CN113011037B - Non-static terrain gravitational wave parameterization method - Google Patents
Non-static terrain gravitational wave parameterization method Download PDFInfo
- Publication number
- CN113011037B CN113011037B CN202110338600.9A CN202110338600A CN113011037B CN 113011037 B CN113011037 B CN 113011037B CN 202110338600 A CN202110338600 A CN 202110338600A CN 113011037 B CN113011037 B CN 113011037B
- Authority
- CN
- China
- Prior art keywords
- terrain
- wave
- gravity
- static
- calculating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 29
- 230000005484 gravity Effects 0.000 claims abstract description 73
- 230000004907 flux Effects 0.000 claims abstract description 31
- 230000003068 static effect Effects 0.000 claims abstract description 26
- 238000012937 correction Methods 0.000 claims abstract description 3
- 230000002706 hydrostatic effect Effects 0.000 abstract description 22
- 230000005540 biological transmission Effects 0.000 abstract description 2
- 230000008569 process Effects 0.000 abstract description 2
- 238000004088 simulation Methods 0.000 abstract 1
- 239000003518 caustics Substances 0.000 description 4
- 238000011161 development Methods 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 238000013517 stratification Methods 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000013467 fragmentation Methods 0.000 description 1
- 238000006062 fragmentation reaction Methods 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 238000012950 reanalysis Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2111/00—Details relating to CAD techniques
- G06F2111/10—Numerical modelling
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A90/00—Technologies having an indirect contribution to adaptation to climate change
- Y02A90/10—Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computer Hardware Design (AREA)
- Evolutionary Computation (AREA)
- Geometry (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Geophysics And Detection Of Objects (AREA)
- Revetment (AREA)
Abstract
本发明公开了非静力地形重力波参数化方法,包含如下步骤:计算静力地形重力波地表动量通量和非静力效应对地形重力波动量通量的修正因子;计算非静力地形重力波地表动量通量;从位于地形高度之上的第一个模式层开始,进行如下步骤处理:计算地形重力波振幅;计算波动Richardson数以及地形重力波的饱和振幅和动量通量;若波动Richardson数大于临界值Ric,则继续垂直传播,直至模式顶层。本发明的方法对地形重力波的非静力效应进行处理,能够更好地表征高分辨率数值模式中的次网格地形重力波动量传输及其对大气环流的影响,提高模式在复杂地形下的模拟预报能力。
The invention discloses a non-hydrostatic terrain gravity wave parameterization method, comprising the following steps: calculating the surface momentum flux of the static terrain gravity wave and the correction factor of the non-hydrostatic effect on the terrain gravity wave flux; calculating the non-hydrostatic terrain gravity wave surface momentum flux; starting from the first model layer located above the terrain height, the following steps are processed: calculating the amplitude of the terrain gravity wave; calculating the fluctuation Richardson number and the saturation amplitude and momentum flux of the terrain gravity wave; if the fluctuation Richardson If the number is greater than the critical value R c , it will continue to propagate vertically until the top layer of the model. The method of the present invention processes the non-hydrostatic effects of terrain gravity waves, which can better characterize the transmission of subgrid terrain gravity fluctuations in high-resolution numerical models and their influence on atmospheric circulation, and improve the performance of models under complex terrain. simulation forecasting capabilities.
Description
技术领域technical field
本发明涉及数值模式中地形重力波参数化方法,尤其针对高分辨率数值模式中的非静力地形重力波参数化方法,属于大气科学研究领域。The invention relates to a method for parameterizing terrain gravity waves in numerical models, in particular to a method for parameterizing non-static terrain gravity waves in high-resolution numerical models, and belongs to the field of atmospheric science research.
背景技术Background technique
地形重力波是数值模式的重要次网格物理过程,对于准确的数值天气预报和气候预测具有十分重要作用。传统数值模式水平分辨率较粗,因此次网格地形的水平尺度也较大,激发的重力波为静力平衡的波动(McFarlane 1987)。近年来,随着数值模式的发展,模式的水平分辨率也不断提高,已经由百公里达到十公里量级,如ECMWF的IFS预报系统采用全球9km分辨率。在这种情况下,地形重力波的动力结构特征和动量传输将受到非静力效应的显著影响(Xue et al.2000),因此为非静力地形重力波。Terrain gravity waves are an important sub-grid physical process in numerical models, and play an important role in accurate numerical weather prediction and climate prediction. The horizontal resolution of the traditional numerical model is relatively coarse, so the horizontal scale of the subgrid terrain is also large, and the excited gravity waves are fluctuations of static equilibrium (McFarlane 1987). In recent years, with the development of numerical models, the horizontal resolution of the models has also been continuously improved, and has reached the order of ten kilometers from hundreds of kilometers. For example, the IFS forecast system of ECMWF adopts a global resolution of 9km. In this case, the dynamic structural characteristics and momentum transfer of orographic gravity waves will be significantly affected by non-hydrostatic effects (Xue et al.2000), so they are non-hydrostatic orographic gravity waves.
对于非静力的地形重力波,通常无法求出解析解,因此无法得到非静力地形重力波的动量通量,给参数化带来很大挑战。为此,Smith(1980)提出采用二维快速傅里叶变换的方法对重力波进行求解,即数值求解。很显然,该数值方法无法用于地形重力波参数化方案。此后,Shutts(1998)等人采用物理空间的射线追踪方法(spatial-ray tracing)来近似求解地形重力波。然而该方法仅能得到重力波的远场解,在地形正上方存在焦散点,波射线理论不再适应。为了克服这一难题,Broutmanet al.(2002)发展了谱空间中的波射线追踪方法,即Fourier-ray tracing技术,有效避免了物理空间中地形上方的焦散点。然而该方法在浮力频率的转折点仍存在焦散点。近年来PulidoandRodas(2011)采用高阶的波射线近似方法(即高斯波束近似法)对地形重力波进行近似求解。与传统的波射线方法相比,该方法考虑了不同的波射线对中心波射线的贡献,因此能够有效避免传统射线追踪理论中的焦散点问题。利用该方法,Xu et al.(2017)研究了方向性切变对地形重力波动力结构和动量传输的影响,取得较好的效果。然而,高斯波束近似需要考虑不同的波射线贡献,计算量十分巨大,无法应用于业务化的地形重力波参数化。For non-hydrostatic orographic gravity waves, it is usually impossible to obtain an analytical solution, so the momentum flux of non-hydrostatic orographic gravity waves cannot be obtained, which brings great challenges to parameterization. For this reason, Smith (1980) proposed to use the two-dimensional fast Fourier transform method to solve the gravitational wave, that is, numerical solution. Obviously, this numerical method cannot be used in the parameterization scheme of terrain gravity waves. Afterwards, Shutts (1998) et al. adopted the physical space ray tracing method (spatial-ray tracing) to approximate the solution of terrain gravity waves. However, this method can only obtain the far-field solution of gravitational waves, and there are caustic points directly above the terrain, and the wave-ray theory is no longer suitable. In order to overcome this problem, Broutman et al. (2002) developed a wave ray tracing method in spectral space, that is, Fourier-ray tracing technology, which effectively avoids the caustics above the terrain in physical space. However, this method still has caustics at the turning point of the buoyancy frequency. In recent years, Pulido and Rodas (2011) adopted a high-order wave ray approximation method (ie Gaussian beam approximation method) to approximate the terrain gravity wave. Compared with the traditional wave-ray method, this method considers the contribution of different wave-rays to the central wave-ray, so it can effectively avoid the caustics problem in the traditional ray tracing theory. Using this method, Xu et al. (2017) studied the influence of directional shear on the dynamic structure and momentum transmission of terrain gravity waves, and achieved good results. However, the Gaussian beam approximation needs to consider the contribution of different wave rays, and the calculation amount is very huge, which cannot be applied to the operational terrain gravity wave parameterization.
综上所述,为了满足高分辨率数值模式的发展需求,需要发展非静力地形重力波动量通量的计算方法。在此基础上,对传统的静力地形重力波参数化方案进行改进,发展非静力地形重力波参数化方案。In summary, in order to meet the development needs of high-resolution numerical models, it is necessary to develop calculation methods for non-hydrostatic terrain gravity fluctuation fluxes. On this basis, the traditional static terrain gravity wave parameterization scheme is improved, and the non-static terrain gravity wave parameterization scheme is developed.
发明内容Contents of the invention
本发明所要解决的技术问题是针对现有地形重力波参数化方案无法表征非静力效应,提出一种新的非静力地形重力波参数化方案,以满足高分辨率数值模式的发展需求,提高模式在复杂地形下的模拟预报能力。The technical problem to be solved by the present invention is to propose a new non-static terrain gravity wave parameterization scheme to meet the development needs of high-resolution numerical models, aiming at the fact that the existing topographic gravity wave parameterization scheme cannot characterize the non-hydrostatic effect. Improve the model's ability to simulate and predict complex terrain.
为了解决上述技术问题,本发明提出的非静力地形重力波参数化方法包含如下步骤:In order to solve the above-mentioned technical problems, the non-hydrostatic terrain gravity wave parameterization method proposed by the present invention includes the following steps:
步骤1:计算静力地形重力波地表动量通量τs。Step 1: Calculate the surface momentum flux τ s of the static terrain gravity wave.
步骤2:计算非静力效应对地形重力波动量通量的修正项α。Step 2: Calculate the correction term α of the non-hydrostatic effect on the terrain gravity fluctuation flux.
步骤3:计算非静力地形重力波的地表动量通量τ0=(1+α)τs。Step 3: Calculate the surface momentum flux τ 0 =(1+α)τ s of the non-hydrostatic terrain gravity wave.
步骤4:从位于次网格地形高度之上的第一个模式层开始,进行如下步骤处理,Step 4: Starting from the first pattern layer above the terrain height of the secondary grid, proceed as follows,
步骤4.1:根据模式的水平风场Ui、Vi以及大气密度ρi和层结Ni,计算地形重力波振幅Hi。Step 4.1: According to the model's horizontal wind field U i , V i , atmospheric density ρ i and stratification N i , calculate the orographic gravity wave amplitude H i .
步骤4.2:根据地形重力波的振幅计算波动Richardson数Ri。Step 4.2: Calculate the fluctuation Richardson number Ri according to the amplitude of the terrain gravity wave.
步骤4.3:进行重力波破碎的判断。若波动Richardson数Ri小于临界值Ric,则地形重力波达到饱和,计算地形重力波的饱和振幅Hi_sat以及地形重力波在该模式层的动量通量τi;若波动Richardson数Ri大于临界值Ric,则地形重力波没有达到饱和,继续垂直传播,地形重力波在该模式层的动量通量与第i-1层相等,即τi=τi-1。Step 4.3: Judgment of gravity wave breaking. If the fluctuating Richardson number Ri is less than the critical value Ri c , the terrain gravity wave is saturated, and the saturation amplitude H i_sat of the terrain gravity wave and the momentum flux τ i of the terrain gravity wave in this model layer are calculated; if the fluctuating Richardson number Ri is greater than the critical value R c , the topographic gravity wave does not reach saturation and continues to propagate vertically. The momentum flux of the topographic gravity wave in this mode layer is equal to that of the i-1th layer, that is, τ i =τ i-1 .
步骤4.4:重复步骤4.1至4.3,直至达到模式顶层。Step 4.4: Repeat steps 4.1 to 4.3 until the pattern top level is reached.
上述技术方案中,Among the above technical solutions,
其中ρ0为地表空气密度,N0为地表大气层结,为次网格地形高度的平方,γ=a/b为次网格地形各向异性,a、b分别为东西和南北方向的次网格地形宽度,U0、V0分别为东西和南北方向的地表水平风,χ为地表水平风方向,φ和/>为/>的方向和大小,其中k和l为东西和南北方向的水平波数。where ρ0 is the surface air density, N0 is the surface atmospheric stratification, is the square of the sub-grid terrain height, γ=a/b is the anisotropy of the sub-grid terrain, a and b are the width of the sub-grid terrain in the east-west and north-south directions respectively, U 0 and V 0 are the east-west and north-south directions surface level wind, χ is the surface level wind direction, φ and /> for /> The direction and magnitude of , where k and l are the horizontal wavenumbers in the east-west and north-south directions.
上述技术方案中,Among the above technical solutions,
其中为水平Froude数。in is the horizontal Froude number.
上述技术方案中,Among the above technical solutions,
其中/>分别为重力波在地表和模式第i层的垂直波数,下标i表示模式的第i层。 where /> are the vertical wavenumbers of gravity waves on the surface and the i-th layer of the model, respectively, and the subscript i represents the i-th layer of the model.
上述技术方案中,Among the above technical solutions,
其中为平均气流的Richardson数,Uzi和Vzi分别为模式第i层东西风和南北风的垂直风切。in is the Richardson number of the average airflow, U zi and V zi are the vertical wind shear of the east-west wind and north-south wind in layer i of the model, respectively.
上述技术方案中,Among the above technical solutions,
上述技术方案中,Among the above technical solutions,
上述技术方案中,Ric=0.25。In the above technical solution, R c =0.25.
本发明的非静力地形重力波参数化方法具有以下几方面优点:The non-hydrostatic terrain gravity wave parameterization method of the present invention has the following advantages:
1.能够表征非静力效应对地形重力波动量通量的影响。1. Be able to characterize the impact of non-hydrostatic effects on the flux of terrain gravity fluctuations.
图1给出了各向同性地形激发的非静力重力波动量通量随着Fr数的变化。随着Fr数的增加,地形重力波动量通量逐渐减少。此外,由于Fr数与地形水平尺度有关,因此能够表示地形尺度变化所导致的地形重力波动量通量的变化,即尺度自适应。Figure 1 shows the variation of the anisotropic gravitational fluctuation flux with the Fr number excited by the isotropic terrain. As the Fr number increases, the orographic gravity fluctuation flux decreases gradually. In addition, because the Fr number is related to the horizontal scale of the terrain, it can represent the change of the terrain gravity fluctuation flux caused by the change of the terrain scale, that is, scale adaptation.
2.对于各向异性地形仍然具有较高的精度。2. It still has high accuracy for anisotropic terrain.
图2给出了各向异性地形激发的非静力重力波动量通量与各向同性地形重力波动量通量的比值。随着Fr数的增加,各向异性对地形重力波动量通量的影响逐渐增加,但是误差不超过5%。因此,对于不同的各向异性地形,其地形重力波动量通量和各向同性的地形重力波动量通量十分类似。Figure 2 shows the ratio of the non-hydrostatic gravity fluctuation flux induced by anisotropic terrain to the isotropic terrain gravity fluctuation flux. As the Fr number increases, the influence of anisotropy on the topographic gravity fluctuation flux increases gradually, but the error does not exceed 5%. Therefore, for different anisotropic terrains, the flux of terrain gravity fluctuations is very similar to that of isotropic terrain gravity fluctuations.
附图说明Description of drawings
图1各向同性地形激发的非静力重力波动量通量随着Fr数的变化图。Fig. 1 Variation of non-hydrostatic gravity fluctuation flux with Fr number excited by isotropic terrain.
图2各向异性地形激发的非静力重力波动量通量与各向同性地形重力波动量通量的比值。Fig. 2 The ratio of the non-hydrostatic gravity fluctuation flux induced by anisotropic terrain to the gravity fluctuation flux of isotropic terrain.
图3全球地形(a)和次网格地形(b)的分布图。Figure 3 Distribution map of global terrain (a) and subgrid terrain (b).
图4青藏高原西部地形重力波振幅,其中虚线为静力参数化方案,点线为非静力参数化方案和实线为饱和振幅的垂直分布。Figure 4. The topographic gravity wave amplitude in the western Qinghai-Tibet Plateau. The dashed line is the static parameterization scheme, the dotted line is the non-hydrostatic parameterization scheme, and the solid line is the vertical distribution of saturation amplitude.
具体实施方式Detailed ways
以2013年12月青藏高原西部地区的地形重力波为例,对本发明提出的非静力地形重力波参数化方案进行具体说明。Taking the topographic gravity wave in the western region of the Qinghai-Tibet Plateau in December 2013 as an example, the non-static topographic gravity wave parameterization scheme proposed by the present invention is specifically described.
第一步,地形和环境大气的预处理。根据欧洲中间尺度天气预报中心提供的2.5°再分析数据,可以得到包括青藏高原在内的全球地形和次网格地形分布,如图3所示。同时还可以得到2013年12月高原西部地区的风速以及浮力频率的垂直廓线。本步骤为人为在脱机的情况下处理,在模式系统中可直接跳过。The first step is the preprocessing of terrain and ambient atmosphere. According to the 2.5° reanalysis data provided by the European Center for Mesoscale Weather Forecasting, the global terrain and sub-grid terrain distribution including the Qinghai-Tibet Plateau can be obtained, as shown in Figure 3. At the same time, the vertical profile of wind speed and buoyancy frequency in the western plateau in December 2013 can also be obtained. This step is manually processed offline, and can be skipped directly in the mode system.
第二步,计算静力地形重力波地表动量通量。该地形最大高度为5864米,因此计算该高度以下的平均风速、平均浮力频率以及平均密度,分别为U0=6.8m s-1,V0=2.1m s-1,N0=0.0085s-1,ρ0=1.12kg m-3。此外,由次网格地形数据可知,次网格地形东西和南北宽度分别为a=20km,b=16km,因此γ=1.25。根据以上数据,最终计算得到静力地形重力波的地表动量通量为τs=(0.000238,0.000817)N m-1。The second step is to calculate the surface momentum flux of the static terrain gravity wave. The maximum height of the terrain is 5864 meters, so the average wind speed, average buoyancy frequency and average density below this height are calculated as U 0 =6.8ms -1 , V 0 =2.1ms -1 , N 0 =0.0085s -1 , ρ 0 =1.12 kg m −3 . In addition, it can be seen from the sub-grid terrain data that the east-west and north-south widths of the sub-grid terrain are respectively a=20km and b=16km, so γ=1.25. According to the above data, the surface momentum flux of the static terrain gravity wave is finally calculated as τ s =(0.000238,0.000817)N m -1 .
第三步,计算非静力地形重力波动量通量。首先计算非静力因子α。根据数据可得水平Froude数为Fr=0.311,代入α表达式可得α=-0.011。因此非静地形重力波动量通量为τ0=(1+α)τs=(0.000212,0.000727)N m-1。The third step is to calculate the non-hydrostatic terrain gravity fluctuation flux. First calculate the non-hydrostatic factor α. According to the data, the horizontal Froude number can be obtained as Fr=0.311, which can be substituted into the α expression to get α=-0.011. Therefore, the non-static terrain gravity fluctuation flux is τ 0 =(1+α)τ s =(0.000212,0.000727)N m -1 .
第四步,由于地形高度位于模式的第6层(5915米)以下,因此从该层开始,逐层计算地形重力波振幅及饱和振幅。为了方便比较,同时给出了根据静力地形重力波参数化方案计算得到的重力波振幅。如图4所示,非静力地形重力波的振幅始终都小于静力地形重力波的振幅。静力地形重力波在22~28公里高度范围内处于饱和状态(波动振幅大于饱和振幅),而非静力地形重力波的饱和区间为24~27km左右。因此在非静力效应作用下,地形重力波的破碎将得到抑制,有效解决静力地形重力波参数化方案中平流层地形重力波拖曳过强问题。In the fourth step, since the terrain height is below the 6th layer (5915 m) of the model, the terrain gravity wave amplitude and saturation amplitude are calculated layer by layer starting from this layer. For the convenience of comparison, the gravity wave amplitude calculated according to the static terrain gravity wave parameterization scheme is given at the same time. As shown in Fig. 4, the amplitude of the non-static terrain gravity wave is always smaller than that of the static terrain gravity wave. The static orographic gravity wave is saturated in the altitude range of 22-28 km (the fluctuation amplitude is greater than the saturation amplitude), while the saturation range of the non-static orographic gravity wave is about 24-27 km. Therefore, under the action of non-hydrostatic effects, the fragmentation of terrain gravity waves will be suppressed, effectively solving the problem of excessive drag of stratospheric terrain gravity waves in the parameterization scheme of static terrain gravity waves.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110338600.9A CN113011037B (en) | 2021-03-29 | 2021-03-29 | Non-static terrain gravitational wave parameterization method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110338600.9A CN113011037B (en) | 2021-03-29 | 2021-03-29 | Non-static terrain gravitational wave parameterization method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113011037A CN113011037A (en) | 2021-06-22 |
CN113011037B true CN113011037B (en) | 2023-09-01 |
Family
ID=76409152
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110338600.9A Active CN113011037B (en) | 2021-03-29 | 2021-03-29 | Non-static terrain gravitational wave parameterization method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113011037B (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106874690A (en) * | 2017-03-07 | 2017-06-20 | 南京大学 | Parameterization method of terrain gravity wave drag considering horizontal propagation factors |
CN107527108A (en) * | 2016-06-21 | 2017-12-29 | 中国辐射防护研究院 | A kind of Small and Medium Sized wind field Forecasting Methodology of nuclear facilities Accident Off-site Consequence evaluation |
CN107609250A (en) * | 2017-09-01 | 2018-01-19 | 南京大学 | Parameterization method of terrain gravity wave lifting force |
CN110703357A (en) * | 2019-04-30 | 2020-01-17 | 国家气象中心 | Global medium-term numerical forecast GRAPES_GFS |
CN111475938A (en) * | 2020-04-03 | 2020-07-31 | 广东海洋大学 | A method for analyzing the response of UTLS ozone on the Qinghai-Tibet Plateau to gravitational waves |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7836760B2 (en) * | 2007-10-23 | 2010-11-23 | Saylor David J | Method and device for the assessment of fluid collection networks |
-
2021
- 2021-03-29 CN CN202110338600.9A patent/CN113011037B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107527108A (en) * | 2016-06-21 | 2017-12-29 | 中国辐射防护研究院 | A kind of Small and Medium Sized wind field Forecasting Methodology of nuclear facilities Accident Off-site Consequence evaluation |
CN106874690A (en) * | 2017-03-07 | 2017-06-20 | 南京大学 | Parameterization method of terrain gravity wave drag considering horizontal propagation factors |
CN107609250A (en) * | 2017-09-01 | 2018-01-19 | 南京大学 | Parameterization method of terrain gravity wave lifting force |
CN110703357A (en) * | 2019-04-30 | 2020-01-17 | 国家气象中心 | Global medium-term numerical forecast GRAPES_GFS |
CN111475938A (en) * | 2020-04-03 | 2020-07-31 | 广东海洋大学 | A method for analyzing the response of UTLS ozone on the Qinghai-Tibet Plateau to gravitational waves |
Non-Patent Citations (1)
Title |
---|
GRAPES 区域扰动预报模式动力框架设计及检验;冯业荣等;《气象学报》;第78卷(第5期);第805-815页 * |
Also Published As
Publication number | Publication date |
---|---|
CN113011037A (en) | 2021-06-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Cullen et al. | An overview of numerical methods for the next generation UK NWP and climate model | |
Yin et al. | Seasonal prediction of winter haze days in the north central North China Plain | |
Moncrieff | The multiscale organization of moist convection and the intersection of weather and climate | |
CN103399350B (en) | A kind of airborne gravity downward continuation method based on integral iteration algorithm | |
Seemanth et al. | Sensitivity analysis of dissipation parameterizations in a third-generation spectral wave model, WAVEWATCH III for Indian Ocean | |
Zhou et al. | Understanding the bias in surface latent and sensible heat fluxes in contemporary AGCMs over tropical oceans | |
CN106874690B (en) | Terrain gravity wave dragging parameterization method considering horizontal propagation factors | |
CN104750983A (en) | Spatial hierarchical grid disturbance gravity field model building and disturbance gravity quick determination method | |
Oczkowski et al. | Mechanisms for the development of locally low-dimensional atmospheric dynamics | |
CN104834320A (en) | Spatial layering disturbance gravitational field grid model rapid construction method | |
CN113627096B (en) | Fine wind field simulation method based on spatial correlation and monitoring data | |
CN111898296A (en) | A multi-scale simulation method and system for atmospheric diffusion and deposition of nuclear matter | |
Tao et al. | ENSO predictions in an intermediate coupled model influenced by removing initial condition errors in sensitive areas: A target observation perspective | |
Yamazaki et al. | Nonhydrostatic atmospheric modeling using a combined Cartesian grid | |
CN113011037B (en) | Non-static terrain gravitational wave parameterization method | |
CN115829185A (en) | Method, device and system for analyzing influence of ENSO on ozone valley and storage medium | |
CN106802425A (en) | A kind of integration method for estimating zenith tropospheric delay | |
CN107621637B (en) | Wind Field Inversion Method in Shear Region Based on Single Doppler Radar | |
Zadra et al. | Impact of the GEM model simplified physics on extratropical singular vectors | |
Xu et al. | Assimilation of high frequency radar data into a shelf sea circulation model | |
CN116090315B (en) | Simulation method of precipitation spatial distribution considering spatial heterogeneity and real-time data update | |
Martinez-Alvarado et al. | Transient teleconnection event at the onset of a planet-encircling dust storm on Mars | |
Deng et al. | Assimilation of Argo temperature and salinity profiles using a bias-aware localized EnKF system for the Pacific Ocean | |
Sun et al. | Statistical characteristics and mechanisms of mesoscale eddies in the North Indian Ocean | |
Huang et al. | Tropical cyclone structure in the South China Sea based on high-resolution reanalysis data and comparison with that of ‘bogus’ vortices |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |