CN112987770B - Anti-saturation finite-time motion control method for walking feet of amphibious crab-imitating multi-foot robot - Google Patents
Anti-saturation finite-time motion control method for walking feet of amphibious crab-imitating multi-foot robot Download PDFInfo
- Publication number
- CN112987770B CN112987770B CN202110217281.6A CN202110217281A CN112987770B CN 112987770 B CN112987770 B CN 112987770B CN 202110217281 A CN202110217281 A CN 202110217281A CN 112987770 B CN112987770 B CN 112987770B
- Authority
- CN
- China
- Prior art keywords
- robot
- saturation
- walking foot
- observer
- disturbance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 32
- 230000003044 adaptive effect Effects 0.000 claims description 39
- 239000011159 matrix material Substances 0.000 claims description 16
- 239000013598 vector Substances 0.000 claims description 14
- 210000003108 foot joint Anatomy 0.000 claims description 9
- 230000001133 acceleration Effects 0.000 claims description 8
- 238000006243 chemical reaction Methods 0.000 claims description 8
- 238000006073 displacement reaction Methods 0.000 claims description 6
- 230000008569 process Effects 0.000 claims description 6
- 230000005484 gravity Effects 0.000 claims description 3
- 238000013461 design Methods 0.000 description 11
- 230000000694 effects Effects 0.000 description 5
- 230000004044 response Effects 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 238000004088 simulation Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 2
- 210000004394 hip joint Anatomy 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000009193 crawling Effects 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 238000012938 design process Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 210000001503 joint Anatomy 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 239000013643 reference control Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 210000002303 tibia Anatomy 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/08—Control of attitude, i.e. control of roll, pitch, or yaw
- G05D1/0891—Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for land vehicles
Landscapes
- Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Manipulator (AREA)
Abstract
Description
技术领域technical field
本发明涉及多足机器人运动控制方法。属于控制技术领域。The invention relates to a motion control method for a multi-legged robot. It belongs to the field of control technology.
背景技术Background technique
当今世界,科学技术迅猛发展,海洋资源开发需求日益扩大。针对近海海底、浅滩等复杂环境下海洋设施巡检、海洋资源勘探及数据采集、近海侦查、防御与救援等领域的诸多任务,需要研发一种两栖仿蟹多足机器人来完成以上作业任务需求。如图1所示。In today's world, with the rapid development of science and technology, the demand for the development of marine resources is expanding. Aiming at many tasks in the fields of marine facility inspection, marine resource exploration and data collection, offshore reconnaissance, defense and rescue in complex environments such as offshore seabed and shoals, it is necessary to develop an amphibious crab-like multi-legged robot to complete the above tasks. As shown in Figure 1.
两栖仿蟹多足机器人的设计研究交叉融合了多学科、多领域的技术,其爬行模式中的运动控制问题是两栖仿蟹多足机器人研究课题中的一项关键内容,同时也是机器人研究内容中的关键技术难点,其运动控制技术的可靠性决定了两栖仿蟹多足机器人的作业效率和智能化水平,也是保证机器人完成特定作业任务的重要前提。The design and research of the amphibian crab-like multi-legged robot integrates multi-disciplinary and multi-field technologies. The motion control problem in its crawling mode is a key content in the research topic of the amphibian crab-like multi-legged robot, and it is also one of the robot research contents. The reliability of the motion control technology determines the operational efficiency and intelligence level of the amphibious crab-like multi-legged robot, and is also an important prerequisite for the robot to complete specific tasks.
两栖仿蟹多足机器人由于自身的多关节、非线性、多冗余度以及时变特性等特点,导致其运动学、动力学的运动模型具有高度不确定性。首先,机器人在运动过程中需要克服由于自身建模误差导致的模型不确定性以及在海底行走运动时海流的扰动等因素造成的影响;同时,实际控制过程中由于执行器系统非线性特性也会导致输入饱和问题,以上问题都对机器人步行足的控制精度以及响应速度提出了较高的要求。如何有效提高机器人步行足轨迹跟踪控制精度和速度,如何保证机器人在执行器饱和情况下实现稳定高精度快速控制,都是两栖仿蟹多足机器人运动控制研究中需要解决的关键性问题。Due to its multi-joint, nonlinear, multi-redundancy and time-varying characteristics, the amphibious crab-like multi-legged robot has a high degree of uncertainty in its kinematics and dynamics. First of all, the robot needs to overcome the model uncertainty caused by its own modeling error and the influence of the disturbance of the ocean current when walking on the seabed during the movement process. At the same time, in the actual control process, the nonlinear characteristics of the actuator system will also This leads to the problem of input saturation. The above problems all put forward higher requirements for the control accuracy and response speed of the robot's walking feet. How to effectively improve the robot's walking foot trajectory tracking control accuracy and speed, and how to ensure that the robot can achieve stable, high-precision and fast control under the condition of actuator saturation are the key issues that need to be solved in the research on the motion control of amphibious crab-like multi-legged robots.
发明内容SUMMARY OF THE INVENTION
本发明是为了解决现有的仿蟹多足机器人的步行足轨迹跟踪控制存在精度差、速度慢的问题。The invention aims to solve the problems of poor precision and slow speed in the tracking control of the walking foot trajectory of the existing crab-like multi-legged robot.
一种两栖仿蟹多足机器人步行足抗饱和有限时间运动控制方法,包括以下步骤:An anti-saturation limited-time motion control method for a walking foot of an amphibious crab-like multi-legged robot, comprising the following steps:
S1、针对两栖仿蟹多足机器人建立机器人步行足动力学模型:S1. Establish a robot walking foot dynamics model for the amphibious crab-like multi-legged robot:
式中:为集总不确定性,θ∈R3、分别表示机器人步行足关节角度、关节角速度、关节角加速度矢量;其中M0(θ)、g0(θ)为模型已知标称部分,分别表示正定惯性矩阵、科氏力和离心力项、重力和浮力项产生的恢复力项,ΔM(θ)、Δg(θ)对应为建模误差导致的不确定部分,Fs(θ)为机器人受到的地面广义反力项,τd为海流扰动,τ为期望控制力/力矩输入,sat(·)为饱和函数;where: is the lumped uncertainty, θ∈R 3 , respectively represent the robot walking foot joint angle, joint angular velocity, and joint angular acceleration vector; where M 0 (θ), g 0 (θ) is the known nominal part of the model, representing the positive definite inertia matrix, Coriolis force and centrifugal force terms, restoring force terms generated by gravity and buoyancy terms, respectively, ΔM(θ), Δg(θ) corresponds to the uncertain part caused by the modeling error, F s (θ) is the generalized ground reaction force on the robot, τ d is the current disturbance, τ is the expected control force/torque input, and sat( ) is saturation function;
S2、基于两栖仿蟹多足机器人步行足动力学模型,确定自适应有限时间干扰观测器:S2. Determine the adaptive finite-time disturbance observer based on the walking foot dynamics model of the amphibious crab-like multi-legged robot:
滑动变量η∈R3为满足以下辅助动力学方程的变量;sliding variable η∈R3 is a variable that satisfies the following auxiliary kinetic equation;
式中:为d的估计值,为滑模项,为辅助动力学方程的增益;where: is the estimated value of d, is the sliding mode term, is the gain of the auxiliary kinetic equation;
定义为干扰估计误差,可得:definition For the interference estimation error, we can get:
自适应有限时间干扰观测器如下:The adaptive finite-time disturbance observer is as follows:
式中:ξ为辅助变量,为α的估计值,为观测器增益;σ表示对时间t的积分变量;α集总不确定性d的导数边界值;where: ξ is an auxiliary variable, is the estimated value of α, is the observer gain; σ represents the integral variable with respect to time t; α is the derivative boundary value of the lumped uncertainty d;
由式自适应有限时间干扰观测器和干扰误差可得:The adaptive finite-time disturbance observer and disturbance error can be obtained by Eq.:
自适应律为:The adaptive law is:
其中,γ、δ是正常数;Among them, γ and δ are normal numbers;
S3、利用辅助系统处理输入饱和的影响,辅助系统如下:S3. Use the auxiliary system to deal with the influence of input saturation. The auxiliary system is as follows:
式中,ζ=(ζ1,ζ2,ζ3)T为辅助系统的状态向量,A=diag{ai}3×3、B=[b1,b2,b3]T为参数矩阵及参数向量,其中ai>0,bi>0,i=1,2,3;sgn(ζ)=(sgn(ζ1),sgn(ζ2),sgn(ζ3))T,sgn(·)为符号函数;P=diag{||pi||}3×3,其中pi为控制增益矩阵M0 -1的第i行;In the formula, ζ=(ζ 1 , ζ 2 , ζ 3 ) T is the state vector of the auxiliary system, A=diag{a i } 3×3 , B=[b 1 ,b 2 ,b 3 ] T is the parameter matrix and a parameter vector, where a i > 0, b i > 0, i=1, 2, 3; sgn(ζ)=(sgn(ζ 1 ), sgn(ζ 2 ), sgn(ζ 3 )) T , sgn (·) is the sign function; P=diag{||pi ||} 3×3 , where pi is the ith row of the control gain matrix M 0 -1 ;
S4、利用基于输入饱和下基于自适应有限时间干扰观测器AFTDO的快速终端滑模控制器对机器人步行足运动进行控制;S4, using the fast terminal sliding mode controller based on the adaptive finite time disturbance observer AFTDO under input saturation to control the motion of the robot's walking foot;
所述的基于输入饱和下基于自适应有限时间干扰观测器AFTDO的快速终端滑模控制器如下:The described fast terminal sliding mode controller based on adaptive finite-time disturbance observer AFTDO under input saturation is as follows:
τ=τ0+τ1+τ2 τ=τ 0 +τ 1 +τ 2
τ2=-M0(θ)(Aζ+B+σ0Psgn(ζ))τ 2 =-M 0 (θ)(Aζ+B+σ 0 Psgn(ζ))
其中,τ0为等效控制项,τ1为干扰观测器的辅助控制项,τ2为饱和补偿项;e、分别为关节角位移跟踪误差和角速度跟踪误差;S为全局快速终端滑模面;λ>0,μ>0为正对角矩阵;p和q为奇数且p<q;k1,k2>0为控制参数。Among them, τ 0 is the equivalent control term, τ 1 is the auxiliary control term of the disturbance observer, and τ 2 is the saturation compensation term; e, are the joint angular displacement tracking error and angular velocity tracking error, respectively; S is the global fast terminal sliding mode surface; λ>0, μ>0 is a positive diagonal matrix; p and q are odd numbers and p<q; k 1 , k 2 > 0 is the control parameter.
进一步地,所述的关节角位移跟踪误差和角速度跟踪误差分别如下:Further, the joint angular displacement tracking error and angular velocity tracking error are as follows:
e=θ-θd e =θ-θd
其中,θd为机器人步行足关节期望角度。Among them, θ d is the desired angle of the robot walking foot joint.
进一步地,所述的全局快速终端滑模面为:Further, the described global fast terminal sliding surface is:
其中,(·)p/q表示幂运算。where (·) p/q represents exponentiation.
进一步地,辅助动力学方程的增益如下:Further, the gain of the auxiliary kinetic equation as follows:
其中,c0、γ0、γ1、γ2、γ3、γ4均为正常数。Among them, c 0 , γ 0 , γ 1 , γ 2 , γ 3 , and γ 4 are all positive numbers.
进一步地,所述观测器增益 Further, the observer gain
进一步地,所述的机器人步行足动力学模型中的sat(τ)=[sat(τ1),sat(τ2),sat(τ3)]T,sat(·)为饱和函数:Further, in the described robot walking foot dynamics model, sat(τ)=[sat(τ 1 ), sat(τ 2 ), sat(τ 3 )] T , sat( ) is a saturation function:
其中,i=1,2,3,τmax、τmin分别为最大控制力/力矩输入和最小控制力/力矩输入。Among them, i=1, 2, 3, τ max and τ min are the maximum control force/torque input and the minimum control force/torque input, respectively.
进一步地,所述针对两栖仿蟹多足机器人建立机器人步行足动力学模型的过程包括以下步骤:Further, the process of establishing a robot walking foot dynamics model for the amphibious crab-like multi-legged robot includes the following steps:
首先构建机器人机械臂动力学模型:First, construct the dynamic model of the robot arm:
式中,θ∈R3、分别表示机器人步行足关节角度、关节角速度、关节角加速度矢量;M(θ)=M0(θ)+ΔM(θ),g(θ)=g0(θ)+Δg(θ);其中M0(θ)、g0(θ)为模型已知标称部分,ΔM(θ)、Δg(θ)代表建模误差导致的不确定部分,Fs(θ)为机器人受到的地面广义反力项,τd为海流扰动;In the formula, θ∈R 3 , respectively represent the robot walking foot joint angle, joint angular velocity, and joint angular acceleration vector; M(θ)=M 0 (θ)+ΔM(θ), g(θ)=g 0 (θ)+Δg(θ); where M 0 (θ), g 0 (θ) is the known nominal part of the model, ΔM(θ), Δg(θ) represents the uncertain part caused by the modeling error, F s (θ) is the generalized ground reaction force on the robot, and τ d is the current disturbance;
将集总不确定性引入机器人机械臂动力学模型,得到:aggregate uncertainty Introducing the dynamic model of the robot arm, we get:
然后基于输入饱和确定机器人步行足动力学模型 The robot walking foot dynamics model is then determined based on input saturation
有益效果:Beneficial effects:
本发明针对两栖仿蟹多足机器人步行足轨迹跟踪控制问题,综合考虑输入饱和情况下模型参数不确定性和海流扰动不确定性,提出了一种自适应有限时间干扰观测器(Adaptive Finite Time DisturbanceObserver,AFTDO)来解决海流干扰和建模误差产生的集总不确定性观测问题,并采用不依赖于精确动力学模型的控制方法,提出一种考虑输入饱和的基于自适应有限时间干扰观测器的全局快速终端滑模控制器,实现对两栖仿蟹多足机器人的步行足轨迹跟踪控制。Aiming at the tracking control problem of the walking foot trajectory of an amphibious crab-like multi-legged robot, the invention comprehensively considers the uncertainty of model parameters and the uncertainty of ocean current disturbance under the condition of input saturation, and proposes an Adaptive Finite Time Disturbance Observer (Adaptive Finite Time Disturbance Observer). , AFTDO) to solve the observation problem of lumped uncertainty caused by current disturbance and modeling error, and adopting a control method that does not depend on the precise dynamic model, an adaptive finite-time disturbance observer-based method considering input saturation is proposed. The global fast terminal sliding mode controller realizes the tracking control of the walking foot trajectory of the amphibious crab-like multi-legged robot.
AFTDO是将系统模型参数不确定性和海流扰动不确定性处理为集总不确定性,构造辅助动力学方程,设计自适应律,改进设计自适应有限时间干扰观测器,实现对集总不确定性的快速准确估计。AFTDO treats the system model parameter uncertainty and ocean current disturbance uncertainty as lumped uncertainties, constructs auxiliary dynamic equations, designs adaptive laws, improves the design of adaptive finite-time disturbance observers, and realizes the detection of lumped uncertainties. Fast and accurate estimation of sex.
输入饱和下基于AFTDO的全局快速终端滑模控制方法是在自适应有限时间干扰观测器的基础上,结合全局快速终端滑模控制快速且在有限时间内到达滑模面的优势,考虑输入饱和情况,构造输入饱和辅助系统,设计输入饱和下基于自适应有限时间干扰观测器的快速终端滑模控制器,提高机器人步行足轨迹跟踪控制精度和响应速度。The global fast terminal sliding mode control method based on AFTDO under input saturation is based on the adaptive finite time disturbance observer, combined with the advantages of the global fast terminal sliding mode control, which is fast and reaches the sliding mode surface in a limited time, considering the input saturation situation. , construct an input saturation auxiliary system, design a fast terminal sliding mode controller based on an adaptive finite-time disturbance observer under input saturation, and improve the control accuracy and response speed of the robot's walking foot trajectory tracking.
附图说明Description of drawings
图1为两栖仿蟹多足机器人示意图;Figure 1 is a schematic diagram of an amphibious crab-like multi-legged robot;
图2为两栖仿蟹多足机器人步行足模型;Figure 2 is a walking foot model of an amphibious crab-like multi-legged robot;
图3为自适应有限时间干扰观测器性能曲线图,其中图3(a)为扰动d1估计性能,图3(b)为扰动d1估计误差;图3(c)为扰动d2估计性能,图3(d)为扰动d2估计误差;图3(e)为扰动d3估计性能,图3(f)为扰动d3估计误差;Fig. 3 is the performance curve of the adaptive finite-time disturbance observer, in which Fig. 3(a) is the estimation performance of disturbance d 1 , Fig. 3(b) is the estimation error of disturbance d 1 ; Fig. 3(c) is the estimation performance of disturbance d 2 , Fig. 3(d) is the estimation error of disturbance d 2 ; Fig. 3(e) is the estimation performance of disturbance d 3 , and Fig. 3(f) is the estimation error of disturbance d 3 ;
图4机器人步行轨迹跟踪控制响应曲线,其中图4(a)为关节1轨迹跟踪性能,图4(b)为关节1轨迹跟踪误差;图4(c)为关节2轨迹跟踪性能,图4(d)为关节2轨迹跟踪误差;图4(e)为关节3轨迹跟踪性能,图4(f)为关节3轨迹跟踪误差。Figure 4. The response curve of robot walking trajectory tracking control, in which Figure 4(a) is the trajectory tracking performance of joint 1, Figure 4(b) is the trajectory tracking error of joint 1; Figure 4(c) is the trajectory tracking performance of joint 2, Figure 4( d) is the trajectory tracking error of joint 2; Figure 4(e) is the trajectory tracking performance of joint 3, and Figure 4(f) is the trajectory tracking error of
具体实施方式Detailed ways
在说明具体实施方式之前,首先对本发明的参数定义进行一下说明:Before describing the specific implementation manner, the parameter definitions of the present invention are first described as follows:
M0(θ)——正定惯性矩阵;——科氏力和离心力项;g0(θ)——重力和浮力项产生的恢复力项;θ∈R3、——机器人步行足关节角度、关节角速度、关节角加速度矢量;e=θ-θd——跟踪误差;τ——控制输入;τd——海流扰动;d——包括模型不确定性、地面广义力以及海流扰动的集总不确定性。M 0 (θ)——positive definite inertia matrix; - Coriolis force and centrifugal force terms; g 0 (θ) - restoring force terms generated by gravity and buoyancy terms; θ∈R 3 , ——joint angle, joint angular velocity, and joint angular acceleration vector of robot walking foot; e =θ-θd——tracking error; τ——control input; τd——current disturbance; d ——including model uncertainty, ground Generalized forces and lumped uncertainties in ocean current disturbances.
具体实施方式一:Specific implementation one:
本实施方式所述的一种两栖仿蟹多足机器人步行足抗饱和有限时间运动控制方法,包括以下步骤:The limited-time motion control method for walking feet of an amphibious crab-like multi-legged robot described in this embodiment includes the following steps:
S1、基于两栖仿蟹多足机器人步行足动力学模型进行两栖仿蟹多足机器人步行足动力学模型变换:S1. Transform the walking foot dynamics model of the amphibious crab-like multi-legged robot based on the walking foot dynamics model of the amphibious crab-like robot:
两栖仿蟹多足机器人步行足运动模型如图2所示,对步行足建立坐标系,其中步行足的固定坐标系为O-X0Y0Z0,髋关节坐标系为O-X1Y1Z1,股关节坐标系为O-X2Y2Z2,胫关节坐标系为O-X3Y3Z3,步行足末端点坐标系为O-X4Y4Z4,其中步行足固定坐标系也是步行足与机器人机体连接处的坐标系。The walking foot motion model of the amphibian crab-like multi-legged robot is shown in Figure 2. A coordinate system is established for the walking foot. The fixed coordinate system of the walking foot is OX 0 Y 0 Z 0 , and the hip joint coordinate system is OX 1 Y 1 Z 1 . The coordinate system of the hip joint is OX 2 Y 2 Z 2 , the coordinate system of the tibia joint is OX 3 Y 3 Z 3 , and the coordinate system of the end point of the walking foot is OX 4 Y 4 Z 4 . The fixed coordinate system of the walking foot is also the walking foot and the robot body. The coordinate system of the connection.
两栖仿蟹多足机器人步行足动力学方程采用基于欧拉-拉格朗日方法推导的机器人机械臂动力学模型:The dynamic equation of the walking foot of the amphibian crab-like multi-legged robot adopts the dynamic model of the robot arm derived based on the Euler-Lagrange method:
式中:θ∈R3、分别表示机器人步行足关节角度、关节角速度、关节角加速度矢量;M(θ)=M0(θ)+ΔM(θ),g(θ)=g0(θ)+Δg(θ),Fs(θ)=Ji TFi。其中M0(θ)、g0(θ)为模型已知标称部分,ΔM(θ)、Δg(θ)代表建模误差导致的不确定部分,Fs(θ)为机器人受到的地面广义反力项,τd为海流扰动,Ji T为机器人第i条步行足的雅克比转置矩阵;Fi=[fix,fiy,fiz]T为处于支撑相的第i条步行足受到的反力向量。where: θ∈R 3 , respectively represent the robot walking foot joint angle, joint angular velocity, and joint angular acceleration vector; M(θ)=M 0 (θ)+ΔM(θ), g(θ)=g 0 (θ)+Δg(θ), F s (θ)=J i T F i . where M 0 (θ), g 0 (θ) is the known nominal part of the model, ΔM(θ), Δg(θ) represents the uncertain part caused by the modeling error, F s (θ) is the generalized ground reaction force on the robot, τ d is the current disturbance, and J i T is the Jacobian transpose of the ith walking foot of the robot matrix; F i =[ fix , f iy , f iz ] T is the reaction force vector received by the i-th walking foot in the support phase.
令为集总不确定性,代入式(1)得:make is the lumped uncertainty, substituting into equation (1), we get:
由于机器人步行足在摆动过程中不会受到地面力的作用,此外机器人在运动过程中由于建模误差会产生模型不确定性和海流扰动的影响,同时由于执行器系统存在输入饱和的非线性特性,将会导致系统控制器不能继续对系统误差信号产生响应,进一步使控制器不能正常发挥作用。所以本发明考虑机器人在海流干扰和建模误差产生的集总不确定性以及输入饱和的情况,建立机器人步行足动力学模型为:The walking foot of the robot will not be affected by the ground force during the swing process. In addition, the robot will generate model uncertainty and ocean current disturbance due to modeling errors during the movement process. At the same time, the actuator system has nonlinear characteristics of input saturation. , which will cause the system controller to not continue to respond to the system error signal, further making the controller unable to function normally. Therefore, the present invention considers the lumped uncertainty and input saturation of the robot in the current disturbance and modeling error, and establishes the robot walking foot dynamics model as follows:
式中:为集总不确定性,θ∈R3、分别表示机器人步行足关节角度、关节角速度、关节角加速度矢量;M(θ)=M0(θ)+ΔM(θ),g(θ)=g0(θ)+Δg(θ),Fs(θ)=Ji TFi。其中M0(θ)、g0(θ)为模型已知标称部分,ΔM(θ)、Δg(θ)代表建模误差导致的不确定部分,Fs(θ)为机器人受到的地面广义反力项,τd为海流扰动,sat(τ)=[sat(τ1),sat(τ2),sat(τ3)]T,τ为设计的期望控制力/力矩输入,sat(·)为饱和函数:where: is the lumped uncertainty, θ∈R 3 , respectively represent the robot walking foot joint angle, joint angular velocity, and joint angular acceleration vector; M(θ)=M 0 (θ)+ΔM(θ), g(θ)=g 0 (θ)+Δg(θ), F s (θ)=J i T F i . where M 0 (θ), g 0 (θ) is the known nominal part of the model, ΔM(θ), Δg(θ) represents the uncertain part caused by modeling error, F s (θ) is the generalized ground reaction force term received by the robot, τ d is the current disturbance, sat(τ)=[sat(τ 1 ), sat(τ 2 ), sat(τ 3 )] T , τ is the expected control force/torque input of the design, and sat( ) is the saturation function:
S2、基于两栖仿蟹多足机器人步行足动力学模型,设计自适应有限时间干扰观测器:S2. Based on the walking foot dynamics model of the amphibious crab-like multi-legged robot, an adaptive finite-time disturbance observer is designed:
定义滑动变量为并且η∈R3满足以下辅助动力学方程:Define the sliding variable as And η∈R 3 satisfies the following auxiliary kinetic equation:
式中:为d的估计值,为滑模项,且标量为辅助动力学方程(5)的增益。where: is the estimated value of d, is the sliding mode term, and the scalar is the gain of the auxiliary kinetic equation (5).
定义为干扰估计误差。则由式(2)和式(5)可得:definition Estimate the error for the interference. Then from formula (2) and formula (5), we can get:
为了估计和补偿集总参数的不确定性,下面设计自适应有限时间干扰观测器:To estimate and compensate for the uncertainty of the lumped parameters, an adaptive finite-time disturbance observer is designed as follows:
式中:ξ为辅助变量,为α的估计值,为观测器增益。where: ξ is an auxiliary variable, is the estimated value of α, is the observer gain.
由式(7)和干扰误差定义可得:From equation (7) and the definition of interference error, we can get:
对于辅助动力学方程(5)和自适应有限时间观测器系统,选择下式为未知增益:For the auxiliary kinetic equation (5) and the adaptive finite-time observer system, the following equation is chosen as the unknown gain:
则自适应律设计为:Then the adaptive law is designed as:
其中:γ,δ是正常数,则估计误差将在有限时间内收敛到包含平衡点在内的有界区域。Among them: γ, δ are normal numbers, then the estimation error will converge to the inclusive equilibrium point in finite time bounded area inside.
S3、设计输入饱和辅助系统:S3. Design input saturation auxiliary system:
系统(3)中考虑了系统输入饱和问题,对于实际控制系统,期望控制输入τ和实际控制输入sat(τ)之间的差值Δτ要足够小,因为控制输入饱和时还要满足系统的能控性。由于扰动和系统状态有界,则所需的控制输入有界。为了满足这个假设,参数σ0可以较大。定义Δτ并假设其满足条件:||Δτ||=||τ-sat(τ)||≤σ0,其中σ0为已知常数。The system input saturation problem is considered in system (3). For the actual control system, the difference Δτ between the expected control input τ and the actual control input sat(τ) should be small enough, because the control input must satisfy the energy of the system when the control input is saturated. control. Since the disturbance and the system state are bounded, the desired control input is bounded. To satisfy this assumption, the parameter σ 0 can be large. Define Δτ and assume that it satisfies the condition: ||Δτ||=||τ-sat(τ)||≤σ 0 , where σ 0 is a known constant.
设计辅助系统来处理输入饱和的影响,设计辅助系统如下:Auxiliary systems are designed to handle the effects of input saturation as follows:
式中,ζ=(ζ1,ζ2,ζ3)T为辅助系统的状态量,A=diag{ai}3×3和B=[b1,b2,b3]T为设计矩阵及设计向量,其中ai>0,bi>0,i=1,2,3。此外,sgn(ζ)=(sgn(ζ1),sgn(ζ2),sgn(ζ3))T,sgn(·)为符号函数;P=diag{||pi||}3×3,其中pi为控制增益矩阵M0 -1的第i行。辅助状态量在有限时间内收敛到零。In the formula, ζ=(ζ 1 , ζ 2 , ζ 3 ) T is the state quantity of the auxiliary system, A=diag{a i } 3×3 and B=[b 1 ,b 2 ,b 3 ] T is the design matrix and design vectors, where a i > 0, b i > 0, i=1, 2, 3. In addition, sgn(ζ)=(sgn(ζ 1 ), sgn(ζ 2 ), sgn(ζ 3 )) T , sgn(·) is a sign function; P=diag{||pi || } 3×3 , where pi is the ith row of the control gain matrix M 0 -1 . The auxiliary state quantity converges to zero in finite time.
S4、基于机器人在海流干扰和建模误差产生的集总不确定性以及输入饱和的情况,设计输入饱和下基于自适应有限时间干扰观测器AFTDO的快速终端滑模控制器为:S4. Based on the lumped uncertainty and input saturation of the robot under the current disturbance and modeling error, the fast terminal sliding mode controller based on the adaptive finite-time disturbance observer AFTDO under the input saturation is designed as:
τ=τ0+τ1+τ2 (12)τ=τ 0 +τ 1 +τ 2 (12)
τ2=-M0(θ)(Aζ+B+σ0Psgn(ζ)) (15)τ 2 =-M 0 (θ)(Aζ+B+σ 0 Psgn(ζ)) (15)
其中τ0为等效控制项,τ1为干扰观测器的辅助控制项,τ2为饱和补偿项,k1,k2>0为控制参数。Among them, τ 0 is the equivalent control item, τ 1 is the auxiliary control item of the disturbance observer, τ 2 is the saturation compensation item, and k 1 , k 2 >0 are the control parameters.
为了充分说明本发明创新性,现对本发明控制器的设计过程和原理进行如下说明:In order to fully illustrate the innovation of the present invention, the design process and principle of the controller of the present invention are now described as follows:
P1:采用基于欧拉-拉格朗日方法推导的机器人机械臂动力学模型建立两栖仿蟹多足机器人步行足动力学方程:P1: Using the dynamic model of the robotic arm derived based on the Euler-Lagrangian method to establish the walking foot dynamics equation of the amphibian crab-like multi-legged robot:
式中:θ∈R3、分别表示机器人步行足关节角度、关节角速度、关节角加速度矢量;M(θ)=M0(θ)+ΔM(θ),g(θ)=g0(θ)+Δg(θ),Fs(θ)=Ji TFi。其中M0(θ)、g0(θ)为模型已知标称部分,ΔM(θ)、Δg(θ)代表建模误差导致的不确定部分,Fs(θ)为机器人受到的地面广义反力项,τd为海流扰动,τ为控制输入。where: θ∈R 3 , respectively represent the robot walking foot joint angle, joint angular velocity, and joint angular acceleration vector; M(θ)=M 0 (θ)+ΔM(θ), g(θ)=g 0 (θ)+Δg(θ), F s (θ)=J i T F i . where M 0 (θ), g 0 (θ) is the known nominal part of the model, ΔM(θ), Δg(θ) represents the uncertain part caused by the modeling error, F s (θ) is the generalized ground reaction force on the robot, τ d is the current disturbance, and τ is the control input.
令为包括模型不确定性、地面广义力以及海流扰动的集总不确定性,代入式(16)得:make In order to include the model uncertainty, the ground generalized force and the lumped uncertainty of ocean current disturbance, substituting into Equation (16), we get:
其中:in:
ρ=τd+Fs(θ) (19)ρ=τ d +F s (θ) (19)
上式具有以下性质:The above formula has the following properties:
性质1:矩阵为斜对称矩阵;Property 1: Matrix is an obliquely symmetric matrix;
性质2:矩阵M0(θ)正定;Property 2: The matrix M 0 (θ) is positive definite;
性质3:不等式||g0(θ)||≤g0成立,c0、g0为已知正常数。Property 3: Inequality ||g 0 (θ)||≤g 0 holds, and c 0 and g 0 are known positive numbers.
引理1:系统模型不确定性未知但是满足以下有界条件:||ΔM(θ)||≤γ0、||Δg(θ)||≤γ3;M-1(θ)存在且有界,M-1(θ)≤γ2。Lemma 1: The uncertainty of the system model is unknown but the following bounded conditions are satisfied: ||ΔM(θ)||≤γ 0 , ||Δg(θ)||≤γ 3 ; M −1 (θ) exists and is bounded, and M −1 (θ)≤γ 2 .
假设1:ρ未知但有界,||ρ||≤γ4。Assumption 1: ρ is unknown but bounded, ||ρ||≤γ 4 .
引理2:假设d的导数未知但有界,用未知常数α表示。Lemma 2: Suppose the derivative of d is unknown but bounded, denoted by an unknown constant α.
其中,γ0、γ1、γ2、γ3、γ4为已知正常数。Among them, γ 0 , γ 1 , γ 2 , γ 3 , and γ 4 are known positive numbers.
由以上性质、定理和假设可以得出:From the above properties, theorems and assumptions, it can be concluded that:
其中:in:
引理3:考虑如下系统:假设有李雅普诺夫函数V(x),满足条件(1)V(x)为正定函数,(2)存在任意实数a>0,0<b<∞,以及原点的开放区域U0∈U,这样那么系统是有限时间稳定的,且有限收敛时间为 Lemma 3: Consider the following system: Suppose there is a Lyapunov function V(x), satisfying the conditions (1) V(x) is a positive definite function, (2) there is any real number a>0, 0<b<∞, and the open area U 0 ∈ U of the origin, such that Then the system is stable in finite time, and the finite convergence time is
P2、自适应有限时间干扰观测器:P2, adaptive finite time disturbance observer:
基于步行足动力学模型以上假设、性质条件,设计自适应有限时间干扰观测器,定义滑动变量为并且η∈R3满足以下辅助动力学方程:Based on the above assumptions and property conditions of the walking foot dynamics model, an adaptive finite-time disturbance observer is designed, and the sliding variable is defined as And η∈R 3 satisfies the following auxiliary kinetic equation:
式中:η为满足上述辅助方程的变量,为d的估计值,为滑模项,且标量为满足式(17)辅助动力学方程(22)的增益。In the formula: η is a variable that satisfies the above auxiliary equation, is the estimated value of d, is the sliding mode term, and the scalar is the gain of the auxiliary kinetic equation (22) to satisfy equation (17).
定义为干扰估计误差。则由式(17)和式(22)可得:definition Estimate the error for the interference. Then from formula (17) and formula (22), we can get:
为了估计和补偿集总参数的不确定性,下面设计自适应有限时间干扰观测器:To estimate and compensate for the uncertainty of the lumped parameters, an adaptive finite-time disturbance observer is designed as follows:
式中:ξ为辅助变量,为α的估计值,为观测器增益。σ表示对时间的积分变量,表示在0到时间t的范围内对g0(θ)的积分;α集总不确定性d的导数边界值;where: ξ is an auxiliary variable, is the estimated value of α, is the observer gain. σ denotes the integral variable with respect to time, represents the integral of g 0 (θ) over the
由式(24)和干扰误差定义可得:From equation (24) and the definition of interference error, we can get:
对于辅助动力学方程(22)和自适应有限时间观测器系统,选择下式为未知增益:For the auxiliary kinetic equation (22) and the adaptive finite-time observer system, the following equation is chosen as the unknown gain:
则自适应律设计为:Then the adaptive law is designed as:
其中:γ,δ是正常数,则估计误差将在有限时间内收敛到包含平衡点在内的有界区域。Among them: γ, δ are normal numbers, then the estimation error will converge to the inclusive equilibrium point in finite time bounded area inside.
证明如下:The proof is as follows:
第一步需要证明s=0在有限时间内可达,将李雅普诺夫函数取为:The first step is to prove that s=0 is reachable in finite time, and the Lyapunov function is taken as:
V1=sTM0(θ)s (28)V 1 =s T M 0 (θ)s (28)
对上式关于时间求导得:Derivating the above formula with respect to time gives:
由性质1、3得:From
由式(20)和(26)可得:From equations (20) and (26), we can get:
通过以上证明可以得出结论,滑动变量s可以在有限时间内收敛到零,其中V1(0)为V1的初始值,此后始终成立。基于等效变换,将等效为式(23)中的即 From the above proof it can be concluded that the sliding variable s can be in finite time converges to zero, where V 1 (0) is the initial value of V 1 and thereafter always established. Based on the equivalent transformation, the is equivalent to the formula (23) in which is
以上证明了在有限时间内到达s=0的状态,接下来需要证明干扰误差有限时间稳定性,选取李雅普诺夫函数为:The above proves that the state of s=0 is reached in a limited time, and then the interference error needs to be proved For finite time stability, the Lyapunov function is selected as:
定义根据式(25),对V2关于时间求导:definition According to Equation ( 25 ), take the derivative of V2 with respect to time:
将误差等效变换和自适应律(27)带入上式得:Transform the error equivalently and the adaptive law (27) into the above equation to get:
由于下面不等式成立:Since the following inequality holds:
代入式(34)得:Substitute into equation (34) to get:
由于:because:
则:but:
根据引理3李雅普诺夫有限时间稳定理论,干扰误差在有限时间内收敛到有界集合中,其中干扰误差的收敛时间为以上便完成了提出的自适应有限时间干扰观测器的稳定性证明。According to
P3、输入饱和下基于AFTDO的全局快速终端滑模控制器设计:P3. Design of global fast terminal sliding mode controller based on AFTDO under input saturation:
考虑控制系统输入饱和,则式(17)可改写为:Considering the input saturation of the control system, equation (17) can be rewritten as:
假设2:定义Δτ并假设其满足条件:||Δτ||=||τ-sat(τ)||≤σ0,其中σ0为已知常数。Assumption 2: Define Δτ and assume that it satisfies the condition: ||Δτ||=||τ-sat(τ)||≤σ 0 , where σ 0 is a known constant.
首先设计一个辅助系统来处理假设2下输入饱和的影响,设计辅助系统如下:First, an auxiliary system is designed to deal with the effect of input saturation under
定义此时关节角位移和角速度的跟踪误差为:The tracking error of joint angular displacement and angular velocity is defined as:
e=θ-θd (41) e =θ-θd (41)
其中θ为机器人步行足关节实际角度;θd为机器人步行足关节期望角度。where θ is the actual angle of the robot walking foot joint; θ d is the expected angle of the robot walking foot joint.
采用的全局快速终端滑模面为:The global fast terminal sliding surface used is:
其中(·)p/q表示幂运算,其中λ>0,μ>0为设计的正对角矩阵,p和q为奇数且p<q,使系统可以在有限时间内快速到达平衡点,并且在到达滑模面S=0后,误差将在有限时间内收敛到平衡点e=0,其收敛时间ts为:where ( ) p/q represents the power operation, where λ>0, μ>0 is the designed positive diagonal matrix, p and q are odd and p<q, so that the system can quickly reach the equilibrium point in a limited time, and After reaching the sliding mode surface S=0, the error will converge to the equilibrium point e=0 in a finite time, and its convergence time t s is:
对于定义的全局快速终端滑模面,当误差状态e远离平衡点时,线性项λe使系统快速趋向S=0,当误差状态接近原点时,系统的收敛速度主要由非线性项μep/q实现,因此,系统状态可以迅速而精确的收敛到平衡点。For the defined global fast terminal sliding mode surface, when the error state e is far from the equilibrium point, the linear term λe makes the system rapidly tend to S=0, and when the error state is close to the origin, the convergence rate of the system is mainly determined by the nonlinear term μe p/q Therefore, the system state can converge quickly and precisely to the equilibrium point.
对定义的滑模面对时间求导得:Derivation with respect to the defined sliding mode face time gives:
其中, in,
考虑设计辅助系统产生的信号,基于提出的自适应有限时间干扰观测器,根据干扰观测器式(24)、辅助系统式(40)、滑模面式(45)以及相关定理和假设,设计输入饱和下基于自适应有限时间干扰观测器的快速终端滑模控制器为:Considering the signal generated by the design auxiliary system, based on the proposed adaptive finite-time disturbance observer, the design input is based on the disturbance observer equation (24), the auxiliary system equation (40), the sliding surface equation (45), and related theorems and assumptions. The fast terminal sliding mode controller based on adaptive finite-time disturbance observer under saturation is:
τ=τ0+τ1+τ2 (46)τ=τ 0 +τ 1 +τ 2 (46)
τ2=-M0(θ)(Aζ+B+σ0Psgn(ζ)) (49)τ 2 =-M 0 (θ)(Aζ+B+σ 0 Psgn(ζ)) (49)
其中τ0为等效控制项,τ1为干扰观测器的辅助控制项,τ2为饱和补偿项。Among them, τ 0 is the equivalent control item, τ 1 is the auxiliary control item of the disturbance observer, and τ 2 is the saturation compensation item.
引理4:给定以下一阶非线性不等式:其中V(x)表示关于状态x∈R,κ>0,0<η<1的正李雅普诺夫函数,那么对于给定的任意初始条件V(x(0))=V(0),函数V(x)可以有限时间内收敛到原点,收敛时间为: Lemma 4: Given the following first-order nonlinear inequality: where V(x) represents a positive Lyapunov function with respect to the state x∈R, κ>0, 0<η<1, then for any given initial condition V(x(0))=V(0), the function V(x) can converge to the origin in a finite time, and the convergence time is:
证明如下:The proof is as follows:
第一步先证明基于自适应有限时间干扰观测器的全局快速终端滑模控制器稳定。选择李雅普诺夫函数为:The first step is to prove that the global fast terminal sliding mode controller based on adaptive finite-time disturbance observer is stable. The Lyapunov function is chosen as:
将选取的李雅普诺夫函数对时间求导,并代入式(45)得:Taking the time derivative of the selected Lyapunov function and substituting it into equation (45), we get:
将设计的控制律式(46)代入上式得:Substitute the designed control law formula (46) into the above formula to get:
其中,(||ST sgn(S)||1)为1范数,与2范数(||S||)存在不等式关系,并且选取其中χ>0为一个常数,为一个正常数使成立,得到:Among them, (||S T sgn(S)|| 1 ) is the 1-norm, and there is an inequality relationship with the 2-norm (||S||), and select where χ>0 is a constant, for a constant established, get:
根据引理4,系统能够在有限时间内收敛,收敛的有限时间为以上便完成了快速终端滑模控制器的有限时间稳定性证明。According to
然后证明考虑输入饱和后给出的辅助系统的有限时间收敛性。选择李雅普诺夫函数为:The finite-time convergence of the given auxiliary system after considering input saturation is then demonstrated. The Lyapunov function is chosen as:
根据式(40),V4对时间的导数为:According to equation (40), the derivative of V4 with respect to time is:
根据引理4,设计的辅助系统(40)能在有限时间内收敛,且有限收敛时间为: According to
为了证明考虑输入饱和的基于自适应有限时间干扰观测器的全局快速终端滑模控制方法的有限时间收敛性能,即证明机器人控制器设计为式(47)-(49)时,包含观测器和输入饱和在内的整个系统的有限时间稳定性。In order to prove the finite-time convergence performance of the global fast terminal sliding mode control method based on adaptive finite-time disturbance observer considering input saturation, it is proved that when the robot controller is designed as equations (47)-(49), the observer and the input are included. The finite time stability of the entire system including saturation.
选择李雅普诺夫函数为:The Lyapunov function is chosen as:
对时间求导并根据式(38)、(53)、(55)可得:Derivative with respect to time and according to equations (38), (53), (55), we can get:
其中 in
根据引理3,考虑输入饱和情况下基于自适应有限时间干扰观测器的全局快速终端滑模控制器能够在有限时间内收敛,收敛时间为 以上便完成了整个系统的稳定性和有限时间收敛性能的证明。According to
实施例Example
为了验证以上关节控制器的控制性能,按照具体实施方式一的方案将对机器人步行足的动力学控制通过MATLAB进行仿真,验证进设计后的控制器(本发明)性能。自适应有限时间干扰观测器的参数分别为:c0=50,Θ0=[60,100,120]T,γ=1,δ=0.1;控制器的参数设置分别为:λ=diag[5,5,5],μ=diag[0.1,0.1,0.1],k1=diag[5,5,5],k2=diag[0.01,0.01,0.01],p=3,q=5;考虑输入饱和情况下设计的辅助系统参数为:A=diag[5,3,5],B=[0.1,0.2,0.3]T,P=diag[0.01,0.01,0.02],σ0=100,设置输入饱和界限值为±50Nm;模型参数不确定度为标称系统动力学参数的20%,定义集总不确定性为:d=[1+0.3sin(0.3t)cos(0.2t),0.5+0.1sin(0.2t)cos(0.1t),0.1+0.1sin(0.2t)]。机器人步行足各关节的角度位置为[θ1,θ2,θ3]=[30°,45°,90°],步行足初始位置随机设定。对比分析改进观测器效果以及参考控制算法和改进提出的控制方法的控制性能。In order to verify the control performance of the above joint controller, the dynamic control of the walking foot of the robot is simulated through MATLAB according to the scheme of the
改进观测器的观测效果以及观测误差仿真结果如下图3所示;图3为自适应有限时间干扰观测器性能曲线图,其中图3(a)为扰动d1估计性能,图3(b)为扰动d1估计误差;图3(c)为扰动d2估计性能,图3(d)为扰动d2估计误差;图3(e)为扰动d3估计性能,图3(f)为扰动d3估计误差。The observation effect of the improved observer and the simulation results of the observation error are shown in Fig. 3 below; Fig. 3 is the performance curve of the adaptive finite-time disturbance observer, in which Fig. 3(a) is the estimated performance of the disturbance d 1 , and Fig. 3(b) is the The estimation error of disturbance d 1 ; Fig. 3(c) is the estimation performance of disturbance d 2 , Fig. 3(d) is the estimation error of disturbance d 2 ; Fig. 3(e) is the estimation performance of disturbance d 3 , Fig. 3(f) is the estimation performance of disturbance d 3 Estimation error.
由图3可知,参考观测器方法和改进的观测器方法均能较好的估计观测不确定扰动d,最后估计误差都能保持在零点附近振荡,且振荡范围很小;但是改进的观测器性能效果更优于参考观测器性能,改进观测器方法在估计速度和估计误差方面均比参考观测器方法效果更好,因此验证了改进自适应有限时间干扰观测器的有效性。It can be seen from Fig. 3 that both the reference observer method and the improved observer method can better estimate the observation uncertainty disturbance d, and the final estimation error can keep oscillating around the zero point, and the oscillation range is small; but the improved observer performance The effect is better than the performance of the reference observer, and the improved observer method is better than the reference observer method in terms of estimation speed and estimation error, so the effectiveness of the improved adaptive finite time disturbance observer is verified.
下面验证各关节按照期望轨迹运动时的跟踪控制性能。设置三个关节的位移曲线为正弦曲线,各关节的幅值大小不同,分别为θ1=30sin(t),θ2=45sin(t),θ3=90sin(t),仿真结果如4所示;图4机器人步行轨迹跟踪控制响应曲线,其中图4(a)为关节1轨迹跟踪性能,图4(b)为关节1轨迹跟踪误差;图4(c)为关节2轨迹跟踪性能,图4(d)为关节2轨迹跟踪误差;图4(e)为关节3轨迹跟踪性能,图4(f)为关节3轨迹跟踪误差。The following verifies the tracking control performance when each joint moves according to the desired trajectory. The displacement curves of the three joints are set as sine curves, and the amplitudes of each joint are different, namely θ 1 =30sin(t), θ2 = 45sin (t), and θ3 =90sin(t), and the simulation results are shown in 4. Figure 4 shows the control response curve of robot walking trajectory tracking, in which Figure 4(a) is the trajectory tracking performance of joint 1, Figure 4(b) is the trajectory tracking error of joint 1; Figure 4(c) is the trajectory tracking performance of joint 2. 4(d) is the tracking error of joint 2; Fig. 4(e) is the tracking performance of joint 3, and Fig. 4(f) is the tracking error of
根据图4仿真结果可知,两种控制器都有较好的跟踪控制性能,但在开始阶段,改进控制器具有较快的响应速度,收敛性能也优于参考控制器,并且跟踪误差也比较小,更能满足机器人步行足运动关节对快速性和精度的要求,验证了改进控制器的有效性。According to the simulation results in Fig. 4, both controllers have good tracking control performance, but in the initial stage, the improved controller has faster response speed, better convergence performance than the reference controller, and smaller tracking error. , which can better meet the requirements of the robot's walking foot motion joint for rapidity and accuracy, which verifies the effectiveness of the improved controller.
本发明还可有其它多种实施例,在不背离本发明精神及其实质的情况下,本领域技术人员当可根据本发明作出各种相应的改变和变形,但这些相应的改变和变形都应属于本发明所附的权利要求的保护范围。The present invention can also have other various embodiments. Without departing from the spirit and essence of the present invention, those skilled in the art can make various corresponding changes and deformations according to the present invention, but these corresponding changes and deformations are all It should belong to the protection scope of the appended claims of the present invention.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110217281.6A CN112987770B (en) | 2021-02-26 | 2021-02-26 | Anti-saturation finite-time motion control method for walking feet of amphibious crab-imitating multi-foot robot |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110217281.6A CN112987770B (en) | 2021-02-26 | 2021-02-26 | Anti-saturation finite-time motion control method for walking feet of amphibious crab-imitating multi-foot robot |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112987770A CN112987770A (en) | 2021-06-18 |
CN112987770B true CN112987770B (en) | 2021-09-28 |
Family
ID=76351117
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110217281.6A Active CN112987770B (en) | 2021-02-26 | 2021-02-26 | Anti-saturation finite-time motion control method for walking feet of amphibious crab-imitating multi-foot robot |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112987770B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115202372B (en) * | 2022-09-19 | 2022-11-22 | 泰州朵儿智能科技有限公司 | Bionic four-footed robot control system and method based on foot end force adjustment |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105223808A (en) * | 2015-06-24 | 2016-01-06 | 浙江工业大学 | Based on the mechanical arm system saturation compensation control method that neural network dynamic face sliding formwork controls |
CN107203217A (en) * | 2017-07-26 | 2017-09-26 | 江苏科技大学 | A kind of underwater robot attitude regulation control system based on sliding formwork control |
CN206960964U (en) * | 2017-07-26 | 2018-02-02 | 江苏科技大学 | A kind of underwater robot attitude regulation control system based on sliding formwork control |
CN109564406A (en) * | 2016-08-03 | 2019-04-02 | 孟强 | A kind of adaptive terminal sliding-mode control |
CN110007604A (en) * | 2019-05-14 | 2019-07-12 | 哈尔滨工程大学 | Saturation control method for submarine fixed-point landing of cabled underwater robot based on sliding mode technology |
CN111438691A (en) * | 2020-04-15 | 2020-07-24 | 哈尔滨工程大学 | Bionic Hexapod Robotic Crab Control System |
CN111846009A (en) * | 2020-08-03 | 2020-10-30 | 哈尔滨工程大学 | A multi-legged cooperative fault-tolerant control method for an underwater multi-legged bionic crab robot |
-
2021
- 2021-02-26 CN CN202110217281.6A patent/CN112987770B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105223808A (en) * | 2015-06-24 | 2016-01-06 | 浙江工业大学 | Based on the mechanical arm system saturation compensation control method that neural network dynamic face sliding formwork controls |
CN109564406A (en) * | 2016-08-03 | 2019-04-02 | 孟强 | A kind of adaptive terminal sliding-mode control |
CN107203217A (en) * | 2017-07-26 | 2017-09-26 | 江苏科技大学 | A kind of underwater robot attitude regulation control system based on sliding formwork control |
CN206960964U (en) * | 2017-07-26 | 2018-02-02 | 江苏科技大学 | A kind of underwater robot attitude regulation control system based on sliding formwork control |
CN110007604A (en) * | 2019-05-14 | 2019-07-12 | 哈尔滨工程大学 | Saturation control method for submarine fixed-point landing of cabled underwater robot based on sliding mode technology |
CN111438691A (en) * | 2020-04-15 | 2020-07-24 | 哈尔滨工程大学 | Bionic Hexapod Robotic Crab Control System |
CN111846009A (en) * | 2020-08-03 | 2020-10-30 | 哈尔滨工程大学 | A multi-legged cooperative fault-tolerant control method for an underwater multi-legged bionic crab robot |
Non-Patent Citations (2)
Title |
---|
Adaptive Finite-Time Disturbance Observer Based Sliding mode control for Dual-motor Driving System;Tianyi Zeng;《Hindawi》;20181231;正文第1-10页 * |
带输入饱和的欠驱动水面船参数自适应滑模控制;付明玉等;《哈尔滨工程大学学报》;20190131;第40卷(第1期);正文第202-209页 * |
Also Published As
Publication number | Publication date |
---|---|
CN112987770A (en) | 2021-06-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Dai et al. | An EKF-based fast tube MPC scheme for moving target tracking of a redundant underwater vehicle-manipulator system | |
Fareh et al. | Robust active disturbance rejection control for flexible link manipulator | |
CN107662208B (en) | A finite-time adaptive backstepping control method for flexible joint manipulators based on neural network | |
Yang et al. | Neural networks enhanced adaptive admittance control of optimized robot–environment interaction | |
He et al. | Neural network control of a rehabilitation robot by state and output feedback | |
CN106406085B (en) | Based on the space manipulator Trajectory Tracking Control method across Scale Model | |
CN108388114B (en) | A composite control method of flexible manipulator based on output redefinition | |
CN109514564B (en) | Optimal control method for composite quadratic multi-joint mechanical arm | |
CN110154028A (en) | A Model-Free Adaptive Integral Terminal Sliding Mode Control Method for Manipulators | |
CN111319036A (en) | Self-adaptive algorithm-based mobile mechanical arm position/force active disturbance rejection control method | |
CN111522243A (en) | Robust iterative learning control strategy for five-degree-of-freedom upper limb exoskeleton system | |
Yan et al. | Data-driven model predictive control for redundant manipulators with unknown model | |
CN109189103B (en) | An underactuated AUV trajectory tracking control method with transient performance constraints | |
CN113110512B (en) | Benthonic AUV self-adaptive trajectory tracking control method for weakening unknown interference and buffeting influence | |
Nguyen | Non-Negative Adaptive Mechanism-Based Sliding Mode Control for Parallel Manipulators with Uncertainties. | |
Kim et al. | A study on the design of error-based adaptive robust RBF neural network back-stepping controller for 2-DOF snake robot’s head | |
Lamraoui et al. | Path following control of fully actuated autonomous underwater vehicle based on LADRC | |
CN108267952A (en) | A kind of adaptive finite-time control method of underwater robot | |
CN112987770B (en) | Anti-saturation finite-time motion control method for walking feet of amphibious crab-imitating multi-foot robot | |
Cao et al. | Adaptive motion/force control of constrained manipulators using a new fast terminal sliding mode | |
Wang et al. | Trajectory tracking control for an underwater vehicle manipulator system using a neural-adaptive network | |
Sun et al. | Adaptive tracking control of mobile manipulators with affine constraints and under-actuated joints | |
Zhang et al. | A single parameter-based adaptive approach to robotic manipulators with finite time convergence and actuator fault | |
CN112213949B (en) | Robot joint system tracking control method based on robust self-adaption | |
CN116330272A (en) | Adaptive robust control method for electric mechanical arm considering hydrodynamic influence |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |