CN112967256A - Tunnel ovalization detection method based on spatial distribution - Google Patents
Tunnel ovalization detection method based on spatial distribution Download PDFInfo
- Publication number
- CN112967256A CN112967256A CN202110257311.6A CN202110257311A CN112967256A CN 112967256 A CN112967256 A CN 112967256A CN 202110257311 A CN202110257311 A CN 202110257311A CN 112967256 A CN112967256 A CN 112967256A
- Authority
- CN
- China
- Prior art keywords
- ellipse
- tunnel
- data point
- data points
- data
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 28
- 238000000034 method Methods 0.000 claims description 21
- 239000011159 matrix material Substances 0.000 claims description 10
- 230000014509 gene expression Effects 0.000 claims description 6
- 238000001914 filtration Methods 0.000 claims description 5
- 238000004088 simulation Methods 0.000 claims description 4
- 238000005259 measurement Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 3
- 238000007689 inspection Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000010276 construction Methods 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 101150036841 minJ gene Proteins 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/50—Image enhancement or restoration using two or more images, e.g. averaging or subtraction
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/70—Denoising; Smoothing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/60—Analysis of geometric attributes
- G06T7/62—Analysis of geometric attributes of area, perimeter, diameter or volume
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/97—Determining parameters from multiple pictures
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10028—Range image; Depth image; 3D point clouds
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20212—Image combination
- G06T2207/20216—Image averaging
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Quality & Reliability (AREA)
- Geometry (AREA)
- Image Analysis (AREA)
Abstract
本发明公开了隧道检测技术领域内的一种基于空间分布的隧道椭圆化检测方法,包括以下步骤:(1)使用三维激光扫描仪扫描隧道外缘一圈,每隔i mm采集一个数据点坐标,采集到的所有数据点构成模拟数据集;(2)过滤掉所有误差大的数据点,形成新的数据点集{M1,M2,M3,...Mg};(3)根据新的数据点集拟合椭圆;(4)根据拟合出的椭圆参数计算椭圆度;其中,g为数据点集中数据点的个数,Mk数据点为第k个数据点,1≤k≤g;使用本发明检测速度快,检测更加稳定,检测精度高。
The invention discloses a tunnel ovalization detection method based on spatial distribution in the technical field of tunnel detection, comprising the following steps: (1) Scan the outer edge of the tunnel with a three-dimensional laser scanner, and collect the coordinates of a data point every 1 mm , all the collected data points constitute a simulated data set; (2) filter out all data points with large errors to form a new data point set {M 1 , M 2 , M 3 ,...Mg}; (3) According to Fit the ellipse to the new data point set; (4) Calculate the ellipseness according to the fitted ellipse parameters; where g is the number of data points in the data point set, M k data point is the kth data point, 1≤k ≤g; the detection speed is fast, the detection is more stable, and the detection precision is high.
Description
技术领域technical field
本发明属于隧道检测技术领域,特别涉及一种基于空间分布的隧道椭圆化检测方法。The invention belongs to the technical field of tunnel detection, and in particular relates to a method for detecting ovalization of tunnels based on spatial distribution.
背景技术Background technique
随着城市化进程及城市的大规模发展,我国正加紧地铁建设以解决日益严重的交通堵塞问题。由于隧道规模的快速扩大,隧道检测工作量随之骤增,加上中国幅域辽阔,从东到西、从南到北的地质构造、自然环境差异巨大,周围环境的变化以及列车运行时的震动等各种因素的影响,地铁隧道会出现各种病害,在地铁施工和运营维护过程中,隧道工程结构的变形检测是一项极其重要的工作。With the process of urbanization and the large-scale development of cities, my country is stepping up the construction of subways to solve the increasingly serious traffic jam problem. Due to the rapid expansion of the tunnel scale, the workload of tunnel inspection has increased sharply. In addition to the vast territory of China, the geological structure and natural environment from east to west and from south to north are very different. Under the influence of various factors such as vibration, various diseases will occur in subway tunnels. In the process of subway construction and operation and maintenance, deformation detection of tunnel engineering structures is an extremely important task.
隧道断面在理论上要求是圆形的,但是随着时间的推移,隧道会趋向椭圆化。而椭圆度是定量计算隧道椭圆化的重要参数,及时发现隧道变形隐患,预警隧道病害,因此对隧道椭圆度的检测日益重要。常规的隧道变形检测方法有吊铅垂法测量、精密水准测量、全站仪测量、测量机器人测量等,但这些监测方法速度慢、人力要求高、费时费力,同时测点也很离散和稀疏,不能反映隧道断面的整体形变情况。The tunnel section is theoretically required to be circular, but over time, the tunnel will tend to ovalize. The ellipticity is an important parameter to quantitatively calculate the ovalization of the tunnel. It can detect the hidden danger of tunnel deformation in time and give early warning of tunnel diseases. Therefore, the detection of tunnel ovality is increasingly important. Conventional tunnel deformation detection methods include hanging plumb method measurement, precision leveling measurement, total station measurement, measurement robot measurement, etc., but these monitoring methods are slow, require high manpower, time-consuming and labor-intensive, and the measurement points are also very discrete and sparse. It cannot reflect the overall deformation of the tunnel section.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于,克服现有技术中的不足之处,提供一种基于空间分布的隧道椭圆化检测方法,解决了现有技术中检测速度慢的技术难题,使用本发明检测速度快,检测更加稳定,检测精度高。The purpose of the present invention is to overcome the deficiencies in the prior art, and provide a method for detecting tunnel ovalization based on spatial distribution, which solves the technical problem of slow detection speed in the prior art. More stable and high detection accuracy.
本发明的目的是这样实现的:一种基于空间分布的隧道椭圆化检测方法,包括以下步骤:The object of the present invention is achieved in this way: a kind of tunnel ovalization detection method based on spatial distribution, comprising the following steps:
(1)使用三维激光扫描仪扫描隧道外缘一圈,每隔i mm采集一个数据点坐标,采集到的所有数据点构成模拟数据集;(1) Use a three-dimensional laser scanner to scan the outer edge of the tunnel, collect a data point coordinate every 1 mm, and all the collected data points form a simulated data set;
(2)过滤掉所有误差大的数据点,形成新的数据点集{M1,M2,M3,...Mg};(2) Filter out all data points with large errors to form a new data point set {M 1 , M 2 , M 3 ,...Mg};
(3)根据新的数据点集拟合椭圆;(3) Fitting an ellipse according to the new data point set;
(4)根据拟合出的椭圆参数计算椭圆度;(4) Calculate the ellipticity according to the fitted ellipse parameters;
其中,g为数据点集中数据点的个数,Mk数据点为第k个数据点,1≤k≤g。Among them, g is the number of data points in the data point set, M k data point is the kth data point, 1≤k≤g.
为了进一步提高检测精度,所述步骤(2)中,过滤掉误差大的数据点步骤具体为,In order to further improve the detection accuracy, in the step (2), the step of filtering out data points with large errors is specifically:
(201)以激光发生器所在位置为原点O,分别以过原点的水平线和垂线为x轴和y轴建立隧道端面平面直角系xOy,设离散数据点为(xα,yα)(α=1,2,...g’),计算模拟数据集的质心,以质心为中心,经过质心的水平线为初始直线,以初始直线依次逆时针间隔角度ω画一条直线,y1、y2、,...yn,n=180/ω,将数据点划分为多个区域,Ω1,Ω2,...Ωm,m=2n;(201) Taking the position of the laser generator as the origin O, and taking the horizontal and vertical lines passing through the origin as the x-axis and y-axis respectively, establish the tunnel end plane right angle system xOy, and set the discrete data points as (x α , y α )(α =1, 2,...g'), calculate the centroid of the simulated data set, take the centroid as the center, the horizontal line passing through the centroid is the initial straight line, and draw a straight line with the initial straight line counterclockwise at an angle ω, y 1 , y 2 ,,...y n , n=180/ω, divide the data point into multiple regions, Ω 1 ,Ω 2 ,...Ω m , m=2n;
(202)设定g’=g;(202) set g'=g;
(203)从各区域随机选取占比为η的数据点,共选取p次,拟合p个椭圆,求出每个椭圆的参数,取参数平均值,将参数平均值作为初步拟合的椭圆参数,求出初步拟合的椭圆的两个焦点,计算新的数据点集中每一个数据点到两个焦点的距离之和,设定距离阈值d;(203) randomly select data points with a proportion of n from each area, select p times in total, fit p ellipses, obtain the parameters of each ellipse, take the average value of the parameters, and use the average parameter value as the ellipse of the preliminary fitting parameter, find the two foci of the initially fitted ellipse, calculate the sum of the distances from each data point in the new data point set to the two foci, and set the distance threshold d;
(204)设定k=0,i’=1;(204) set k=0, i'=1;
(205)k’=k+1;(205) k'=k+1;
(206)若k’≤g’,将k加1,进入步骤(207),否则转至步骤(208);(206) If k'≤g', add 1 to k, and go to step (207), otherwise go to step (208);
(207)若Mk‘>d,则将数据点Mk’从新的数据点集中去除,将i’加1,i”=i’-1,返回步骤(205);(207) If M k' >d, remove the data point M k' from the new data point set, add 1 to i', i"=i'-1, and return to step (205);
(208)g’=g-i”,设定j=0;(208) g'=g-i", set j=0;
(209)j’=j+1,j’≤j设定,转至步骤(210),否则结束;(209) j'=j+1, j'≤j is set , go to step (210), otherwise end;
(210)将剩下的数据点重新划分区域,将划分原区域的直线逆时针依次旋转θj’,构成各个新的区域,返回步骤(203);(210) the remaining data points are re-divided into regions, and the straight line that divides the original region is rotated counterclockwise by θ j ' to form each new region, and returns to step (203);
其中,j设定为设定好的迭代次数。in, j is set to the set number of iterations.
为了进一步实现椭圆的拟合,所述步骤(3)中,拟合椭圆的步骤具体为,In order to further realize the fitting of the ellipse, in the step (3), the step of fitting the ellipse is specifically,
(301)定义椭圆表达式,(301) define an ellipse expression,
(302)根据离散数据点{xα,yα}(α=1,2,...g’)定义代数距离(302) Define algebraic distances according to discrete data points {x α , y α } (α=1, 2, ... g')
(303)定义矩阵ξ和θ:,(303) define matrices ξ and θ:,
θ=(A,B,C,D,E,F)T (4);θ = (A, B, C, D, E, F) T (4);
(304)椭圆表达式可以重写为紧致格式,(304) Ellipse expressions can be rewritten in compact form,
(ξ,θ)=0 (5);(ξ,θ)=0 (5);
(305)定义ξα在某点(xα,yα)上的矩阵ξ,进而重新表达代数距离,(305) Define the matrix ξ of ξα at a certain point (x α , y α ), and then re-express the algebraic distance,
矩阵M为,The matrix M is,
(306)构造椭圆的约束条件,(306) Constraints for constructing an ellipse,
(θ,Nθ)=c (8);(θ, Nθ) = c (8);
(307)最小的代数距离设为min J,令(307) The minimum algebraic distance is set as min J, let
minJ=(θ,Mθ)minJ=(θ, Mθ)
假设(θ,Nθ)=c (9);Suppose (θ, Nθ) = c (9);
(308)求解Mθ=λNθ,找出使得协方差和偏差最小的矩阵N,(308) Solve Mθ=λNθ, find the matrix N that minimizes the covariance and deviation,
其中:in:
(xc,yc)为离散数据点{xα,yα}(α=1,2,...g’)的质心坐标,f0是一个比例常数,c为一非零常数。 (x c , y c ) are the coordinates of the centroid of the discrete data points {x α , y α } (α=1, 2,...g'), f0 is a proportionality constant, and c is a non-zero constant.
为了进一步实现隧道椭圆化的检测,所述步骤(4)中,计算椭圆度的步骤具体为,In order to further realize the detection of tunnel ovalization, in the step (4), the step of calculating the ellipticity is specifically:
(401)确定椭圆的中心位置(401) Determine the center position of the ellipse
(402)计算出椭圆长半轴a,长轴所在直线L1与椭圆的交点为(x1,y1)和(x2,y2),(402) Calculate the semi-major axis a of the ellipse, and the intersection points of the straight line L1 where the long axis is located and the ellipse are (x 1 , y 1 ) and (x 2 , y 2 ),
(403)计算椭圆度T,(403) Calculate the ellipticity T,
其中,a为隧道的长半轴,b为隧道的短半轴,D为隧道的外径。Among them, a is the long semi-axis of the tunnel, b is the short semi-axis of the tunnel, and D is the outer diameter of the tunnel.
本发明先将检测到的若干隧道外缘数据点构成模拟数据集,将模拟数据集中的数据点划分为几个区域,每次从各区域内任取一部分点,拟合一定数量的椭圆,通过平均分析构建初始椭圆,过滤掉误差大的原始数据,去除噪点,反复迭代,得到最终待拟合椭圆的新的数据集,利用新的数据集进行椭圆的啮合,得到椭圆参数,通过新的点云去噪方法和拟合椭圆的方法结合起来更好地拟合椭圆,提高检测精度,尤其在强噪声环境下,本发明具有更大优势,检测出来的数据更加准确、鲁棒性更强;通过拟合出的椭圆参数求得隧道椭圆化的指标,实际应用时,会根据计算出来的隧道的椭圆化指标,判断隧道的累计变形值和判定结构破坏风险等级;可应用于隧道检测的工作中。In the present invention, a number of detected data points on the outer edge of the tunnel constitute a simulated data set, and the data points in the simulated data set are divided into several regions, and a part of points is randomly selected from each region each time, and a certain number of ellipses are fitted to fit a certain number of ellipses. The average analysis constructs the initial ellipse, filters out the original data with large error, removes the noise, repeats iteratively, and obtains a new data set of the final ellipse to be fitted. The cloud denoising method and the ellipse fitting method are combined to better fit the ellipse and improve the detection accuracy, especially in a strong noise environment, the present invention has greater advantages, and the detected data is more accurate and robust; The index of tunnel ellipse is obtained by fitting the ellipse parameters. In practical application, the accumulated deformation value of the tunnel and the risk level of structural damage will be judged according to the calculated ellipse index of the tunnel; it can be applied to the work of tunnel inspection. middle.
附图说明Description of drawings
图1为本发明中过滤噪声点的算法流程框图。FIG. 1 is a flow chart of an algorithm for filtering noise points in the present invention.
图2为本发明中初次划分区域的坐标图。FIG. 2 is a coordinate diagram of the first divided area in the present invention.
图3为本发明中下一次划分区域的坐标图。FIG. 3 is a coordinate diagram of the next divided area in the present invention.
图4为本发明中的隧道模拟点云数据图。FIG. 4 is a data diagram of a tunnel simulation point cloud in the present invention.
图5为点云数据中的局部放大图。Figure 5 is an enlarged view of a part of the point cloud data.
图6为本发明的椭圆拟合图像。FIG. 6 is an ellipse fitting image of the present invention.
图7为本发明中椭圆拟合图像的局部放大图。FIG. 7 is a partial enlarged view of the ellipse fitting image in the present invention.
具体实施方式Detailed ways
下面结合附图对本发明进行进一步说明。The present invention will be further described below with reference to the accompanying drawings.
一种基于空间分布的隧道椭圆化检测方法,包括以下步骤:A method for detecting tunnel ovalization based on spatial distribution, comprising the following steps:
(1)使用三维激光扫描仪扫描隧道外缘一圈,每隔i mm采集一个数据点坐标,采集到的所有数据点构成模拟数据集;(1) Use a three-dimensional laser scanner to scan the outer edge of the tunnel, collect a data point coordinate every 1 mm, and all the collected data points form a simulated data set;
(2)过滤掉所有误差大的数据点,形成新的数据点集{M1,M2,M3,...Mg};(2) Filter out all data points with large errors to form a new data point set {M 1 , M 2 , M 3 ,...Mg};
(3)根据新的数据点集拟合椭圆;(3) Fitting an ellipse according to the new data point set;
(4)根据拟合出的椭圆参数计算椭圆度;(4) Calculate the ellipticity according to the fitted ellipse parameters;
其中,g为数据点集中数据点的个数,Mk数据点为第k个数据点,1≤k≤g。Among them, g is the number of data points in the data point set, M k data point is the kth data point, 1≤k≤g.
为了进一步提高检测精度,所述步骤(2)中,过滤掉误差大的数据点步骤具体为,In order to further improve the detection accuracy, in the step (2), the step of filtering out data points with large errors is specifically:
(201)以激光发生器所在位置为原点O,分别以过原点的水平线和垂线为x轴和y轴建立隧道端面平面直角系xOy,设离散数据点为(xα,yα)(α=1,2,...g’),计算模拟数据集的质心,以质心为中心,经过质心的水平线为初始直线,以初始直线依次逆时针间隔角度ω画一条直线,y1、y2、,...yn,n=180/ω,将数据点划分为多个区域,Ω1,Ω2,...Ωm,m=2n;(201) Taking the position of the laser generator as the origin O, and taking the horizontal and vertical lines passing through the origin as the x-axis and y-axis respectively, establish the tunnel end plane right angle system xOy, and set the discrete data points as (x α , y α )(α =1, 2,...g'), calculate the centroid of the simulated data set, take the centroid as the center, the horizontal line passing through the centroid is the initial straight line, and draw a straight line with the initial straight line counterclockwise at an angle ω, y 1 , y 2 ,,...y n , n=180/ω, divide the data point into multiple regions, Ω 1 ,Ω 2 ,...Ω m , m=2n;
(202)设定g’=g;(202) set g'=g;
(203)从各区域随机选取占比为η的数据点,共选取p次,拟合p个椭圆,求出每个椭圆的参数,取参数平均值,将参数平均值作为初步拟合的椭圆参数,求出初步拟合的椭圆的两个焦点,计算新的数据点集中每一个数据点到两个焦点的距离之和,设定距离阈值d;(203) randomly select data points with a proportion of n from each area, select p times in total, fit p ellipses, obtain the parameters of each ellipse, take the average value of the parameters, and use the average parameter value as the ellipse of the preliminary fitting parameter, find the two foci of the initially fitted ellipse, calculate the sum of the distances from each data point in the new data point set to the two foci, and set the distance threshold d;
(204)设定k=0,i’=1;(204) set k=0, i'=1;
(205)k’=k+1;(205) k'=k+1;
(206)若k’≤g’,将k加1,进入步骤(207),否则转至步骤(208);(206) If k'≤g', add 1 to k, and go to step (207), otherwise go to step (208);
(207)若Mk‘>d,则将数据点Mk’从新的数据点集中去除,将i’加1,i”=i’-1,返回步骤(205);(207) If M k' >d, remove the data point M k' from the new data point set, add 1 to i', i"=i'-1, and return to step (205);
(208)g’=g-i”,设定j=0;(208) g'=g-i", set j=0;
(209)j’=j+1,j’≤j设定,转至步骤(210),否则结束;(209) j'=j+1, j'≤j is set , go to step (210), otherwise end;
(210)将剩下的数据点重新划分区域,将划分原区域的直线逆时针依次旋转θj’,构成各个新的区域,返回步骤(203);(210) the remaining data points are re-divided into regions, and the straight line that divides the original region is rotated counterclockwise by θ j ' to form each new region, and returns to step (203);
其中,j设定为设定好的迭代次数。in, j is set to the set number of iterations.
为了进一步实现椭圆的拟合,所述步骤(3)中,拟合椭圆的步骤具体为,In order to further realize the fitting of the ellipse, in the step (3), the step of fitting the ellipse is specifically,
(301)定义椭圆表达式,(301) define an ellipse expression,
(302)根据离散数据点{xα,yα}(α=1,2,...g’)定义代数距离(302) Define algebraic distances according to discrete data points {x α , y α } (α=1, 2, ... g')
(303)定义矩阵ξ和θ:,(303) define matrices ξ and θ:,
θ=(A,B,C,D,E,F)T (4);θ = (A, B, C, D, E, F) T (4);
(304)椭圆表达式可以重写为紧致格式,(304) Ellipse expressions can be rewritten in compact form,
(ξ,θ)=0 (5);(ξ,θ)=0 (5);
(305)定义ξα在某点(xα,yα)上的矩阵ξ,进而重新表达代数距离,(305) Define the matrix ξ of ξα at a certain point (x α , y α ), and then re-express the algebraic distance,
矩阵M为,The matrix M is,
(306)构造椭圆的约束条件,(306) Constraints for constructing an ellipse,
(θ,Nθ)=c (8);(θ, Nθ) = c (8);
(307)最小的代数距离设为min J,令(307) The minimum algebraic distance is set as min J, let
minJ=(θ,Mθ)minJ=(θ, Mθ)
假设(θ,Nθ)=c (9);Suppose (θ, Nθ) = c (9);
(308)求解Mθ=λNθ,找出使得协方差和偏差最小的矩阵N,(308) Solve Mθ=λNθ, find the matrix N that minimizes the covariance and deviation,
其中:in:
(xc,yc)为离散数据点{xα,yα}(α=1,2,...g’)的质心坐标,f0是一个比例常数,c为一非零常数。 (x c , y c ) are the coordinates of the centroid of the discrete data points {x α , y α } (α=1, 2, ... g'), f 0 is a proportionality constant, and c is a non-zero constant.
为了进一步实现隧道椭圆化的检测,所述步骤(4)中,计算椭圆度的步骤具体为,In order to further realize the detection of tunnel ovalization, in the step (4), the step of calculating the ellipticity is specifically:
(401)确定椭圆的中心位置(401) Determine the center position of the ellipse
(402)计算出椭圆长半轴a,长轴所在直线L1与椭圆的交点为(x1,y1)和(x2,y2),(402) Calculate the semi-major axis a of the ellipse, and the intersection points of the straight line L1 where the long axis is located and the ellipse are (x 1 , y 1 ) and (x 2 , y 2 ),
(403)计算椭圆度T,(403) Calculate the ellipticity T,
其中,a为隧道的长半轴,b为隧道的短半轴,D为隧道的外径。Among them, a is the long semi-axis of the tunnel, b is the short semi-axis of the tunnel, and D is the outer diameter of the tunnel.
本发明先将检测到的若干隧道外缘数据点构成模拟数据集,将模拟数据集中的数据点划分为几个区域,每次从各区域内任取一部分点,拟合一定数量的椭圆,通过平均分析构建初始椭圆,过滤掉误差大的原始数据,去除噪点,反复迭代,得到最终待拟合椭圆的新的数据集,利用新的数据集进行椭圆的啮合,得到椭圆参数,通过新的点云去噪方法和拟合椭圆的方法结合起来更好地拟合椭圆,提高检测精度,尤其在强噪声环境下,本发明具有更大优势,检测出来的数据更加准确、鲁棒性更强;通过拟合出的椭圆参数求得隧道椭圆化的指标,实际应用时,会根据计算出来的隧道的椭圆化指标,判断隧道的累计变形值和判定结构破坏风险等级;可应用于隧道检测的工作中。In the present invention, a number of detected data points on the outer edge of the tunnel constitute a simulated data set, and the data points in the simulated data set are divided into several regions, and a part of points is randomly selected from each region each time, and a certain number of ellipses are fitted to fit a certain number of ellipses. The average analysis constructs the initial ellipse, filters out the original data with large error, removes the noise, repeats iteratively, and obtains a new data set of the final ellipse to be fitted. The cloud denoising method and the ellipse fitting method are combined to better fit the ellipse and improve the detection accuracy, especially in a strong noise environment, the present invention has greater advantages, and the detected data is more accurate and robust; The index of tunnel ellipse is obtained by fitting the ellipse parameters. In practical application, the accumulated deformation value of the tunnel and the risk level of structural damage will be judged according to the calculated ellipse index of the tunnel; it can be applied to the work of tunnel inspection. middle.
使用本发明中的检测方法进行仿真模拟,本实施例中,取ω=45°,i即为4,m即为8,步骤(201)划分区域如图2所示,下一次划分区域如图3所示;j设定取为6,取η=60%,p=200;假设隧道椭圆化后的长轴为5.5m,短轴为5.4m,椭圆中心坐标为(0,0),由于隧道测量只能测得地基上方数据点,因此下半短轴为4.7m,i取2,本申请中给数据点集模拟添加扰动噪点,来模拟实际隧道点云,如图4和5所示。Use the detection method in the present invention to perform simulation. In this embodiment, take ω=45°, i is 4, m is 8, step (201) is divided into areas as shown in Figure 2, and the next divided area is as shown in Figure 2 3; j is set to 6, η = 60%, p = 200; assuming that the long axis of the tunnel ovalization is 5.5m, the short axis is 5.4m, and the ellipse center coordinate is (0,0), because Tunnel measurement can only measure the data points above the foundation, so the lower half short axis is 4.7m, and i is taken as 2. In this application, disturbance noise is added to the simulation of the data point set to simulate the actual tunnel point cloud, as shown in Figures 4 and 5 .
另外采用其它检测方法与本发明中的检测方法进行对比测试,分别为:In addition, other detection methods and the detection method in the present invention are adopted to carry out comparative tests, which are respectively:
I.采用HyperLS直接对模拟数据集进行拟合椭圆;I. Using HyperLS to directly fit the ellipse to the simulated data set;
II.采用LS直接对模拟数据集进行拟合椭圆;II. Use LS to directly fit the ellipse to the simulated data set;
III.采用RANSAC&HyperLS直接对模拟数据集进行拟合椭圆;III. Use RANSAC&HyperLS to directly fit the ellipse to the simulated data set;
IV.采用RANSAC&LS直接对模拟数据集进行拟合椭圆;IV. Use RANSAC&LS to directly fit the ellipse to the simulated data set;
V.本申请中的检测方法;V. the detection method in this application;
VI.使用本申请中的方法得到新的数据集后,使用LS方法对新的数据集进行拟合椭圆。VI. After obtaining a new data set using the method in this application, use the LS method to fit an ellipse to the new data set.
从图7中可以看出,线条V最接近标准数据点,线条VI的拟合效果次之,传统的检测方法拟合效果不佳,通过以上模拟仿真,进一步验证了使用本发明进行检测时,检测更加稳定,提高检测的准确性,检测精度高。As can be seen from Figure 7, the line V is closest to the standard data point, the fitting effect of the line VI is second, and the traditional detection method has a poor fitting effect. The detection is more stable, the detection accuracy is improved, and the detection accuracy is high.
本发明并不局限于上述实施例,在本发明公开的技术方案的基础上,本领域的技术人员根据所公开的技术内容,不需要创造性的劳动就可以对其中的一些技术特征作出一些替换和变形,这些替换和变形均在本发明的保护范围内。The present invention is not limited to the above-mentioned embodiments. On the basis of the technical solutions disclosed in the present invention, those skilled in the art can make some substitutions and modifications to some of the technical features according to the disclosed technical contents without creative work. Modifications, replacements and modifications are all within the protection scope of the present invention.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110257311.6A CN112967256B (en) | 2021-03-09 | 2021-03-09 | Tunnel ovalization detection method based on spatial distribution |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110257311.6A CN112967256B (en) | 2021-03-09 | 2021-03-09 | Tunnel ovalization detection method based on spatial distribution |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112967256A true CN112967256A (en) | 2021-06-15 |
CN112967256B CN112967256B (en) | 2023-11-24 |
Family
ID=76277107
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110257311.6A Active CN112967256B (en) | 2021-03-09 | 2021-03-09 | Tunnel ovalization detection method based on spatial distribution |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112967256B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115409885A (en) * | 2022-11-02 | 2022-11-29 | 北京科技大学 | An Ellipse Fitting Method Suitable for Steel Pipe Profile Measurement |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1993018386A1 (en) * | 1992-03-13 | 1993-09-16 | Leica Industrieverwaltung Gmbh | Method and apparatus for determining the optical properties of a lens |
US5563808A (en) * | 1993-05-03 | 1996-10-08 | General Electric Company | Pilger mill mandrel measuring device |
CN103077315A (en) * | 2013-01-11 | 2013-05-01 | 西北工业大学 | Method for rebuilding front and back oval edges of aerial blade based on error control |
CN109000782A (en) * | 2018-09-27 | 2018-12-14 | 哈尔滨工程大学 | A kind of ellipse fitting non-linear error calibration method based on Kalman filtering |
CN109408909A (en) * | 2018-09-30 | 2019-03-01 | 中南大学 | A kind of three-dimensional rough surface micro-bulge approximating method |
CN110163905A (en) * | 2019-05-08 | 2019-08-23 | 武汉惟景三维科技有限公司 | A kind of high-precision ellipse fitting method |
CN111336991A (en) * | 2020-03-27 | 2020-06-26 | 南京航空航天大学 | Tunnel ellipticity analysis method, device and system based on laser point cloud |
CN111402316A (en) * | 2020-03-09 | 2020-07-10 | 东华大学 | A fast detection method of ellipse in image based on de-pseudo-link |
-
2021
- 2021-03-09 CN CN202110257311.6A patent/CN112967256B/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1993018386A1 (en) * | 1992-03-13 | 1993-09-16 | Leica Industrieverwaltung Gmbh | Method and apparatus for determining the optical properties of a lens |
US5563808A (en) * | 1993-05-03 | 1996-10-08 | General Electric Company | Pilger mill mandrel measuring device |
CN103077315A (en) * | 2013-01-11 | 2013-05-01 | 西北工业大学 | Method for rebuilding front and back oval edges of aerial blade based on error control |
CN109000782A (en) * | 2018-09-27 | 2018-12-14 | 哈尔滨工程大学 | A kind of ellipse fitting non-linear error calibration method based on Kalman filtering |
CN109408909A (en) * | 2018-09-30 | 2019-03-01 | 中南大学 | A kind of three-dimensional rough surface micro-bulge approximating method |
CN110163905A (en) * | 2019-05-08 | 2019-08-23 | 武汉惟景三维科技有限公司 | A kind of high-precision ellipse fitting method |
CN111402316A (en) * | 2020-03-09 | 2020-07-10 | 东华大学 | A fast detection method of ellipse in image based on de-pseudo-link |
CN111336991A (en) * | 2020-03-27 | 2020-06-26 | 南京航空航天大学 | Tunnel ellipticity analysis method, device and system based on laser point cloud |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115409885A (en) * | 2022-11-02 | 2022-11-29 | 北京科技大学 | An Ellipse Fitting Method Suitable for Steel Pipe Profile Measurement |
Also Published As
Publication number | Publication date |
---|---|
CN112967256B (en) | 2023-11-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107679441B (en) | A method of extracting the height of urban buildings based on shadows from multi-temporal remote sensing images | |
CN111811420B (en) | Method and system for monitoring the overall absolute deformation of the three-dimensional profile of the tunnel | |
Xu et al. | 3D reconstruction and measurement of surface defects in prefabricated elements using point clouds | |
CN109033538B (en) | A method for calculating permeability tensor of fractured rock mass based on measured structural plane parameters | |
CN109060821B (en) | Tunnel disease detection method and tunnel disease detection device based on laser detection | |
CN107762559B (en) | Method and system for evaluating tunnel over-under-excavation condition | |
CN107578133B (en) | A method and system for optimizing power line inspection trajectory | |
CN112328718A (en) | A road topology construction system and method based on vehicle dynamic trajectory tracking | |
CN107402001A (en) | Construction of super highrise building deviation digitlization checking system and method based on 3D scannings | |
CN113487555B (en) | Point cloud meshing-based quick detection method for hidden danger points of power transmission line | |
CN109341704B (en) | Map precision determination method and device | |
Wei et al. | Automated inspection and monitoring of member deformation in grid structures | |
CN114136993B (en) | Method and system for detecting circumferential seams of shield tunnel | |
CN114459378A (en) | A three-dimensional laser scanning subsection measurement method and measurement system for tunnel engineering | |
CN109615594B (en) | Laser point cloud cavity repairing and coloring method | |
CN108895962B (en) | The setting of high-precision three-dimensional laser scanner website and measurement route distribution method | |
CN102012964B (en) | Method and device for processing sampling data of laser scanning | |
CN112967256B (en) | Tunnel ovalization detection method based on spatial distribution | |
CN110046209B (en) | Trajectory stopping point extraction method based on Gaussian model | |
CN116205968A (en) | A method and system for calculating the operating area of agricultural machinery based on raster images | |
CN111998838A (en) | A storage capacity curve measurement method based on 3D laser scanning | |
CN111813775B (en) | Tunnel point cloud data processing method and device and storage medium | |
Kalasapudi et al. | A multi-level 3D data registration approach for supporting reliable spatial change classification of single-pier bridges | |
CN115618697B (en) | CAE simulation inversion method and server for multiple stratum parameters of shield tunnel | |
Mehranfar et al. | A projection-based reconstruction algorithm for 3d modeling of bridge structures from drone-based point cloud |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |