CN112986346A - 一种基于BiVO4/Ag2S异质结的光电化学生物传感器及其应用 - Google Patents
一种基于BiVO4/Ag2S异质结的光电化学生物传感器及其应用 Download PDFInfo
- Publication number
- CN112986346A CN112986346A CN202110205845.4A CN202110205845A CN112986346A CN 112986346 A CN112986346 A CN 112986346A CN 202110205845 A CN202110205845 A CN 202110205845A CN 112986346 A CN112986346 A CN 112986346A
- Authority
- CN
- China
- Prior art keywords
- bivo
- heterojunction
- silver
- added
- solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6813—Hybridisation assays
- C12Q1/6816—Hybridisation assays characterised by the detection means
- C12Q1/6825—Nucleic acid detection involving sensors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/75—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
- G01N21/76—Chemiluminescence; Bioluminescence
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/28—Electrolytic cell components
- G01N27/30—Electrodes, e.g. test electrodes; Half-cells
- G01N27/327—Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
- G01N27/3275—Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Molecular Biology (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Electrochemistry (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Plasma & Fusion (AREA)
- Biophysics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
本发明公开了一种基于BiVO4/Ag2S异质结增敏的光电化学生物传感器及其应用;本发明的技术方案是利用磁珠作为载体制备银簇,在外切酶三的协助下释放目标响应的银簇,经氧化释放银离子。银离子与浸泡过硫离子的BiVO4反应形成BiVO4/Ag2S异质结,实现增敏的光电信号,应用于抑癌基因P53的检测。该光电传感器可以拓展到其他生物分子的检测,为疾病的早期诊断和临床研究提供了一种新渠道。
Description
技术领域:
本发明涉及一种基于BiVO4/Ag2S异质结增敏的光电化学生物传感器;以及所述光电化学生物传感器的制备方法及其检测肿瘤抑制基因P53的分析应用。
背景技术:
光电化学(PEC)生物传感技术因其低背景信号、低成本、仪器简单、易于小型化等优点而受到人们的广泛关注[Tang,Y.F.;Chai,Y.;Liu,X.Q.;Li,L.L.;Yang,L.W.;Liu,P.P.;Zhou,Y.M.;Ju,H.X.;Cheng,Y.Z.Biosensors and Bioelectronics 2018,117,224-231.]。钒酸铋(BiVO4)具有带隙窄、无毒、高稳定性和可见光吸收性能等优点,是一种很有前途的光敏材料[Baral,B.;Reddy,K.H.;Parida,K.M.Journal of Colloid andInterface Science 2019,554,278-295.]。然而,单纯的BiVO4由于光生载流子的快速重组,限制了其光电转换效率[Grigioni,I.;Stamplecoskie,K.G.;Selli,E.;Kamat,P.V.J.Phys.Chem.C 2015,119,20792-20800.]。为了促进光生载流子的有效分离,采用两种能级匹配的半导体形成异质结,提高电荷转移速率,改善光电化学性能[Zang,Y.;Lei,J.P.;Hao,Q.;Ju,H.X.;Biosensors and Bioelectronics 2016,77,557-564.]。肿瘤抑制基因p53是迄今为止发现的与人类癌症高度相关的基因,它在调节细胞周期、凋亡、细胞分化、DNA修复等生物学功能中起着至关重要的作用[Han,D.;Wei,C.Y.;RSC Adv.2018,8,25611-25616.]。
本文利用BiVO4作为基底材料,采用离子层吸附反应构建BiVO4/Ag2S异质结,制备了一种简便、实用的光电化学生物传感器,实现了对肿瘤抑癌基因P53的灵敏检测。
发明内容:
本发明的目的之一是利用磁珠(MB)和富含胞嘧啶的DNA链(CP)合成银簇。
具体包括以下步骤:
步骤1.组装CP-MB:10μL 5mg/mL的磁珠(MB)用等体积的乙磺酸(MES)缓冲溶液纯化后,加入50μL 0.5M的1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸(EDC)和N-羟基琥珀酰亚胺(NHS)活化羧基1小时,然后加入30μL 4μM的带氨基的CP DNA链反应过夜,利用磁性分离除去未反应的DNA链,重新分散到等体积的二次水中得到CP-MB,保存在4℃下备用。
步骤2.制备银簇:将30μL 4μM的富含胞嘧啶的CR DNA链加入到制备好的CP-MB中孵育2h,经过磁性分离得到CR-CP-MB。然后将30μL 20mM硝酸银(AgNO3)加入到上述溶液中剧烈搅拌1分钟,放在4℃下孵育1小时。再将新鲜制备的30μL 20mM还原剂硼氢化钠(NaBH4)加入到上述溶液中,剧烈搅拌1分钟,在4℃下避光反应过夜制备银簇。最后利用磁性分离除去多余的未反应的核酸序列和反应试剂,重新分散到等体积二次水中备用。
本发明的目的之二是利用离子层吸附反应制备BiVO4/Ag2S异质结光电化学生物传感器,并将传感器应用于肿瘤抑癌基因P53的分析检测。
具体包括如下步骤:
步骤1.制备基底材料BiVO4:将0.2925g钒酸铵(NH4VO3)和1.2125g硝酸铋(Bi(NO3)3·5H2O)分散到50mL二次水中,不断搅拌得到黄色沉淀,接着过滤沉淀并用水纯化,在60℃下干燥过夜,然后在马弗炉中500℃下加热4小时得到BiVO4。
步骤2.制备BiVO4/Ag2S异质结:将1mg BiVO4粉末分散到1mL含0.2%的壳聚糖水溶液中,超声分散半小时得到富含氨基的BiVO4溶液。然后取10μL该溶液滴到羟基化处理后的氧化铟锡电极(ITO)上自然干燥,再将该电极浸泡到50mM的硫化钠(Na2S)溶液中吸附1分钟,最后用二次水润洗去掉多余的硫离子。
步骤3.构建基于BiVO4/Ag2S异质结的光电化学生物传感器并应用于抑癌基因P53的检测。
将10U外切酶三和不同浓度的目标P53加入到30μL制备好的银簇中在37℃下孵育70分钟,然后通过磁性分离释放银簇。将5μL 30%的双氧水(H2O2)加入到释放的银簇中得到银离子,然后将银离子滴到制备好的电极上反应形成BiVO4/Ag2S异质结。自然干燥后用于PEC信号检测。
附图说明:
图1基于BiVO4/Ag2S异质结检测人类肿瘤抑制基因P53的PEC生物传感原理示意图。
图2基底材料BiVO4:(A)XRD谱图,(B)紫外可见漫反射谱图,(C)红外谱图,(D)光电信号图,(E)TEM图,(F)HRTEM图。
图3(A)(B)为BiVO4的SEM图;(C)(D)为异质结BiVO4/Ag2S的SEM图。
图4异质结BiVO4/Ag2S的(A)XPS总谱图、(B)S 2p谱图、(C)Ag 3d谱图;(D)BiVO4的EDS谱图;(E)异质结BiVO4/Ag2S的EDS谱图。
图5(A)BiVO4和异质结BiVO4/Ag2S光电信号对比图;不同阶段(B)循环伏安图和(C)阻抗图。
图6(A)制备的银簇和DNA的紫外可见吸收对照图;(B)银簇的荧光发射图;(C)银簇的TEM图(附图为HRTEM图);(D)银簇与加双氧水后的紫外-可见吸收对照图。
图7聚丙烯酰胺凝胶电泳表征图。
图8(A)不同目标浓度下的光电流信号响应曲线:0、1fM、10fM、100fM、1.0pM、10pM、100pM、1.0nM、10nM、100nM(从a到k),附图为目标浓度为0和100nM时的光电信号对比;(B)ΔI光电流变化与目标的浓度之间的线性关系。
具体实施方式:
实施例1.基于BiVO4/Ag2S异质结的光电化学传感器对肿瘤抑制基因P53的灵敏检测。
将1mg BiVO4粉末分散到1mL含0.2%的壳聚糖水溶液中,超声分散半小时得到富含氨基的BiVO4溶液。然后取10μL该溶液滴到羟基化处理后的氧化铟锡电极(ITO)上自然干燥,然后将该电极浸泡到50mM硫化钠(Na2S)溶液中吸附1分钟,然后用二次水润洗去掉多余的硫离子,干燥备用。
10μL 5mg/mL的磁珠(MB)用等体积的乙磺酸(MES)缓冲溶液纯化后,加入50μL0.5M的1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸(EDC)和N-羟基琥珀酰亚胺(NHS)活化羧基1小时,然后加入30μL 4μM的带氨基的CP DNA链反应过夜,利用磁性分离除去未反应的DNA链,重新分散到等体积的二次水中得到CP-MB,保存在4℃下备用。
将30μL 4μM的富含胞嘧啶的CR DNA链加入到制备好的CP-MB中孵育2h,后经过磁性分离得到CR-CP-MB。然后将30μL 20mM硝酸银(AgNO3)加入到上述溶液中剧烈搅拌1分钟后放在4℃下孵育1小时,然后将新鲜制备的30μL 20mM还原剂硼氢化钠(NaBH4)加入到上述溶液中,剧烈搅拌1分钟,在4℃下避光反应过夜制备银簇,最后利用磁性分离除去多余的未反应的核酸序列和反应试剂,重新分散到等体积二次水中备用。
将10U外切酶三和不同浓度的目标P53加入到30μL制备好的银簇中在37℃下孵育70分钟,然后通过磁性分离释放银簇。将5μL 30%的双氧水(H2O2)加入到释放的银簇中得到银离子,然后将银离子滴到制备好的电极上反应形成BiVO4/Ag2S异质结。自然干燥后用于PEC信号检测。
实施例2.基于BiVO4/Ag2S异质结的光电化学传感器对肿瘤抑制基因P53的灵敏检测。
将“将该电极浸泡到50mM硫化钠(Na2S)溶液中吸附1分钟。”改为“将该电极浸泡到50mM硫化钠(Na2S)溶液中吸附3分钟”制备的其他条件同实施例1,得到形貌与性质类似于实施例1的PEC生物传感器。对抑癌基因P53的检测结果同实施例1。
实施例3.基于BiVO4/Ag2S异质结的光电化学传感器对肿瘤抑制基因P53的灵敏检测。
将“将30μL 4μM的富含胞嘧啶的CR DNA链加入到制备好的CP-MB中孵育2h。”,改为“将30μL 4μM的富含胞嘧啶的CR DNA链加入到制备好的CP-MB中孵育3h。”制备的其他条件同实施例1,得到形貌与性质类似于实施例1的生物传感平台。对抑癌基因P53的检测的结果同实施例1。
实施例4.基于BiVO4/Ag2S异质结的光电化学传感器对肿瘤抑制基因P53的灵敏检测。
将“将新鲜制备的30μL 20mM还原剂硼氢化钠(NaBH4)加入到上述溶液中”改为“将新鲜制备的40μL 20mM还原剂硼氢化钠(NaBH4)加入到上述溶液中”制备的其他条件同实施例1,得到形貌与性质类似于实施例1的生物传感平台。对抑癌基因P53的检测的结果同实施例1。
实施例5基于BiVO4/Ag2S异质结的光电化学传感器对肿瘤抑制基因P53的灵敏检测。
将“将10U外切酶三和不同浓度的目标P53加入到30μL制备好的银簇中在37℃下孵育70分钟。”改为“将15U外切酶三和不同浓度的目标P53加入到30μL制备好的银簇中在37℃下孵育70分钟。”制备的其他条件同实施例1,得到形貌与性质类似于实施例1的生物传感平台。对抑癌基因P53的检测的结果同实施例1。
Claims (2)
1.一种利用BiVO4/Ag2S异质结的光电化学(PEC)生物传感器,其特征是:BiVO4具有能带隙能量小、无毒、高稳定性和可见光吸收性能等优点,是一种很有前途的光敏材料。然而,单纯的BiVO4由于光生载流子的快速重组,限制了其光电转换效率,因此通过巧妙设计构建了一种新型异质结BiVO4/Ag2S。与单纯BiVO4的光电流相比,异质结的光电信号增敏幅度为112倍。基于光电流信号增强的BiVO4/Ag2S生物传感器可应用于基因P53的灵敏检测,检测的线性检测范围(1fM-100nM)宽,检出限(0.42fM)低。本研究为BiVO4/Ag2S异质结在光电生物传感中的应用开辟了新途径,为肿瘤的早期诊断提供了新技术。
2.一种制备权利要求1所述的利用BiVO4/Ag2S异质结研制光电化学生物传感器的方法和应用,其特征方法由下列步骤组成:
步骤1.制备CP-MB:10μL 5mg/mL羧基磁珠(MB)用等体积的乙磺酸(MES)缓冲溶液纯化后,加入50μL 0.5M的1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸(EDC)和N-羟基琥珀酰亚胺(NHS)活化羧基1小时,然后加入30μL 4μM的带氨基的CP DNA链反应过夜,利用磁性分离除去未反应的DNA链,重新分散到等体积的二次水中得到CP-MB,保存在4℃下备用。
步骤2.制备银簇:将30μL 4μM的富含胞嘧啶的CR DNA链加入到制备好的CP-MB中孵育2h,后经磁性分离后得到CR-CP-MB。然后将30μL 20mM硝酸银(AgNO3)加入到上述溶液中剧烈搅拌1分钟,放在4℃下孵育1小时,然后将新鲜制备的30μL 20mM还原剂硼氢化钠(NaBH4)加入到上述溶液中,剧烈搅拌1分钟,在4℃下避光反应过夜制备银簇。最后利用磁性分离除去多余的未反应的核酸序列和反应试剂,重新分散到等体积二次水中备用。
步骤3.制备BiVO4:将0.2925g钒酸铵(NH4VO3)和1.2125g硝酸铋(Bi(NO3)3·5H2O)分散到50mL二次水中,不断搅拌得到黄色沉淀,接着过滤沉淀并用水纯化,在60℃下干燥过夜,然后在马弗炉中500℃下加热4小时得到BiVO4。
步骤4.基于BiVO4/Ag2S异质结传感器制备过程:将1mg BiVO4粉末分散到1mL含0.2%的壳聚糖水溶液中,超声分散半小时得到富含氨基的BiVO4溶液。然后取10μL该溶液滴到羟基化处理后的氧化铟锡电极(ITO)上自然干燥,然后将该电极浸泡到50mM硫化钠(Na2S)溶液中吸附1分钟,然后用二次水润洗去掉多余的硫离子。将10U外切酶三和不同浓度的目标P53加入到30μL制备好的银簇中在37℃下孵育70分钟,然后通过磁性分离释放银簇。将5μL30%的双氧水(H2O2)加入到释放的银簇中得到银离子,然后将银离子滴到制备好的电极上反应形成BiVO4/Ag2S异质结。自然干燥后用于PEC信号检测。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110205845.4A CN112986346B (zh) | 2021-02-24 | 2021-02-24 | 一种基于BiVO4/Ag2S异质结的光电化学生物传感器及其应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110205845.4A CN112986346B (zh) | 2021-02-24 | 2021-02-24 | 一种基于BiVO4/Ag2S异质结的光电化学生物传感器及其应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112986346A true CN112986346A (zh) | 2021-06-18 |
CN112986346B CN112986346B (zh) | 2022-11-11 |
Family
ID=76350490
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110205845.4A Active CN112986346B (zh) | 2021-02-24 | 2021-02-24 | 一种基于BiVO4/Ag2S异质结的光电化学生物传感器及其应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112986346B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114646635A (zh) * | 2022-03-14 | 2022-06-21 | 福州大学 | 一种基于BiVO4/Ag的光电化学生物传感器及其制备方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102253221A (zh) * | 2011-07-15 | 2011-11-23 | 华中师范大学 | 磷化蛋白的电化学免疫传感器 |
CN107478698A (zh) * | 2017-08-03 | 2017-12-15 | 山东理工大学 | 一种原位生成硫化银竞争型黄曲霉毒素光电化学传感器的制备方法及应用 |
CN109580743A (zh) * | 2018-11-08 | 2019-04-05 | 青岛科技大学 | 一种基于离子交换技术及多重放大反应的光致电化学传感器的研制及其应用 |
CN111690721A (zh) * | 2020-06-16 | 2020-09-22 | 山东商业职业技术学院 | 一种光致电化学生物传感器及其制备方法和应用 |
CN112858412A (zh) * | 2021-02-01 | 2021-05-28 | 青岛科技大学 | 一种利用Bi2Sn2O7/Bi2S3异质结增敏的光致电化学生物传感器及其应用 |
-
2021
- 2021-02-24 CN CN202110205845.4A patent/CN112986346B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102253221A (zh) * | 2011-07-15 | 2011-11-23 | 华中师范大学 | 磷化蛋白的电化学免疫传感器 |
CN107478698A (zh) * | 2017-08-03 | 2017-12-15 | 山东理工大学 | 一种原位生成硫化银竞争型黄曲霉毒素光电化学传感器的制备方法及应用 |
CN109580743A (zh) * | 2018-11-08 | 2019-04-05 | 青岛科技大学 | 一种基于离子交换技术及多重放大反应的光致电化学传感器的研制及其应用 |
CN111690721A (zh) * | 2020-06-16 | 2020-09-22 | 山东商业职业技术学院 | 一种光致电化学生物传感器及其制备方法和应用 |
CN112858412A (zh) * | 2021-02-01 | 2021-05-28 | 青岛科技大学 | 一种利用Bi2Sn2O7/Bi2S3异质结增敏的光致电化学生物传感器及其应用 |
Non-Patent Citations (4)
Title |
---|
BENJAMIN O. ORIMOLADE & OMOTAYO A. AROTIBA: "Towards visible light driven photoelectrocatalysis for water treatment: Application of a FTO / BiVO4/Ag2S heterojunction anode for the removal of emerging pharmaceutical pollutants", 《SCIENTIFIC REPORTS》 * |
PENG GUAN ET AL.: "Boosting Water Splitting Performance of BiVO4 Photoanode through Selective Surface Decoration of Ag2S", 《CHEMCATCHEM》 * |
ZHAO WEI ET AL.: "A novel 3D plasmonic p-n heterojunction photocatalyst: Ag nanoparticles on flower-like p-Ag2S/n-BiVO4 and its excellent photocatalytic reduction and oxidation activities", 《APPLIED CATALYSIS B: ENVIRONMENTAL》 * |
ZHAO WEI ET AL.: "Novel p-n heterojunction photocatalyst fabricated by flower-like BiVO4 and Ag2S nanoparticles: Simple synthesis and excellent photocatalytic performance", 《CHEMICAL ENGINEERING JOURNAL》 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114646635A (zh) * | 2022-03-14 | 2022-06-21 | 福州大学 | 一种基于BiVO4/Ag的光电化学生物传感器及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN112986346B (zh) | 2022-11-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Yan et al. | A highly sensitive uric acid electrochemical biosensor based on a nano-cube cuprous oxide/ferrocene/uricase modified glassy carbon electrode | |
Dashtian et al. | Molecular imprinted poly (2, 5-benzimidazole)-modified VO2–CuWO4 homotype heterojunction for photoelectrochemical dopamine sensing | |
Liu et al. | A TiO2 nanosheet-g-C3N4 composite photoelectrochemical enzyme biosensor excitable by visible irradiation | |
Xu et al. | Electrochemical behavior of cuprous oxide–reduced graphene oxide nanocomposites and their application in nonenzymatic hydrogen peroxide sensing | |
Wei et al. | Novel anti-interference strategy for a self-powered sensor: mediator-free and biospecific photocathode interface | |
Topoglidis et al. | Protein adsorption on nanoporous TiO 2 films: a novel approach to studying photoinduced protein/electrode transfer reactions | |
CN102504533B (zh) | 生物分子功能化石墨烯/金纳米粒子复合薄膜及制备方法 | |
Zhao et al. | Enhanced biosensing platform constructed using urchin-like ZnO-Au@ CdS microspheres based on the combination of photoelectrochemical and bioetching strategies | |
Chen et al. | Recent advances in photoelectrochemical sensing for food safety | |
Liu et al. | Superwettable microwell arrays constructed by photocatalysis of silver-doped-ZnO nanorods for ultrasensitive and high-throughput electroanalysis of glutathione in hela cells | |
CN111965355B (zh) | 一种阴极光电化学免疫传感器及其制备方法与应用 | |
CN111018000B (zh) | 一种花状四氧化三铁-二硫化钼-二氧化锰纳米复合物的制备方法及其应用 | |
Chawla et al. | Facile one pot synthesis of CuO nanostructures and their effect on nonenzymatic glucose biosensing | |
Chen et al. | An enzyme-free photoelectrochemical glucose sensor based on coupling BiVO4 with gold nanoparticles | |
Maduraiveeran et al. | Electrochemical detection of hydrogen peroxide based on silver nanoparticles via amplified electron transfer process | |
Li et al. | Photoelectrochemical biosensor based on BiVO4/Ag2S heterojunction coupled with Exo III-assisted silver nanoclusters amplification for tumor suppressor gene P53 | |
Huang et al. | Ultrasensitive photoelectrochemical platform based on high-efficient photoactive AuNPs@ Bi2S3/Bi2O3 nanocomposite for detection of microRNA-21 | |
Zhao et al. | ZnAgInS quantum dot-decorated BiOI heterostructure for cathodic photoelectrochemical bioanalysis of glucose oxidase | |
Zhang et al. | Self-powered sensor for Hg 2+ detection based on hollow-channel paper analytical devices | |
Guo et al. | A photoelectrochemical immunosensor based on magnetic all-solid-state Z-scheme heterojunction for SARS-CoV-2 nucleocapsid protein detection | |
CN114563454A (zh) | 基于Au/Ti3C2Tx修饰玻碳工作电极的多巴胺电化学传感器及其制备方法 | |
Sun et al. | Photoelectrochemical biosensing of leukemia gene based on CdS/AuNPs/FeOOH Z-scheme heterojunction and a facile reflective device | |
Li et al. | In situ Ba2+ exchange in amorphous TiO2 hollow sphere for derived photoelectrochemical sensing of sulfur dioxide | |
CN112986346B (zh) | 一种基于BiVO4/Ag2S异质结的光电化学生物传感器及其应用 | |
Wang et al. | An ultrasensitive photoelectrochemical biosensor based on AgBiS2/CdS photoanode and multiple signal amplification strategy for the detection of dibutyl phthalate plasticizer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |