隔结束时,该采样间隔期间在每个采集线程上所采集的机组变量的数据可被存储在存储模块440中。At the end of each sampling interval, the data collected for the fleet variables on each acquisition thread during the sampling interval may be stored in the
此外,在本发明的示例性实施例中,所述数据采集装置400还可包括:数据解析模块(未示出),用于对从风力发电机组的主控制器获取的机组变量的数据进行解析,并按照变量分配模块410所分配的采集线程,将经过解析的机组变量的数据提供给数据采集模块410进行数据采集。数据解析模块(未示出)可将机组变量的数据解析为具有预设数据类型、格式和结构。这里,所述预设数据类型、格式和结构能够经由例如虚拟机等被多种协议和平台解析,从而使得本发明的示例性实施例的数据采集装置400能够适用于/兼容各种协议和平台。In addition, in an exemplary embodiment of the present invention, the
仅作为示例,数据解析模块(未示出)可如下定义变量格式:For example only, a data parsing module (not shown) may define the variable format as follows:
变量名称:变量类型:变量长度。variable name: variable type: variable length.
在本发明的示例性实施例中,变量类型的命名原则和结构与风力发电机组的主控制器中的数据结构定义的完全一致且覆盖主控制器的全部变量类型定义和语法格式,并且需要定义到具体的实际变量。例如,假设使用PLC作为主控制器10,则可如下来定义变量:In the exemplary embodiment of the present invention, the naming principle and structure of the variable type are completely consistent with the data structure definition in the main controller of the wind turbine and cover all variable type definitions and syntax formats of the main controller, and need to define to specific actual variables. For example, assuming a PLC is used as the
a)简单变量a) Simple variables
Twincat2中定义全局变量以’.’开始,Twincat3中以Globle.开始,严格按照这种格式定义,而其他的域变量使用域名+变量名。Global variables defined in Twincat2 start with '.', and Global variables in Twincat3 are defined in strict accordance with this format, while other domain variables use domain name + variable name.
b)结构体b) structure
结构体的定义在Twincat2中为’.’+结构体名字+具体变量名,在Twincat3中为’Globle’+结构体名字+具体变量名,而其他的域变量使用域名+结构体名+变量名。The definition of the structure is '.'+structure name+specific variable name in Twincat2, 'Globle'+structure name+specific variable name in Twincat3, and other domain variables use domain name+structure name+variable name .
此外,变量长度用于定义该变量是单变量还是数据,单变量长度是1,数据则按实际大小定义,例如,以下例示出了两个变量格式:In addition, the variable length is used to define whether the variable is a single variable or data, the single variable length is 1, and the data is defined by the actual size, for example, the following example shows two variable formats:
单变量:.wind_speed:REAL:1Single variable: .wind_speed:REAL:1
结构体:gh_control.FB_GH_CONTROLLER_1.speed_set_point:REAL:1Structure: gh_control.FB_GH_CONTROLLER_1.speed_set_point:REAL:1
以下表1示出了倍福PLC作为主控制器10时机组变量的全部数据类型。The following table 1 shows all the data types of the group variables when the Beckhoff PLC is used as the
【表1】【Table 1】
应该理解,以上为了易于理解而以PLC作为示例描述了数据解析模块(未示出)的解析处理,但本申请不限于此。当风力发电机组使用其他类型的主控制器时,数据解析模块(未示出)可根据所使用的主控制器的具体类型来对机组变量的数据进行适应性的对应解析。It should be understood that the analysis processing of the data analysis module (not shown) is described above by taking PLC as an example for easy understanding, but the present application is not limited thereto. When the wind turbine uses other types of main controllers, the data parsing module (not shown) can perform adaptive and corresponding analysis on the data of the turbine variables according to the specific type of the main controller used.
此外,在本发明的示例性实施例中,存储模块440在保存数据时应遵循以下存储原则:简单易读、区分单个变量和数据、存储列名、存储时间戳、以及自定义文件大小。仅作为示例,可如下实现上述原则:In addition, in the exemplary embodiment of the present invention, the
简单易读:以文本方式存储采集的机组变量的数据(例如,以txt或者是csv2文件格式进行存储),有利于后续的自动分析和人工分析。Simple and easy to read: Store the collected data of unit variables in text (for example, in txt or csv2 file format), which is conducive to subsequent automatic analysis and manual analysis.
区分单个变量和数据:单变量可以直接以字符串形式保存,数字则可以以例如[值1,值2,值3]方式保存。Distinguish between single variables and data: single variables can be stored directly as strings, numbers can be stored as [
存储列名:文件的第一行为字段列表方便用户查看。Storage column name: The first line of the file is a list of fields for users to view.
存储时间戳:数据第一列为数据采集时间,方便数据对时以及查看数据采集频率及数据有效性。Storage timestamp: The first column of data is the data collection time, which is convenient for data time synchronization and checking the data collection frequency and data validity.
自定义文件大小:自定义存储结果文件大小,从而防止太大的文件工具打开时造成工具死机,而太小文件保存时出现文件过多不容易管理的问题。Customize the file size: Customize the file size of the stored result, so as to prevent the tool from crashing when the tool is opened with a too large file, and the problem of too many files that are not easy to manage when saving a too small file.
此外,尽管在图4中没有示出,但是所述数据采集装置400还可包括数据处理模块(未示出)和通信模块(未示出)中的至少一个。所述数据处理模块(未示出)可在数据采集装置400进行数据采集的同时对所采集和存储的数据进行一些简单预处理和分析(例如,执行快速滤波以解决基线漂移问题、执行快速聚类、进行简单故障诊断以及进行简单分析报告),使得当远程的主控中心获得所管理的各个风力发电机组的数据时能够基于这些经过预处理和分析的数据更加方便、快速地对这样的数据进行进一步处理,由此减轻主控中心的运算负担,提高主控中心的运算效率和数据分析准确度。通信模块(未示出)则可以以预设周期或者按照指示将所采集和存储的机组变量数据和/或数据处理模块(未示出)对机组变量数据进行预处理和分析的结果数据发送到主控中心。例如,当操作人员由于各种原因而无法直接从数据采集装置400取出上述数据时,可由通信模块(未示出)将这样的数据发送到主控中心。In addition, although not shown in FIG. 4 , the
此外,尽管以模块化的方式示出数据采集装置400的组成及其各个组成模块(例如,变量分配模块410、数据采集模块420、采样间隔调整模块430以及存储模块440等)的具体操作,但应该理解,这仅是为了便于解释。例如,数据采集装置400的各个模块所执行的操作可由图3的数据采集系统300的处理器完成,或者数据采集装置400的每个模块可被进一步细化为更多模块以执行相应操作,或者数据采集装置400中的若干个模块可彼此集成为一个模块来执行对应操作。此外,应该理解,上述模块可以以软件、硬件、固件、或者是软件、硬件和固件中的两个或更多个的组合的形式来实现。In addition, although the composition of the
图7示出根据本发明的示例性实施例的数据采集方法的流程图。图7示出了在一个采样间隔期间由数据采集系统300执行数据采集的流程,数据采集系统300可在每个采样间隔执行类似流程。FIG. 7 shows a flowchart of a data acquisition method according to an exemplary embodiment of the present invention. Figure 7 shows a flow of data collection performed by the
参照图7,在步骤S710,可在当前采样间隔期间对多个采集线程中的每个采集线程分配从风力发电机组获取的机组变量。Referring to FIG. 7 , in step S710 , the unit variables obtained from the wind turbine may be assigned to each of the plurality of acquisition threads during the current sampling interval.
具体地讲,可在当前采样间隔的起始时间,对每个采集线程分别分配一组机组变量进行数据采集,并且针对每个采集线程,如果该采集线程完成了对当前分配的机组变量的数据采集并且距当前采样间隔的期望结束时间的时间间隔大于预设阈值,则可对该采集线程分配下一组机组变量以进行数据采集。Specifically, at the start time of the current sampling interval, a group of unit variables can be allocated to each collection thread for data collection, and for each collection thread, if the collection thread has completed the data of the currently allocated unit variables Collection and the time interval from the expected end time of the current sampling interval is greater than the preset threshold, then the collection thread can be assigned the next set of unit variables for data collection.
在步骤S720,可在当前采样间隔期间对每个采集线程上分配的机组变量进行数据采集。In step S720, data collection may be performed on the unit variables allocated on each collection thread during the current sampling interval.
在步骤S730,基于在当前采样间隔的期望结束时间在所述多个采集线程上的采集状态,可调整当前采样间隔的结束时间,并将该时间确定为下一采样间隔的起始时间。In step S730, based on the collection status on the plurality of collection threads at the expected end time of the current sampling interval, the end time of the current sampling interval may be adjusted and determined as the start time of the next sampling interval.
具体地讲,如果在当前采样间隔的期望结束时间所述多个线程中还存在未完成机组变量的数据采集的超时采集线程,则可将当前采样间隔的结束时间推迟为所述超时采集线程上的机组变量的数据采集结束的时间,并将该时间确定为下一采样间隔的起始时间;如果在当前采样间隔的期望结束时间之前在所述多个采集线程上已完成对所有机组变量的数据采集,则可将当前采样间隔的结束时间提前为完成最后一个机组变量的数据采集的时间,并将该时间确定为下一采样间隔的起始时间。Specifically, if there is a timeout collection thread that has not completed the data collection of the unit variables in the multiple threads at the expected end time of the current sampling interval, the end time of the current sampling interval can be postponed to the time limit on the timeout collection thread. The time at which the data collection of the unit variables of the current sampling interval ends, and this time is determined as the start time of the next sampling interval; For data collection, the end time of the current sampling interval can be advanced to the time when the data collection of the last unit variable is completed, and this time can be determined as the start time of the next sampling interval.
此外,在本发明的示例性实施例中,在步骤S720中还可对执行数据采集的采样间隔的数量进行计数,并且在计数值等于或大于预设值时执行第一校正操作。这里,第一校正操作可包括:如果在当前采样间隔的期望结束时间之前在所述多个采集线程上已完成对所有机组变量的数据采集,则将当前采样间隔的结束时间校正为当前采样间隔的期望结束时间,并将该时间确定为下一采样间隔的起始时间并且使计数模块(未示出)重新开始计数;如果在当前采样间隔的期望结束时间之前在所述多个采集线程上未完成对所有机组变量的数据采集,则可继续计数。In addition, in an exemplary embodiment of the present invention, in step S720, the number of sampling intervals in which data collection is performed may also be counted, and the first correction operation is performed when the count value is equal to or greater than a preset value. Here, the first correction operation may include: if the data collection of all the unit variables has been completed on the plurality of collection threads before the expected end time of the current sampling interval, then correcting the end time of the current sampling interval to the current sampling interval the expected end time of the current sampling interval, and determine this time as the start time of the next sampling interval and cause the counting module (not shown) to restart counting; If the data collection of all unit variables is not completed, the counting can continue.
此外,在本发明的示例性实施例中,如果已执行了预定时间的数据采集,则还可执行第二校正操作。这里,第二校正操作可包括:对下一采样间隔的起始时间进行重设,而不管在当前采样间隔期间的采集状态如何。Furthermore, in an exemplary embodiment of the present invention, if data collection for a predetermined time has been performed, a second correction operation may also be performed. Here, the second correcting operation may include resetting the start time of the next sampling interval regardless of the acquisition state during the current sampling interval.
之后,在步骤S740,可在当前采样间隔结束时存储当前采样间隔期间在每个采集线程上所采集的机组变量的数据。Then, in step S740, the data of the unit variables collected on each collection thread during the current sampling interval may be stored at the end of the current sampling interval.
可选择地,尽管图7中没有示出,但在步骤S710之前,还可首先对从风力发电机组获取的机组变量的数据进行解析,并按照在步骤S710所分配的采集线程提供经过解析的机组变量的数据以在步骤S720进行数据采集。这里,机组变量的数据可被解析为具有预设数据类型、格式和结构,所述预设数据类型、格式和结构能够被多种协议解析。Optionally, although not shown in FIG. 7 , before step S710, the data of the unit variables obtained from the wind turbine may be parsed first, and the parsed unit may be provided according to the collection thread assigned in step S710 The variable data is collected in step S720. Here, the data of the unit variables can be parsed to have preset data types, formats and structures that can be parsed by various protocols.
以上已结合图3至图6详细描述了以上数据采集方法的各个步骤的更具体的实施,因此为了简明,在此将不再进行重复描述。The more specific implementation of each step of the above data acquisition method has been described in detail above with reference to FIGS. 3 to 6 , so for the sake of brevity, repeated descriptions will not be repeated here.
通过应用根据本方面的示例性实施例的风力发电机组数据采集系统、方法和装置,通过从风机主控制器直接采集数据,能够快速、准确、实时地获得风机的各种实时控制数据,并综合实时的风速、风向、桨距角、方位角、发电量、风机转速、风机功率等信息对风机的总体运行状况进行评估,并且还能够同时根据这些数据和信息为将来的风机运行状况进行预测,使得风机的运行、控制、规划更合理,有利于提高风机控制的实时性,并且还有效弥补了逻辑控制终端运算能力不足以及场级数据采集粒度不够控制管理过粗等问题。By applying the wind turbine data acquisition system, method and device according to the exemplary embodiments of this aspect, by directly acquiring data from the main controller of the wind turbine, various real-time control data of the wind turbine can be obtained quickly, accurately and in real time, and integrated The real-time wind speed, wind direction, pitch angle, azimuth angle, power generation, fan speed, fan power and other information can evaluate the overall operating status of the fan, and can also predict the future operating status of the fan based on these data and information at the same time. It makes the operation, control and planning of the fan more reasonable, which is conducive to improving the real-time performance of the fan control, and also effectively makes up for the insufficient computing power of the logic control terminal and the insufficient granularity of field-level data collection.
上述数据采集方法可通过记录在计算机可读存储介质上的计算机程序指令来实现,所述计算机程序指令在被处理器或其他类型的计算装置执行时实现该数据采集方法。所述存储介质还可单独包括程序指令、数据文件、数据结构等或数据文件、数据结构等与程序指令的组合。计算机可读存储介质的示例包括磁介质(例如,硬盘、软盘和磁带)、光介质(例如,CD ROM盘和DVD)、磁光介质(例如,光盘)以及专门配置为存储和执行程序指令的硬件装置(例如,只读存储器(ROM)、随机存取存储器(RAM)、闪存等)。程序指令的示例包括(例如,由编译器产生的)机器代码和包含可由计算机使用解释器执行的更高级代码的文件。描述的硬件装置可被配置用作一个或多个软件单元以执行上述操作和方法,反之亦然。此外,计算机可读存储介质可分布在通过网络连接的计算机系统中,并且计算机可读代码或程序指令可以以分布方式被存储和执行。The above data collection method can be implemented by computer program instructions recorded on a computer readable storage medium, the computer program instructions implementing the data collection method when executed by a processor or other type of computing device. The storage medium may also include program instructions, data files, data structures, etc. alone or a combination of data files, data structures, etc. and program instructions. Examples of computer-readable storage media include magnetic media (eg, hard disks, floppy disks, and magnetic tapes), optical media (eg, CD ROM disks and DVDs), magneto-optical media (eg, optical disks), and memory media specially configured to store and execute program instructions. A hardware device (eg, read only memory (ROM), random access memory (RAM), flash memory, etc.). Examples of program instructions include machine code (eg, produced by a compiler) and files containing higher-level code that can be executed by a computer using an interpreter. The described hardware devices may be configured to function as one or more software units to perform the operations and methods described above, and vice versa. Furthermore, the computer-readable storage medium can be distributed among computer systems connected through a network, and the computer-readable code or program instructions can be stored and executed in a distributed fashion.
尽管已经参照其示例性实施例具体显示和描述了本发明,但是本领域的技术人员应该理解,在不脱离权利要求所限定的本发明的精神和范围的情况下,可以对其进行形式和细节上的各种改变。Although the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it will be understood by those skilled in the art that form and detail may be made therein without departing from the spirit and scope of the invention as defined in the claims various changes on.
Claims (13)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911352644.6A CN113027678B (en) | 2019-12-25 | 2019-12-25 | Wind driven generator group data acquisition system, method and device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911352644.6A CN113027678B (en) | 2019-12-25 | 2019-12-25 | Wind driven generator group data acquisition system, method and device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113027678A CN113027678A (en) | 2021-06-25 |
CN113027678B true CN113027678B (en) | 2022-07-12 |
Family
ID=76452283
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911352644.6A Active CN113027678B (en) | 2019-12-25 | 2019-12-25 | Wind driven generator group data acquisition system, method and device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113027678B (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB9622410D0 (en) * | 1996-01-31 | 1997-01-08 | Mitsubishi Electric Corp | Data processing apparatus |
WO2014002176A1 (en) * | 2012-06-26 | 2014-01-03 | 東芝三菱電機産業システム株式会社 | Data management device, data management method, and data management program |
CN105134493A (en) * | 2015-10-20 | 2015-12-09 | 重庆科凯前卫风电设备有限责任公司 | Information acquisition and storage method based on wind generator set control system |
CN105677791A (en) * | 2015-12-31 | 2016-06-15 | 新疆金风科技股份有限公司 | Method and system used for analyzing operating data of wind generating set |
CN108105031A (en) * | 2016-11-25 | 2018-06-01 | 北京金风科创风电设备有限公司 | Wind generating set control system and method |
CN108131247A (en) * | 2017-12-20 | 2018-06-08 | 北京金风科创风电设备有限公司 | Data processing method and device for wind generating set |
CN108830391A (en) * | 2018-06-20 | 2018-11-16 | 北京金风慧能技术有限公司 | Wind power generating set operation management system, method and computer equipment |
-
2019
- 2019-12-25 CN CN201911352644.6A patent/CN113027678B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB9622410D0 (en) * | 1996-01-31 | 1997-01-08 | Mitsubishi Electric Corp | Data processing apparatus |
WO2014002176A1 (en) * | 2012-06-26 | 2014-01-03 | 東芝三菱電機産業システム株式会社 | Data management device, data management method, and data management program |
CN105134493A (en) * | 2015-10-20 | 2015-12-09 | 重庆科凯前卫风电设备有限责任公司 | Information acquisition and storage method based on wind generator set control system |
CN105677791A (en) * | 2015-12-31 | 2016-06-15 | 新疆金风科技股份有限公司 | Method and system used for analyzing operating data of wind generating set |
CN108105031A (en) * | 2016-11-25 | 2018-06-01 | 北京金风科创风电设备有限公司 | Wind generating set control system and method |
CN108131247A (en) * | 2017-12-20 | 2018-06-08 | 北京金风科创风电设备有限公司 | Data processing method and device for wind generating set |
CN108830391A (en) * | 2018-06-20 | 2018-11-16 | 北京金风慧能技术有限公司 | Wind power generating set operation management system, method and computer equipment |
Also Published As
Publication number | Publication date |
---|---|
CN113027678A (en) | 2021-06-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102426544A (en) | Task allocation method and system | |
CN108874623A (en) | Distributed type assemblies method for monitoring performance, device, equipment, system and storage medium | |
WO2023086017A2 (en) | Method and apparatus for determining state of phovoltaic power station, device, and readable storage medium | |
CN113027678B (en) | Wind driven generator group data acquisition system, method and device | |
CN111181199B (en) | Wind power plant power distribution method and system for coordinating frequency modulation capability of wind turbine generator, computer equipment and storage medium | |
CN113357083A (en) | Intelligent control system and method for wind generating set | |
CN108736469A (en) | The analysis method of wind power plant operation data | |
CN108710565A (en) | A kind of method for testing pressure, apparatus and system | |
CN102752374B (en) | System and method for storing and accessing power utilization efficacy data | |
CN111914000B (en) | Server power capping method and system based on power consumption prediction model | |
CN202906977U (en) | A storage access system of electric energy using efficiency data | |
CN110334900B (en) | Data processing method | |
CN107292479B (en) | Self-adaptive calculation method for energy loss of wind power plant | |
CN118350526A (en) | A method and device for evaluating distributed photovoltaic feedback information | |
CN109144693B (en) | Power self-adaptive task scheduling method and system | |
CN117767363A (en) | Local tight coupling distributed photovoltaic energy storage capacity configuration method, storage medium and equipment | |
AU2020200488A1 (en) | Operation plan creating apparatus, operation plan creating method, and program | |
CN110500232A (en) | control method and device of wind generating set | |
CN115994112A (en) | Energy storage coordination control method, controller, equipment and medium | |
CN106130186A (en) | Small-sized photovoltaic power station data monitoring system | |
CN114389365B (en) | A new energy station frequency high-speed response control method, device and terminal equipment | |
KR102242329B1 (en) | Multi Wind Farm Controller Operation Method and System | |
CN108223271A (en) | A kind of method of adjustment and device of fan blade setting angle | |
CN103049522A (en) | Automatic substitution method for multi-data sources of electric quantity | |
CN113964862A (en) | New energy power station perception control system and method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |