CN113018432B - Preparation method of immune medicine - Google Patents
Preparation method of immune medicine Download PDFInfo
- Publication number
- CN113018432B CN113018432B CN202110263132.3A CN202110263132A CN113018432B CN 113018432 B CN113018432 B CN 113018432B CN 202110263132 A CN202110263132 A CN 202110263132A CN 113018432 B CN113018432 B CN 113018432B
- Authority
- CN
- China
- Prior art keywords
- nucleic acid
- protein
- dna
- aptamer
- covalently linked
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000003814 drug Substances 0.000 title claims abstract description 43
- 238000002360 preparation method Methods 0.000 title claims abstract description 22
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 55
- 102000004169 proteins and genes Human genes 0.000 claims abstract description 54
- 229940079593 drug Drugs 0.000 claims abstract description 42
- 150000007523 nucleic acids Chemical group 0.000 claims abstract description 39
- 102000014914 Carrier Proteins Human genes 0.000 claims abstract description 31
- 108091008324 binding proteins Proteins 0.000 claims abstract description 31
- 230000009870 specific binding Effects 0.000 claims abstract description 30
- 108020001507 fusion proteins Proteins 0.000 claims abstract description 21
- 102000037865 fusion proteins Human genes 0.000 claims abstract description 21
- 108020004414 DNA Proteins 0.000 claims description 81
- 108091008104 nucleic acid aptamers Proteins 0.000 claims description 61
- 210000004027 cell Anatomy 0.000 claims description 39
- 239000002105 nanoparticle Substances 0.000 claims description 35
- 108020004707 nucleic acids Proteins 0.000 claims description 18
- 102000039446 nucleic acids Human genes 0.000 claims description 18
- 108020003175 receptors Proteins 0.000 claims description 18
- 238000000034 method Methods 0.000 claims description 16
- 210000002865 immune cell Anatomy 0.000 claims description 9
- 238000000338 in vitro Methods 0.000 claims description 8
- 108091028043 Nucleic acid sequence Proteins 0.000 claims description 6
- 101001133056 Homo sapiens Mucin-1 Proteins 0.000 claims description 5
- 102100034256 Mucin-1 Human genes 0.000 claims description 5
- 239000002773 nucleotide Substances 0.000 claims description 5
- 125000003729 nucleotide group Chemical group 0.000 claims description 5
- 230000008569 process Effects 0.000 claims description 5
- 238000006243 chemical reaction Methods 0.000 claims description 4
- 239000013612 plasmid Substances 0.000 claims description 4
- 238000006116 polymerization reaction Methods 0.000 claims description 4
- 238000011534 incubation Methods 0.000 claims description 3
- 238000001338 self-assembly Methods 0.000 claims description 3
- 241000588724 Escherichia coli Species 0.000 claims description 2
- 239000003446 ligand Substances 0.000 claims 1
- 206010028980 Neoplasm Diseases 0.000 abstract description 34
- 108091023037 Aptamer Proteins 0.000 abstract description 28
- 210000004881 tumor cell Anatomy 0.000 abstract description 23
- 238000009169 immunotherapy Methods 0.000 abstract description 21
- 230000027455 binding Effects 0.000 abstract description 6
- 230000015572 biosynthetic process Effects 0.000 abstract description 4
- 238000003786 synthesis reaction Methods 0.000 abstract description 4
- 238000010353 genetic engineering Methods 0.000 abstract description 3
- 238000004519 manufacturing process Methods 0.000 abstract description 3
- 230000005859 cell recognition Effects 0.000 abstract description 2
- 108700041430 link Proteins 0.000 abstract 2
- 230000007547 defect Effects 0.000 abstract 1
- 210000001744 T-lymphocyte Anatomy 0.000 description 25
- 239000002086 nanomaterial Substances 0.000 description 20
- 230000000694 effects Effects 0.000 description 16
- 230000002147 killing effect Effects 0.000 description 10
- 238000011580 nude mouse model Methods 0.000 description 7
- 208000024893 Acute lymphoblastic leukemia Diseases 0.000 description 6
- 208000014697 Acute lymphocytic leukaemia Diseases 0.000 description 6
- 241000699660 Mus musculus Species 0.000 description 6
- 208000006664 Precursor Cell Lymphoblastic Leukemia-Lymphoma Diseases 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- IZTQOLKUZKXIRV-YRVFCXMDSA-N sincalide Chemical compound C([C@@H](C(=O)N[C@@H](CCSC)C(=O)NCC(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC=1C=CC=CC=1)C(N)=O)NC(=O)[C@@H](N)CC(O)=O)C1=CC=C(OS(O)(=O)=O)C=C1 IZTQOLKUZKXIRV-YRVFCXMDSA-N 0.000 description 6
- 238000002474 experimental method Methods 0.000 description 5
- 238000001727 in vivo Methods 0.000 description 5
- 101800005151 Cholecystokinin-8 Proteins 0.000 description 4
- 102400000888 Cholecystokinin-8 Human genes 0.000 description 4
- 230000037396 body weight Effects 0.000 description 4
- 230000001404 mediated effect Effects 0.000 description 4
- 210000003819 peripheral blood mononuclear cell Anatomy 0.000 description 4
- 241000699666 Mus <mouse, genus> Species 0.000 description 3
- 201000011510 cancer Diseases 0.000 description 3
- 230000001413 cellular effect Effects 0.000 description 3
- 230000014509 gene expression Effects 0.000 description 3
- 239000003999 initiator Substances 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 230000008685 targeting Effects 0.000 description 3
- 230000005909 tumor killing Effects 0.000 description 3
- 206010006187 Breast cancer Diseases 0.000 description 2
- 208000026310 Breast neoplasm Diseases 0.000 description 2
- 108010087230 Sincalide Proteins 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 241000700605 Viruses Species 0.000 description 2
- 239000000427 antigen Substances 0.000 description 2
- 108091007433 antigens Proteins 0.000 description 2
- 102000036639 antigens Human genes 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 238000010609 cell counting kit-8 assay Methods 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 239000000412 dendrimer Substances 0.000 description 2
- 229920000736 dendritic polymer Polymers 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000001024 immunotherapeutic effect Effects 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 238000007920 subcutaneous administration Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 230000001225 therapeutic effect Effects 0.000 description 2
- 230000004614 tumor growth Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 241000272525 Anas platyrhynchos Species 0.000 description 1
- 206010008342 Cervix carcinoma Diseases 0.000 description 1
- 102000010970 Connexin Human genes 0.000 description 1
- 108050001175 Connexin Proteins 0.000 description 1
- 241001198387 Escherichia coli BL21(DE3) Species 0.000 description 1
- 206010027476 Metastases Diseases 0.000 description 1
- 206010029260 Neuroblastoma Diseases 0.000 description 1
- 108091034117 Oligonucleotide Proteins 0.000 description 1
- 108091008874 T cell receptors Proteins 0.000 description 1
- 102000016266 T-Cell Antigen Receptors Human genes 0.000 description 1
- 208000006105 Uterine Cervical Neoplasms Diseases 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000002619 cancer immunotherapy Methods 0.000 description 1
- 230000022534 cell killing Effects 0.000 description 1
- 201000010881 cervical cancer Diseases 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000002512 chemotherapy Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000003013 cytotoxicity Effects 0.000 description 1
- 231100000135 cytotoxicity Toxicity 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000003596 drug target Substances 0.000 description 1
- 239000012636 effector Substances 0.000 description 1
- 230000017188 evasion or tolerance of host immune response Effects 0.000 description 1
- 238000009396 hybridization Methods 0.000 description 1
- 210000000987 immune system Anatomy 0.000 description 1
- 230000036039 immunity Effects 0.000 description 1
- 230000006054 immunological memory Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- BPHPUYQFMNQIOC-NXRLNHOXSA-N isopropyl beta-D-thiogalactopyranoside Chemical compound CC(C)S[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O BPHPUYQFMNQIOC-NXRLNHOXSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 201000007270 liver cancer Diseases 0.000 description 1
- 210000005229 liver cell Anatomy 0.000 description 1
- 208000014018 liver neoplasm Diseases 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 230000009401 metastasis Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000001668 nucleic acid synthesis Methods 0.000 description 1
- 229920001184 polypeptide Polymers 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 230000009465 prokaryotic expression Effects 0.000 description 1
- 230000018883 protein targeting Effects 0.000 description 1
- 238000001959 radiotherapy Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000002626 targeted therapy Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000004565 tumor cell growth Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/395—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
- A61K39/44—Antibodies bound to carriers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/54—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
- A61K47/549—Sugars, nucleosides, nucleotides or nucleic acids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/62—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
- A61K47/65—Peptidic linkers, binders or spacers, e.g. peptidic enzyme-labile linkers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
- A61P35/02—Antineoplastic agents specific for leukemia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/80—Vaccine for a specifically defined cancer
- A61K2039/804—Blood cells [leukemia, lymphoma]
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Engineering & Computer Science (AREA)
- Epidemiology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Hematology (AREA)
- Oncology (AREA)
- Immunology (AREA)
- Microbiology (AREA)
- Mycology (AREA)
- Biochemistry (AREA)
- Molecular Biology (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
Description
技术领域technical field
本发明涉及肿瘤免疫治疗药物技术领域,具体提供了一种介导T细胞靶向杀伤肿瘤细胞的新型免疫治疗药物、其制备方法及其在肿瘤免疫治疗中的应用。The invention relates to the technical field of tumor immunotherapy drugs, and specifically provides a novel immunotherapy drug that mediates T cells to target and kill tumor cells, its preparation method and its application in tumor immunotherapy.
背景技术Background technique
癌症免疫治疗能激活患者的免疫系统,以防止癌症的免疫逃避,在长期减少癌症转移和复发方面有很大的潜力。与传统的化疗或放疗不同,肿瘤免疫治疗在肿瘤治疗中具有更高的选择性和更低的毒性,同时通过免疫记忆提供了长期的免疫。最近研究表明,T细胞可以通过结合肿瘤特异性抗原的双特异性分子来重新定向识别和消除肿瘤。其中由于双特异性T细胞接合(Bispecific T-cell engager,BiTE)抗体介导杀伤时能够绕过MHC限制选择性杀死肿瘤细胞等优势引起了人们的特别关注。BiTE本质为一个多肽链,包含两个不同抗体的单链(sc)Fv结构域,其中一个单链抗体结构域用来识别任何T细胞上表达的CD3e,另一个单链抗体用来结合肿瘤细胞表达的肿瘤相关抗原。尽管它们取得了显著的成功,但由于BiTE属于蛋白类药物,用于治疗不同肿瘤细胞的BiTE必须依靠现有的DNA序列进行基因工程改造,该过程不仅耗时耗力且其稳定性和活性无法得到保证。同时无法快速根据病人实际情况实现定制化医疗。此外,体内是多细胞环境,肿瘤细胞与正常细胞表面分子类型相同,仅有表达量的差异,目前由于BiTE结构组成固定,致使其免疫治疗过程中会杀伤正常细胞,存在一定的副作用。从这个角度来看,核酸适配体(aptamer)可以解决现有BiTE存在的问题。适配体被称为“化学抗体”,因其体积小,易于制备,且具有良好的靶向性,因此被认为是肿瘤靶向治疗的理想选择。以此扩大癌症治疗范围,加快药物生成研发过程。另外核酸适配体还能够依靠碱基互补配对原则与其他DNA在试管中快速组装成DNA纳米结构。DNA纳米结构因其可编程性、易修饰性和高生物相容性广泛应用于生物医学领域。且其不同结构能结合不同数目的核酸适配体,从而能提高肿瘤识别能力,减少免疫治疗副作用。Cancer immunotherapy, which activates the patient's immune system to prevent immune evasion by cancer, has great potential to reduce cancer metastasis and recurrence in the long-term. Unlike traditional chemotherapy or radiotherapy, tumor immunotherapy has higher selectivity and lower toxicity in tumor treatment, while providing long-term immunity through immune memory. Recent studies have shown that T cells can be redirected to recognize and eliminate tumors through bispecific molecules that bind tumor-specific antigens. Among them, due to the advantages of Bispecific T-cell engager (BiTE) antibody-mediated killing, it can bypass MHC restrictions and selectively kill tumor cells, which has attracted special attention. BiTE is essentially a polypeptide chain containing single-chain (sc) Fv domains of two different antibodies, one of which is used to recognize CD3e expressed on any T cell, and the other is used to bind tumor cells expressed tumor-associated antigens. Although they have achieved remarkable success, since BiTEs belong to protein drugs, BiTEs used to treat different tumor cells must rely on existing DNA sequences for genetic engineering, which is time-consuming and labor-intensive and its stability and activity cannot be achieved. Guaranteed. At the same time, it is impossible to quickly realize customized medical treatment according to the actual situation of the patient. In addition, the body is a multicellular environment, and the surface molecules of tumor cells and normal cells are the same, only the expression level is different. At present, due to the fixed structure and composition of BiTE, it will kill normal cells during immunotherapy, and there are certain side effects. From this point of view, nucleic acid aptamers (aptamers) can solve the existing problems of BiTE. Aptamers are called "chemical antibodies", because of their small size, easy preparation, and good targeting, they are considered ideal for tumor-targeted therapy. In this way, the scope of cancer treatment can be expanded and the drug production and development process can be accelerated. In addition, nucleic acid aptamers can also rely on the principle of complementary base pairing to quickly assemble DNA nanostructures with other DNA in test tubes. DNA nanostructures are widely used in biomedicine because of their programmability, easy modification, and high biocompatibility. And its different structures can be combined with different numbers of nucleic acid aptamers, thereby improving the ability of tumor recognition and reducing the side effects of immunotherapy.
因此本领域迫切需要开发出一种利用核酸识别肿瘤细胞表面分子的免疫药物及其制备方法,用于解决现有免疫疗法研发费时费力,治疗对象有限且有副作用的问题。Therefore, there is an urgent need in this field to develop an immune drug that uses nucleic acid to recognize tumor cell surface molecules and its preparation method to solve the problems of time-consuming and labor-intensive research and development of existing immunotherapy, limited therapeutic objects and side effects.
发明内容Contents of the invention
本发明中,用核酸适配体替代目前BiTE中一个抗体结构域用于识别肿瘤细胞表面分子,我们研发得到的抗体-核酸嵌合体作为一种新型双特异性药物能够解决现有技术中的问题。In the present invention, a nucleic acid aptamer is used to replace an antibody domain in the current BiTE to recognize tumor cell surface molecules. The antibody-nucleic acid chimera developed by us can solve the problems in the prior art as a new type of bispecific drug .
因此,本发明首先提供一种免疫药物,所述免疫药物为包含特异性结合蛋白(11)和核酸适配体(12)的双特异性免疫药物(1),且特异性结合蛋白(11)和核酸适配体(12) 之间使用直接或间接的方式连接,所述特异性结合蛋白(11)本身为蛋白质结构,所述核酸适配体(12)本身为核酸结构,所述特异性结合蛋白(11)用于与免疫细胞受体或靶细胞受体特异性结合,相应地,所述核酸适配体(12)用于与靶细胞受体或免疫细胞受体特异性结合。Therefore, the present invention firstly provides an immune drug, which is a bispecific immune drug (1) comprising a specific binding protein (11) and a nucleic acid aptamer (12), and the specific binding protein (11) Connect with the nucleic acid aptamer (12) directly or indirectly, the specific binding protein (11) itself is a protein structure, the nucleic acid aptamer (12) itself is a nucleic acid structure, the specific The binding protein (11) is used for specifically binding to immune cell receptors or target cell receptors, and correspondingly, the nucleic acid aptamer (12) is used for specifically binding to target cell receptors or immune cell receptors.
在一种具体的实施方式中,所述特异性结合蛋白(11)和核酸适配体(12)之间连接有共价连接蛋白(13)和共价连接DNA(14),所述共价连接蛋白(13)与特异性结合蛋白(11)连接,所述共价连接DNA(14)直接或间接与核酸适配体(12)连接,且共价连接蛋白(13)和共价连接DNA(14)之间共价结合。In a specific embodiment, a covalently linked protein (13) and a covalently linked DNA (14) are linked between the specific binding protein (11) and the nucleic acid aptamer (12), and the covalently linked The connexin (13) is connected to the specific binding protein (11), the covalently connected DNA (14) is directly or indirectly connected to the nucleic acid aptamer (12), and the covalently connected protein (13) and the covalently connected DNA (14) are covalently bonded.
在一种具体的实施方式中,所述共价连接DNA(14)与核酸适配体(12)之间还连接有连接结构,所述连接结构同样由核苷酸构成。In a specific embodiment, a connecting structure is also connected between the covalently linked DNA (14) and the nucleic acid aptamer (12), and the connecting structure is also composed of nucleotides.
在一种具体的实施方式中,所述共价连接蛋白(13)为HUH家族蛋白,优选DCV蛋白。In a specific embodiment, the covalent linking protein (13) is a HUH family protein, preferably a DCV protein.
在一种具体的实施方式中,所述免疫药物中含有一个核酸适配体(12)或多个相同或不同的核酸适配体(12),优选所述免疫药物中含有3~100个相同或不同的核酸适配体。In a specific embodiment, the immune drug contains one nucleic acid aptamer (12) or multiple identical or different nucleic acid aptamers (12), preferably the immune drug contains 3 to 100 identical or different nucleic acid aptamers.
在一种具体的实施方式中,所述特异性结合蛋白(11)为αCD3。In a specific embodiment, the specific binding protein (11) is αCD3.
在一种具体的实施方式中,所述核酸适配体(12)为sgc8、TE02、SYL3C、MUC1 以及C-MET中的一种或多种。In a specific embodiment, the nucleic acid aptamer (12) is one or more of sgc8, TE02, SYL3C, MUC1 and C-MET.
在一种具体的实施方式中,所述共价连接DNA(14)的序列为aagtattaccagaaa。In a specific embodiment, the sequence of the covalently linked DNA (14) is aagtattaccagaaa.
本发明还提供一种如上所述免疫药物在肿瘤免疫治疗中的应用。The present invention also provides an application of the above immunomedicine in tumor immunotherapy.
在一种具体的实施方式中,所述免疫药物在体内靶向抑制肿瘤细胞生长。In a specific embodiment, the immune drug targets and inhibits the growth of tumor cells in vivo.
本发明还提供一种免疫药物的制备方法,所述免疫药物为包含特异性结合蛋白(11) 和核酸适配体(12)的双特异性免疫药物(1),且特异性结合蛋白(11)和核酸适配体(12) 之间间接连接,所述特异性结合蛋白(11)本身为蛋白质结构,所述核酸适配体(12)本身为核酸结构,所述特异性结合蛋白(11)用于与免疫细胞受体或靶细胞受体特异性结合,相应地,所述核酸适配体(12)用于与靶细胞受体或免疫细胞受体特异性结合;所述特异性结合蛋白(11)和核酸适配体(12)之间连接有共价连接蛋白(13)和共价连接DNA (14),所述共价连接蛋白(13)与特异性结合蛋白(11)直接或间接连接,所述共价连接 DNA(14)直接或间接与核酸适配体(12)连接,且共价连接蛋白(13)和共价连接DNA (14)之间共价结合;所述制备方法包括如下步骤,The present invention also provides a method for preparing an immunomedicine, the immunomedicine is a bispecific immunomedicine (1) comprising a specific binding protein (11) and a nucleic acid aptamer (12), and the specific binding protein (11 ) and the nucleic acid aptamer (12), the specific binding protein (11) itself is a protein structure, the nucleic acid aptamer (12) itself is a nucleic acid structure, and the specific binding protein (11) ) is used to specifically bind to immune cell receptors or target cell receptors, and correspondingly, the nucleic acid aptamer (12) is used to specifically bind to target cell receptors or immune cell receptors; the specific binding A covalently linked protein (13) and a covalently linked DNA (14) are connected between the protein (11) and the nucleic acid aptamer (12), and the covalently linked protein (13) is directly connected to the specific binding protein (11). or indirectly connected, the covalently linked DNA (14) is directly or indirectly connected to the nucleic acid aptamer (12), and covalently binds between the covalently linked protein (13) and the covalently linked DNA (14); the The preparation method comprises the following steps,
步骤A:制备得到含有所述特异性结合蛋白(11)和共价连接蛋白(13)的融合蛋白;Step A: preparing a fusion protein containing the specific binding protein (11) and a covalently linked protein (13);
步骤B:制备得到含有所述核酸适配体(12)和共价连接DNA(14)的核酸结构;Step B: preparing a nucleic acid structure containing the nucleic acid aptamer (12) and covalently linked DNA (14);
步骤A和步骤B可以同时进行或者任意先后;Step A and step B can be carried out simultaneously or arbitrarily sequentially;
步骤C:将步骤A制备得到的融合蛋白和步骤B得到的核酸结构共同孵育,使得其中的共价连接蛋白(13)和共价连接DNA(14)共价结合,得到所述免疫药物。Step C: co-incubating the fusion protein prepared in step A and the nucleic acid structure obtained in step B, so that the covalently linked protein (13) and the covalently linked DNA (14) are covalently combined to obtain the immune drug.
在一种具体的实施方式中,首先全基因合成所述融合蛋白的核酸序列并构建重组质粒,再通过大肠杆菌原核表达有活性的融合蛋白。In a specific embodiment, firstly, the nucleic acid sequence of the fusion protein is synthesized completely and a recombinant plasmid is constructed, and then the active fusion protein is expressed by prokaryotic Escherichia coli.
在一种具体的实施方式中,步骤A后,还包括纯化所得的融合蛋白。In a specific embodiment, after step A, purification of the obtained fusion protein is also included.
在一种具体的实施方式中,步骤B中,所述核酸结构还包括用于连接核酸适配体(12) 和共价连接DNA(14)的连接结构,所述连接结构同样由核苷酸构成。In a specific embodiment, in step B, the nucleic acid structure also includes a linking structure for linking the nucleic acid aptamer (12) and covalently linking the DNA (14), and the linking structure is also composed of nucleotides constitute.
在一种具体的实施方式中,所述核酸结构包括单链适配体、Y型DNA纳米粒子和树枝状DNA纳米粒子中的任意一种,其中所述单链适配体中包含1个核酸适配体(12),所述Y型DNA纳米粒子中包含2个核酸适配体(12),所述树枝状DNA纳米粒子中包含3~100 个核酸适配体(12),所述Y型DNA纳米粒子和所述树枝状DNA纳米粒子中包含的核酸适配体(12)均相同或不同。In a specific embodiment, the nucleic acid structure includes any one of single-stranded aptamers, Y-shaped DNA nanoparticles and dendritic DNA nanoparticles, wherein the single-stranded aptamers contain one nucleic acid Aptamers (12), the Y-shaped DNA nanoparticles contain 2 nucleic acid aptamers (12), the dendritic DNA nanoparticles contain 3 to 100 nucleic acid aptamers (12), the Y The nucleic acid aptamers (12) contained in the type DNA nanoparticles and the dendritic DNA nanoparticles are the same or different.
在一种具体的实施方式中,通过无酶自组装过程制备Y型DNA纳米粒子,通过聚合链式反应体外合成所述树枝状DNA纳米粒子。In a specific embodiment, Y-shaped DNA nanoparticles are prepared through an enzyme-free self-assembly process, and the dendritic DNA nanoparticles are synthesized in vitro by polymerization chain reaction.
在一种具体的实施方式中,所述孵育方法为将步骤A制备得到的融合蛋白和步骤B得到的核酸结构混合后在36~38℃的条件下孵育10分钟以上得到免疫药物,优选再将得到的免疫药物在2~8℃的条件下保存备用。In a specific embodiment, the incubation method is to mix the fusion protein prepared in step A and the nucleic acid structure obtained in step B, and then incubate at 36-38°C for more than 10 minutes to obtain an immunomedicine. The obtained immunomedicine is stored under the condition of 2-8°C for future use.
在一种具体的实施方式中,所述共价连接蛋白(13)为HUH家族蛋白,优选DCV蛋白,所述共价连接DNA(14)的序列为aagtattaccagaaa。In a specific embodiment, the covalently linked protein (13) is a HUH family protein, preferably a DCV protein, and the sequence of the covalently linked DNA (14) is aagtattaccagaaa.
在一种具体的实施方式中,所述特异性结合蛋白(11)为αCD3。In a specific embodiment, the specific binding protein (11) is αCD3.
在一种具体的实施方式中,所述核酸适配体(12)为sgc8、TE02、SYL3C、MUC1 以及C-MET中的一种或多种。In a specific embodiment, the nucleic acid aptamer (12) is one or more of sgc8, TE02, SYL3C, MUC1 and C-MET.
本发明至少具有如下所述的有益效果:The present invention has at least the following beneficial effects:
1)本发明利用抗体单链-DCV融合蛋白与核酸适配体共价结合制备得到双特异性抗体 -核酸嵌合体,拓宽了免疫治疗药物的类型,由目前的双特异性抗体演化为DNA参与的嵌合形式。1) The present invention utilizes antibody single-chain-DCV fusion protein and nucleic acid aptamer to covalently combine to prepare bispecific antibody-nucleic acid chimera, which broadens the types of immunotherapeutic drugs, and evolves from current bispecific antibody to DNA participating chimeric form.
2)本发明利用抗体-核酸嵌合体介导T细胞杀伤肿瘤细胞,该嵌合体的生成过程克服了传统双特异性抗体必须经过基因工程的缺点,缩短了免疫药物的合成制备时间,降低了生产成本。2) The present invention uses antibody-nucleic acid chimeras to mediate T cells to kill tumor cells. The generation process of the chimeras overcomes the shortcomings of traditional bispecific antibodies that must undergo genetic engineering, shortens the synthesis and preparation time of immune drugs, and reduces the production time. cost.
3)本发明以核酸适配体作为靶细胞识别元件,依靠核酸适配体靶标多且能程序化组装为纳米结构的优势,该嵌合体肿瘤识别类型多样,提升了与肿瘤细胞结合的亲和力和特异性,扩大了不同肿瘤特异性识别的范围。3) The present invention uses nucleic acid aptamers as target cell recognition elements, relying on the advantages of many nucleic acid aptamer targets and the ability to programmatically assemble into nanostructures, the chimera has various types of tumor recognition, which improves the affinity and ability to bind to tumor cells. Specificity, expanding the range of specific recognition of different tumors.
4)本发明基于碱基互补配对原则快速组装成特定结构和特定价态的DNA纳米结构。不同的DNA纳米结构与抗体单链形成的嵌合体能够实现不同的治疗效果。有成为定制化免疫试剂的可能。4) The present invention rapidly assembles a DNA nanostructure with a specific structure and a specific valence state based on the principle of complementary base pairing. Chimeras formed by different DNA nanostructures and antibody single chains can achieve different therapeutic effects. It is possible to become a customized immune reagent.
附图说明Description of drawings
图1为本发明所述免疫药物与T细胞(即免疫细胞)和靶细胞(即肿瘤细胞)的结合示意图。Fig. 1 is a schematic diagram of the combination of the immune drug of the present invention with T cells (ie, immune cells) and target cells (ie, tumor cells).
图2为细胞水平检测抗体-sgc8适配体嵌合体对肿瘤杀伤的效果。Fig. 2 is the detection of the effect of the antibody-sgc8 aptamer chimera on tumor killing at the cell level.
图3~图4均为验证抗体-核酸嵌合体在免疫治疗领域应用的普适性。Figures 3 to 4 all verify the universality of the application of antibody-nucleic acid chimeras in the field of immunotherapy.
图5~图8为抗体-核酸嵌合体体内靶向杀伤肿瘤细胞示意图。其中,图5和图6为连续测量肿瘤大小统计结果,图7和图8为连续测量小鼠体重统计结果。5 to 8 are schematic diagrams of the antibody-nucleic acid chimera targeting and killing tumor cells in vivo. Among them, Fig. 5 and Fig. 6 are the statistical results of continuous measurement of tumor size, and Fig. 7 and Fig. 8 are the statistical results of continuous measurement of mouse body weight.
图1中:免疫药物1、特异性结合蛋白11、核酸适配体12、共价连接蛋白13、共价连接DNA14、T细胞2、T细胞受体21、靶细胞3、靶细胞受体31。In Figure 1:
通过以下详细说明结合附图可以进一步理解本发明的特点和优点。所提供的实施例仅是对本发明方法的说明,而不以任何方式限制本发明揭示的其余内容。The features and advantages of the present invention can be further understood through the following detailed description in conjunction with the accompanying drawings. The examples provided are only illustrative of the method of the present invention and do not limit the rest of the present disclosure in any way.
具体实施方式detailed description
为了便于理解本发明,下面将对本发明进行更全面的描述,并给出了本发明的较佳实施例。但是,本发明可以以许多不同组合方式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容的理解更加透彻全面。In order to facilitate the understanding of the present invention, the following will describe the present invention more fully and give preferred embodiments of the present invention. However, the present invention can be implemented in many different combinations and is not limited to the embodiments described herein. On the contrary, these embodiments are provided to make the understanding of the disclosure of the present invention more thorough and comprehensive.
本发明为肿瘤免疫治疗提供了一种新型免疫药物,该药物包括两个模块:蛋白模块和核酸模块,两个模块可以共价连接形成嵌合体,该嵌合体能够介导T细胞与靶细胞特异性识别,在体内外靶向抑制肿瘤细胞生长。所述抗体-核酸嵌合体具有如图1所述结构。The present invention provides a novel immune drug for tumor immunotherapy. The drug includes two modules: a protein module and a nucleic acid module. The two modules can be covalently connected to form a chimera, and the chimera can mediate the specificity between T cells and target cells. Sex recognition, targeted inhibition of tumor cell growth in vitro and in vivo. The antibody-nucleic acid chimera has the structure as shown in FIG. 1 .
本发明另一个目的是提供一种上述抗体-核酸嵌合体的制备方法,包括以下步骤:抗体以DCV-αCD3融合蛋白为例说明;Another object of the present invention is to provide a method for preparing the above-mentioned antibody-nucleic acid chimera, which includes the following steps: the antibody is illustrated by taking DCV-αCD3 fusion protein as an example;
一)抗体的制备;1) Preparation of antibodies;
1)全基因合成含有抗体序列的重组质粒,如pET28a-DCV-αCD3。1) Whole gene synthesis of recombinant plasmids containing antibody sequences, such as pET28a-DCV-αCD3.
2)原核表达有活性的DCV-αCD3融合蛋白(即由特异性结合蛋白11和共价连接蛋白13连接形成的融合蛋白)。2) Prokaryotic expression of an active DCV-αCD3 fusion protein (that is, a fusion protein formed by linking the specific
优选地,所述DCV-αCD3融合蛋白表达纯化方法如下:pET28a-DCV-αCD3重组质粒热激转化大肠杆菌BL21(DE3)感受态,1mM IPTG诱导其表达目的蛋白,收集菌液,超声破碎后,NI柱纯化6*His-DCV-αCD3融合蛋白。Preferably, the expression and purification method of the DCV-αCD3 fusion protein is as follows: pET28a-DCV-αCD3 recombinant plasmid is heat-shocked to transform Escherichia coli BL21 (DE3) competent, 1mM IPTG induces its expression of the target protein, collects the bacterial liquid, and after ultrasonic disruption, 6*His-DCV-αCD3 fusion protein was purified by NI column.
二)核酸的制备;2) Preparation of nucleic acid;
核酸包括三种形式:单链适配体,Y型DNA纳米粒子和树枝状DNA纳米粒子。Nucleic acids include three forms: single-stranded aptamers, Y-shaped DNA nanoparticles and dendritic DNA nanoparticles.
可选地,本发明所述单链适配体以sgc8适配体为例说明,其序列如下:Optionally, the single-chain aptamer of the present invention is illustrated by taking the sgc8 aptamer as an example, and its sequence is as follows:
aagtattaccagaaaaaaaaaaaaaaaATCTAACTGCTGCGCCGCCGGGAAAATACTGTACGGTTAGA。其中所述aagtattaccagaaaaaaaaaaaaaaa为本发明中的共价连接DNA(14)。aagtattaccagaaaaaaaaaaaaaaaATCTAACTGCTGCGCCGCCGGGAAAATACTGTACGGTTAGA. Wherein said aagtattaccagaaaaaaaaaaaaaaa is the covalently linked DNA in the present invention (14).
所述Y型DNA纳米粒子其连接的核酸适配体(aptamer)数目为2,DNA纳米粒子可以相同或不同。本发明举例所述Y型DNA纳米粒子是用三条核酸链组装而成,其序列如下:The number of nucleic acid aptamers (aptamers) connected to the Y-shaped DNA nanoparticles is 2, and the DNA nanoparticles can be the same or different. The Y-shaped DNA nanoparticle described in the present invention is assembled with three nucleic acid strands, and its sequence is as follows:
Y1-DCV:aagtattaccagaaa TTTTTGAC CGA TGG ATG ACT TAC GAC GCA CAA GGAGAT CAT GAG;Y1-DCV: aagtattaccagaaa TTTTTGAC CGA TGG ATG ACT TAC GAC GCA CAA GGAGAT CAT GAG;
Y2-sgc8:ATCTAACTGCTGCGCCGCCGGGAAAATACTGTACGGTTAGATTTTTGAC CGA TGG ATGACC TGT CTG CCT AAT GTG CGT CGT AAG;Y2-sgc8: ATCTAACTGCTGCGCCGCCGGGAAAATACTGTACGGTTAGATTTTTGAC CGA TGG ATGACC TGT CTG CCT AAT GTG CGT CGT AAG;
Y3-sgc8:ATCTAACTGCTGCGCCGCCGGGAAAATACTGTACGGTTAGATTTTTGAC CGA TGG ATGACT CAT GAT CTC CTT TAG GCA GAC AGG。Y3-sgc8: ATCTAACTGCTGCGCCGCCGGGAAAATACTGTACGGTTAGATTTTTGAC CGA TGG ATGACT CAT GAT CTC CTT TAG GCA GAC AGG.
其中所述aagtattaccagaaa为本发明中的共价连接DNA(14)。Wherein said aagtattaccagaaa is the covalently linked DNA in the present invention (14).
所述树枝型DNA纳米粒子中连接的核酸适配体数目n小于100,具体数目n可以为任意整数,DNA纳米粒子可以相同或不同。本发明举例所述用于组装树枝型DNA纳米粒子结构是用五条核酸链组装而成,其序列如下:The number n of nucleic acid aptamers linked to the dendritic DNA nanoparticles is less than 100, the specific number n can be any integer, and the DNA nanoparticles can be the same or different. The present invention exemplifies that the structure used to assemble dendritic DNA nanoparticles is assembled with five nucleic acid strands, and its sequence is as follows:
H1:TTAACCCACGCCGAATCCTAGACTCAAAGTAGTCTAGGATTCGGCGTGAAAAAGTGAGCACGGACG;H1: TTAACCCACGCCGAATCCTAGACTCAAAGTAGTCTAGGATTCGGCGTGAAAAAGTGAGCACGGACG;
H2:GACGTGCAGGCTGTTTAAAGTCTAGGATTCGGCGTGGGTTAACACGCCGAATCCTAGACTACTTTG;H2: GACGTGCAGGCTGTTTAAAGTCTAGGATTCGGCGTGGGTTAACACGCCGAATCCTAGACTACTTTG;
Sgc8c-SH2:CAGCCTGCACGTCATCTAACTGCTGCGCCGCCGGGAAAATACTGTA CGGTTAGA;Sgc8c-SH2: CAGCCTGCACGTCATCTAACTGCTGCGCCGCCGGGAAAATACTGTACGGTTAGA;
DNA1(C1)NC:CGTCCGTGCTCAC;DNA1(C1)NC: CGTCCGTGCTCAC;
DCV Initiator(I):aagtattaccagaaaAGTCTAGGATTCGGCGTGGGTTAA。DCV Initiator (I): aagtattaccagaaaAGTCTAGGATTCGGCGTGGGTTAA.
其中,上述序列aagtattaccagaaa为DCV蛋白靶向DNA序列,即本发明中的共价连接DNA(14),用于抗体与核酸结构共价连接,该序列即本发明中的共价连接DNA(14)。Among them, the above sequence aagtattaccagaaa is the DCV protein targeting DNA sequence, that is, the covalently linked DNA (14) in the present invention, which is used for covalently linking the antibody to the nucleic acid structure, and this sequence is the covalently linked DNA (14) in the present invention .
三)制备抗体-核酸适配体嵌合体;3) preparing antibody-nucleic acid aptamer chimera;
将步骤一)抗体与步骤二)核酸共同孵育,获得所述的抗体-核酸嵌合体。Incubate the antibody in step 1) and the nucleic acid in step 2) to obtain the antibody-nucleic acid chimera.
本发明还提供所述抗体-核酸嵌合体在肿瘤免疫治疗中的应用。The present invention also provides the application of the antibody-nucleic acid chimera in tumor immunotherapy.
在本发明其中一个实施例中体外检测双特异性抗体-核酸嵌合体sgc8-DCV-αCD3介导 T细胞杀伤肿瘤细胞的效果,细胞水平利用CCK8方法检测其对CCRF-CEM人类急性淋巴细胞白血病细胞的靶向杀伤效果。结果:制备的sgc8-DCV-αCD3嵌合体具备介导T细胞杀伤肿瘤细胞能力,且随着sgc8-DCV-αCD3嵌合体药物浓度增加,杀伤效果逐步增强。In one of the embodiments of the present invention, the effect of the bispecific antibody-nucleic acid chimera sgc8-DCV-αCD3 mediating the killing of tumor cells by T cells was detected in vitro, and the CCK8 method was used to detect its effect on CCRF-CEM human acute lymphoblastic leukemia cells at the cell level targeted killing effect. Results: The prepared sgc8-DCV-αCD3 chimera has the ability to mediate T cells to kill tumor cells, and with the increase of the drug concentration of sgc8-DCV-αCD3 chimera, the killing effect gradually increases.
在本发明的一个实施例中,将上述实施例中sgc8更换为其他任意的核酸适配体(本实施案例使用TE02,SYL3C,MUC1以及C-MET)制备的抗体-核酸嵌合体,细胞水平利用CCK8方法检测嵌合体介导T细胞对不同类型肿瘤细胞的杀伤效果。结果表明:连接不同核酸适配体的嵌合体均能介导T细胞杀伤肿瘤细胞,说明本发明在免疫治疗领域具有通用性。In one embodiment of the present invention, the antibody-nucleic acid chimera prepared by replacing sgc8 in the above embodiment with any other nucleic acid aptamer (TE02, SYL3C, MUC1 and C-MET used in this embodiment), the cellular level utilizes The CCK8 method was used to detect the killing effect of chimera-mediated T cells on different types of tumor cells. The results show that the chimeras connected with different nucleic acid aptamers can all mediate T cells to kill tumor cells, which shows that the present invention has universality in the field of immunotherapy.
在本发明的一个实施例中研究了抗体-核酸适配体纳米结构嵌合体体外介导T细胞杀伤肿瘤细胞的效果。以抗体-适配体纳米结构嵌合体为药物,细胞水平利用CCK8方法检测其对MCF-7人类的乳腺癌靶向杀伤效果。结果表明制备的抗体-树枝型适配体纳米结构嵌合体介导T细胞杀伤肿瘤细胞效果最好,其次是抗体-Y型适配体纳米结构。抗体-Y型适配体纳米结构代表二价DNA纳米粒子。除了本实施例中的Y型结构,也可以是其他的连接确定数目核酸适配体的纳米结构。另外树枝型DNA纳米结构代表通过聚合链式反应体外合成的DNA纳米结构。In one embodiment of the present invention, the effect of antibody-nucleic acid aptamer nanostructure chimera mediating T cells to kill tumor cells in vitro was studied. Using the antibody-aptamer nanostructure chimera as a drug, the CCK8 method was used to detect its targeted killing effect on MCF-7 human breast cancer at the cellular level. The results show that the prepared antibody-dendrimer nanostructure chimera has the best effect in mediating T cells to kill tumor cells, followed by the antibody-Y-type aptamer nanostructure. Antibody-Y aptamer nanostructures represent bivalent DNA nanoparticles. In addition to the Y-shaped structure in this embodiment, other nanostructures connected with a certain number of nucleic acid aptamers may also be used. In addition dendritic DNA nanostructures represent DNA nanostructures synthesized in vitro by polymerization chain reaction.
在本发明一个具体实施例中,利用裸鼠模型,进行体内抗体-核酸嵌合体对裸鼠皮下荷瘤CEM的靶向实验,以sgc8适配体为例,探究了不同结构的抗体-核酸嵌合体肿瘤免疫治疗的效果。采用持续测量肿瘤大小和测量小鼠体重反映免疫治疗效果。结果表明注射抗体-核酸嵌合体的实验组肿瘤显著小于对照组。在实验组中,注射抗体-树枝型适配体纳米结构嵌合体能显著抑制肿瘤生长,其次是抗体-Y型适配体纳米结构嵌合体。通过构建不同结构的DNA纳米粒子能够提升免疫治疗效果,也为肿瘤治疗提供了新思路。In a specific embodiment of the present invention, a nude mouse model was used to conduct an in vivo antibody-nucleic acid chimera targeting experiment on subcutaneous tumor-bearing CEM in nude mice. Taking the sgc8 aptamer as an example, the antibody-nucleic acid chimera with different structures was explored. Effects of Synthetic Tumor Immunotherapy. The effect of immunotherapy was reflected by continuous measurement of tumor size and measurement of mouse body weight. The results showed that the tumors in the experimental group injected with the antibody-nucleic acid chimera were significantly smaller than those in the control group. In the experimental group, injection of antibody-dendrimer aptamer nanostructure chimera significantly inhibited tumor growth, followed by antibody-Y-type aptamer nanostructure chimera. By constructing DNA nanoparticles with different structures, the effect of immunotherapy can be improved, and it also provides a new idea for tumor treatment.
总而言之,本发明提供的抗体-核酸嵌合体是一种新型免疫治疗药物,首次应用于T 细胞介导的免疫治疗。该药物包括抗体模块和核酸模块,抗体模块可以是任意能识别免疫细胞表面分子的抗体单链,核酸模块也可为任意一种能够识别肿瘤细胞表面分子的适配体。此外,本发明以抗体能与核酸形成嵌合体为基础,构建不同结构DNA纳米粒子,将功能化DNA纳米粒子应用于免疫治疗领域。DNA纳米粒子包括连接有具体数目适配体的纳米结构(如Y型结构的适配体数目n=2等)和通过聚合链式杂交(HCR)形成的多个适配体的纳米结构(如树枝状结构的适配体数目n<100),其中多价的DNA纳米粒子,可以为相同的DNA序列,也可以为不同的DNA序列。All in all, the antibody-nucleic acid chimera provided by the present invention is a new type of immunotherapeutic drug, which is first applied to T cell-mediated immunotherapy. The drug includes an antibody module and a nucleic acid module. The antibody module can be any antibody single chain that can recognize immune cell surface molecules, and the nucleic acid module can also be any aptamer that can recognize tumor cell surface molecules. In addition, the present invention constructs DNA nanoparticles with different structures on the basis that antibodies can form chimeras with nucleic acids, and applies functionalized DNA nanoparticles to the field of immunotherapy. DNA nanoparticles include nanostructures connected with a specific number of aptamers (such as the number of aptamers in a Y-shaped structure n = 2, etc.) and nanostructures of multiple aptamers formed by polymerization chain hybridization (HCR) (such as The number of aptamers in the dendritic structure is n<100), wherein the multivalent DNA nanoparticles can be the same DNA sequence or different DNA sequences.
本发明中的双特异性免疫药物是指该免疫药物对T细胞(免疫细胞)和靶细胞(肿瘤细胞)都具有特异性。现有技术用于连接T细胞和靶细胞的双特异性免疫药物要么两个模块都是蛋白质,要么两个模块都是核酸,而本发明首先提出一种含一个蛋白质模块和一个核酸模块的双特异性免疫药物。The bispecific immune drug in the present invention means that the immune drug has specificity for both T cells (immune cells) and target cells (tumor cells). In the prior art, the bispecific immune drugs used to connect T cells and target cells either have both modules as proteins or both modules as nucleic acids. However, the present invention first proposes a bispecific immune drug containing a protein module and a nucleic acid module. Specific immune drugs.
关于本发明所述免疫药物的制备方法:在2018年有文献报导共价连接蛋白13与共价连接DNA14的共价结合,本发明按照文献所示制备出一种共价连接蛋白13,随后制备出特异性结合蛋白11与共价连接蛋白13的结合物,并将与共价连接蛋白13匹配的共价连接DNA14与核酸适配体12先连接形成核酸结构(该核酸结构可以委托核酸厂家定制),然后利用共价连接蛋白13和共价连接DNA14的共价连接而得到整个包含特异性结合蛋白11、核酸适配体12、共价连接蛋白13和共价连接DNA14的免疫药物,所述免疫药物的结构从一端至另一端依次包括特异性结合蛋白11、共价连接蛋白13、共价连接DNA14和核酸适配体12。本发明中,共价连接蛋白13具体可以是HUH蛋白,更具体可以是DCV蛋白,当然还可以是除HUH以外的别的很多家族的蛋白,都能实现蛋白与DNA的共价连接。Regarding the preparation method of the immune drug of the present invention: In 2018, there was a literature report on the covalent binding of covalently linked
本发明中的特异性结合蛋白11可以与T细胞的受体结合,此时核酸适配体12与靶细胞的受体结合,也可以反过来,即核酸适配体12与T细胞的受体结合,而特异性结合蛋白11与靶细胞的受体结合。The specific
本发明中的核酸适配体12不可或缺,核酸适配体的本质为核酸,普通的DNA同样为核酸,但普通的DNA因没有核酸适配体具有的特异性识别受体的能力,因而其不能用于本发明中。The
此外,因普通的蛋白质与普通的核酸链之间较难直接连接,因而本发明中具体采用共价连接蛋白13和共价连接DNA14使得特异性结合蛋白11和核酸适配体12连接,文献报导的共价连接蛋白13为HUH家族的DCV蛋白,其属于鸭环病毒的蛋白成员,相较于其他类似蛋白,如:PCV(猪病毒),DCV与DNA连接效率最高,因此,本发明中首先按文献所示表达出相应的DCV蛋白。In addition, because it is difficult to directly connect ordinary proteins and ordinary nucleic acid chains, covalently linking
实施例1Example 1
本实施例为DNA纳米粒子的制备。This example is the preparation of DNA nanoparticles.
一,单链适配体。One, single-stranded aptamers.
在已公布的适配体序列5’端添加DCV蛋白识别序列,命名为dcv-aptamer。送至上海的核酸合成机构合成单链适配体。A DCV protein recognition sequence was added to the 5' end of the published aptamer sequence, named dcv-aptamer. Sent to the nucleic acid synthesis facility in Shanghai to synthesize single-stranded aptamers.
二,制备Y型DNA纳米粒子。Second, prepare Y-shaped DNA nanoparticles.
1,订购三条核苷酸链:YA-sgc8,Yb-DCV以及YC-sgc8。1. Order three nucleotide chains: YA-sgc8, Yb-DCV and YC-sgc8.
2,合成Y型DNA纳米粒子:通过无酶自组装过程制备Y形DNA大分子。首先制备 Y形连接支架(Y-DNA)作为构建块。在实验中,上述三个寡核苷酸链含有适配体和DCV蛋白目标序列(YA-sgc8,Yb-DCV,YC-sgc8序列),以上序列用PBS-MgCl2溶液(10mM,pH 值7.4,包含150mM NaCl和2mM MgCl2)溶解,其浓度为10mM。将DNA混合溶液在沸水中加热5min,然后慢慢冷却至室温,4℃冰箱备用。2. Synthesis of Y-shaped DNA nanoparticles: Y-shaped DNA macromolecules were prepared through an enzyme-free self-assembly process. First, a Y-shaped junction scaffold (Y-DNA) was prepared as a building block. In the experiment, the above three oligonucleotide chains contained aptamers and DCV protein target sequences (YA-sgc8, Yb-DCV, YC-sgc8 sequences), and the above sequences were treated with PBS-MgCl 2 solution (10mM, pH 7.4 , containing 150mM NaCl and 2mM MgCl 2 ) dissolved at a concentration of 10mM. The DNA mixed solution was heated in boiling water for 5 min, then slowly cooled to room temperature, and kept in a refrigerator at 4°C for later use.
三,制备树枝状DNA纳米粒子。Third, the preparation of dendritic DNA nanoparticles.
1,订购构建结构所需的五条核苷酸链,即如上文所述的H1、H2、sgc8c-SH2、DNA1(C1)NC和DCV Initiator(I)。1. Order the five nucleotide chains required to build the structure, namely H1, H2, sgc8c-SH2, DNA1(C1)NC and DCV Initiator(I) as described above.
2,将以上五条链用PBS-MgCl2溶液溶解和稀释至其最终浓度为10mM,首先将 H1,H2,sgc8c-SH2以及DNA1(C1)NC等量混合并稀释至终浓度为20μM,将DNA混合溶液在沸水中加热5min,然后慢慢冷却至室温。待其冷却后向DNA混合液中加入4μM 的DCV initiator(I),放入37℃过夜反应。将组装好的DNA纳米粒子置于4℃冰箱备用。2. Dissolve and dilute the above five chains with PBS-MgCl 2 solution to a final concentration of 10mM. First, mix and dilute equal amounts of H1, H2, sgc8c-SH2 and DNA1(C1)NC to a final concentration of 20μM. DNA The mixed solution was heated in boiling water for 5 min, then slowly cooled to room temperature. After cooling down, add 4 μM DCV initiator (I) to the DNA mixture, and put it in 37° C. for overnight reaction. The assembled DNA nanoparticles were placed in a 4°C refrigerator for later use.
实施例2Example 2
本实施例为抗体-核酸嵌合体的制备。This example is the preparation of antibody-nucleic acid chimera.
将DCV-αCD3融合蛋白加入dcv-sgc8核酸适配体等量混合,37℃培养15min。然后4℃保存,备用。The DCV-αCD3 fusion protein was added to the dcv-sgc8 nucleic acid aptamer and mixed in equal amounts, and incubated at 37°C for 15 minutes. Then store at 4°C for later use.
实施例3Example 3
本实施例为抗体-核酸嵌合体体外、体内对肿瘤靶向杀伤应用检测。以dcv-sgc8(人类急性淋巴细胞白血病的核酸适配体)制备“核酸适配体-DCV-αCD3嵌合体”为例。This example is an application detection of antibody-nucleic acid chimera in vitro and in vivo for targeted killing of tumors. Take dcv-sgc8 (nucleic acid aptamer for human acute lymphoblastic leukemia) as an example to prepare "nucleic acid aptamer-DCV-αCD3 chimera".
一,细胞水平CCK8法检测“核酸适配体-DCV-αCD3嵌合体”介导T细胞靶向杀伤作用。1. The CCK8 method at the cellular level detects the targeted killing effect of T cells mediated by "nucleic acid aptamer-DCV-αCD3 chimera".
1,提前饲养状态良好的CCRF-CEM细胞(5%FBS+1640)和PBMC细胞 (5%FBS+1640+IL2);1. CCRF-CEM cells (5% FBS+1640) and PBMC cells (5% FBS+1640+IL2) in good condition were raised in advance;
2,取上述CEM细胞(2*104个细胞)与PBMC细胞(人外周血单核细胞)(1*105个细胞)和不同浓度的sgc8-DCV-αCD3在37℃孵化24小时。2. The above CEM cells (2*10 4 cells) were incubated with PBMC cells (human peripheral blood mononuclear cells) (1*10 5 cells) and different concentrations of sgc8-DCV-αCD3 at 37°C for 24 hours.
3,利用CCK-8试剂盒(货号:C0039,碧云天)检测sgc8-DCV-αCD3介导T细胞靶向裂解CEM细胞时细胞数目的减少量,以此来判断其杀伤效果。96孔板中每孔铺入 CCRF-CEM人类急性淋巴细胞白血病。设置对照组包括仅T细胞和CEM细胞(人类急性淋巴细胞白血病细胞)以及阴性细胞Ramos。同时评估肿瘤细胞和效应细胞数目比率的影响,CEM细胞(2*104个细胞)与不同数量的PBMC细胞(0,1*105,2*105)和100nm sgc8-DCV-αCD3嵌合体在37℃中孵化24小时。3. Use the CCK-8 kit (product number: C0039, Biyuntian) to detect the reduction in the number of cells when sgc8-DCV-αCD3 mediates T cells to target and lyse CEM cells, so as to judge its killing effect. CCRF-CEM human acute lymphoblastic leukemia was placed in each well of a 96-well plate. A control group was set to include only T cells and CEM cells (human acute lymphoblastic leukemia cells) and negative cells Ramos. Simultaneously evaluate the effect of the ratio of tumor cell and effector cell numbers, CEM cells (2*10 4 cells) with different numbers of PBMC cells (0, 1*10 5 , 2*10 5 ) and 100nm sgc8-DCV-αCD3 chimera Incubate at 37°C for 24 hours.
4,24h后,每孔加入20ul CCK-8溶液。37℃孵育2小时后,用Bio-Tek、SYNERGYMx 测定570nm处的吸光度。细胞毒性计算方法为细胞杀伤率(%)=100(实验值-实验低对照)/(高对照-低对照)。4. After 24 hours, add 20ul CCK-8 solution to each well. After incubation at 37°C for 2 hours, the absorbance at 570 nm was measured with Bio-Tek and SYNERGYMx. The calculation method of cytotoxicity is cell killing rate (%)=100 (experimental value-experimental low control)/(high control-low control).
结果:通过以上方法制备的新型免疫药物(以sgc8-DCV-αCD3为例说明)具备介导T细胞杀伤肿瘤细胞的能力,且随着sgc8-DCV-αCD3浓度增加,杀伤效果逐步增强。如图2所示。图2中CEM为人类急性淋巴细胞白血病细胞,Ramos为阴性细胞。Results: The new immune drug prepared by the above method (sgc8-DCV-αCD3 as an example) has the ability to mediate T cells to kill tumor cells, and as the concentration of sgc8-DCV-αCD3 increases, the killing effect gradually increases. as shown in
图3和图4均为验证抗体-核酸嵌合体在免疫治疗领域应用的普适性。其中,NC、sgc8、 TE02以及SYL3C、MUC1和C-MET都属于核酸适配体,而图4中的MCF-7为人类乳腺癌细胞,Hela为宫颈癌细胞,HepG2细胞为一种肝癌细胞,LO2为人正常肝细胞, SH-SY5Y为人神经母细胞瘤细胞。Figure 3 and Figure 4 both verify the universality of the application of antibody-nucleic acid chimeras in the field of immunotherapy. Among them, NC, sgc8, TE02, SYL3C, MUC1 and C-MET all belong to nucleic acid aptamers, while MCF-7 in Figure 4 is a human breast cancer cell, Hela is a cervical cancer cell, and HepG2 cell is a liver cancer cell. LO2 is normal human liver cells, and SH-SY5Y is human neuroblastoma cells.
二,活体水平检测sgc8-DCV-αCD3嵌合体对CCRF-CEM人类急性淋巴细胞白血病的靶向杀伤作用。Second, detect the targeted killing effect of sgc8-DCV-αCD3 chimera on CCRF-CEM human acute lymphoblastic leukemia at the living level.
1,在第0天4-6周龄雌性裸鼠皮下荷瘤CCRF-CEM,1*106个/只;1. Subcutaneous tumor-bearing CCRF-CEM in female nude mice aged 4-6 weeks on
2,第7天时,将荷瘤裸鼠随机分为两组,甲组为PBS对照组,乙组为注射T细胞组,乙组再分为5组:空白对照组,DCV-αCD3抗体对照组,sgc8-DCV-αCD3实验组,二价sgc8- DCV-αCD3实验组和多价sgc8-DCV-αCD3实验组。2. On the 7th day, the tumor-bearing nude mice were randomly divided into two groups, group A was the PBS control group, group B was the T cell injection group, and group B was further divided into 5 groups: blank control group, DCV-αCD3 antibody control group , sgc8-DCV-αCD3 experimental group, bivalent sgc8-DCV-αCD3 experimental group and multivalent sgc8-DCV-αCD3 experimental group.
3,实验全程,使用游标卡尺每2天测量一次肿瘤大小,并记录;3. Throughout the experiment, use a vernier caliper to measure the tumor size every 2 days and record it;
4,实验全程,记录荷瘤裸鼠体重;4. Throughout the experiment, the body weight of the tumor-bearing nude mice was recorded;
5,直至32天结束实验。5. End the experiment until 32 days.
实验结果如图5~8所示。其中,图5和图6为连续测量肿瘤大小统计结果,结果表明注射sgc8-DCV-αCD3实验组肿瘤显著小于仅注射蛋白实验组。同时表明多价sgc8- DCV-αCD3(树枝DNA纳米结构)实验组肿瘤显著小于二价sgc8-DCV-αCD3(Y型DNA 纳米结构)实验组和sgc8-DCV-αCD3(线性单链)实验组。价态的提升能够提高免疫治疗效果。图7和图8为连续测量荷瘤裸鼠体重统计结果,结果表明注射药物不影响荷瘤裸鼠生命活动。The experimental results are shown in Figures 5-8. Among them, Fig. 5 and Fig. 6 are the statistical results of continuous measurement of tumor size, and the results show that the tumors in the sgc8-DCV-αCD3 experimental group were significantly smaller than those in the protein-injected experimental group. It also showed that the multivalent sgc8-DCV-αCD3 (dendritic DNA nanostructure) experimental group had significantly smaller tumors than the bivalent sgc8-DCV-αCD3 (Y-shaped DNA nanostructure) experimental group and sgc8-DCV-αCD3 (linear single-stranded) experimental group. The improvement of valence can improve the effect of immunotherapy. Figure 7 and Figure 8 are the statistical results of continuous measurement of the body weight of the tumor-bearing nude mice, and the results show that the injection of drugs does not affect the life activities of the tumor-bearing nude mice.
综上所述,本发明构建的抗体-核酸嵌合体作为药物能够介导T细胞靶向杀伤肿瘤。且通过体外搭建DNA纳米结构能定制化调整免疫治疗效果。In summary, the antibody-nucleic acid chimera constructed in the present invention can be used as a drug to mediate T cells to target and kill tumors. And by constructing DNA nanostructures in vitro, the effect of immunotherapy can be customized and adjusted.
以上内容是结合具体的优选实施方式对本发明作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演和替换,都应当视为属于本发明的保护范围。The above content is a further detailed description of the present invention in combination with specific preferred embodiments, and it cannot be assumed that the specific implementation of the present invention is limited to these descriptions. For those of ordinary skill in the technical field of the present invention, without departing from the concept of the present invention, some simple deductions and substitutions can be made, which should be regarded as belonging to the protection scope of the present invention.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110263132.3A CN113018432B (en) | 2021-03-11 | 2021-03-11 | Preparation method of immune medicine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110263132.3A CN113018432B (en) | 2021-03-11 | 2021-03-11 | Preparation method of immune medicine |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113018432A CN113018432A (en) | 2021-06-25 |
CN113018432B true CN113018432B (en) | 2022-12-13 |
Family
ID=76469488
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110263132.3A Active CN113018432B (en) | 2021-03-11 | 2021-03-11 | Preparation method of immune medicine |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113018432B (en) |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010535248A (en) * | 2007-07-31 | 2010-11-18 | ザ ジョンズ ホプキンス ユニバーシティー | Polypeptide-nucleic acid complex for immunological prevention or immunotherapy of neoplastic disorders or infections |
CN104788567B (en) * | 2015-01-21 | 2019-03-26 | 武汉友芝友生物制药有限公司 | A kind of bispecific antibody preparation method and application of targeted mouse T lymphocyte CD3 and human tumor antigen EpCAM |
WO2018138695A1 (en) * | 2017-01-30 | 2018-08-02 | Ofer Nussbaum | Chemical entities suitable for therapy |
-
2021
- 2021-03-11 CN CN202110263132.3A patent/CN113018432B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN113018432A (en) | 2021-06-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Huang et al. | Lipid nanoparticle delivery system for mRNA encoding B7H3‐redirected bispecific antibody displays potent antitumor effects on malignant tumors | |
KR101836921B1 (en) | Recombinant self-assembling protein comprising a target-specfic peptide and use thereof | |
WO2021083363A1 (en) | High-affinity tcr for kras g12v recognition | |
US11331365B2 (en) | Multispecific protein drug and library thereof, preparing method therefor and application thereof | |
CN110227162A (en) | Target excretion body and preparation method, application, drug delivery system and drug | |
CN114686428A (en) | Cell-polypeptide conjugate and preparation method and application thereof | |
CN114438088A (en) | Preparation and application of a lysosome-targeted nucleic acid chimera | |
CN107137718A (en) | A kind of multi-walled carbon nanotube carrier of peptide modification and its preparation method and application | |
CN113018433B (en) | A kind of immune drug and its application in tumor immunotherapy | |
CN110938136B (en) | High-affinity T cell receptor for recognizing AFP antigen | |
CN101337076A (en) | A functionalized dendrimer gene carrier system targeting malignant brain tumors | |
CN113018432B (en) | Preparation method of immune medicine | |
WO2021204287A1 (en) | High-affinity tcr for recognizing hpv16 | |
WO2021185368A1 (en) | High-affinity tcr for recognizing afp antigen | |
CN118813610A (en) | A method for artificially improving NK cells by modifying Y-shaped skeleton rigid DNA tetrahedron material with double nucleic acid aptamers and its application | |
WO2021036793A1 (en) | Pyroptosis-induced immunotherapy | |
WO2021036924A1 (en) | High-affinity tcr for recognizing ssx2 antigen | |
CN117659194A (en) | EGFR-targeting nanobody, drug conjugate and application thereof | |
WO2020098717A1 (en) | High-affinity tcr for afp recognition | |
CN116555249A (en) | A DNA origami structure and anti-tumor drug delivery system | |
WO2021254458A1 (en) | High-affinity t-cell receptor for recognizing hpv antigen | |
TW202409068A (en) | Il-21 polypeptides and methods of use | |
WO2023179768A1 (en) | High-affinity tcr for identifying mage-a4 antigen, and sequence and use thereof | |
CN116271090A (en) | A DNA nanocage with TLR9 agonist activity and its application in the preparation of antitumor drugs | |
WO2023165467A1 (en) | Ferritin nanocage vector loaded with small nucleic acid drug in inner cavity and use |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |