CN112975947B - Component pin correction method, device, equipment and storage medium - Google Patents
Component pin correction method, device, equipment and storage medium Download PDFInfo
- Publication number
- CN112975947B CN112975947B CN202011438090.4A CN202011438090A CN112975947B CN 112975947 B CN112975947 B CN 112975947B CN 202011438090 A CN202011438090 A CN 202011438090A CN 112975947 B CN112975947 B CN 112975947B
- Authority
- CN
- China
- Prior art keywords
- component
- component pins
- robot
- position information
- pins
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1602—Programme controls characterised by the control system, structure, architecture
- B25J9/1605—Simulation of manipulator lay-out, design, modelling of manipulator
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1602—Programme controls characterised by the control system, structure, architecture
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1628—Programme controls characterised by the control loop
- B25J9/1633—Programme controls characterised by the control loop compliant, force, torque control, e.g. combined with position control
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1694—Programme controls characterised by use of sensors other than normal servo-feedback from position, speed or acceleration sensors, perception control, multi-sensor controlled systems, sensor fusion
- B25J9/1697—Vision controlled systems
Landscapes
- Engineering & Computer Science (AREA)
- Robotics (AREA)
- Mechanical Engineering (AREA)
- Automation & Control Theory (AREA)
- Manipulator (AREA)
Abstract
本发明实施例公开了一种元器件引脚的矫正方法、装置、设备及存储介质。元器件引脚的矫正方法包括:基于元器件引脚在外力作用下发生变形的力学模型,建立元器件引脚的初始变形量及其在外力作用下的弹性回复量之间的函数关系;获取待焊接焊点的位置信息和元器件引脚的位置信息,并根据待焊接焊点的位置信息和元器件引脚的位置信息,控制机器人以期望姿态到达待焊接焊点周围的工作空间;根据待焊接焊点的位置信息和元器件引脚的位置信息,以及初始变形量与弹性回复量之间的函数关系,控制机器人将元器件引脚矫正至期望位置,以使元器件引脚能够从期望位置回弹至待焊接焊点中心的位置。本发明实施例的技术方案,能够实现高精度的元器件引脚矫正。
Embodiments of the present invention disclose a method, device, equipment and storage medium for correcting component pins. The correction method of the component pins includes: based on the mechanical model of the component pins deformed under the action of external force, establishing the functional relationship between the initial deformation amount of the component pins and the elastic recovery amount under the action of the external force; The position information of the solder joints to be soldered and the position information of the component pins, and according to the position information of the solder joints to be soldered and the position information of the component pins, the robot is controlled to reach the workspace around the solder joints to be soldered in the desired attitude; The position information of the solder joints to be welded and the position information of the component pins, as well as the functional relationship between the initial deformation amount and the elastic recovery amount, control the robot to correct the component pins to the desired position, so that the component pins can be moved from The desired position springs back to the position of the center of the solder joint to be welded. The technical solutions of the embodiments of the present invention can realize high-precision component pin correction.
Description
技术领域technical field
本发明实施例涉及机器人技术领域,尤其涉及一种元器件引脚的矫正方法、装置、设备及存储介质。Embodiments of the present invention relate to the field of robotics, and in particular, to a method, device, device, and storage medium for correcting component pins.
背景技术Background technique
目前,基于机器人技术的自动焊接系统广泛应用于集成电子设备的制造,例如采用机械臂加持焊笔配合焊锡丝传送的自动焊接系统,已成功应用于直插式电子元器件以及异型元件的自动焊接。At present, automatic welding systems based on robot technology are widely used in the manufacture of integrated electronic equipment. For example, automatic welding systems that use robotic arms to support soldering pens and solder wire transmission have been successfully applied to automatic welding of in-line electronic components and special-shaped components. .
然而,实际自动焊接系统生产线上存在焊接良品率较低的问题,容易出现焊接缺陷。例如,由于自动插件机存在不确定性,会导致元器件引脚偏离焊点通孔的轴线,影响熔融焊料的分布,造成引脚两侧焊料分布不均,从而影响焊点的机械稳定性及可靠性。同时,引脚偏离焊点通孔轴线还增加了相邻焊点发生桥接短路故障的概率。并且,元器件引脚一般为具有柔性的金属材料,因而在运输、储存以及插件过程中容易发生弯曲变形,进一步加剧了上述元器件引脚的焊接缺陷问题,制约了自动焊接技术的大规模应用。However, the actual automatic welding system production line has the problem of low welding yield, and welding defects are prone to occur. For example, due to the uncertainty of the automatic plug-in machine, it will cause the component pins to deviate from the axis of the solder joint through holes, which will affect the distribution of molten solder, resulting in uneven distribution of solder on both sides of the pins, thereby affecting the mechanical stability of the solder joints. reliability. At the same time, the deviation of the pin from the axis of the solder joint through hole also increases the probability of bridging short-circuit faults in adjacent solder joints. In addition, the component pins are generally made of flexible metal materials, so they are prone to bending deformation during transportation, storage and plug-in, which further aggravates the welding defects of the above-mentioned component pins and restricts the large-scale application of automatic welding technology. .
为解决上述问题,现有技术的研究主要集中在焊接后处理及前处理上,焊接后处理是指在焊接完成后应用机器视觉的方法对焊点进行检测,对于不合格的焊点由人工进行重新处理。目前,基于视觉的后处理方法包括使用自动光学检测技术的焊点缺陷检测技术、基于多特征的多分类缺陷检测方法和基于超分辨率实例重建的缺陷检测方法等。现有技术应用上述各类自动光学检测方法检验出具有缺陷的焊点,然后交付给人工进行处理。显然,该方法仍然需要劳工执行,效率较低,并且无法解决由元器件引脚弯曲变形引起的焊接缺陷。In order to solve the above problems, the research of the existing technology mainly focuses on the post-processing and pre-processing of the welding. The post-welding processing refers to the detection of the solder joints using machine vision after the welding is completed, and the unqualified solder joints are manually detected. Reprocess. At present, vision-based post-processing methods include solder joint defect detection technology using automatic optical inspection technology, multi-feature-based multi-class defect detection methods, and super-resolution instance reconstruction-based defect detection methods. In the prior art, the above-mentioned various automatic optical inspection methods are used to detect defective solder joints, and then deliver them to manual processing. Obviously, this method still requires labor to perform, is inefficient, and cannot solve soldering defects caused by bending and deformation of component pins.
与上述后处理方法相对的是前处理方法,即在应用自动焊接系统进行批量焊接之前,由人工针对不同类型的焊点进行大量试验调试,在调试过程中,通过统计不同焊接温度和送锡速度条件下的焊点良品率,来确定较优的焊接工艺参数。但是,这种方案同样无法解决由元器件引脚弯曲变形引起的焊接缺陷。Compared with the above post-processing method, the pre-processing method is the pre-processing method, that is, before applying the automatic welding system for batch welding, a large number of tests and debugging are carried out manually for different types of solder joints. The solder joint yield rate under the conditions is used to determine the optimal welding process parameters. However, this solution also cannot solve the welding defects caused by the bending deformation of the component pins.
发明内容SUMMARY OF THE INVENTION
本发明实施例提供一种元器件引脚的矫正方法、装置、设备及存储介质,以实现高精度的元器件引脚矫正。Embodiments of the present invention provide a method, device, device, and storage medium for correcting component pins, so as to achieve high-precision component pin correction.
第一方面,本发明实施例提供了一种元器件引脚的矫正方法,包括:In a first aspect, an embodiment of the present invention provides a method for correcting component pins, including:
基于元器件引脚在外力作用下发生变形的力学模型,建立所述元器件引脚的初始变形量及其在外力作用下的弹性回复量之间的函数关系;Based on the mechanical model of the deformation of the component pins under the action of external force, the functional relationship between the initial deformation of the component pins and the elastic recovery amount under the action of the external force is established;
获取待焊接焊点的位置信息和元器件引脚的位置信息,并根据所述待焊接焊点的位置信息和所述元器件引脚的位置信息,控制机器人以期望姿态到达所述待焊接焊点周围的工作空间;Obtain the position information of the solder joints to be welded and the position information of the component pins, and control the robot to reach the to-be-soldered solder joints in a desired attitude according to the position information of the solder joints to be soldered and the position information of the component pins. the workspace around the point;
根据所述待焊接焊点的位置信息和所述元器件引脚的位置信息,以及所述初始变形量与所述弹性回复量之间的函数关系,控制所述机器人将所述元器件引脚矫正至期望位置,以使所述元器件引脚能够从所述期望位置回弹至所述待焊接焊点中心的位置。According to the position information of the solder joints to be welded and the position information of the component pins, as well as the functional relationship between the initial deformation amount and the elastic recovery amount, the robot is controlled to place the component pins Corrected to a desired position, so that the component lead can spring back from the desired position to the position of the center of the to-be-soldered solder joint.
可选地,基于元器件引脚在外力作用下发生变形的力学模型,建立所述元器件引脚的初始变形量及其在外力作用下的弹性回复量之间的函数关系,包括:Optionally, based on the mechanical model of the deformation of the component pins under the action of external force, establish a functional relationship between the initial deformation amount of the component pins and the elastic recovery amount under the action of the external force, including:
建立元器件引脚在外力作用下发生弹塑性变形和弹性回复运动时受到的外力,以及元器件引脚自由端的变形量之间的力学模型;Establish a mechanical model between the external force when the component pin undergoes elastic-plastic deformation and elastic recovery motion under the action of external force, and the deformation amount of the free end of the component pin;
确定所述元器件引脚受到外力时,所述元器件引脚在其弹塑性变形区域内,任意截面的截面位置与外力以及所述截面内的弹性变形纤维层厚度占比之间的函数关系;其中,所述截面垂直于所述元器件引脚的轴线;Determine the functional relationship between the cross-sectional position of any cross-section and the external force and the thickness ratio of the elastically deformed fiber layer in the cross-section within the elastic-plastic deformation region of the component pin when the component pin is subjected to external force ; Wherein, the section is perpendicular to the axis of the component pin;
根据所述截面位置与外力以及所述截面内的弹性变形纤维层厚度占比之间的函数关系,计算所述元器件引脚轴线上每一点的曲率以及所述元器件引脚自由端在外力作用下的挠度,并采用微元法根据所述曲率和所述挠度求解所述轴线上各点的挠度、偏转角以及所述元器件引脚纤维层的总长度;Calculate the curvature of each point on the axis of the component lead and the external force on the free end of the component lead according to the functional relationship between the cross-section position and the external force and the thickness ratio of the elastically deformed fiber layer in the cross-section. The deflection under the action, and the micro-element method is used to solve the deflection and deflection angle of each point on the axis and the total length of the fiber layer of the component pin according to the curvature and the deflection;
获取多组外力及其对应的所述元器件引脚自由端的挠度数据,根据所述力学模型、所述轴线上各点的挠度、偏转角以及所述元器件引脚纤维层的总长度之间的数值关系,以及所述多组外力及其对应的所述挠度数据,确定所述元器件引脚的初始变形量及其在外力作用下的弹性回复量之间的函数关系;Obtain multiple sets of external forces and the corresponding deflection data of the free ends of the component pins, according to the mechanical model, the deflection of each point on the axis, the deflection angle and the total length of the component pin fiber layer between The numerical relationship, and the multiple sets of external forces and their corresponding deflection data, determine the functional relationship between the initial deformation of the component pins and their elastic recovery under the action of external forces;
其中,以所述元器件引脚自由端的挠度表示所述初始变形量和所述弹性回复量。Wherein, the initial deformation amount and the elastic recovery amount are represented by the deflection of the free end of the component lead.
可选地,所述元器件引脚在其弹塑性变形区域内,任意截面的截面位置与外力以及所述截面内的弹性变形纤维层厚度占比之间的函数关系表示为:Optionally, in the elastic-plastic deformation region of the component pins, the functional relationship between the cross-sectional position of any cross-section and the external force and the ratio of the thickness of the elastically deformed fiber layer in the cross-section is expressed as:
其中,l为所述截面位置,L为沿所述元器件引脚的轴线方向,外力的作用点与引脚固定端之间的距离,Me为弹性极限弯矩,F为所述外力,λ为线性强化系数,ξ(l)为所述弹性变形纤维层厚度占比;Wherein, l is the position of the section, L is the distance between the action point of the external force and the fixed end of the pin along the axis of the component pin, Me is the elastic limit bending moment, F is the external force, λ is the linear strengthening coefficient, and ξ(l) is the thickness ratio of the elastically deformed fiber layer;
所述曲率表示为:The curvature is expressed as:
其中,C(l)为所述曲率,E为弹性模量,I为截面惯性矩,ξ(l)为所述弹性变形纤维层厚度占比,lb为所述元器件引脚在弹塑性变形区域的引脚长度,LW为所述元器件引脚的总长度;Among them, C(l) is the curvature, E is the elastic modulus, I is the moment of inertia of the section, ξ(l) is the thickness ratio of the elastically deformed fiber layer, and l b is the elastic-plastic deformation of the component pins The lead length of the deformation area, L W is the total length of the component lead;
所述元器件引脚在外力作用下的挠度表示为:The deflection of the component pins under the action of external force is expressed as:
δ=δL+(Lw-S)sinθL;δ=δ L +(L w −S) sinθ L ;
其中,δ为所述元器件引脚的挠度,δL为所述元器件引脚在外力作用下产生的挠度,S为所述元器件引脚纤维层的总长度,θL为所述轴线在外力作用点的偏转角;Wherein, δ is the deflection of the component pin, δ L is the deflection of the component pin under the action of external force, S is the total length of the fiber layer of the component pin, and θ L is the axis The deflection angle at the point of application of the external force;
所述轴线上各点的挠度、偏转角以及所述元器件引脚纤维层的总长度表示为:The deflection and deflection angle of each point on the axis and the total length of the fiber layer of the component pins are expressed as:
其中,θl为所述轴线上第一点的偏转角,θl+dl为所述轴线上第二点的偏转角,△l为所述轴线上第一点与第二点之间的距离差,δl为所述轴线上第一点在外力作用下产生的挠度,δl+dl为所述轴线上第二点在外力作用下产生的挠度。Among them, θ l is the deflection angle of the first point on the axis, θ l+dl is the deflection angle of the second point on the axis, and Δl is the distance between the first point and the second point on the axis difference, δ l is the deflection produced by the first point on the axis under the action of external force, and δ l+dl is the deflection produced by the second point on the axis under the action of the external force.
可选地,获取待焊接焊点的位置信息和元器件引脚的位置信息,并根据所述待焊接焊点的位置信息和所述元器件引脚的位置信息,控制机器人以期望姿态到达所述待焊接焊点周围的工作空间,包括:Optionally, obtain the position information of the solder joints to be welded and the position information of the component pins, and control the robot to reach the desired position according to the position information of the solder joints to be soldered and the position information of the component pins. Describe the workspace around the solder joints to be soldered, including:
实时获取待焊接焊点和元器件引脚自由端的图像信息,以识别所述待焊接焊点的位置信息和所述元器件引脚的位置信息;Real-time acquisition of the image information of the solder joints to be welded and the free ends of the component pins to identify the position information of the solder joints to be soldered and the position information of the component pins;
基于所述待焊接焊点的位置信息、所述元器件引脚的位置信息、所述机器人的末端执行器与其工作现场之间的位置约束关系,以及所述末端执行器与所述元器件引脚之间的位置约束关系,确定所述机器人的末端执行器的期望姿态;Based on the position information of the solder joints to be welded, the position information of the component pins, the position constraint relationship between the end effector of the robot and its work site, and the end effector and the component lead The position constraint relationship between the feet determines the desired posture of the end effector of the robot;
根据所述元器件引脚的位置信息、所述待焊接焊点的半径以及相邻焊点之间的距离,确定所述机器人进行引脚矫正的期望区域;According to the position information of the component pins, the radius of the solder joints to be welded, and the distance between adjacent solder joints, determine the desired area for the robot to perform pin correction;
根据所述期望姿态和所述期望区域,定义所述机器人的工作空间以及关于所述工作空间的势能函数,根据所述势能函数以及所述机器人的参数信息确定所述机器人到达所述工作空间的力矩,并根据所述力矩对所述机器人进行控制。According to the desired posture and the desired area, a workspace of the robot and a potential energy function related to the workspace are defined, and according to the potential energy function and the parameter information of the robot, the speed of the robot reaching the workspace is determined. torque, and control the robot according to the torque.
可选地,所述末端执行器与所述元器件引脚之间的位置约束关系表示为:Optionally, the position constraint relationship between the end effector and the component pins is expressed as:
其中,n为末端执行器坐标系的坐标轴的单位方向矢量在世界坐标系的表示,为坐标轴n在末端执行器坐标系的位置,Ixs为所述待焊接焊点的位置,为所述元器件引脚自由端的位置,nZ,oZ和aZ分别为平行于所述末端执行器坐标系的坐标轴的单位方向矢量n、o和a,在所述世界坐标系的z轴的坐标,γ为所述末端执行器与所述世界坐标系的xoy平面之间的夹角,x和y分别为所述世界坐标系的x轴和y轴,ax,ay和aZ分别为所述末端执行器坐标系的坐标轴的单位方向矢量a,在所述世界坐标系的x轴、y轴和z轴的坐标;Among them, n is the representation of the unit direction vector of the coordinate axis of the end effector coordinate system in the world coordinate system, is the position of the coordinate axis n in the end effector coordinate system, I x s is the position of the welding spot to be welded, is the position of the free end of the component pin, n Z , o Z and a Z are the unit direction vectors n, o and a parallel to the coordinate axis of the end effector coordinate system, respectively, in the world coordinate system The coordinates of the z-axis, γ is the angle between the end effector and the xoy plane of the world coordinate system, x and y are the x-axis and y-axis of the world coordinate system, respectively, a x , a y and a Z are respectively the unit direction vector a of the coordinate axis of the end effector coordinate system, the coordinates of the x-axis, y-axis and z-axis of the world coordinate system;
所述期望区域表示为:The desired region is expressed as:
其中,Ixd为所述期望位置,λ1为预设补偿系数,r2为所述待焊接焊点的外径,dmin为所述待焊接焊点与相邻焊点之间的距离。Wherein, I x d is the desired position, λ 1 is a preset compensation coefficient, r 2 is the outer diameter of the solder joint to be welded, and d min is the distance between the solder joint to be welded and the adjacent solder joint .
可选地,根据所述待焊接焊点的位置信息和所述元器件引脚的位置信息,以及所述初始变形量与所述弹性回复量之间的函数关系,控制所述机器人将所述元器件引脚矫正至期望位置,以使所述元器件引脚能够从所述期望位置回弹至所述待焊接焊点中心的位置,包括:Optionally, according to the position information of the solder joints to be welded, the position information of the component pins, and the functional relationship between the initial deformation amount and the elastic recovery amount, the robot is controlled to The component pins are corrected to a desired position, so that the component pins can spring back from the desired position to the position of the center of the to-be-soldered solder joint, including:
基于所述待焊接焊点的位置信息和所述元器件引脚的位置信息,确定所述元器件引脚的初始变形量;Based on the position information of the solder joints to be welded and the position information of the component pins, determine the initial deformation amount of the component pins;
根据所述元器件引脚的初始变形量,以及所述初始变形量与所述弹性回复量之间的函数关系,预测所述元器件引脚在外力作用下的弹性回复量;According to the initial deformation of the component pins and the functional relationship between the initial deformation and the elastic recovery, predict the elastic recovery of the component pins under the action of external force;
根据所述待焊接焊点的位置信息和所述弹性回复量,确定所述元器件引脚在所述机器人的矫正下达到的期望位置;According to the position information of the to-be-soldered solder joints and the elastic recovery amount, determine the expected position of the component lead under the correction of the robot;
根据所述期望位置以及所述机器人的参数信息,确定所述机器人对所述元器件引脚进行矫正所需的力矩,并根据所述力矩对所述机器人进行控制。According to the desired position and the parameter information of the robot, the torque required by the robot to correct the component pins is determined, and the robot is controlled according to the torque.
可选地,所述期望位置表示为:Optionally, the desired position is expressed as:
Ixd=Ixs+IΔx; I x d = I x s + I Δx;
其中,Ixd为所述期望位置,Ixs为所述待焊接焊点的位置,IΔx为所述弹性回复量在图像空间中的像素距离,为所述元器件引脚的初始变形量对应的弹性回复量,Lpixel为像素当量,为所述元器件引脚自由端的位置。Wherein, I x d is the desired position, I x s is the position of the solder joint to be welded, I Δx is the pixel distance of the elastic recovery amount in the image space, is the elastic recovery amount corresponding to the initial deformation of the component pins, L pixel is the pixel equivalent, is the position of the free end of the component pins.
第二方面,本发明实施例还提供了一种元器件引脚的矫正装置,包括:In a second aspect, an embodiment of the present invention also provides a device for correcting component pins, including:
函数关系建立模块,用于基于元器件引脚在外力作用下发生变形的力学模型,建立所述元器件引脚的初始变形量及其在外力作用下的弹性回复量之间的函数关系;The function relationship establishing module is used to establish the functional relationship between the initial deformation of the component pins and the elastic recovery amount under the external force based on the mechanical model of the component pins deformed under the action of external force;
第一控制模块,用于获取待焊接焊点的位置信息和元器件引脚的位置信息,并根据所述待焊接焊点的位置信息和所述元器件引脚的位置信息,控制机器人以期望姿态到达所述待焊接焊点周围的工作空间;The first control module is used to obtain the position information of the solder joints to be welded and the position information of the component pins, and according to the position information of the solder joints to be welded and the position information of the component pins, control the robot to expect The posture reaches the working space around the welding spot to be welded;
第二控制模块,用于根据所述待焊接焊点的位置信息和所述元器件引脚的位置信息,以及所述初始变形量与所述弹性回复量之间的函数关系,控制所述机器人将所述元器件引脚矫正至期望位置,以使所述元器件引脚能够从所述期望位置回弹至所述待焊接焊点中心的位置。The second control module is configured to control the robot according to the position information of the solder joints to be welded, the position information of the component pins, and the functional relationship between the initial deformation amount and the elastic recovery amount The component pins are corrected to a desired position, so that the component pins can spring back from the desired position to the position of the center of the solder joint to be soldered.
第三方面,本发明实施例还提供了一种电子设备,所述电子设备包括:In a third aspect, an embodiment of the present invention further provides an electronic device, the electronic device comprising:
一个或多个处理器;one or more processors;
存储装置,用于存储一个或多个程序;a storage device for storing one or more programs;
当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现如第一方面所述的元器件引脚的矫正方法。When the one or more programs are executed by the one or more processors, the one or more processors implement the method for correcting component pins as described in the first aspect.
第四方面,本发明实施例还提供了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现如第一方面所述的元器件引脚的矫正方法。In a fourth aspect, an embodiment of the present invention further provides a computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, implements the method for correcting component pins according to the first aspect.
本发明实施例的技术方案,基于元器件引脚在外力作用下发生变形的力学模型,建立元器件引脚的初始变形量及其在外力作用下的弹性回复量之间的函数关系,根据待焊接焊点的位置信息和元器件引脚的位置信息,控制机器人以期望姿态到达待焊接焊点周围的工作空间,并根据待焊接焊点的位置信息和元器件引脚的位置信息,以及初始变形量与弹性回复量之间的函数关系,控制机器人将元器件引脚矫正至期望位置,以使元器件引脚能够从期望位置回弹至待焊接焊点中心的位置。与现有技术相比,本方案在自动焊接工艺中增加了元器件引脚矫正工作,实现了高效高精度的元器件引脚矫正,有助于从根本上解决元器件引脚弯曲变形带来的焊接缺陷,降低了电路板上相邻焊点的桥接短路风险,使得引脚两侧焊料能够均匀分布,从而提升焊接点的机械稳定性及电气可靠性,进而提高自动化焊接生产线的良品率及焊接质量。The technical solution of the embodiment of the present invention is based on the mechanical model of the deformation of the component pins under the action of external force, and establishes the functional relationship between the initial deformation amount of the component pins and the elastic recovery amount under the action of the external force. The position information of the solder joints and the position information of the component pins, control the robot to reach the workspace around the solder joints to be soldered with the desired attitude, and according to the position information of the solder joints to be soldered and the position information of the component pins, as well as the initial The functional relationship between the deformation amount and the elastic recovery amount controls the robot to correct the component pins to the desired position, so that the component pins can rebound from the desired position to the position of the center of the solder joint to be welded. Compared with the prior art, this solution adds component pin correction work in the automatic welding process, realizes high-efficiency and high-precision component pin correction, and helps to fundamentally solve the problems caused by bending and deformation of component pins. It reduces the risk of bridging and short-circuiting of adjacent solder joints on the circuit board, so that the solder on both sides of the pins can be evenly distributed, thereby improving the mechanical stability and electrical reliability of the solder joints, thereby improving the yield of automated soldering production lines. Welding quality.
附图说明Description of drawings
图1是本发明实施例提供的一种元器件引脚的矫正方法的流程示意图;1 is a schematic flowchart of a method for correcting component pins according to an embodiment of the present invention;
图2是本发明实施例提供的一种元器件引脚在不同形变状态的位置示意图;2 is a schematic diagram of the positions of a component pin in different deformation states according to an embodiment of the present invention;
图3是本发明实施例提供的一种外力及元器件引脚变形量的函数曲线示意图;3 is a schematic diagram of a function curve of an external force and a deformation amount of a component pin provided by an embodiment of the present invention;
图4是本发明实施例提供的一种元器件引脚变形区域划分的示意图;4 is a schematic diagram of the division of the deformation area of a component pin provided by an embodiment of the present invention;
图5是本发明实施例提供的一种元器件引脚截面及其应力和应变分布示意图;5 is a schematic diagram of a cross-section of a component lead and its stress and strain distribution provided by an embodiment of the present invention;
图6是本发明实施例提供的一种引脚矫正工作现场的示意图;6 is a schematic diagram of a pin correction work site provided by an embodiment of the present invention;
图7是本发明实施例提供的一种引脚矫正工作现场的细节示意图;7 is a detailed schematic diagram of a pin correction work site provided by an embodiment of the present invention;
图8是本发明实施例提供的一种引脚矫正工作现场的图像示意图;8 is a schematic image diagram of a pin correction work site provided by an embodiment of the present invention;
图9是本发明实施例提供的一种工作空间的函数曲线示意图;9 is a schematic diagram of a function curve of a workspace provided by an embodiment of the present invention;
图10是本发明实施例提供的一种权重函数的曲线示意图;10 is a schematic diagram of a curve of a weight function provided by an embodiment of the present invention;
图11是本发明实施例提供的一种元器件引脚矫正控制仿真结果示意图;11 is a schematic diagram of a simulation result of component pin correction control provided by an embodiment of the present invention;
图12是本发明实施例提供的另一种元器件引脚矫正控制仿真结果示意图;12 is a schematic diagram of another component pin correction control simulation result provided by an embodiment of the present invention;
图13是本发明实施例提供的另一种元器件引脚矫正控制仿真结果示意图;13 is a schematic diagram of another component pin correction control simulation result provided by an embodiment of the present invention;
图14是本发明实施例提供的另一种元器件引脚矫正控制仿真结果示意图;14 is a schematic diagram of another component pin correction control simulation result provided by an embodiment of the present invention;
图15是本发明实施例提供的另一种元器件引脚的矫正方法的流程示意图;15 is a schematic flowchart of another method for correcting component pins according to an embodiment of the present invention;
图16是本发明实施例提供的一种元器件引脚的矫正装置的模块结构示意图;16 is a schematic diagram of a module structure of a device for correcting component pins provided by an embodiment of the present invention;
图17是本发明实施例提供的一种终端的结构示意图。FIG. 17 is a schematic structural diagram of a terminal according to an embodiment of the present invention.
具体实施方式Detailed ways
下面结合附图和实施例对本发明作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释本发明,而非对本发明的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本发明相关的部分而非全部结构。The present invention will be further described in detail below in conjunction with the accompanying drawings and embodiments. It should be understood that the specific embodiments described herein are only used to explain the present invention, but not to limit the present invention. In addition, it should be noted that, for the convenience of description, the drawings only show some but not all structures related to the present invention.
正如背景技术所述,自动焊接系统生产线上存在焊接良品率较低的问题,容易出现焊接缺陷,且元器件引脚的弯曲变形加剧了焊接缺陷问题。现有技术中,进行自动光学检测后交付人工处理缺陷焊点的方案,仍然需要劳工执行,不仅效率较低,而且无法解决由元器件引脚弯曲变形引起的焊接缺陷。通过试验调试确定焊接工艺参数的方案,同样无法解决由元器件引脚弯曲变形引起的焊接缺陷。As described in the background art, the production line of the automatic welding system has the problem of low welding yield, and welding defects are prone to occur, and the bending deformation of the component pins aggravates the welding defect problem. In the prior art, the solution of delivering manual processing of defective solder joints after automatic optical inspection still requires labor to perform, which is not only inefficient, but also cannot solve soldering defects caused by bending and deformation of component pins. The scheme of determining the welding process parameters through test debugging also cannot solve the welding defects caused by the bending deformation of the component pins.
针对上述问题,本发明实施例提供了一种元器件引脚的矫正方法。图1是本发明实施例提供的一种元器件引脚的矫正方法的流程示意图,本实施例可适用于实现高精度的元器件引脚矫正的情况,该方法可以由元器件引脚的矫正装置执行,该装置可以采用软件和/或硬件的方式实现,该装置可配置于电子设备中,例如服务器或终端设备,典型的终端设备包括移动终端,具体包括手机、电脑或平板电脑等。如图1所示,该方法具体可以包括:In view of the above problems, embodiments of the present invention provide a method for correcting component pins. FIG. 1 is a schematic flowchart of a method for correcting component pins provided by an embodiment of the present invention. This embodiment can be applied to the situation of realizing high-precision component pin correction. This method can be performed by correcting component pins. The apparatus is executed, and the apparatus can be implemented in software and/or hardware. The apparatus can be configured in an electronic device, such as a server or a terminal device. Typical terminal devices include mobile terminals, including mobile phones, computers, or tablet computers. As shown in Figure 1, the method may specifically include:
S110、基于元器件引脚在外力作用下发生变形的力学模型,建立元器件引脚的初始变形量及其在外力作用下的弹性回复量之间的函数关系。S110 , establishing a functional relationship between the initial deformation amount of the component pin and the elastic recovery amount under the external force based on the mechanical model of the deformation of the component pin under the action of the external force.
其中,元器件引脚是指电子元器件,例如直插式电子元器件等的引脚。元器件引脚的材料一般为铁镍合金或铜合金等金属材料,这些金属材料具有一定的柔性,所以在运输、储存以及插件过程中容易发生弯曲变形。因此,可利用元器件引脚的上述特性,针对发生弯曲变形的元器件引脚,使用外力对其进行矫正。经发明人研究发现,通过向元器件引脚施加外力对其进行矫正的过程中,当外力撤去后,元器件引脚会自发地出现弹性回复现象,这将对元器件引脚的矫正造成误差。The component pins refer to the pins of electronic components, such as in-line electronic components. The material of component pins is generally metal materials such as iron-nickel alloy or copper alloy. These metal materials have certain flexibility, so they are prone to bending deformation during transportation, storage and plug-in. Therefore, the above-mentioned characteristics of the component leads can be used to correct the component leads that have been bent and deformed using external force. The inventor's research found that in the process of applying external force to the component pins to correct them, when the external force is removed, the component pins will spontaneously recover elastically, which will cause errors in the correction of the component pins. .
图2是本发明实施例提供的一种元器件引脚在不同形变状态的位置示意图,示例性地,如图2所示,经发明人研究发现,在施加外力F之前,弯曲变形的元器件引脚10位于第一位置10(1)。在施加外力F的过程中,元器件引脚10发生在外力F的作用下变形,运动至第二位置10(2),在这一阶段中,元器件引脚在外力的作用下发生变形,微观层面表现为引脚内部的纤维层,部分发生可逆的弹性变形,部分发生不可逆的塑性变形,即元器件引脚发生弹塑性变形。当撤去外力F后,元器件引脚10会自发进行弹性回复现象,运动至第三位置10(3)。在这一阶段中,撤去外力后,发生弹性变形的部分纤维层恢复到最初的状态(宏观表现为元器件引脚出现弹性回复运动现象),而发生塑性变形的部分纤维层,保持撤去外力时的状态。因此,在进行元器件引脚矫正时,需要解决由引脚材料的弹性回复特性所带来的矫正误差。Fig. 2 is a schematic diagram of the position of a component lead in different deformation states provided by an embodiment of the present invention. Exemplarily, as shown in The
参见图2,示例性地,若需要元器件引脚10在焊接前到达目标位置,即待焊接焊点通孔的轴线位置,在施加外力进行引脚矫正时,为提升引脚矫正的精确度,需要进行弹性回复位移的补偿,使得外力撤去后,元器件引脚在自发进行弹性回复运动后恰好处于目标位置。假设第三位置10(3)为待焊接焊点通孔的轴线位置,即正常情况下元器件引脚10的焊接位置,考虑弹性回复位移的补偿量后,可确定元器件引脚10在外力F作用下可达到的第二位置10(2),第二位置10(2)应当满足撤去外力F后,元器件引脚10能够从第二位置10(2)自动回弹至第三位置10(3)。Referring to FIG. 2 , for example, if the component pins 10 need to reach the target position before soldering, that is, the axis position of the through hole of the solder joint to be soldered, when external force is applied for pin correction, in order to improve the accuracy of pin correction , it is necessary to compensate for the elastic recovery displacement, so that after the external force is removed, the component pins are just in the target position after the spontaneous elastic recovery movement. Assuming that the third position 10 (3) is the axis position of the through hole of the solder joint to be welded, that is, the welding position of the
假设位于第一位置10(1)的元器件引脚10,相对于第三位置10(3)的初始变形量为δ0,元器件引脚10从第二位置10(2)回弹至第三位置10(3)的弹性回复量为δs,由于元器件引脚10在外力F的作用下发生的变形量,与外力F存在对应的数值关系,因此可基于元器件引脚10在外力F作用下发生变形的力学模型,建立元器件引脚10的初始变形量δ0和弹性回复量δs之间的函数关系。这样,在进行元器件引脚矫正时,可根据元器件引脚10的初始变形量δ0,确定矫正时需要进行补偿的弹性回复量δs,进而根据初始变形量δ0及弹性回复量δs,确定元器件引脚10在外力F作用下应当达到的第二位置10(2),使得外力F撤去后,元器件引脚10能够从第二位置10(2)自动回弹至待焊接焊点通孔的轴线位置,保证元器件引脚矫正的精确度。Assuming that the
S120、获取待焊接焊点的位置信息和元器件引脚的位置信息,并根据待焊接焊点的位置信息和元器件引脚的位置信息,控制机器人以期望姿态到达待焊接焊点周围的工作空间。S120: Acquire the position information of the solder joints to be welded and the position information of the component pins, and control the robot to reach the work around the solder joints to be soldered in a desired attitude according to the position information of the solder joints to be soldered and the position information of the component pins space.
其中,在进行元器件引脚焊接之前,执行元器件引脚矫正工作。在执行元器件引脚矫正工作时,可获取待焊接焊点的位置信息和元器件引脚的位置信息,待焊接焊点可以是集成电路板上的焊点,元器件引脚即为待焊接到该焊点上的元器件的引脚。机器人可以是自动焊接系统中的机器人,例如机械臂。待焊接焊点周围的工作空间,是指待焊接焊点周围的一个区域,机器人在该区域内执行元器件引脚矫正工作。期望姿态是指机器人到达工作空间的姿态,即进行矫正工作的姿态。Among them, before the component pins are welded, the component pin correction work is performed. When performing the component pin correction work, the position information of the solder joints to be soldered and the position information of the component pins can be obtained. The solder joints to be soldered can be solder joints on the integrated circuit board, and the component pins are the solder joints to be soldered. to the pin of the component on this solder joint. The robot can be a robot in an automated welding system, such as a robotic arm. The working space around the solder joint to be soldered refers to an area around the solder joint to be soldered, and the robot performs component pin correction work in this area. The desired posture refers to the posture of the robot when it reaches the workspace, that is, the posture of the correction work.
示例性地,根据待焊接焊点的位置信息和元器件引脚的位置信息,可确定元器件引脚偏移待焊接焊点的偏移方向和偏移量,根据元器件引脚的偏移方向和偏移量,能够确定机器人需要到达的工作空间的具体位置,以及执行元器件引脚矫正工作的期望姿态。实际应用时,可使用基于位置的工作空间到达视觉伺服控制方法,控制机器人以期望姿态到达待焊接焊点周围的工作空间,以使机器人能够在工作空间内以期望姿态对元器件引脚进行矫正。根据待焊接焊点的位置信息和元器件引脚的位置信息,控制机器人以期望姿态到达待焊接焊点周围的工作空间,有利于快速控制机器人到达待焊接焊点周围。Exemplarily, according to the position information of the solder joints to be soldered and the position information of the component pins, the offset direction and offset amount of the component pins offset from the solder joints to be soldered can be determined. The orientation and offset can determine the specific position of the workspace that the robot needs to reach, as well as the desired attitude to perform the corrective work of the component pins. In practical applications, the visual servo control method based on the position of the workspace can be used to control the robot to reach the workspace around the solder joints to be soldered in a desired posture, so that the robot can correct the component pins in the workspace in a desired posture. . According to the position information of the solder joints to be welded and the position information of the component pins, the robot is controlled to reach the workspace around the solder joints to be soldered in a desired attitude, which is beneficial to quickly control the robot to reach around the solder joints to be soldered.
S130、根据待焊接焊点的位置信息和元器件引脚的位置信息,以及初始变形量与弹性回复量之间的函数关系,控制机器人将元器件引脚矫正至期望位置,以使元器件引脚能够从期望位置回弹至待焊接焊点中心的位置。S130. According to the position information of the solder joints to be welded and the position information of the component pins, as well as the functional relationship between the initial deformation amount and the elastic recovery amount, control the robot to correct the component pins to the desired position, so that the component leads The foot can spring back from the desired position to the position of the center of the solder joint to be soldered.
其中,可通过机器人的末端执行器对元器件引脚进行矫正,例如机器人为机械臂,末端执行器为机械臂夹持的焊笔,利用机械臂夹持焊笔推动元器件引脚,实现向元器件引脚施加外力从而进行矫正。期望位置是指元器件引脚在机器人施加的外力作用下到达的位置,即机器人撤去外力的时刻之前,元器件引脚到达的位置。Among them, the component pins can be corrected by the end effector of the robot. For example, the robot is a robotic arm, and the end effector is a welding pen clamped by the robotic arm. Component pins apply external force to correct them. The desired position refers to the position that the component pins reach under the action of the external force applied by the robot, that is, the position that the component pins reach before the robot removes the external force.
示例性地,在完成S120之后,机器人的末端执行器已经进入工作空间,并处于执行引脚矫正的期望姿态,在这一阶段,可利用基于图像的视觉伺服控制方法控制机器人的末端执行器执行元器件引脚矫正工作。具体地,根据待焊接焊点的位置信息和元器件引脚的位置信息,计算引脚偏移焊点通孔中心的距离,即元器件引脚的初始变形量δ0。根据S110得到的初始变形量和弹性回复量之间的函数关系,可预测元器件引脚的弹性回复量δs。计算初始变形量δ0与弹性回复量δs之和,可进一步得到元器件引脚在外力作用下应当达到的期望位置,控制机器人的末端执行器对元器件引脚施加外力,使得元器件引脚到达该期望位置。由于上述期望位置考虑了弹性回复补偿,因而在机器人撤去外力后,元器件引脚能够从期望位置自动回弹至待焊接焊点中心的位置,实现了元器件引脚的矫正。由于集成电路板上单个焊点的尺寸是毫米级,因此在自动焊接时需要实现对微小物体进行高精度操作,应用上述方案有助于控制机器人进行高精度的元器件引脚矫正操作。Exemplarily, after completing S120, the end effector of the robot has entered the workspace and is in the desired posture for performing pin correction. At this stage, the image-based visual servo control method can be used to control the end effector of the robot to perform Component pin correction work. Specifically, according to the position information of the solder joints to be soldered and the position information of the component pins, calculate the distance that the pins are offset from the center of the through holes of the solder joints, that is, the initial deformation amount δ 0 of the component pins. According to the functional relationship between the initial deformation amount and the elastic recovery amount obtained in S110, the elastic recovery amount δ s of the component pins can be predicted. By calculating the sum of the initial deformation δ 0 and the elastic recovery δ s , the expected position that the component pins should reach under the action of external force can be further obtained. The foot reaches the desired position. Since the above-mentioned desired position considers the elastic recovery compensation, after the robot removes the external force, the component pins can automatically rebound from the desired position to the position of the center of the solder joint to be welded, realizing the correction of the component pins. Since the size of a single solder joint on an integrated circuit board is in the order of millimeters, it is necessary to perform high-precision operations on tiny objects during automatic soldering. The application of the above solution helps control the robot to perform high-precision component pin correction operations.
本发明实施例的技术方案,首先从金属材料发生弹塑性变形的理论出发,基于元器件引脚在外力作用下发生变形的力学模型,建立元器件引脚的初始变形量及其在外力作用下的弹性回复量之间的函数关系模型。然后针对机器人的操作对象,提出了两阶段混合的引脚矫正方法:在第一阶段,根据待焊接焊点的位置信息和元器件引脚的位置信息,控制机器人以期望姿态到达待焊接焊点周围的工作空间,以使机器人快速到达工作空间;在第二阶段,根据待焊接焊点的位置信息和元器件引脚的位置信息,以及初始变形量与弹性回复量之间的函数关系模型,控制机器人将元器件引脚矫正至期望位置,以使元器件引脚能够从期望位置回弹至待焊接焊点中心的位置,从而实现高精度的元器件引脚矫正操作。与现有技术相比,本方案在自动焊接工艺中增加了元器件引脚矫正工作,实现了高效高精度的元器件引脚矫正,有助于从根本上解决元器件引脚弯曲变形带来的焊接缺陷,降低了电路板上相邻焊点的桥接短路风险,使得引脚两侧焊料能够均匀分布,从而提升焊接点的机械稳定性及电气可靠性,进而提高自动化焊接生产线的良品率及焊接质量。The technical scheme of the embodiment of the present invention starts from the theory of elastic-plastic deformation of metal materials, and establishes the initial deformation amount of the component pins and its initial deformation under the action of external force based on the mechanical model of the deformation of the component pins under the action of external force. The functional relationship model between the elastic recovery quantities. Then, according to the operation object of the robot, a two-stage mixed pin correction method is proposed: in the first stage, according to the position information of the solder joints to be welded and the position information of the component pins, the robot is controlled to reach the solder joints to be soldered with the desired attitude The surrounding workspace, so that the robot can quickly reach the workspace; in the second stage, according to the position information of the solder joints to be welded and the position information of the component pins, as well as the functional relationship model between the initial deformation amount and the elastic recovery amount, Control the robot to correct the component pins to the desired position, so that the component pins can rebound from the desired position to the position of the center of the solder joint to be soldered, so as to realize the high-precision component pin correction operation. Compared with the prior art, this solution adds component pin correction work in the automatic welding process, realizes high-efficiency and high-precision component pin correction, and helps to fundamentally solve the problems caused by bending and deformation of component pins. It reduces the risk of bridging and short-circuiting of adjacent solder joints on the circuit board, so that the solder on both sides of the pins can be evenly distributed, thereby improving the mechanical stability and electrical reliability of the solder joints, thereby improving the yield of automated soldering production lines. Welding quality.
在上述实施例的基础上,本实施例进一步优化了上述元器件引脚的矫正方法。可选地,基于元器件引脚在外力作用下发生变形的力学模型,建立元器件引脚的初始变形量及其在外力作用下的弹性回复量之间的函数关系,具体包括:On the basis of the above-mentioned embodiment, the present embodiment further optimizes the method for correcting the above-mentioned component pins. Optionally, based on the mechanical model of the deformation of the component pins under the action of external force, a functional relationship between the initial deformation amount of the component pins and the elastic recovery amount under the action of the external force is established, specifically including:
S210、建立元器件引脚在外力作用下发生弹塑性变形和弹性回复运动时受到的外力,以及元器件引脚自由端的变形量之间的力学模型。S210 , establishing a mechanical model between the external force when the component pin undergoes elastic-plastic deformation and elastic recovery motion under the action of external force, and the deformation amount of the free end of the component pin.
图3是本发明实施例提供的一种外力及元器件引脚变形量的函数曲线示意图,示例性地,结合图2和图3,仍然假设第三位置10(3)为待焊接焊点通孔的轴线位置,即正常情况下元器件引脚10的焊接位置,元器件引脚10在外力F作用下自初始的第一位置10(1)到达第二位置10(2),这一过程中元器件引脚10在外力F作用下发生弹性变形及塑性变形(合称弹塑性变形)。图3中的OA及CA’段曲线表示元器件引脚的弹性变形阶段,对应元器件引脚10的变形量为δ0,此阶段引脚的变形在撤去外力后完全可恢复。随着引脚变形程度的增加,引脚材料中有一部分结构发生不可恢复的塑性变形,这一阶段外力与变形量的关系可由AD及A’D’段曲线表示。如果在元器件引脚10到达第二位置10(2)时(对应于AD段曲线的B点)撤去外力,元器件引脚10发生弹性变形的部分会自发的恢复到其初始状态,对应元器件引脚10的弹性回复量为δs,此阶段可由BC及B’C’段曲线表示,这一阶段元器件引脚10所进行的弹性回复运动遵循胡克定律,BC和OA段,以及B’C’和CA’段曲线的斜率k相同。若已知元器件引脚在外力作用下发生弹塑性变形段,外力与变形量的关系时,利用弹性回复运动遵循胡克定律的性质,即可求解在撤去外力后,任意弹塑性变形状态的弹性回复位移。因此,可建立元器件引脚在弹塑性变形阶段的力学模型,示例性地,上述力学模型可表示为:FIG. 3 is a schematic diagram of a function curve of external force and component pin deformation provided by an embodiment of the present invention. Exemplarily, in conjunction with FIG. 2 and FIG. 3 , it is still assumed that the third position 10 ( 3 ) is the solder joint to be soldered through. The axis position of the hole, that is, the welding position of the component pins 10 under normal circumstances, the component pins 10 reach the second position 10(2) from the initial first position 10(1) under the action of the external force F, this process The middle component pins 10 undergo elastic deformation and plastic deformation (collectively referred to as elastic-plastic deformation) under the action of the external force F. The curves of OA and CA' in Fig. 3 represent the elastic deformation stage of the component pins, and the corresponding deformation of the component pins 10 is δ 0 . The deformation of the pins at this stage can be completely recovered after removing the external force. With the increase of the deformation degree of the pin, a part of the structure of the pin material undergoes irreversible plastic deformation. The relationship between the external force and the deformation amount at this stage can be represented by the AD and A'D' segment curves. If the external force is removed when the
其中,F表示外力,δ表示元器件引脚的变形量,可选地,该变形量可以引脚自由端的挠度表示,其中引脚自由端即焊接端,如图2所示,挠度是指引脚自由端在垂直于其轴线方向(垂直于l轴方向)的位移量。k=6EI/[L2(3LW-L)]是在弹性变形阶段外力F与引脚变形量δ的线性关系系数,其中,E是弹性模量,L是沿元器件引脚的轴线方向,外力F的作用点与引脚固定端(引脚与元器件相连的一端)之间的距离,LW是引脚的总长度,I=πRp 4/4是金属引脚的截面惯性矩,Rp是元器件引脚10的截面半径。f(δ)表示弹塑性变形阶段的AD及A’D’段阶段,外力F与引脚变形量δ的函数关系,Fe表示金属引脚的弹性极限载荷,Fs表示金属引脚的屈服载荷。Among them, F represents the external force, and δ represents the deformation of the component lead. Optionally, the deformation can be expressed by the deflection of the free end of the lead, where the free end of the lead is the welding end. As shown in Figure 2, the deflection refers to the lead The displacement of the free end in the direction perpendicular to its axis (perpendicular to the l-axis). k=6EI/[L 2 (3L W -L)] is the linear relationship coefficient between the external force F and the pin deformation δ in the elastic deformation stage, where E is the elastic modulus, and L is along the axis of the component pins. , the distance between the action point of the external force F and the fixed end of the pin (the end where the pin is connected to the component), L W is the total length of the pin, I=πR p 4 /4 is the cross-sectional moment of inertia of the metal pin , R p is the cross-sectional radius of the
S220、确定元器件引脚受到外力时,元器件引脚在其弹塑性变形区域内,任意截面的截面位置与外力以及截面内的弹性变形纤维层厚度占比之间的函数关系。S220. Determine the functional relationship between the cross-sectional position of any cross-section and the external force and the thickness ratio of the elastically deformed fiber layer in the cross-section within the elastic-plastic deformation region of the component pin when the component pin is subjected to an external force.
图4是本发明实施例提供的一种元器件引脚变形区域划分的示意图,图5是本发明实施例提供的一种元器件引脚截面及其应力和应变分布示意图,示例性地,结合图4和图5,为便于分析,可将元器件引脚10沿划分为靠近引脚固定端的塑性变形区域11、弹塑性变形区域12、弹性变形区域13以及靠近引脚自由端的刚性区域14。元器件引脚在其弹塑性变形区域12内的截面,是指垂直于元器件引脚的轴线(即l轴)的截面,例如图5所示的截面100,截面位置是指元器件引脚在轴线上的位置。弹性变形纤维层厚度占比,是指元器件引脚在其弹塑性变形区域12内的截面中的弹性变形纤维层厚度,占总元器件引脚的总纤维层厚度的比例。FIG. 4 is a schematic diagram of the division of the deformation area of a component lead provided by an embodiment of the present invention, and FIG. 5 is a schematic diagram of a cross-section of a component lead and its stress and strain distribution provided by an embodiment of the present invention. 4 and 5, for the convenience of analysis, the
可选地,确定元器件引脚受到外力时,元器件引脚在其弹塑性变形区域内,任意截面的截面位置与外力以及截面内的弹性变形纤维层厚度占比之间的函数关系,具体包括:Optionally, when the component pins are subjected to external force, the functional relationship between the cross-sectional position of any cross-section and the external force and the ratio of the thickness of the elastically deformed fiber layer in the cross-section within the elastic-plastic deformation region of the component pins, specifically include:
S222、确定元器件引脚受到外力时,元器件引脚在其弹塑性变形区域内任意截面的内弯矩与截面的纤维层中的应力之间的数值关系。S222 , determining the numerical relationship between the internal bending moment of any section of the component pin in the elastic-plastic deformation region of the component pin and the stress in the fiber layer of the section when the component pin is subjected to an external force.
示例性地,结合图4和图5,内弯矩是指,元器件引脚10由于受到外力而产生变形时,元器件引脚内部产生的作用力的力矩。在弹塑性变形区域12内,元器件引脚的任意截面由变形引起的内弯矩MI(l)可以表示为:Exemplarily, referring to FIGS. 4 and 5 , the internal bending moment refers to the moment of the acting force generated inside the
其中σ(h)是引脚截面中纤维层的应力分布,图5示出了元器件引脚截面内的应力分布曲线,σ为截面边界处的应力。H是元器件引脚的直径,h是截面中纤维的厚度。Where σ(h) is the stress distribution of the fiber layer in the pin section, Figure 5 shows the stress distribution curve in the component pin section, and σ is the stress at the section boundary. H is the diameter of the component lead and h is the thickness of the fiber in the cross section.
S224、根据应力与应变之间的数值关系,以及应变与截面内的弹性变形纤维层厚度占比之间的数值关系,确定内弯矩与弹性变形纤维层厚度占比之间的数值关系。S224 , according to the numerical relationship between the stress and the strain, and the numerical relationship between the strain and the thickness ratio of the elastically deformed fiber layer in the section, determine the numerical relationship between the inner bending moment and the thickness ratio of the elastically deformed fiber layer.
示例性地,引脚截面中纤维层的应力分布σ(h)表示为:Exemplarily, the stress distribution σ(h) of the fiber layer in the pin cross-section is expressed as:
其中,是引脚截面内的应变分布,图5示意性地示出了元器件引脚截面内的应变分布曲线,任意截面内的应变沿截面中心对称分布,且应变大小随着纤维层距离轴线的距离增大而增大,σe是弹性极限应力,He是截面100上发生弹性变形的纤维层的厚度,εe为截面中发生弹性变形的纤维层边界处的应变。E′是弹塑性模量,E′可表示为E′=λE,λ是线性强化系数,E是弹性模量。弹性变形纤维层厚度占比为关于截面位置l的函数,弹性变形纤维层厚度占比可表示为其中,He(l)是任意截面上发生弹性变形的纤维层的厚度,He(l)是关于截面位置l的函数,图4示意性地示出了He(l)的函数曲线。in, is the strain distribution in the pin section. Figure 5 schematically shows the strain distribution curve in the component pin section. The strain in any section is symmetrically distributed along the center of the section, and the strain varies with the distance of the fiber layer from the axis. σ e is the proof stress, He is the thickness of the elastically deformed fiber layer on the
根据应力σ(h)与应变ε(h)之间的数值关系,以及应变ε(h)与截面内的弹性变形纤维层厚度占比ξ(l)之间的数值关系,对式(0.2)进行化简并微分,确定内弯矩MI(l)与弹性变形纤维层厚度占比ξ(l)之间的数值关系,具体如下:According to the numerical relationship between the stress σ(h) and the strain ε(h), and the numerical relationship between the strain ε(h) and the thickness ratio ξ(l) of the elastically deformed fiber layer in the section, the equation (0.2) The degenerate differentiation is carried out to determine the numerical relationship between the internal bending moment M I (l) and the thickness ratio ξ(l) of the elastically deformed fiber layer, as follows:
其中,Me=Wσe代表弹性极限弯矩,W=πRp 3/2表示截面抗弯模量。Among them, Me = Wσ e represents the ultimate elastic moment, and W=πR p 3 /2 represents the flexural modulus of the section.
S226、确定元器件引脚在外力作用下的外弯矩。S226, determine the external bending moment of the component pin under the action of external force.
其中,外弯矩是外力F作用在引脚上的力矩,外弯矩为关于外力F和截面位置l的函数。示例性地,在外力F作用下,外弯矩M的分布可以表示为:Among them, the external bending moment is the moment of the external force F acting on the pin, and the external bending moment is a function of the external force F and the section position l. Exemplarily, under the action of external force F, the distribution of external bending moment M can be expressed as:
S227、根据内弯矩与外弯矩之间的数值关系,以及内弯矩与弹性变形纤维层厚度占比之间的数值关系,确定元器件引脚在其弹塑性变形区域内,任意截面的截面位置与外力以及截面内的弹性变形纤维层厚度占比之间的函数关系。S227. According to the numerical relationship between the inner bending moment and the outer bending moment, and the numerical relationship between the inner bending moment and the ratio of the thickness of the elastically deformed fiber layer, determine the pin of the component in its elastic-plastic deformation area, the Section position as a function of external force and the fraction of elastically deformed fiber layer thickness within the section.
具体地,根据内应力的定义可知,其引起的内弯矩应该与外弯矩等大反向,在其弹塑性变形区域内,内弯矩MI(l)与外弯矩M在数值上相等。联立式(0.4)和(0.5),可得到元器件引脚在其弹塑性变形区域内,任意截面的截面位置l与外力F以及截面内的弹性变形纤维层厚度占比ξ(l)之间的函数关系。Specifically, according to the definition of internal stress, it can be known that the internal bending moment caused by it should be opposite to the external bending moment. In its elastic-plastic deformation region, the internal bending moment M I (l) and the external bending moment M are numerically equal. Combining equations (0.4) and (0.5), it can be obtained that in the elastic-plastic deformation region of the component pins, the cross-sectional position l of any cross-section, the external force F, and the thickness ratio of the elastically deformed fiber layer in the cross-section ξ(l) functional relationship between.
可选地,元器件引脚在其弹塑性变形区域内,任意截面的截面位置与外力以及截面内的弹性变形纤维层厚度占比之间的函数关系表示为:Optionally, in the elastic-plastic deformation region of the component pin, the functional relationship between the cross-sectional position of any cross-section and the external force and the thickness ratio of the elastically deformed fiber layer in the cross-section is expressed as:
其中,l为截面位置,L为沿元器件引脚的轴线方向,外力的作用点与引脚固定端之间的距离,Me为弹性极限弯矩,F为外力,λ为线性强化系数,ξ(l)为弹性变形纤维层厚度占比。Among them, l is the cross-section position, L is the distance between the action point of the external force and the fixed end of the pin along the axis of the component pin, Me is the elastic limit bending moment, F is the external force, λ is the linear strengthening coefficient, ξ(l) is the thickness ratio of elastically deformed fiber layer.
S230、根据截面位置与外力以及截面内的弹性变形纤维层厚度占比之间的函数关系,计算元器件引脚轴线上每一点的曲率以及元器件引脚自由端在外力作用下的挠度,并采用微元法根据曲率和挠度求解轴线上各点的挠度、偏转角以及元器件引脚纤维层的总长度。S230. Calculate the curvature of each point on the axis of the component pin and the deflection of the free end of the component pin under the action of the external force according to the functional relationship between the section position and the external force and the thickness ratio of the elastically deformed fiber layer in the section, and calculate The deflection and deflection angle of each point on the axis and the total length of the fiber layer of the component pins are solved by the micro-element method according to the curvature and deflection.
示例性地,根据式(0.6)可确定元器件引脚在其弹塑性变形区域内,任意位置的截面内的弹性变形纤维层厚度占比,结合曲率的计算公式,可得到元器件引脚轴线上各点的曲率。Exemplarily, according to formula (0.6), the thickness ratio of the elastically deformed fiber layer in the cross-section of the component pin in its elastic-plastic deformation region and any position can be determined. Combined with the calculation formula of the curvature, the axis of the component pin can be obtained. curvature at each point.
可选地,元器件引脚轴线上各点的曲率表示为:Optionally, the curvature of each point on the axis of the component pin is expressed as:
其中,C(l)为曲率,E为弹性模量,I为截面惯性矩,ξ(l)为弹性变形纤维层厚度占比,参见图4,lb为元器件引脚在弹塑性变形区11的引脚长度,LW为元器件引脚的总长度。Among them, C(l) is the curvature, E is the elastic modulus, I is the moment of inertia of the section, ξ(l) is the thickness ratio of the elastically deformed fiber layer, see Figure 4, l b is the component pin in the elastic-
结合图2和图4,元器件引脚自由端在外力作用下的挠度可以分为两部分:一部分是变形区的挠度变化,即塑性变形区域11、弹塑性变形区域12、弹性变形区域13的挠度变化;另一部分是刚性区的挠度变化,即刚性区域14的挠度变化。Combined with Figure 2 and Figure 4, the deflection of the free end of the component pin under the action of external force can be divided into two parts: one part is the deflection change in the deformation zone, that is, the
可选地,元器件引脚在外力作用下的挠度表示为:Optionally, the deflection of component pins under external force is expressed as:
δ=δL+(Lw-S)sinθL (0.8)δ=δ L +(L w -S) sinθ L (0.8)
其中,δ为元器件引脚的挠度,δL为元器件引脚在外力作用下产生的挠度,具体为元器件引脚在外力作用点处的挠度,S为元器件引脚纤维层的总长度,具体为变形区内的自然纤维层的总长度,θL为轴线在外力作用点的偏转角,该偏转角为元器件引脚由于弯曲变形而积累的偏转角。Among them, δ is the deflection of the component pin, δ L is the deflection of the component pin under the action of external force, specifically the deflection of the component pin at the point where the external force acts, and S is the total fiber layer of the component pin. Length, specifically the total length of the natural fiber layer in the deformation zone, θ L is the deflection angle of the axis at the point of application of the external force, which is the deflection angle accumulated by the component pins due to bending deformation.
由于元器件引脚轴线上每一点的曲率不同,因此,可采用离散的微元法来求解轴线上各点的挠度、偏转角以及元器件引脚纤维层的总长度,可参见图2进行理解,其中,图2中的dθ为轴线上两点之间的偏转角的增量的微分,dS为轴线上两点之间的纤维层的长度的增量的微分,dl为轴线上两点在l轴上的长度的增量的微分。Since the curvature of each point on the axis of the component pin is different, the discrete micro-element method can be used to solve the deflection, deflection angle of each point on the axis and the total length of the fiber layer of the component pin, which can be understood by referring to Figure 2 , where dθ in Figure 2 is the differential of the increment of the deflection angle between two points on the axis, dS is the differential of the increment of the length of the fiber layer between the two points on the axis, and dl is the two points on the axis at The derivative of the increment of the length on the l axis.
可选地,元器件引脚轴线上各点的挠度、偏转角以及元器件引脚纤维层的总长度表示为:Optionally, the deflection, deflection angle of each point on the axis of the component pin and the total length of the fiber layer of the component pin are expressed as:
其中,θl为轴线上第一点的偏转角,θl+dl为轴线上第二点的偏转角,△l为轴线上第一点与第二点之间的距离差,δl为轴线上第一点在外力作用下产生的挠度,δl+dl为轴线上第二点在外力作用下产生的挠度。轴线上的第一点和第二点可以是轴线上的任意两点,根据式(0.9)可计算元器件引脚轴线上任意点的挠度、偏转角以及元器件引脚纤维层的总长度。Among them, θ l is the deflection angle of the first point on the axis, θ l+dl is the deflection angle of the second point on the axis, Δl is the distance difference between the first point and the second point on the axis, and δ l is the axis The deflection of the first point on the axis under the action of external force, δ l+dl is the deflection of the second point on the axis under the action of external force. The first and second points on the axis can be any two points on the axis. According to formula (0.9), the deflection and deflection angle of any point on the axis of the component pins and the total length of the fiber layers of the component pins can be calculated.
S240、获取多组外力及其对应的元器件引脚自由端的挠度数据,根据力学模型、轴线上各点的挠度、偏转角以及元器件引脚纤维层的总长度之间的数值关系,以及多组外力及其对应的元器件引脚自由端的挠度数据,确定元器件引脚的初始变形量及其在外力作用下的弹性回复量之间的函数关系。S240. Acquire multiple sets of external forces and the corresponding deflection data of the free ends of the component pins, according to the numerical relationship between the mechanical model, the deflection of each point on the axis, the deflection angle, and the total length of the fiber layer of the component pins, and multiple Set the external force and the corresponding deflection data of the free end of the component pin to determine the functional relationship between the initial deformation of the component pin and its elastic recovery under the action of the external force.
其中,以元器件引脚自由端的挠度表示初始变形量和弹性回复量。Among them, the initial deformation and elastic recovery are expressed by the deflection of the free end of the component pins.
示例性地,当给定一个外力F时,根据式(0.2)至(0.9)可以得到该外力作用下引脚的变形量(即元器件引脚自由端的挠度)。可重复进行多次向元器件引脚自由端施加外力的实验,以获得多组外力及其对应的元器件引脚自由端的挠度数据,即外力-挠度(F-δ)数据。然后,通过曲线拟合的方法,可以获得例如图3所示,在弹塑性变形阶段的AD及A’D’段阶段,外力F与引脚变形量δ的函数关系f(δ)。由于B点处f(δ)=k(δ-δ0),通过求解f(δ)=k(δ-δ0),可获得曲线上每个点代表的变形状态在撤去外力后的弹性回复量δs以及剩余的塑性变形量,即初始变形量δ0。根据这些离散的δs-δ0,同样可以使用曲线拟合的方式,得到关于元器件引脚的初始变形量δ0,以及对其进行矫正时,外力作用下(外力撤去后)的弹性回复量δs之间的函数关系。初始变形量δ0与弹性回复量δs之间的函数关系可表示为δs=B(δ0)。Exemplarily, when an external force F is given, the deformation amount of the pin under the action of the external force (ie the deflection of the free end of the component pin) can be obtained according to equations (0.2) to (0.9). The experiment of applying external force to the free end of the component pins can be repeated many times to obtain multiple sets of external forces and the deflection data of the corresponding free ends of the component pins, that is, the external force-deflection (F-δ) data. Then, through the method of curve fitting, for example, as shown in Figure 3, the functional relationship f(δ) between the external force F and the pin deformation δ in the AD and A'D' stages of the elastic-plastic deformation stage can be obtained. Since f(δ)=k(δ-δ 0 ) at point B, by solving f(δ)=k(δ-δ 0 ), the elastic recovery of the deformation state represented by each point on the curve after the external force is removed can be obtained δ s and the remaining plastic deformation, that is, the initial deformation δ 0 . According to these discrete δ s -δ 0 , the curve fitting method can also be used to obtain the initial deformation δ 0 of the component pins, and the elastic recovery under the external force (after the external force is removed) when it is corrected. The functional relationship between the quantities δ s . The functional relationship between the initial deformation amount δ 0 and the elastic recovery amount δ s can be expressed as δ s =B(δ 0 ).
本实施例的技术方案,从金属材料发生弹塑性变形的理论出发,基于元器件引脚在外力作用下发生变形的力学模型,建立元器件引脚的初始变形量及其在外力作用下的弹性回复量之间的函数关系模型,使得后续在进行元器件引脚矫正时,能够对元器件引脚的弹性回复量进行补偿,从而实现高精度的元器件引脚矫正操作。The technical solution of this embodiment starts from the theory of elastic-plastic deformation of metal materials, and establishes the initial deformation of the component pins and their elasticity under the action of external force based on the mechanical model of the deformation of the component pins under the action of external force. The functional relationship model between the recovery amounts enables compensation for the elastic recovery amount of the component pins during the subsequent correction of the component pins, so as to achieve high-precision component pin correction operations.
本实施例进一步优化了上述元器件引脚的矫正方法,可选地,获取待焊接焊点的位置信息和元器件引脚的位置信息,并根据待焊接焊点的位置信息和元器件引脚的位置信息,控制机器人以期望姿态到达待焊接焊点周围的工作空间,具体包括:This embodiment further optimizes the method for correcting the component pins. Optionally, the position information of the solder joints to be soldered and the position information of the component pins are obtained, and the position information of the solder joints to be soldered and the component pins are obtained according to the position information of the solder joints to be soldered and the component pins. position information, and control the robot to reach the workspace around the welding spot to be welded in the desired posture, including:
S310、实时获取待焊接焊点和元器件引脚自由端的图像信息,以识别待焊接焊点的位置信息和元器件引脚的位置信息。S310 , acquiring the image information of the solder joints to be welded and the free ends of the component pins in real time, so as to identify the position information of the solder joints to be soldered and the position information of the component pins.
图6是本发明实施例提供的一种引脚矫正工作现场的示意图;图7是本发明实施例提供的一种引脚矫正工作现场的细节示意图,图7示意性地示出了图6所示引脚矫正工作现场中的元器件引脚10、机器人的末端执行器20和待焊接焊点30;图8是本发明实施例提供的一种引脚矫正工作现场的图像示意图,图8示意性地示出了图6中的相机40拍摄的元器件引脚10、机器人的末端执行器20和待焊接焊点30的图像。示例性地,如图6至图8所示,引脚矫正工作现场即自动焊接生产现场,对于待焊接的元器件引脚10及待焊接焊点30,可通过相机40实时拍摄工作现场的图像,并通过图像处理的方式提取原始图像中的待焊接焊点的位置信息和元器件引脚的位置信息。FIG. 6 is a schematic diagram of a pin correction work site provided by an embodiment of the present invention; FIG. 7 is a detailed schematic diagram of a pin correction work site provided by an embodiment of the present invention. The component pins 10, the
S320、基于待焊接焊点的位置信息、元器件引脚的位置信息、机器人的末端执行器与其工作现场之间的位置约束关系,以及末端执行器与元器件引脚之间的位置约束关系,确定机器人的末端执行器的期望姿态。S320, based on the position information of the solder joints to be welded, the position information of the component pins, the position constraint relationship between the end effector of the robot and its work site, and the position constraint relationship between the end effector and the component pins, Determine the desired pose of the robot's end effector.
示例性地,结合图6至图8,根据待焊接焊点30和元器件引脚10的自由端的图像信息,可识别待焊接焊点的位置信息和元器件引脚的位置信息,进而确定待焊接焊点的位置Ixs和为元器件引脚自由端的位置其中,待焊接焊点的位置Ixs和为元器件引脚自由端的位置均表示图像空间中的像素点。机器人的末端执行器20可以是夹持焊笔的机械臂,在机器人的末端执行器20执行元器件引脚矫正工作之前,需要确保末端执行器20进入相机40的视场,并以期望姿态到达待焊接焊点30周围的工作空间,因此可采用基于位置的视觉伺服方法对末端执行器20进行控制。Exemplarily, with reference to FIG. 6 to FIG. 8 , according to the image information of the solder joints 30 to be soldered and the free ends of the component pins 10 , the position information of the solder joints to be soldered and the position information of the component pins can be identified, and then the position information of the solder joints to be soldered and the position information of the component pins can be identified. The position of the solder joint I x s and the position of the free end of the component pins Among them, the position I x s of the solder joint to be welded and the position of the free end of the component pin Both represent pixels in image space. The
根据待焊接焊点的位置Ixs和为元器件引脚自由端的位置可确定元器件引偏移待焊接焊点位置的信息即元器件引脚的初始变形量,据此可确定机器人的末端执行器20到达待焊接焊点周围的期望区域和期望位置。末端执行器20的姿态矩阵Re可表示如下:According to the position I x s of the solder joint to be soldered and the position of the free end of the component pins Information that can determine the position of the component lead offset to be soldered That is, the initial deformation amount of the component pins, according to which it can be determined that the
其中,为便于控制,可分别建立末端执行器20的坐标系,以及引脚矫正工作现场的坐标系,该坐标系可以是世界坐标系,参见图7,n、o和a分别为平行于末端执行器坐标系的坐标轴的单位方向矢量。nx,ox和ax,分别为单位方向矢量n、o和a在世界坐标系的x轴的坐标。ny,oy和ay,分别为单位方向矢量n、o和a在世界坐标系的y轴的坐标。nZ,oZ和aZ,分别为单位方向矢量n、o和a在世界坐标系的z轴的坐标。Among them, for the convenience of control, the coordinate system of the
机器人的末端执行器与其工作现场之间的位置约束关系,是指平行于末端执行器坐标系的坐标轴的单位方向矢量n、o和a,在世界坐标系中的约束关系,该约束关系可表示如下:The position constraint relationship between the end effector of the robot and its work site refers to the constraint relationship of the unit direction vectors n, o and a parallel to the coordinate axis of the end effector coordinate system in the world coordinate system, which can be It is expressed as follows:
为求解末端执行器20的期望姿态矩阵Re,还需要末端执行器与元器件引脚之间的位置约束关系,示例性地,参见图7和图8,该约束关系可以是:单位方向矢量n在世界坐标系的xoy平面内的投影,与元器件引脚10偏移待焊接焊点30的方向反向平行,且末端执行器与世界坐标系的xoy平面之间的夹角应为预设角度,以便执行引脚矫正工作。可选地,末端执行器与元器件引脚之间的位置约束关系表示为:In order to solve the desired attitude matrix Re of the
其中,n为末端执行器坐标系的坐标轴的单位方向矢量在世界坐标系的表示,为坐标轴n在末端执行器坐标系的位置,Ixs为待焊接焊点的位置,为元器件引脚自由端的位置,nZ,oZ和aZ分别为平行于末端执行器坐标系的坐标轴的单位方向矢量n、o和a,在世界坐标系的z轴的坐标,γ为末端执行器与世界坐标系的xoy平面之间的夹角,x和y分别为世界坐标系的x轴和y轴,ax,ay和aZ分别为末端执行器坐标系的坐标轴的单位方向矢量a,在世界坐标系的x轴、y轴和z轴的坐标。式(0.12)示意性地示出了γ大于等于45°且小于等于75°的情况。Among them, n is the representation of the unit direction vector of the coordinate axis of the end effector coordinate system in the world coordinate system, is the position of the coordinate axis n in the end effector coordinate system, I x s is the position of the welding spot to be welded, is the position of the free end of the component pin, n Z , o Z and a Z are the unit direction vectors n, o and a parallel to the coordinate axis of the end effector coordinate system, respectively, the coordinates of the z axis in the world coordinate system, γ is the angle between the end effector and the xoy plane of the world coordinate system, x and y are the x-axis and y-axis of the world coordinate system, respectively, a x , a y and a Z are the coordinate axes of the end-effector coordinate system The unit direction vector a, the coordinates of the x-axis, y-axis and z-axis of the world coordinate system. Equation (0.12) schematically shows the case where γ is 45° or more and 75° or less.
联立式(0.10)至式(0.12),根据末端执行器20的姿态矩阵Re、机器人的末端执行器与其工作现场之间的位置约束关系,以及末端执行器与元器件引脚之间的位置约束关系,即可确定机器人的末端执行器的期望姿态,得到期望姿态矩阵Rd。为便于后续计算,可将期望姿态矩阵Rd(Rd∈R3×3)转换为旋转矢量的形式fd(fd∈R3×1)。Simultaneous equations (0.10) to (0.12), according to the attitude matrix Re of the
S330、根据元器件引脚的位置信息、待焊接焊点的半径以及相邻焊点之间的距离,确定机器人进行引脚矫正的期望区域。S330 , according to the position information of the component pins, the radius of the solder joints to be soldered, and the distance between adjacent solder joints, determine a desired area for the robot to perform pin correction.
示例性地,机器人进行引脚矫正的期望区域是指,末端执行器进行引脚矫正时,其在世界坐标系中的空间位置。本方案可采用线性补偿的方式进行引脚矫正,因此末端执行器进行引脚矫正时,应处于距离引脚一定位置的区域,且末端执行器在图像空间中不应遮挡住引脚,据此,机器人进行引脚矫正的期望区域可表示为:Exemplarily, the desired area for the robot to perform pin correction refers to its spatial position in the world coordinate system when the end effector performs pin correction. This solution can use linear compensation for pin correction. Therefore, when the end effector performs pin correction, it should be in a certain position away from the pin, and the end effector should not block the pin in the image space. , the desired area for the robot to perform pin correction can be expressed as:
其中,Ixd为期望位置,λ1为预设补偿系数,预设补偿系数λ1可根据需求进行设置,参见图8,r2为待焊接焊点的外径,dmin为待焊接焊点与相邻焊点之间的距离。Among them, I x d is the desired position, λ 1 is the preset compensation coefficient, and the preset compensation coefficient λ 1 can be set according to requirements, see Figure 8, r 2 is the outer diameter of the welding spot to be welded, and d min is the welding spot to be welded. The distance between the point and the adjacent solder point.
S340、根据期望姿态和期望区域,定义机器人的工作空间以及关于工作空间的势能函数,根据势能函数以及机器人的参数信息确定机器人到达工作空间的力矩,并根据该力矩对机器人进行控制。S340 , define the working space of the robot and the potential energy function about the working space according to the desired posture and the desired area, determine the torque of the robot reaching the working space according to the potential energy function and the parameter information of the robot, and control the robot according to the torque.
示例性地,期望位置Ixd在世界坐标系中的位置Xd可以通过坐标变换得到:Exemplarily, the position X d of the desired position I x d in the world coordinate system can be obtained by coordinate transformation:
其中,表示图像空间中的像素点到世界坐标系中的笛卡尔坐标的变化。根据期望位置Ixd在世界坐标系中的位置Xd,以及期望姿态矩阵的旋转矢量形式fd,可得到机器人末端执行器的广义位置矢量pd,具体可表示为:in, Represents the change from a pixel in image space to Cartesian coordinates in the world coordinate system. According to the position X d of the desired position I x d in the world coordinate system, and the rotation vector form f d of the desired attitude matrix, the generalized position vector p d of the robot end effector can be obtained, which can be specifically expressed as:
其中,xd,yd和zd分别为期望位置Ixd在世界坐标系中的位置Xd的坐标,fxd,fyd和fzd分别为期望姿态矩阵的旋转矢量形式fd的坐标。Among them, x d , y d and z d are the coordinates of the position X d of the desired position I x d in the world coordinate system, respectively, and f xd , f yd and f zd are the coordinates of the rotation vector form f d of the desired attitude matrix, respectively .
为检测机器人的到达状态,可在期望区域附近定义一个工作空间f(p|pd),具体可表示如下:In order to detect the arrival state of the robot, a workspace f(p|p d ) can be defined near the desired area, which can be expressed as follows:
其中,n是工作空间的阶数且n≥2,ri(i=1,2,3,4,5,6)均为正的常数,通过修改参数n和ri,可以工作空间对应的区域的形状和大小。Among them, n is the order of the workspace and n≥2, ri ( i =1, 2, 3, 4, 5, 6) are all positive constants, by modifying the parameters n and ri, the corresponding workspace can be The shape and size of the area.
为判断机器人是否到达工作空间,可根据工作空间f(p|pd)定义一个势能函数Pp(p),具体可表示如下:In order to judge whether the robot has reached the workspace, a potential energy function P p (p) can be defined according to the workspace f(p|p d ), which can be expressed as follows:
其中,kp是一个正的常数。图9是本发明实施例提供的一种工作空间的函数曲线示意图,参见图9,结合式(0.16)和(0.17)可知,可判断机器人的末端执行器是否到达工作空间:机器人的末端执行器在工作空间之外,即t<t0(假设t0为机器人的末端执行器到达工作空间的时刻)时,f(p|pd)>0,且势能函数Pp(p)>0;机器人的末端执行器到达工作空间时,f(p|pd)≤0,且势能函数where k p is a positive constant. FIG. 9 is a schematic diagram of a function curve of a workspace provided by an embodiment of the present invention. Referring to FIG. 9, it can be known by combining equations (0.16) and (0.17) that it can be determined whether the end effector of the robot reaches the workspace: the end effector of the robot Outside the workspace, that is, when t<t 0 (assuming t 0 is the moment when the end effector of the robot reaches the workspace), f(p|p d )>0, and the potential energy function P p (p)>0; When the end effector of the robot reaches the workspace, f(p|p d )≤0, and the potential energy function
Pp(p)=0。P p (p)=0.
示例性地,继续将势能函数Pp(p)对广义位置矢量p求偏导得到Δξ,具体表示为:Exemplarily, continue to take the partial derivative of the potential energy function P p (p) with respect to the generalized position vector p to obtain Δξ, which is specifically expressed as:
由于工作空间f(p|pd)是连续函数,因此Δξ是连续的。Since the workspace f(p|p d ) is a continuous function, Δξ is continuous.
机器人的参数信息包括机器人的速度环反馈增益矩阵、机器人的重力补偿项以及机器人的雅可比矩阵的转置矩阵,根据势能函数Pp(p)对广义位置矢量p的偏导Δξ,以及上述机器人的参数信息,可确定机器人到达工作空间的控制逻辑。可选地,机器人到达工作空间的控制逻辑表示为:The parameter information of the robot includes the speed loop feedback gain matrix of the robot, the gravity compensation term of the robot and the transpose matrix of the Jacobian matrix of the robot, the partial derivative Δξ to the generalized position vector p according to the potential energy function P p (p), and the above-mentioned robot The parameter information can determine the control logic for the robot to reach the workspace. Optionally, the control logic for the robot to reach the workspace is expressed as:
其中,τr为控制机器人到达工作空间的力矩,KP为机器人的速度环反馈增益矩阵,g(q)为机器人的重力补偿项,为机器人的雅可比矩阵的转置矩阵,Δξ为机器人到达工作空间的势能函数对于工作空间的位置矢量的偏导。Among them, τ r is the torque that controls the robot to reach the workspace, K P is the speed loop feedback gain matrix of the robot, g(q) is the gravity compensation term of the robot, is the transpose matrix of the Jacobian matrix of the robot, and Δξ is the partial derivative of the potential energy function of the robot reaching the workspace to the position vector of the workspace.
本实施例的技术方案,通过图像识别确定待焊接焊点的位置信息和元器件引脚的位置信息,以确定元器件引脚偏移待焊接焊点的初始变形量,据此根据图像空间与笛卡尔空间的坐标变换关系,以及机器人末端执行器进行引脚矫正的约束条件,确定末端执行器进行引脚矫正的期望位置和期望姿态。根据期望姿态和期望区域,构建机器人的工作空间以及关于工作空间的势能函数,以势能函数为基础确定控制机器人到达工作空间的力矩,有助于根据力矩快速控制机器人到达工作空间,接近待焊接焊点和元器件引脚。In the technical solution of this embodiment, the position information of the solder joints to be soldered and the position information of the component pins are determined through image recognition, so as to determine the initial deformation amount of the component pins offset from the solder joints to be soldered. The coordinate transformation relationship in Cartesian space and the constraints of the robot end effector for pin correction determine the desired position and desired posture of the end effector for pin correction. According to the desired posture and desired area, construct the robot's workspace and the potential energy function about the workspace, and determine the torque that controls the robot to reach the workspace based on the potential energy function. points and component pins.
本实施例进一步优化了上述元器件引脚的矫正方法,可选地,根据待焊接焊点的位置信息和元器件引脚的位置信息,以及初始变形量与弹性回复量之间的函数关系,控制机器人将元器件引脚矫正至期望位置,以使元器件引脚能够从期望位置回弹至待焊接焊点中心的位置,具体包括:This embodiment further optimizes the method for correcting the component pins. Control the robot to correct the component pins to the desired position, so that the component pins can rebound from the desired position to the position of the center of the solder joint to be soldered, including:
S410、基于待焊接焊点的位置信息和元器件引脚的位置信息,确定元器件引脚的初始变形量。S410, based on the position information of the solder joints to be welded and the position information of the component pins, determine the initial deformation amount of the component pins.
示例性地,基于待焊接焊点的位置Ixs和元器件引脚自由端的位置可确定元器件引偏移待焊接焊点位置的信息即元器件引脚的初始变形量δ0。Exemplarily, based on the position I x s of the solder joint to be soldered and the position of the free end of the component lead Information that can determine the position of the component lead offset to be soldered That is, the initial deformation amount δ 0 of the component pins.
S420、根据元器件引脚的初始变形量,以及初始变形量与弹性回复量之间的函数关系,预测元器件引脚在外力作用下的弹性回复量。S420 , predicting the elastic recovery amount of the component pins under the action of external force according to the initial deformation amount of the component pins and the functional relationship between the initial deformation amount and the elastic recovery amount.
示例性地,元器件引脚的初始变形量δ0,即以及初始变形量δ0与弹性回复量δs之间的函数关系可表示为δs=B(δ0),可预测元器件引脚在外力作用下的弹性回复量δs。Exemplarily, the initial deformation amount δ 0 of the component pins is And the functional relationship between the initial deformation δ 0 and the elastic recovery amount δ s can be expressed as δ s =B(δ 0 ), which can predict the elastic recovery amount δ s of the component pins under the action of external force.
S430、根据待焊接焊点的位置信息和弹性回复量,确定元器件引脚在机器人的矫正下达到的期望位置。S430 , according to the position information and the elastic recovery amount of the solder joint to be welded, determine the expected position of the component lead under the correction of the robot.
示例性地,参见图6至图8,在机器人的末端执行器以期望姿态到达工作空间之后,末端执行器进入相机的视场内(图6示出了末端执行器20位于相机40的视场内的情况),可采用基于图像的视觉伺服方法控制末端执行器进行高精度的主动引脚矫正任务。由于元器件的引脚矫正应在末端执行器到达工作空间之后执行,因此,可建立权重函数,根据权重函数的数值确定机器人的末端执行器的状态。权重函数ω(t)具体可表示为:6 to 8 , after the end effector of the robot reaches the workspace with the desired attitude, the end effector enters the field of view of the camera (FIG. 6 shows that the
ω(t)=u(t-t0) (0.20)ω(t)=u(tt 0 ) (0.20)
其中,u(t)表示一个阶跃函数,t0为末端执行器到达工作空间的时间。图10是本发明实施例提供的一种权重函数的曲线示意图,如图10所示,末端执行器未进入工作空间时,权重函数ω(t)保持为0,当末端执行器到达工作空间之后,权重函数ω(t)变为1。Among them, u(t) represents a step function, and t 0 is the time for the end effector to reach the workspace. FIG. 10 is a schematic diagram of a weight function provided by an embodiment of the present invention. As shown in FIG. 10 , when the end effector does not enter the workspace, the weight function ω(t) remains 0. After the end effector reaches the workspace , the weight function ω(t) becomes 1.
根据权重函数ω(t)构建描述元器件引脚位置的复合向量Ixc,复合向量Ixc可表示为:According to the weight function ω(t), a composite vector I x c describing the position of the component pins is constructed, and the composite vector I x c can be expressed as:
其中,Ixd表示元器件引脚在机器人的矫正下,达到的期望位置,该期望位置考虑了元器件引脚的弹性回复量。Among them, I x d represents the expected position of the component lead under the correction of the robot, and the expected position takes into account the elastic recovery of the component lead.
可选地,期望位置Ixd表示为:Alternatively, the desired position I x d is expressed as:
Ixd=Ixs+IΔx (0.22) I x d = I x s + I Δx (0.22)
其中,Ixd为期望位置,Ixs为待焊接焊点的位置,IΔx为弹性回复量在图像空间中的像素距离,为元器件引脚偏移待焊接焊点位置的信息,即元器件引脚的初始变形量,为元器件引脚的初始变形量对应的弹性回复量,Lpixel为像素当量,为元器件引脚自由端的位置。据此,可控制机器人将元器件引脚矫正至期望位置Ixd。Among them, I x d is the desired position, I x s is the position of the solder joint to be welded, I Δx is the pixel distance of the elastic recovery amount in the image space, It is the information that the component pins are offset from the position of the solder joints to be soldered, that is, the initial deformation of the component pins, is the elastic recovery amount corresponding to the initial deformation of the component pins, L pixel is the pixel equivalent, is the position of the free end of the component pins. Accordingly, the robot can be controlled to correct the component pins to the desired position I x d .
S440、根据期望位置以及机器人的参数信息,确定机器人对元器件引脚进行矫正所需的力矩,并根据该力矩对机器人进行控制。S440: Determine the torque required by the robot to correct the component pins according to the desired position and the parameter information of the robot, and control the robot according to the torque.
示例性地,参见图6,确定元器件引脚矫正的期望位置Ixd之后,可在相机40的监视下完成高精度的引脚矫正控制。可选地,机器人对元器件引脚进行矫正的控制逻辑表示为:Exemplarily, referring to FIG. 6 , after determining the desired position I x d of the component lead correction, high-precision lead correction control can be completed under the monitoring of the
τa=-Kasa+g(q) (0.24)τ a = -K a s a +g(q) (0.24)
其中,τa为控制机器人对元器件引脚进行矫正的力矩,Ka是作为sa系数的正定矩阵,该矩阵用于表示控制增益,该矩阵可根据用户的需求进行设置,sa为一个滑膜向量,具体表示为 为机器人的末端执行器的速度矢量,JP +(q)为机器人的雅可比矩阵的伪逆, Among them, τ a is the moment that the control robot corrects the component pins, and Ka is a positive definite matrix as the coefficient of s a , which is used to represent the control gain. The matrix can be set according to the needs of the user, and s a is a The synovial vector, specifically expressed as is the velocity vector of the robot's end-effector, J P + (q) is the pseudo-inverse of the robot's Jacobian matrix,
综上所述,根据第一个控制阶段中,机器人到达工作空间的控制逻辑,以及第二个控制阶段中,机器人对元器件引脚进行矫正的控制逻辑,联立式(0.19)和式(0.24),整个控制阶段机器人的控制逻辑可表示为:To sum up, according to the control logic of the robot reaching the workspace in the first control stage, and the control logic of the robot correcting the component pins in the second control stage, the simultaneous formula (0.19) and formula ( 0.24), the control logic of the robot in the whole control stage can be expressed as:
τ=(1-ω(t))τr+ω(t)τa (0.26)τ=(1-ω(t))τ r +ω(t)τ a (0.26)
本实施例的技术方案,在机器人的末端执行器已经进入视场且已经以期望姿态处于执行引脚矫正的工作空间内之后,利用基于图像的视觉伺服控制方法操作机器人末端执行引脚矫正任务:根据图像信息中元器件引脚偏移待焊接焊点位置的偏移量确定元器件引脚的初始变形量,将初始变形量代入预先建立的初始变形量与弹性回复量之间的函数关系中,预测元器件引脚在外力作用下的弹性回复量,根据待焊接焊点的位置信息和弹性回复量,确定元器件引脚在机器人的矫正下达到的期望位置,并根据期望位置以及机器人的参数信息,确定机器人对元器件引脚进行矫正所需的力矩,并根据该力矩对机器人进行控制,以实现在图像空间中进行高精度的元器件引脚矫正控制。这样设置的有益效果在于,引脚矫正控制的误差与系统的标定误差和函数建模误差无关,仅与图像对应的像素当量有关,本方案的控制精度较高,有利于实现高精度操作任务。In the technical solution of this embodiment, after the end effector of the robot has entered the field of view and has been in the working space for performing pin correction with a desired attitude, the image-based visual servo control method is used to operate the robot end to perform the pin correction task: Determine the initial deformation of the component pins according to the offset of the component pins in the image information from the position of the solder joint to be welded, and substitute the initial deformation into the pre-established functional relationship between the initial deformation and the elastic recovery , predict the elastic recovery amount of the component pins under the action of external force, and determine the expected position of the component pins under the correction of the robot according to the position information and elastic recovery amount of the solder joints to be welded, and according to the expected position and the robot's desired position Parameter information, determine the torque required by the robot to correct the component pins, and control the robot according to the torque, so as to achieve high-precision component pin correction control in the image space. The beneficial effect of this setting is that the error of pin correction control has nothing to do with the calibration error and function modeling error of the system, but is only related to the pixel equivalent of the image.
图11是本发明实施例提供的一种元器件引脚矫正控制仿真结果示意图,图11中待焊接焊点30左侧的点集,表示控制机器人到达工作空间的阶段,末端执行器的位置变化,可见这一阶段实现了快速控制机器人到达工作空间;待焊接焊点30右侧的点集,表示控制机器人对元器件的引脚进行矫正的阶段,末端执行器的位置变化,可见这一阶段实现了控制机器人进行高精度的引脚矫正工作。FIG. 11 is a schematic diagram of a simulation result of a component pin correction control provided by an embodiment of the present invention. The point set on the left side of the solder joint 30 to be welded in FIG. 11 represents the stage when the control robot reaches the workspace, and the position of the end effector changes. , it can be seen that this stage realizes the rapid control of the robot to reach the workspace; the point set on the right side of the solder joint 30 to be welded represents the stage of the control robot to correct the pins of the components, and the position of the end effector changes, which can be seen in this stage Realize the control of the robot to perform high-precision pin correction work.
图12是本发明实施例提供的另一种元器件引脚矫正控制仿真结果示意图,如图12所示,横坐标t表示时间,纵坐标e表示误差,tr表示机器人到达工作空间的时刻,(0s-trs)为控制机器人到达工作空间的阶段,(trs-3.5s)为控制机器人对元器件的引脚进行矫正的阶段,图12中的两条曲线分别表示机器人两阶段的位置控制,在世界坐标系的z轴,以及x轴和y轴上的误差。可见,控制机器人对元器件的引脚进行矫正的阶段,实现了高精度控制。12 is a schematic diagram of another component pin correction control simulation result provided by an embodiment of the present invention. As shown in FIG. 12 , the abscissa t represents time, the ordinate e represents error, and t r represents the moment when the robot reaches the workspace, (0s-t r s) is the stage of controlling the robot to reach the workspace, (t r s-3.5s) is the stage of controlling the robot to correct the pins of the components, the two curves in Figure 12 represent the two stages of the robot respectively The position controls, the z-axis of the world coordinate system, and the errors on the x- and y-axes. It can be seen that the stage of controlling the robot to correct the pins of the components achieves high-precision control.
图13是本发明实施例提供的另一种元器件引脚矫正控制仿真结果示意图,如图13所示,横坐标t表示时间,纵坐标e表示误差,该误差为图像空间上的误差,tr表示机器人到达工作空间的时刻,(0s-trs)为控制机器人到达工作空间的阶段,(trs-3.5s)为控制机器人对元器件的引脚进行矫正的阶段。图13中的曲线表示元器件引脚距离待焊接焊点之间的误差,即偏移量(初始形变量)。可见,控制机器人到达工作空间的阶段,由于矫正工作未开始,元器件引脚的误差值保持初始的偏移量,控制机器人对元器件的引脚进行矫正的阶段,元器件引脚的误差值逐渐缩小至0,实现了高精度的元器件引脚矫正。13 is a schematic diagram of another component pin correction control simulation result provided by an embodiment of the present invention. As shown in FIG. 13 , the abscissa t represents time, the ordinate e represents error, and the error is the error in the image space, t r represents the moment when the robot reaches the workspace, (0s-t rs ) is the stage of controlling the robot to reach the workspace, and (t r s-3.5s) is the stage of controlling the robot to correct the pins of the components. The curve in Figure 13 represents the error between the component pins and the solder joints to be soldered, that is, the offset (initial deformation). It can be seen that when the control robot reaches the workspace, since the correction work has not started, the error value of the component pins maintains the initial offset, and the control robot corrects the component pins at the stage, the error value of the component pins. Gradually shrink to 0, realizing high-precision component pin correction.
图14是本发明实施例提供的另一种元器件引脚矫正控制仿真结果示意图,图14示出了三组考虑弹性回复量和不考虑弹性回复量的引脚矫正对比实验结果,其中纵坐标D表示引脚自由端与待焊接焊点的通孔轴线之间的距离。如图14所示,三组对比实验结果显示,在控制器的设计中加入引脚弹性回复量补偿的引脚矫正精度,相较于未考虑补偿的引脚矫正精度显著提高。FIG. 14 is a schematic diagram of another component pin correction control simulation result provided by an embodiment of the present invention. FIG. 14 shows three sets of comparative experimental results of pin correction considering the elastic recovery amount and without considering the elastic recovery amount, where the ordinate is D represents the distance between the free end of the pin and the axis of the through hole of the solder joint to be soldered. As shown in Figure 14, the results of three sets of comparative experiments show that the pin correction accuracy of adding pin elastic recovery compensation in the design of the controller is significantly improved compared to the pin correction accuracy without compensation.
具体实施例specific embodiment
在上述实施例的基础上,本实施例进一步优化了上述元器件引脚的矫正方法。图15是本发明实施例提供的另一种元器件引脚的矫正方法的流程示意图,如图15所示,该方法具体包括:On the basis of the above-mentioned embodiment, the present embodiment further optimizes the method for correcting the above-mentioned component pins. FIG. 15 is a schematic flowchart of another method for correcting component pins according to an embodiment of the present invention. As shown in FIG. 15 , the method specifically includes:
S510、确定元器件引脚弯曲变形的力学模型。S510, determining the mechanical model of the bending deformation of the lead of the component.
S520、根据元器件引脚弯曲变形的力学模型,建立元器件引脚的弹性回复量预测模型。S520 , establishing a prediction model of the elastic recovery amount of the component pins according to the mechanical model of the bending deformation of the component pins.
S530、获取待焊接焊点和元器件引脚的图像信息,进行机器视觉处理,以确定焊点位置信息和引脚偏移信息。S530 , acquiring image information of solder joints to be soldered and component pins, and performing machine vision processing to determine solder joint position information and pin offset information.
S540、根据焊点位置信息和引脚偏移信息,计算机器人末端执行器进行引脚矫正的期望姿态和工作空间。S540, according to the position information of the solder joints and the pin offset information, calculate the expected posture and working space of the robot end effector for pin correction.
S550、执行基于位置的工作空间到达控制,以使机器人末端执行器以期望姿态进入工作空间。S550. Execute the position-based workspace arrival control, so that the robot end effector enters the workspace with a desired attitude.
S560、根据焊点位置信息和引脚偏移信息,计算机器人末端执行器执行引脚矫正时,引脚应到达的期望位置。S560: Calculate the expected position that the pin should reach when the robot end effector performs pin correction according to the solder joint position information and the pin offset information.
S570、执行基于图像的引脚矫正控制,以使机器人末端执行器对元器件引脚进行校正。S570. Perform image-based pin correction control, so that the robot end effector corrects the component pins.
本实施例的技术方案,首先从金属材料发生弹塑性变形的理论出发,基于元器件引脚在外力作用下发生变形的力学模型,建立元器件引脚的初始变形量及其在外力作用下的弹性回复量之间的函数关系模型。然后针对机器人的操作对象,提出了两阶段混合的引脚矫正方法:在第一阶段,根据待焊接焊点的位置信息和元器件引脚的位置信息,控制机器人以期望姿态到达待焊接焊点周围的工作空间,以使机器人快速到达工作空间;在第二阶段,根据待焊接焊点的位置信息和元器件引脚的位置信息,以及初始变形量与弹性回复量之间的函数关系模型,控制机器人将元器件引脚矫正至期望位置,以使元器件引脚能够从期望位置回弹至待焊接焊点中心的位置,从而实现高精度的元器件引脚矫正操作。经过模拟及实验验证,表明本实施例提出的主动引脚矫正技术方案具有较好的效果,有助于提升自动化焊接生产线的良品率及焊接质量。The technical solution of this embodiment starts from the theory of elastic-plastic deformation of metal materials, and establishes the initial deformation of the component pins and its deformation under the action of external force based on the mechanical model of the deformation of the component pins under the action of external force. Model of the functional relationship between elastic recoveries. Then, according to the operation object of the robot, a two-stage mixed pin correction method is proposed: in the first stage, according to the position information of the solder joints to be welded and the position information of the component pins, the robot is controlled to reach the solder joints to be soldered with the desired attitude The surrounding workspace, so that the robot can quickly reach the workspace; in the second stage, according to the position information of the solder joints to be welded and the position information of the component pins, as well as the functional relationship model between the initial deformation amount and the elastic recovery amount, Control the robot to correct the component pins to the desired position, so that the component pins can rebound from the desired position to the position of the center of the solder joint to be soldered, so as to realize the high-precision component pin correction operation. Through simulation and experimental verification, it is shown that the active pin correction technical solution proposed in this embodiment has a good effect, which is helpful to improve the yield rate and welding quality of the automatic welding production line.
实施例二
图16是本发明实施例提供的一种元器件引脚的矫正装置的模块结构示意图,本实施例可适用于实现高精度的元器件引脚矫正的情况。本发明实施例所提供的元器件引脚的矫正装置,可执行本发明任意实施例所提供的元器件引脚的矫正方法,具备执行方法相应的功能模块和有益效果。FIG. 16 is a schematic diagram of a module structure of a device for correcting component pins according to an embodiment of the present invention. This embodiment can be applied to the case of realizing high-precision component pin correction. The device for correcting component pins provided by the embodiment of the present invention can execute the correcting method for component pins provided by any embodiment of the present invention, and has functional modules and beneficial effects corresponding to the execution method.
该装置具体包括函数关系建立模块610、第一控制模块620和第二控制模块630,其中:The apparatus specifically includes a functional
函数关系建立模块610用于基于元器件引脚在外力作用下发生变形的力学模型,建立元器件引脚的初始变形量及其在外力作用下的弹性回复量之间的函数关系;The functional
第一控制模块620用于获取待焊接焊点的位置信息和元器件引脚的位置信息,并根据待焊接焊点的位置信息和元器件引脚的位置信息,控制机器人以期望姿态到达待焊接焊点周围的工作空间;The
第二控制模块630用于根据待焊接焊点的位置信息和元器件引脚的位置信息,以及初始变形量与弹性回复量之间的函数关系,控制机器人将元器件引脚矫正至期望位置,以使元器件引脚能够从期望位置回弹至待焊接焊点中心的位置。The
本发明实施例所提供的元器件引脚的矫正装置可执行本发明任意实施例所提供的元器件引脚的矫正方法,具备执行方法相应的功能模块和有益效果。The device for correcting component pins provided by the embodiment of the present invention can perform the correcting method for component pins provided by any embodiment of the present invention, and has functional modules and beneficial effects corresponding to the execution method.
实施例三
图17是本发明实施例提供的一种终端的结构示意图。图17示出了适于用来实现本发明实施方式的示例性设备412的框图。图17显示的设备412仅仅是一个示例,不应对本发明实施例的功能和使用范围带来任何限制。FIG. 17 is a schematic structural diagram of a terminal according to an embodiment of the present invention. Figure 17 shows a block diagram of an
如图17所示,设备412以通用设备的形式表现。设备412的组件可以包括但不限于:一个或者多个处理器416,存储装置428,连接不同系统组件(包括存储装置428和处理器416)的总线418。As shown in FIG. 17,
总线418表示几类总线结构中的一种或多种,包括存储装置总线或者存储装置控制器,外围总线,图形加速端口,处理器或者使用多种总线结构中的任意总线结构的局域总线。举例来说,这些体系结构包括但不限于工业标准体系结构(Industry SubversiveAlliance,ISA)总线,微通道体系结构(Micro Channel Architecture,MAC)总线,增强型ISA总线、视频电子标准协会(Video Electronics Standards Association,VESA)局域总线以及外围组件互连(Peripheral Component Interconnect,PCI)总线。
设备412典型地包括多种计算机系统可读介质。这些介质可以是任何能够被设备412访问的可用介质,包括易失性和非易失性介质,可移动的和不可移动的介质。
存储装置428可以包括易失性存储器形式的计算机系统可读介质,例如随机存取存储器(Random Access Memory,RAM)430和/或高速缓存存储器432。设备412可以进一步包括其它可移动/不可移动的、易失性/非易失性计算机系统存储介质。仅作为举例,存储系统434可以用于读写不可移动的、非易失性磁介质(图17未显示,通常称为“硬盘驱动器”)。尽管图17中未示出,可以提供用于对可移动非易失性磁盘(例如“软盘”)读写的磁盘驱动器,以及对可移动非易失性光盘,例如只读光盘(Compact Disc Read-Only Memory,CD-ROM),数字视盘(Digital Video Disc-Read Only Memory,DVD-ROM)或者其它光介质)读写的光盘驱动器。在这些情况下,每个驱动器可以通过一个或者多个数据介质接口与总线418相连。存储装置428可以包括至少一个程序产品,该程序产品具有一组(例如至少一个)程序模块,这些程序模块被配置以执行本发明各实施例的功能。
具有一组(至少一个)程序模块442的程序/实用工具440,可以存储在例如存储装置428中,这样的程序模块442包括但不限于操作系统、一个或者多个应用程序、其它程序模块以及程序数据,这些示例中的每一个或某种组合中可能包括网络环境的实现。程序模块442通常执行本发明所描述的实施例中的功能和/或方法。A program/
设备412也可以与一个或多个外部设备414(例如键盘、指向终端、显示器424等)通信,还可与一个或者多个使得用户能与该设备412交互的终端通信,和/或与使得该设备412能与一个或多个其它计算终端进行通信的任何终端(例如网卡,调制解调器等等)通信。这种通信可以通过输入/输出(I/O)接口422进行。并且,设备412还可以通过网络适配器420与一个或者多个网络(例如局域网(Local Area Network,LAN),广域网(Wide Area Network,WAN)和/或公共网络,例如因特网)通信。如图17所示,网络适配器420通过总线418与设备412的其它模块通信。应当明白,尽管图中未示出,可以结合设备412使用其它硬件和/或软件模块,包括但不限于:微代码、终端驱动器、冗余处理器、外部磁盘驱动阵列、磁盘阵列(Redundant Arrays of Independent Disks,RAID)系统、磁带驱动器以及数据备份存储系统等。
处理器416通过运行存储在存储装置428中的程序,从而执行各种功能应用以及数据处理,例如实现本发明实施例所提供的元器件引脚的矫正方法,该方法包括:The
基于元器件引脚在外力作用下发生变形的力学模型,建立所述元器件引脚的初始变形量及其在外力作用下的弹性回复量之间的函数关系;Based on the mechanical model of the deformation of the component pins under the action of external force, the functional relationship between the initial deformation of the component pins and the elastic recovery amount under the action of the external force is established;
获取待焊接焊点的位置信息和元器件引脚的位置信息,并根据所述待焊接焊点的位置信息和所述元器件引脚的位置信息,控制机器人以期望姿态到达所述待焊接焊点周围的工作空间;Obtain the position information of the solder joints to be welded and the position information of the component pins, and control the robot to reach the to-be-soldered solder joints in a desired attitude according to the position information of the solder joints to be soldered and the position information of the component pins. the workspace around the point;
根据所述待焊接焊点的位置信息和所述元器件引脚的位置信息,以及所述初始变形量与所述弹性回复量之间的函数关系,控制所述机器人将所述元器件引脚矫正至期望位置,以使所述元器件引脚能够从所述期望位置回弹至所述待焊接焊点中心的位置。According to the position information of the solder joints to be welded and the position information of the component pins, as well as the functional relationship between the initial deformation amount and the elastic recovery amount, the robot is controlled to place the component pins Corrected to a desired position, so that the component lead can spring back from the desired position to the position of the center of the to-be-soldered solder joint.
实施例四
本发明实施例还提供了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现如本发明实施例所提供的元器件引脚的矫正方法,该方法包括:The embodiment of the present invention also provides a computer-readable storage medium, on which a computer program is stored, and when the program is executed by a processor, the method for correcting component pins provided by the embodiment of the present invention is implemented, and the method includes:
基于元器件引脚在外力作用下发生变形的力学模型,建立所述元器件引脚的初始变形量及其在外力作用下的弹性回复量之间的函数关系;Based on the mechanical model of the deformation of the component pins under the action of external force, the functional relationship between the initial deformation of the component pins and the elastic recovery amount under the action of the external force is established;
获取待焊接焊点的位置信息和元器件引脚的位置信息,并根据所述待焊接焊点的位置信息和所述元器件引脚的位置信息,控制机器人以期望姿态到达所述待焊接焊点周围的工作空间;Obtain the position information of the solder joints to be welded and the position information of the component pins, and control the robot to reach the to-be-soldered solder joints in a desired attitude according to the position information of the solder joints to be soldered and the position information of the component pins. the workspace around the point;
根据所述待焊接焊点的位置信息和所述元器件引脚的位置信息,以及所述初始变形量与所述弹性回复量之间的函数关系,控制所述机器人将所述元器件引脚矫正至期望位置,以使所述元器件引脚能够从所述期望位置回弹至所述待焊接焊点中心的位置。According to the position information of the solder joints to be welded and the position information of the component pins, as well as the functional relationship between the initial deformation amount and the elastic recovery amount, the robot is controlled to place the component pins Corrected to a desired position, so that the component lead can spring back from the desired position to the position of the center of the to-be-soldered solder joint.
本发明实施例的计算机存储介质,可以采用一个或多个计算机可读的介质的任意组合。计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质。计算机可读存储介质例如可以是——但不限于——电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子(非穷举的列表)包括:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑磁盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本文件中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。The computer storage medium in the embodiments of the present invention may adopt any combination of one or more computer-readable mediums. The computer-readable medium may be a computer-readable signal medium or a computer-readable storage medium. The computer-readable storage medium can be, for example, but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus or device, or a combination of any of the above. More specific examples (a non-exhaustive list) of computer readable storage media include: electrical connections having one or more wires, portable computer disks, hard disks, random access memory (RAM), read only memory (ROM), Erasable programmable read only memory (EPROM or flash memory), optical fiber, portable compact disk read only memory (CD-ROM), optical storage devices, magnetic storage devices, or any suitable combination of the above. In this document, a computer-readable storage medium can be any tangible medium that contains or stores a program that can be used by or in conjunction with an instruction execution system, apparatus, or device.
计算机可读的信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读的信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。A computer-readable signal medium may include a propagated data signal in baseband or as part of a carrier wave, with computer-readable program code embodied thereon. Such propagated data signals may take a variety of forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the foregoing. A computer-readable signal medium can also be any computer-readable medium other than a computer-readable storage medium that can transmit, propagate, or transport the program for use by or in connection with the instruction execution system, apparatus, or device .
计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括——但不限于无线、电线、光缆、RF等等,或者上述的任意合适的组合。Program code embodied on a computer readable medium may be transmitted using any suitable medium, including - but not limited to wireless, wireline, optical fiber cable, RF, etc., or any suitable combination of the foregoing.
可以以一种或多种程序设计语言或其组合来编写用于执行本发明操作的计算机程序代码,所述程序设计语言包括面向对象的程序设计语言—诸如Java、Smalltalk、C++,还包括常规的过程式程序设计语言—诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或终端上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络——包括局域网(LAN)或广域网(WAN)—连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。Computer program code for carrying out operations of the present invention may be written in one or more programming languages, including object-oriented programming languages—such as Java, Smalltalk, C++, but also conventional Procedural programming language - such as the "C" language or similar programming language. The program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer, or entirely on the remote computer or terminal. In the case of a remote computer, the remote computer may be connected to the user's computer through any kind of network, including a local area network (LAN) or a wide area network (WAN), or may be connected to an external computer (eg, using an Internet service provider through Internet connection).
注意,上述仅为本发明的较佳实施例及所运用技术原理。本领域技术人员会理解,本发明不限于这里所述的特定实施例,对本领域技术人员来说能够进行各种明显的变化、重新调整和替代而不会脱离本发明的保护范围。因此,虽然通过以上实施例对本发明进行了较为详细的说明,但是本发明不仅仅限于以上实施例,在不脱离本发明构思的情况下,还可以包括更多其他等效实施例,而本发明的范围由所附的权利要求范围决定。Note that the above are only preferred embodiments of the present invention and applied technical principles. Those skilled in the art will understand that the present invention is not limited to the specific embodiments described herein, and various obvious changes, readjustments and substitutions can be made by those skilled in the art without departing from the protection scope of the present invention. Therefore, although the present invention has been described in detail through the above embodiments, the present invention is not limited to the above embodiments, and can also include more other equivalent embodiments without departing from the concept of the present invention. The scope is determined by the scope of the appended claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011438090.4A CN112975947B (en) | 2020-12-07 | 2020-12-07 | Component pin correction method, device, equipment and storage medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011438090.4A CN112975947B (en) | 2020-12-07 | 2020-12-07 | Component pin correction method, device, equipment and storage medium |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112975947A CN112975947A (en) | 2021-06-18 |
CN112975947B true CN112975947B (en) | 2022-05-10 |
Family
ID=76344913
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011438090.4A Active CN112975947B (en) | 2020-12-07 | 2020-12-07 | Component pin correction method, device, equipment and storage medium |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112975947B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115017857B (en) * | 2022-06-14 | 2023-06-06 | 大连日佳电子有限公司 | Method and system for determining pin inserting position of electronic component |
CN117245266B (en) * | 2023-11-17 | 2024-02-23 | 深圳市大族封测科技股份有限公司 | Welding spot correction method and device, computer equipment and storage medium |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN202846008U (en) * | 2012-09-18 | 2013-04-03 | 云顶汽车部件股份有限公司 | Calibration device for robot welding track |
KR101403551B1 (en) * | 2012-12-20 | 2014-06-03 | 윤상욱 | Torch correcting device for welding robot |
CN103934558A (en) * | 2013-01-17 | 2014-07-23 | 重庆亚宸汽车零部件有限公司 | Method for welding electronic devices of EPS (electric power steering) controller |
CN105252094A (en) * | 2015-10-23 | 2016-01-20 | 北京卫星制造厂 | High-reliability installation method for high-voltage welding spots |
CN108480525A (en) * | 2018-04-28 | 2018-09-04 | 珠海富元电子科技有限公司 | A kind of crawl of automatic pin cutter, correction, positioning, shearing mechanism |
CN111386024A (en) * | 2020-04-21 | 2020-07-07 | 大连日佳电子有限公司 | Pin self-adaptive positioning insertion method and system for double-pin electronic component |
CN111405842A (en) * | 2020-05-15 | 2020-07-10 | 大连日佳电子有限公司 | Pin self-adaptive positioning plug-in mounting method and system for three-pin electronic component |
CN111790851A (en) * | 2020-07-02 | 2020-10-20 | 申科谱自动化科技(珠海)有限公司 | A vibrating feeder for automatic detection of component pin polarity and automatic pin cutting |
CN111918740A (en) * | 2018-03-20 | 2020-11-10 | 松下知识产权经营株式会社 | Arc welding method, arc welding system, and welding power supply device control device |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7381455B2 (en) * | 2017-10-11 | 2023-11-15 | コーニンクレッカ フィリップス エヌ ヴェ | Intelligent ultrasound-based fertility monitoring |
TWI650733B (en) * | 2017-12-01 | 2019-02-11 | 台達電子工業股份有限公司 | Electronic component assembly system and method |
-
2020
- 2020-12-07 CN CN202011438090.4A patent/CN112975947B/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN202846008U (en) * | 2012-09-18 | 2013-04-03 | 云顶汽车部件股份有限公司 | Calibration device for robot welding track |
KR101403551B1 (en) * | 2012-12-20 | 2014-06-03 | 윤상욱 | Torch correcting device for welding robot |
CN103934558A (en) * | 2013-01-17 | 2014-07-23 | 重庆亚宸汽车零部件有限公司 | Method for welding electronic devices of EPS (electric power steering) controller |
CN105252094A (en) * | 2015-10-23 | 2016-01-20 | 北京卫星制造厂 | High-reliability installation method for high-voltage welding spots |
CN111918740A (en) * | 2018-03-20 | 2020-11-10 | 松下知识产权经营株式会社 | Arc welding method, arc welding system, and welding power supply device control device |
CN108480525A (en) * | 2018-04-28 | 2018-09-04 | 珠海富元电子科技有限公司 | A kind of crawl of automatic pin cutter, correction, positioning, shearing mechanism |
CN111386024A (en) * | 2020-04-21 | 2020-07-07 | 大连日佳电子有限公司 | Pin self-adaptive positioning insertion method and system for double-pin electronic component |
CN111405842A (en) * | 2020-05-15 | 2020-07-10 | 大连日佳电子有限公司 | Pin self-adaptive positioning plug-in mounting method and system for three-pin electronic component |
CN111790851A (en) * | 2020-07-02 | 2020-10-20 | 申科谱自动化科技(珠海)有限公司 | A vibrating feeder for automatic detection of component pin polarity and automatic pin cutting |
Also Published As
Publication number | Publication date |
---|---|
CN112975947A (en) | 2021-06-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI668541B (en) | System and method for calibrating tool center point of robot | |
CN112975947B (en) | Component pin correction method, device, equipment and storage medium | |
CN113927599B (en) | Absolute precision compensation method, system, device and computer readable storage medium | |
CN112123341B (en) | Robot double arm coordinated motion control method, device and electronic device | |
CN114147726B (en) | Robot calibration method combining geometric error with non-geometric error | |
WO2021169855A1 (en) | Robot correction method and apparatus, computer device, and storage medium | |
CN113001535A (en) | Automatic correction system and method for robot workpiece coordinate system | |
CN107351084A (en) | A kind of space manipulator hand system error correcting method of oriented for maintenance task | |
CN108621162A (en) | A kind of manipulator motion planning method | |
CN110253574A (en) | A Multi-task Manipulator Pose Detection and Error Compensation Method | |
JPH09319420A (en) | Assembly robot | |
CN111515928B (en) | Mechanical arm motion control system | |
CN114523477A (en) | Joint pose calibration method, system and storage medium | |
CN105180962A (en) | Spatial two-point calibration projection based base coordinate system calibration method of coordinated robot | |
CN112476435B (en) | Calibration method and calibration device for gravity acceleration direction and storage medium | |
CN118809605A (en) | A robotic arm for a six-degree-of-freedom visual grasping system and a self-calibration method thereof | |
US20240217108A1 (en) | Method for avoiding singularities of robotic arm, control device and computer-readable storage medium | |
CN117340879A (en) | Industrial machine ginseng number identification method and system based on graph optimization model | |
CN112183524A (en) | Robot wired network docking method, system, terminal device and storage medium | |
CN116276990A (en) | Kinematics Forward Solution Method of Two Degrees of Freedom Parallel Structure Based on Neural Network Training | |
CN116214510A (en) | Mechanical arm admittance control method and system | |
CN116175148A (en) | Compliant Shaft Hole Assembly Method Based on Contact State Model and Adaptive Impedance Control | |
WO2022256402A1 (en) | Workcell modeling using motion profile matching and swept profile matching | |
CN118850724B (en) | A Luer connector automatic insertion system and control method thereof | |
CN117348577B (en) | Production process simulation detection method, device, equipment and medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |